MundoFuzz: Hypervisor Fuzzing with Statistical
Coverage Testing and Grammar Inference

Cheolwoo Myung’, Gwangmu Lee?, and Byoungyoung Lee'

Seoul National University!, EPFL*

=Pi-L

Hypervisor: Manager of Virtual Machine

o Allow remote users to run guest VMs

Hypervisor J

2/16

Hypervisor can be attacked by Malicious VM

= N\ @)
— —
vmM) L vm

Hypervisor @ J

e One of guest VMs can be malicious

3/16

Fuzzing: Feed Random Inputs to Hypervisor

[VM } Combination of Low-level 10 operation
Fuzzing > -
Input
PIO MMIO

N\Era‘ﬂ U (Yl

T)
) Hypervisor %

4/16

Motivation: Too many devices, too many formats

e Hypervisor controls many virtual devices Input
o Each device has its own input formats

————————————————————————————————

virtual devices

() () ()

SCSI NIC USB

\.

Sound [SATA] APIC

1

1

1

1

1

1

1

1

4 N\ 4 N\ 1
NVMe Display Timer :
Y, Y, _) 1
1

1

1

1

1

)

/

o M e e e e e e e

————————————————————————————————

5/16

Limitations of Current Hypervisor Fuzzing

#1. Generating random inputs per device
Limitation = Cannot explore deep states of the devices
#2. Relying on manual input grammars per device

Limitation = Require unacceptable manual work to specify grammar rules

Let’s fuzz hypervisor with grammar-awareness using automatic grammar inference!

6/16

Overview of MundoFuzz

e Augment hypervisor fuzzing capability with automatic grammar inference

o Challenges in inferring hypervisor grammars
o #1. Hypervisor grammars have hidden input semantics per device
o #2.Hardware features of hypervisor introduce coverage noises

e Our approach
o Statistical and differential learning with coverage

7116

Too difficult to infer hidden input semantics behind the hypervisor input

Input

SCSI
Command

Challenge 1: Hidden Input Semantics

MMIO[bar+0] < 0x0
MMIO[bar+4] < 0x4
MMIO[bar+0] < Oxcafe
MMIO[bar+4] < 0x8

AY
\
\
AY
\
\
AY
AY
AY
\
AY
\

Hypervisor Operation

Find Sector 0

=

A\ 4

Write Data

Example: SCSI command input

8/16

Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

o 10 address semantics: correct semantic command should be given

Input

SCSI
Command

MMIO[bar+0] < 0x0
MMIO[bar+4] < 0x4
MMIO[bar+0] < Oxcafe
MMIO[bar+4] < 0x8

AY
\
\
AY
\
\
\
AY
AY
\
AY
AY

Hypervisor Operation

Find Sector 0

=

A\ 4

Write Data

Example: SCSI command input

8/16

Challenge 1: Hidden Input Semantics

e Too difficult to infer hidden input semantics behind the hypervisor input

o 10 address semantics: correct semantic command should be given

Control Type (bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

MMIO[bar+0] ¢ 0x0

MMIO[bar+4] & 0x4
MMIO[bar+0] & Oxcafe
MMIO[bar+4] <& 0x8

AY
AY
\
\
AY
\
AY
\
AY
AY
\
AY
\

Hypervisor Operation

Find Sector 0

=

A\ 4

Write Data

Example: SCSI command input

8/16

Challenge 1: Hidden Input Semantics

e Too difficult to infer hidden input semantics behind the hypervisor input
o 10 address semantics: correct semantic

Invoke the “Find Sector” func. (0x4)
with the parameter (0x0)

Control Type (bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

EMMIO[bar+0] & 0x0
| MMIO[bar+4] < 0x4 _ .

