

PoisonedEncoder: Poisoning the Unlabeled Pre-training Data in Contrastive Learning

Hongbin Liu, Jinyuan Jia, Neil Zhenqiang Gong Duke University 08/12/2022

Conventional Paradigm: Supervised Learning

Labeled training data

Traffic sign recognition

Digit recognition

Key Challenge: require lots of labeled training data for each task

Contrastive Learning: General-Purpose Al

Pre-training an Encoder – SimCLR [ICML'20]

Building a Downstream Classifier

Encoder is Vulnerable to Poisoning Attacks

Threat Model

- One target downstream task
 - E.g., traffic sign recognition
- One target input
 - E.g., an image of the stop sign
- One target class
 - E.g., "50 mi/h"
- Attacker's goal
 - Target downstream classifier misclassifies the target input as target class
- Attacker's background knowledge
 - Images from the target class.

Reference inputs

Target input

Key Idea of Our Attack

- Formulate poisoning attack as a bi-level optimization problem
- Use non-iterative heuristic solution

Poisoning attack as a bi-level optimization problem

Our PoisonedEncoder: heuristic solution

Real-world examples of combined images from Google search

Experimental Setup

- Pre-training encoders
 - Pre-training algorithm
 - SimCLR
 - Pre-training dataset
 - CIFAR10
- Building downstream classifiers
 - Downstream tasks
 - STL10, Facemask, EuroSAT
 - Downstream classifier
 - A fully connected neural network

Attack Setting

- Target input and target class
 - Different for different target downstream tasks
- Reference inputs
 - From each target class in target downstream task's testing data
- Parameter settings
 - # reference inputs = 50
 - Poisoning rate = 1%
 - # random experimental trails = 10

Attack Success Rate

PoisonedEncoder is Effective

Target Downstream Task	Attack Success Rate
STL10	0.8
Facemask	0.9
EuroSAT	0.5

Clean Accuracy and Poisoned Accuracy

Clean testing inputs

PoisonedEncoder Maintains Utility

Target Downstream Task	Clean Accuracy	Poisoned Accuracy
STL10	0.718	0.715
Facemask	0.947	0.937
EuroSAT	0.815	0.797

Defenses are Insufficient

- Pre-processing defense
 - Duplicate checking
 - Insufficient when the attacker has a large amount of reference inputs
 - Clustering-based detection
 - Ineffective
- In-processing defenses
 - Early stopping
 - Effective but sacrificing utility
 - Bagging [AAAI'21]
 - Effective but substantially sacrificing utility
 - Pre-training encoder w/o random cropping
 - Effective but substantially sacrificing utility
- Post-processing defense
 - Fine-tuning pre-trained encoder for extra epochs on some clean images
 - Effective without sacrificing the encoder's utility
 - But require manually collecting a large set of clean images

Conclusion

- Contrastive learning is highly vulnerable to poisoning attack
- Insecure encoders lead to a single point of failure of AI ecosystem
- Defenses are insufficient to defend against PoisonedEncoder