Communication-Efficient Triangle Counting under Local Differential Privacy

<u>Jacob Imola</u>* (UCSD) Takao Murakami* (AIST) Kamalika Chaudhuri (UCSD)

*: Equal Contribution, Full Version: https://arxiv.org/abs/2110.06485

Outline

Subgraph Counts

- **Triangle** is a set of 3 nodes with 3 edges.
- k-star consists of a central node connected to k other nodes.

Shape	Name	Count
	Triangle	2
	2-star	15
600	3-star	6

- Clustering Coefficient
 - > Probability that two friends of a user is also a friend. \rightarrow Useful for friend suggestion.
 - = 3 × #triangles / #2-stars (40% in the above graph).

Outline

- Privacy Issues
 - #Triangles/#k-stars can reveal sensitive edges. [Imola+, UseSec21]

- Local Differential Privacy (LDP)
 - User obfuscates her personal data by herself (i.e., no trusted third party).
 - Privacy is protected against attackers with any background knowledge.

Outline

- Subgraph Counting under LDP [Imola+, UseSec21]
 - #k-stars can be accurately estimated within 1 round.
 - #triangles can be accurately estimated within 2 rounds.
 - ▶ But the DL cost is extremely large, e.g., **400 Gbits (6 hours when 20 Mbps).** ⊗

Our Contributions

• We dramatically reduce the DL cost with several new algorithmic ideas.

400 Gbits (6 hours) → 160 Mbits (8 seconds). ⓒ

Preliminaries

(LDP on Graphs, [Imola+, UseSec21])

Our Proposal

(Overview, Selective DL, Double Clipping)

Experiments (Datasets, Experimental Results)

LDP on Graphs

Graph

- Can be represented as an adjacency matrix A (1: edge, 0: no edge).
- User v_i knows her neighbor list \mathbf{a}_i (*i*-th row of **A**).

- Local Graph Model
 - User v_i obfuscates her neighbor list \mathbf{a}_i and sends noisy data $\mathcal{R}_i(\mathbf{a}_i)$ to a server.

LDP on Graphs

- Edge LDP [Qin+, CCS17]
 - ▶ Protects a single bit in a neighbor list $\mathbf{a} \in \{0,1\}^n$ with privacy budget ε .

Randomizer \mathcal{R} provides ε -edge LDP if for all $\mathbf{a}, \mathbf{a}' \in \{0,1\}^n$ that differ in one bit and all $y \in \mathcal{Y}$, $\Pr[\mathcal{R}(\mathbf{a}) = y] \le e^{\varepsilon} \Pr[\mathcal{R}(\mathbf{a}') = y]$

- 1 edge affects 2 elements of $A \rightarrow$ each edge is protected with at most 2ε .
- Our triangle algorithm uses only $\searrow \rightarrow$ each edge is protected with ε .

Triangle Counting under LDP [Imola+, UseSec21]

- Triangles
 - Challenging because a user cannot see an edge between others.

- 1st Round
 - Each user applies RR to each bit of her neighbor list. \rightarrow edge LDP.
 - Each user sends **noisy edges**. Server publishes noisy graph G'.

Triangle Counting under LDP [Imola+, UseSec21]

2nd Round

- ▶ Each user can count triangles including one noisy edge using noisy graph G'.
- Each user sends #noisy triangles (+ corrective term) + Lap. \rightarrow edge LDP.
- Server calculates an unbiased estimate of #triangles.

DL cost is extremely large because G' is dense. \otimes

Preliminaries

(LDP on Graphs, [Imola+, UseSec21])

Our Proposal

(Overview, Selective DL, Double Clipping)

Experiments (Datasets, Experimental Results)

Overview

- Our Approach
 - ▶ We use **asymmetric RR** to make a *sparse* noisy graph *G*'.
 - \rightarrow DL cost is significantly reduced at the cost of the estimation error.
 - We propose two techniques (selective DL and double clipping) to reduce the error.

Selective Download

- Full DL Strategy (ARRFull)
 - User v_i downloads all noisy edges, i.e., noisy graph G'.
 - ▶ 1 noisy edge (v_j, v_k) causes 2 *incorrect* noisy triangles \triangle . → Large estimation error.
- Selective DL Strategies (ARROneNS and ARRTwoNS)
 - Make the two triangles less correlated with each other by adding independent noise.
 - In ARROneNS, v_i downloads noisy edge (v_j, v_k) s.t. (v_i, v_k) is a noisy edge.
 - In ARRTwoNS, v_i downloads noisy edge (v_j, v_k) s.t. (v_i, v_j) and (v_i, v_k) are noisy edges.

Double Clipping

Laplacian Noise

- [Imola+, UseSec21] added Lap $\left(\frac{d_{max}}{\epsilon}\right)$ (d_{max} : maximum degree) at the 2nd round.
- But the sensitivity of #noisy triangles is much smaller than d_{max} because: (1) User v_i 's degree d_i is much smaller than d_{max} .

(2) noisy edges are sparse. \rightarrow #noisy triangles involving (v_i, v_j) is much smaller than d_i .

Double Clipping

Dramatically reduces sensitivity by (1) edge clipping and (2) noisy triangle clipping.

Double Clipping

- Edge Clipping
 - Add the Laplacian noise (+ non-negative value) to user v_i 's degree d_i .
 - If d_i exceeds the noisy degree \tilde{d}_i , remove edges to ensure $d_i \leq \tilde{d}_i$.
- Noisy Triangle Clipping
 - If #noisy triangles exceeds a threshold κ_i , reduce it to ensure #noisy triangles $\leq \kappa_i$.
 - We set κ_i s.t. the triangle excess probability is very small, e.g., 10^{-6} .

We use κ_i ($\ll d_{max}$) as the sensitivity.

Preliminaries

(LDP on Graphs, [Imola+, UseSec21])

Our Proposal

(Overview, Selective DL, Double Clipping)

Experiments

(Datasets, Experimental Results)

- Gplus (Google+ Dataset)
 - Social graph with 107614 nodes (users).
 - Average degree = 113.7.
- IMDB (Internet Movie Database)
 - Graph with 896308 nodes (actors).
 - Average degree = 63.7. More sparse than Gplus.

Experimental Results

- Result 1: Relative Error vs. DL Cost
 - Our proposals download user IDs for 1 (edges).
 - ▶ [Imola+, UseSec21] downloads 0/1 for each user-pair \rightarrow 6G (Gplus) and 400G (IMDB).
 - In IMDB, our proposals achieve 160M bits with high accuracy (relative error \ll 1).

Experiments

Result 2: Full DL vs. Selective DL

- Selective DL significantly outperforms Full DL.
- ARROneNS outperforms ARRTwoNS. ← In ARRTwoNS, all noisy triangles have noisy edge (v_i, v_j) in common and the sensitivity is not effectively reduced by double clipping.

Conclusions

- This Work
 - We proposed communication-efficient triangle counting under LDP with new algorithmic ideas: asymmetric RR, selective DL, and double clipping.

- Future Work: 1-Round Triangle Counting
 - We showed that this is possible in the shuffle model: <u>https://arxiv.org/abs/2205.01429</u>
 - > We would like to investigate whether this is possible under the local model.

Thank you for your attention!

Q&A

jimola at eng.ucsd.edu, takao-murakami at aist.go.jp