MMIO[bar+0] ¢ Oxcafe
MMIO[bar+4] <& 0x8

AY
AY
\
\
AY
\
AY
\
AY
AY
\
AY
\

Hypervisor Operation

Find Sector 0

=

A\ 4

Write Data

Example: SCSI command input

8/16

Challenge 1: Hidden Input Semantics

e Too difficult to infer hidden input semantics behind the hypervisor input

o 10 address semantics: correct semantic

Invoke the “Write Data” func. (0x8)

with the parameter (Oxcafe)

Control Type (bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

MMIO[bar+0] ¢ 0x0

MMIO[bar+4] & 0x4

' MMIO[bar+0] & Oxcafe;

MMIO[bar+4] & 0x8 |

|
|
e L J

AY
AY
\
\
AY
\
AY
\
AY
AY
\
AY
\

Example: SCSI command input

Hypervisor Operation

Find Sector 0

A\ 4

Write Data

=

8/16

Challenge 1: Hidden Input Semantics

e Too difficult to infer hidden input semantics behind the hypervisor input

o 10 order semantics: correct semantic order should be given

Input

SCSI
Command

MMIO[bar+0] < 0x0
MMIO[bar+4] < 0x4
MMIO[bar+0] < Oxcafe
MMIO[bar+4] < 0x8

AY
\
\
AY
\
\
AY
AY
AY
\
AY
\

Example: SCSI command input

Hypervisor Operation

Find Sector 0

=

A\ 4

Write Data

8/16

Challenge 1: Hidden Input Semantics

e Too difficult to infer hidden input semantics behind the hypervisor input

o 10 order semantics: correct semantic order should be given

Input

SCSI
Command

MMIO[bar+0] < 0x0
MMIO[bar+4] < 0x4
MMIO[bar+0] < Oxcafe
MMIO[bar+4] < 0x8

AY
\
AY
AY
\
Ay
AY
AY
AY
\
AY
\

Example: SCSI command input

Hypervisor Operation

Find Sector O

=

\ 4

Write Data

8/16

Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

o 10| “Find Sector” should be performed before “Write Data”

Input

SCSI
Command

MMIO[bar+0] <& 0x0

Hypervisor Operation

MMIO[bar+4] < 0x4

Find Sector O

MMIO[bar+0] <& Oxcafe |—>
MMIO[bar+4] < 0x8

\ 4

Write Data

AY
\
AY
AY
\
Ay
AY
AY
AY
\
AY
\

Example: SCSI command input

8/16

Solution 1: Differential Learning on Input Semantics

#1. 10 address semantics

o Different 10 address types react to 10 address values differently

9/16

Solution 1: Differential Learning on Input Semantics

o Different 10 address types react to 10 address values differently

#1. 10 address semantics

o control type = exhibits a different coverage

Correct input

MMIO[bar+0] & 0x0
MMIO[bar+4] ¢ 0x4

-
Incorrect input

MMIO[bar+0] ¢ 0x0
MMIO[bar+4] & 0xfb

-

=

-

-

~N

Hypervisor

J

=

Different!!

(Coverage\
HEENEEEN

=

N /

9/16

Solution 1: Differential Learning on Input Semantics

#1. 10 address semantics

e Different 10 address types react to 10 add
o control type = exhibits a different coverag

Correct input

MMIO[bar+0] & 0x0
MMIO[bar+4] & 0x4

-
Incorrect input

MMIO[bar+0] ¢ 0x0
MMIO[bar+4] & 0xfb

.

=

-

-

~N

Hypervisor

Different!!

(Coverage\
HEENEEEN

o3

(LT T

J

Control Type!

Invoke “Find Sector”

-

Invoke “Other Func”

N /

-

9/16

Solution 1: Differential Learning on Input Semantics

o Different 10 address types react to 10 address values differently

#1. 10 address semantics

o control type = exhibits a different coverage
o data type= exhibits a same coverage

Correct input

MMIO[bar+0] & 0x0
MMIO[bar+4] €< 0x4

-
Incorrect input

MMIO[bar+0] & Oxff
MMIO[bar+4] ¢ 0x4

-

=

=

-

-

~N

Hypervisor

J

=

=

Same!!
(Coverage\
HEENEEEN
—

—
NEENEEEN
o %

9/16

Solution 1: Differential Learning on Input Semantics

#1. 10 address semantics

e Different 10 address types react to 10 addr
o control type = exhibits a different coveragh

o data type= exhibits a same coverage

Correct input

MMIO[bar+0] & 0x0
MMIO[bar+4] €< 0x4

-
Incorrect input

MMIO[bar+0] & Oxff
MMIO[bar+4] ¢ 0x4

-

=

=

-

-

~N

Hypervisor

J

=

=

Data Type!

