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Conventional Paradigm: Supervised Learning 

Digit recognition

Labeled training data
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Key Challenge: require lots of labeled training data for each task



Contrastive Learning: General-Purpose AI
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Pre-training an Encoder – SimCLR [ICML’20] 
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Building a Downstream Classifier

Training inputs of 
a downstream task
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Encoder is Vulnerable to Poisoning Attacks
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Threat Model

• One target downstream task
• E.g., traffic sign recognition

• One target input
• E.g., an image of the stop sign

• One target class
• E.g., “50 mi/h”

• Attacker’s goal
• Target downstream classifier misclassifies the target input as target class

• Attacker’s background knowledge
• Images from the target class.

Reference inputs
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Target input



Key Idea of Our Attack

• Formulate poisoning attack as a bi-level optimization problem

• Use non-iterative heuristic solution
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Poisoning attack as a bi-level optimization problem
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𝑠. 𝑡. 𝜃∗ 𝑋* ∪ 𝑋+ = argmin- ℒ*. (𝑋* ∪ 𝑋+; 𝜃)
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Our PoisonedEncoder: heuristic solution
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Real-world examples of combined images from Google search

11



Experimental Setup

• Pre-training encoders
• Pre-training algorithm

• SimCLR

• Pre-training dataset
• CIFAR10

• Building downstream classifiers
• Downstream tasks

• STL10, Facemask, EuroSAT

• Downstream classifier
• A fully connected neural network
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Attack Setting

• Target input and target class
• Different for different target downstream tasks

• Reference inputs
• From each target class in target downstream task’s testing data

• Parameter settings
• # reference inputs = 50
• Poisoning rate = 1% 
• # random experimental trails = 10
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PoisonedEncoder is Effective
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Target Downstream Task Attack Success Rate
STL10 0.8

Facemask 0.9
EuroSAT 0.5



Clean Accuracy and Poisoned Accuracy
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PoisonedEncoder Maintains Utility

Target 
Downstream Task

Clean Accuracy Poisoned Accuracy

STL10 0.718 0.715
Facemask 0.947 0.937
EuroSAT 0.815 0.797
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Defenses are Insufficient
• Pre-processing defense
• Duplicate checking

• Insufficient when the attacker has a large amount of reference inputs
• Clustering-based detection

• Ineffective

• In-processing defenses
• Early stopping

• Effective but sacrificing utility
• Bagging [AAAI’21]

• Effective but substantially sacrificing utility
• Pre-training encoder w/o random cropping

• Effective but substantially sacrificing utility

• Post-processing defense
• Fine-tuning pre-trained encoder for extra epochs on some clean images

• Effective without sacrificing the encoder’s utility
• But require manually collecting a large set of clean images
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Conclusion

• Contrastive learning is highly vulnerable to poisoning attack

• Insecure encoders lead to a single point of failure of AI ecosystem

• Defenses are insufficient to defend against PoisonedEncoder
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