
MundoFuzz: Hypervisor Fuzzing with Statistical

Coverage Testing and Grammar Inference

Cheolwoo Myung , Gwangmu Lee , and Byoungyoung Lee

Seoul National University , EPFL

† †

†

‡

‡

Hypervisor: Manager of Virtual Machine

Hypervisor

VM

2 / 16

● Allow remote users to run guest VMs

VM

Hypervisor can be attacked by Malicious VM

3 / 16

● One of guest VMs can be malicious

VM VM

Hypervisor

Fuzzing: Feed Random Inputs to Hypervisor

Hypervisor

VM

PIO MMIO

DMA etc.

Combination of Low-level IO operation

4 / 16

Fuzzing
Input

Crash!!

5 / 16

Motivation: Too many devices, too many formats

● Hypervisor controls many virtual devices
○ Each device has its own input formats

Hypervisor

virtual devices

SCSI NIC

DisplayNVMe

Sound SATA

Timer

APIC

USB

Input

…

#1. Generating random inputs per device

#2. Relying on manual input grammars per device

6 / 16

Limitations of Current Hypervisor Fuzzing

Limitation ⇒ Cannot explore deep states of the devices

Limitation ⇒ Require unacceptable manual work to specify grammar rules

Let’s fuzz hypervisor with grammar-awareness using automatic grammar inference!

7 / 16

● Augment hypervisor fuzzing capability with automatic grammar inference

● Challenges in inferring hypervisor grammars
○ #1. Hypervisor grammars have hidden input semantics per device
○ #2. Hardware features of hypervisor introduce coverage noises

● Our approach
○ Statistical and differential learning with coverage

Overview of MundoFuzz

8 / 16

● Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Example: SCSI command input

8 / 16

● Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

○ IO address semantics: correct semantic command should be given

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Example: SCSI command input

8 / 16

● Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

○ IO address semantics: correct semantic command should be given

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Control Type (bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Example: SCSI command input

8 / 16

● Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

○ IO address semantics: correct semantic command should be given

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Control Type (bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Example: SCSI command input

Invoke the “Find Sector” func. (0x4)
with the parameter (0x0)

8 / 16

● Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

○ IO address semantics: correct semantic command should be given Invoke the “Find Sector” func. (0x4)
with the parameter (0x0)

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Control Type (bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

Invoke the “Write Data” func. (0x8)
with the parameter (0xcafe)

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Example: SCSI command input

8 / 16

● Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Example: SCSI command input

○ IO address semantics: correct semantic command should be given
○ IO order semantics: correct semantic order should be given

8 / 16

● Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Example: SCSI command input

○ IO address semantics: correct semantic command should be given
○ IO order semantics: correct semantic order should be given

8 / 16

● Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Example: SCSI command input

○ IO address semantics: correct semantic command should be given
○ IO order semantics: correct semantic order should be given“Find Sector” should be performed before “Write Data”

9 / 16

Solution 1: Differential Learning on Input Semantics
#1. IO address semantics

● Different IO address types react to IO address values differently

9 / 16

Solution 1: Differential Learning on Input Semantics
#1. IO address semantics

● Different IO address types react to IO address values differently

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Hypervisor

Coverage

Different!!

Incorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

○ control type ⇒ exhibits a different coverage

9 / 16

Solution 1: Differential Learning on Input Semantics
#1. IO address semantics

● Different IO address types react to IO address values differently

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Hypervisor

Coverage Invoke “Find Sector”

Invoke “Other Func”

Different!!

Incorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

○ control type ⇒ exhibits a different coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Incorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

Control Type!

9 / 16

Solution 1: Differential Learning on Input Semantics
#1. IO address semantics

● Different IO address types react to IO address values differently

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

HypervisorIncorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

○ control type ⇒ exhibits a different coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Incorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

○ data type⇒ exhibits a same coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Incorrect input
MMIO[bar+0] ← 0xff
MMIO[bar+4] ← 0x4

Coverage

Same!!

9 / 16

Solution 1: Differential Learning on Input Semantics
#1. IO address semantics

● Different IO address types react to IO address values differently

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

HypervisorIncorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

○ control type ⇒ exhibits a different coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Incorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

○ data type⇒ exhibits a same coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Incorrect input
MMIO[bar+0] ← 0xff
MMIO[bar+4] ← 0x4

Data Type!

Coverage

Same!!

Find Sector 0

Find Sector 255

10 / 16

Solution 1: Differential Learning on Input Semantics
#2. IO order semantics

● IO operations wouldn’t work correctly without prerequisite IO operations
○ absence of IO operations ⇒ may distort some following coverage

10 / 16

Solution 1: Differential Learning on Input Semantics
#2. IO order semantics

● IO operations wouldn’t work correctly without prerequisite IO operations
○ absence of IO operations ⇒ may distort some following coverage

Hypervisor

Correct input

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Incorrect input

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Skip

10 / 16

Solution 1: Differential Learning on Input Semantics
#2. IO order semantics

● IO operations wouldn’t work correctly without prerequisite IO operations
○ absence of IO operations ⇒ may distort some following coverage

Hypervisor

Coverage

Correct input

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Incorrect input

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Skip

10 / 16

Solution 1: Differential Learning on Input Semantics
#2. IO order semantics

● IO operations wouldn’t work correctly without prerequisite IO operations
○ absence of IO operations ⇒ may distort some following coverage

Hypervisor

Coverage

Different!!Correct input

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Incorrect input

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Skip

input

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Dependent!

MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

11 / 16

Challenge 2: Coverage Noises

● The measured input coverage includes unwanted coverage
○ due to the asynchronous event handling (e.g., timer, interrupt event)
○ asynchronous event introduces non-deterministic (noise) coverage

11 / 16

Challenge 2: Coverage Noises

● The measured input coverage includes unwanted coverage
○ due to the asynchronous event handling (e.g., timer, interrupt event)
○ asynchronous event introduces non-deterministic (noise) coverage

expected coverage

Input

SCSI
Command

Hypervisor Operation

Write Data

Find Sector

: target

Example: SCSI command input

11 / 16

Challenge 2: Coverage Noises

● The measured input coverage includes unwanted coverage
○ due to the asynchronous event handling (e.g., timer, interrupt event)
○ asynchronous event introduces non-deterministic (noise) coverage

expected coverage

of execution : 1

Cov. #1

measured coverage

Input

SCSI
Command

Hypervisor Operation

Write Data

Find Sector

Write Data

Find Sector

Interrupt event

Example: SCSI command input

: target

: noise

11 / 16

Challenge 2: Coverage Noises

● The measured input coverage includes unwanted coverage
○ due to the asynchronous event handling (e.g., timer, interrupt event)
○ asynchronous event introduces non-deterministic (noise) coverage

expected coverage

Input

SCSI
Command

Hypervisor Operation

Write Data

Find Sector

Write Data

Find Sector

Interrupt event

Write Data

Find Sector

Timer event

Example: SCSI command input

: target

: noise

Cov. #2

of execution : 2

Cov. #1

measured coverage

11 / 16

Challenge 2: Coverage Noises

● The measured input coverage includes unwanted coverage
○ due to the asynchronous event handling (e.g., timer, interrupt event)
○ asynchronous event introduces non-deterministic (noise) coverage

expected coverage

Input

SCSI
Command

Hypervisor Operation

Write Data

Find Sector

Example: SCSI command input

of execution : N

Cov. #1

measured coverage

Cov. #2

Cov. #N

...
: target

: noise

Write Data

Find Sector

APIC event

12 / 16

Solution 2: Statistical Differential Coverage Measurement

coverage #N

...

coverage #2

coverage #1

measured coverage

: target

: noise

12 / 16

Solution 2: Statistical Differential Coverage Measurement

: target

: noise

● Target coverage ()
○ is always captured for all execution

coverage #N

...

coverage #2

coverage #1

measured coverage

12 / 16

Solution 2: Statistical Differential Coverage Measurement

: target

: noise ● Noise coverage ()
○ is captured differently for each

execution

● Target coverage ()
○ is always captured for all execution

coverage #N

...

coverage #2

coverage #1

measured coverage

12 / 16

Solution 2: Statistical Differential Coverage Measurement

coverage #N

...

coverage #2

coverage #1

measured coverage

● Remove noise coverage by intersecting all measured coverages

: target

: noise

coverage #N

...

coverage #2

coverage #1

measured coverage

coverage #N

...

coverage #2

coverage #1

measured coverage

∩
Intersection

12 / 16

Solution 2: Statistical Differential Coverage Measurement

coverage #N

...

coverage #2

coverage #1

measured coverage

● Remove noise coverage by intersecting all measured coverages

: target

: noise

coverage #N

...

coverage #2

coverage #1

measured coverage

coverage #N

...

coverage #2

coverage #1

measured coverage

∩
Intersection

target coverage

○ the result only contains target coverage

13 / 16

Architecture of MundoFuzz

hypervisor
input trace

correct

Hypervisor

incorrect

MundoFuzzOS

statistical
noise filter

Cov. w/ noise

Cov. w/o noise

analysis

IO addr. IO order

grammar

MundoFuzzOS

MundoFuzz-Fuzzer

Hypervisor

14 / 16

What MundoFuzz Found?

Hypervisor Bug Types Numbers

QEMU

Bhyve

Use-after-free 3
Heap Overflow 2
Segmentation Fault 3
Infinite Loop 3
Stack Overflow 1
Assertion 11

Segmentation Fault 4
Floating Point Exception 1
Assertion 12

● MundoFuzz found new 40 bugs in QEMU and Bhyve
○ 23 bugs in QEMU
○ 17 bugs in Bhyve
○ 9 of these were acknowledged as CVEs

15 / 16

Our result

● Overall coverage: MundoFuzz outperforms state-of-art hypervisor fuzzer
○ HyperCube: +4.91%
○ Nyx: +6.60%

● MundoFuzz shows higher coverage than Nyx+ (with manual grammar rule)
○ for USB-XHCI device (48 hours)

16 / 16

Conclusion

● Proposed MundoFuzz, a hypervisor fuzzing technique
○ statistically removes noise coverage in raw coverage

○ automatically learns the grammar using two hidden semantics

● MundoFuzz discovered 40 new bugs (including 9 CVEs)

● MundoFuzz presented better coverage, compared to state of the arts.

Q & A

Thank you!

Contact Cheolwoo Myung
Ph.D. Student at Seoul National University (SNU)

cwmyung@snu.ac.kr

mailto:cwmyung@snu.ac.kr