Same!!

(Coverage\
HEENEEEN

—

O O [[T

ently

Find Sector 0

-

Find Sector 255

N /

-

9/16

Solution 1: Differential Learning on Input Semantics

#2. 10 order semantics

e 10 operations wouldn’t work correctly without prerequisite 10 operations
o absence of 10 operations = may distort some following coverage

10/16

Solution 1: Differential Learning on Input Semantics

#2. 10 order semantics

e 10 operations wouldn’t work correctly without prerequisite 10 operations

o absence of 10 operations = may distort some following coverage

Correct input

MMIO[bar+0] < 0x0
MMIO[bar+4] &< 0x4
MMIO[bar+0] < Oxcafe
MMIO[bar+4] < 0x8

Incorrect input

Skip

MMIO[bar+0] & Oxcafe
MMIO[bar+4] & 0x8

=

-

-

Hypervisor

~N

J

10/16

Solution 1: Differential Learning on Input Semantics

#2. 10 order semantics

e 10 operations wouldn’t work correctly without prerequisite 10 operations
o absence of 10 operations = may distort some following coverage

Correct input

MMIO[bar+0] < 0x0 c
MMIO[bar+4] < 0x4 s ~N overage

MMIO[bar+0] < Oxcafe |:> |:> T TTT T T 11
MMIO[bar+4] < 0x8

\/ T
Incorrect input Hypervisor

Skip| > Oy O 1w

MMIO[bar+0] < Oxcafe _ Y,
MMIO[bar+4] & 0x8

10/16

Solution 1: Differential Learning on Input Semantics

#2. 10 order semantics

e 10 operations wouldn’t work correctly without prerequisite 10 operations
o absence of 10 operations = may distort some following coverage

Correct input Different!!

MMIO[bar+0] < 0x0 / \ input
Coverage \ [———=——-—=—=—===-=-
MMIO[bar+4] < Ox4 e ~N 8 ' MMIO[bar+0] < 0x0 |

e i1 [it [

MMIO[bar+0] < Oxcafe |:> |:> FTTTT T 111 | MMIO[bar+4] < 0x4 I

MMIO[bar+4] < 0x8
\/ I
Incorrect input Hypervisor %

Skip| > Oy |11

MMIO[bar+0] < Oxcafe _ Y,
MMIO[bar+4] & 0x8 \ /

10/16

Challenge 2: Coverage Noises

e The measured input coverage includes unwanted coverage
o due to the asynchronous event handling (e.g., timer, interrupt event)
o asynchronous event introduces non-deterministic (noise) coverage

11/16

Challenge 2: Coverage Noises

e The measured input coverage includes unwanted coverage
o due to the asynchronous event handling (e.g., timer, interrupt event)
o asynchronous event introduces non-deterministic (noise) coverage

Input

SCSI
Command

—_

Hypervisor Operation

Find Sector

A\ 4

Write Data

[—expected coverage—}

Example: SCSI command input

[] : target

11/16

Challenge 2: Coverage Noises

e The measured input coverage includes unwanted coverage
o due to the asynchronous event handling (e.g., timer, interrupt event)
o asynchronous event introduces non-deterministic (noise) coverage

Input

SCSI
Command

—_

Hypervisor Operation

Interrupt event
v
Find Sector

A\ 4

Write Data

[—expected coverage—}

of execution : 1

[] : target
[] : noise

measured coverage
{ Cov. #1 I

Example: SCSI command input

11/16

Challenge 2: Coverage Noises

e The measured input coverage includes unwanted coverage
o due to the asynchronous event handling (e.g., timer, interrupt event)
o asynchronous event introduces non-deterministic (noise) coverage

Input

SCSI
Command

—_

Hypervisor Operation

Find Sector

A\ 4

Write Data
¥

Timer event

[—expected coverage—}

of execution : 2

measured coverage

=

Cov. #1
Cov. #2

[] : target
[] : noise

Example: SCSI command input

11/16

Challenge 2: Coverage Noises

e The measured input coverage includes unwanted coverage
o due to the asynchronous event handling (e.g., timer, interrupt event)
o asynchronous event introduces non-deterministic (noise) coverage

Input

SCSI
Command

—_

Example: SCSI command input

Hypervisor Operation

Find Sector
v

APIC event
v
Write Data

[—expected coverage—}

of execution : N

[] : target
[] : noise

measured coverage
(\

=

Cov. #1
Cov. #2

Cov. #N

11/16

Solution 2: Statistical Differential Coverage Measurement

/ measured coverage \

-

coverage #1

coverage #2

coverage #N

J

12/16

Solution 2: Statistical Differential Coverage Measurement

/ measured coverage \

-

coverage #1

coverage #2

coverage #N

A/

Target coverage ([])

(o)

is always captured for all execution

12/16

Solution 2: Statistical Differential Coverage Measurement

/ measured coverage \

-

coverage #1

coverage #2

coverage #N

J

e Target coverage ([])
o is always captured for all execution

. (O)

o is captured differently for each
execution

12/16

Solution 2: Statistical Differential Coverage Measurement

e Remove noise coverage by intersecting all measured coverages

/ measured coverage

-

coverage #1

coverage #2

\

coverage #N °

Intersection

12/16

Solution 2: Statistical Differential Coverage Measurement

e Remove noise coverage by intersecting all measured coverages

o the result only contains target coverage

/ measured coverage

-

coverage #1

coverage #2

\

coverage #N °

(ta rget coverage j

Intersection

12/16

hypervisor
input trace

Architecture of MundoFuzz

c—
MundoFuzzOS

—

correct incorrect

L

[Hypervisor

10 addr.

10 order

analysis

f

Cov. w/o noise

statistical
noise filter

y

A

J

Cov. w/ noise

I
1=

grammar

—>[MundoFuzz-Fuzzer]

—

MundoFuzzOS

[Hypervisor]

13/16

What MundoFuzz Found?

MundoFuzz found new 40 bugs in QEMU and Bhyve

o 23 bugsin QEMU
o 17 bugs in Bhyve

o 9 of these were acknowledged as CVEs

Hypervisor

Bug Types

Numbers

QEMU

Use-after-free
Heap Overflow
Segmentation Fault
Infinite Loop

Stack Overflow
Assertion

Bhyve

Segmentation Fault
Floating Point Exception
Assertion

[[
OraErRrPrwWwdW

14716

Our result

Overall coverage: MundoFuzz outperforms state-of-art hypervisor fuzzer
o HyperCube: +4.91%
o Nyx: +6.60%

MundoFuzz shows higher coverage than Nyx+ (with manual grammar rule)
o for USB-XHCI device (48 hours)

HyperCube — Nyx —— Nyx+ MundoFuzz

(=]
o

O
(=]

- , - /’_’ﬁ—f_/-/—_
08 16 24 32 40 48
Time (h) 15/ 16

|
<

Branches Found (%)
g

o
=02
=

Conclusion

e Proposed MundoFuzz, a hypervisor fuzzing technique
o statistically removes noise coverage in raw coverage
o automatically learns the grammar using two hidden semantics

e MundoFuzz discovered 40 new bugs (including 9 CVEs)

e MundoFuzz presented better coverage, compared to state of the arts.

16/16

Thank you!

Q&A

Contact Cheolwoo Myung
Ph.D. Student at Seoul National University (SNU)
cwmyung@snu.ac.kr

mailto:cwmyung@snu.ac.kr

