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Hypervisor: Manager of Virtual Machine

o Allow remote users to run guest VMs

Hypervisor J
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Hypervisor can be attacked by Malicious VM
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e One of guest VMs can be malicious
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Fuzzing: Feed Random Inputs to Hypervisor
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Motivation: Too many devices, too many formats

e Hypervisor controls many virtual devices Input
o Each device has its own input formats
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Limitations of Current Hypervisor Fuzzing

#1. Generating random inputs per device
Limitation = Cannot explore deep states of the devices
#2. Relying on manual input grammars per device

Limitation = Require unacceptable manual work to specify grammar rules

Let’s fuzz hypervisor with grammar-awareness using automatic grammar inference!
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Overview of MundoFuzz

e Augment hypervisor fuzzing capability with automatic grammar inference

o Challenges in inferring hypervisor grammars
o #1. Hypervisor grammars have hidden input semantics per device
o #2.Hardware features of hypervisor introduce coverage noises

e Our approach
o Statistical and differential learning with coverage
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Too difficult to infer hidden input semantics behind the hypervisor input
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Challenge 1: Hidden Input Semantics

MMIO[bar+0] < 0x0
MMIO[bar+4] < 0x4
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MMIO[bar+4] < 0x8
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Write Data

Example: SCSI command input

8/16



Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

o 10 address semantics: correct semantic command should be given
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Challenge 1: Hidden Input Semantics

e Too difficult to infer hidden input semantics behind the hypervisor input

o 10 address semantics: correct semantic command should be given

Control Type (bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter
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Challenge 1: Hidden Input Semantics

e Too difficult to infer hidden input semantics behind the hypervisor input
o 10 address semantics: correct semantic

Invoke the “Find Sector” func. (0x4)
with the parameter (0x0)

Control Type (bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter
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Find Sector 0
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Write Data

Example: SCSI command input
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Challenge 1: Hidden Input Semantics

e Too difficult to infer hidden input semantics behind the hypervisor input

o 10 address semantics: correct semantic

Invoke the “Write Data” func. (0x8)

with the parameter (Oxcafe)

Control Type (bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

MMIO[bar+0] ¢ 0x0

MMIO[bar+4] & 0x4

' MMIO[bar+0] & Oxcafe;

MMIO[bar+4] & 0x8 |
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Example: SCSI command input
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Challenge 1: Hidden Input Semantics

e Too difficult to infer hidden input semantics behind the hypervisor input

o 10 order semantics: correct semantic order should be given

Input

SCSI
Command
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Example: SCSI command input

Hypervisor Operation
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Challenge 1: Hidden Input Semantics

e Too difficult to infer hidden input semantics behind the hypervisor input

o 10 order semantics: correct semantic order should be given
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Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

o 10| “Find Sector” should be performed before “Write Data”

Input

SCSI
Command

MMIO[bar+0] <& 0x0

Hypervisor Operation

MMIO[bar+4] < 0x4

Find Sector O

MMIO[bar+0] <& Oxcafe |—>
MMIO[bar+4] < 0x8
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Example: SCSI command input
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Solution 1: Differential Learning on Input Semantics

#1. 10 address semantics

o Different 10 address types react to 10 address values differently
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Solution 1: Differential Learning on Input Semantics

o Different 10 address types react to 10 address values differently

#1. 10 address semantics

o control type = exhibits a different coverage

Correct input

MMIO[bar+0] & 0x0
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Solution 1: Differential Learning on Input Semantics

#1. 10 address semantics

e Different 10 address types react to 10 add
o control type = exhibits a different coverag
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Solution 1: Differential Learning on Input Semantics

o Different 10 address types react to 10 address values differently

#1. 10 address semantics

o control type = exhibits a different coverage
o data type= exhibits a same coverage

Correct input
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Solution 1: Differential Learning on Input Semantics

#2. 10 order semantics

e 10 operations wouldn’t work correctly without prerequisite 10 operations
o absence of 10 operations = may distort some following coverage
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Solution 1: Differential Learning on Input Semantics

#2. 10 order semantics
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o absence of 10 operations = may distort some following coverage

Correct input

MMIO[bar+0] < 0x0
MMIO[bar+4] &< 0x4
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Solution 1: Differential Learning on Input Semantics

#2. 10 order semantics

e 10 operations wouldn’t work correctly without prerequisite 10 operations
o absence of 10 operations = may distort some following coverage

Correct input

MMIO[bar+0] < 0x0 c
MMIO[bar+4] < 0x4 s ~N overage

MMIO[bar+0] < Oxcafe |:> |:> T TTT T T 11
MMIO[bar+4] < 0x8

\/ T
Incorrect input Hypervisor

Skip| > Oy O 1w

MMIO[bar+0] < Oxcafe \_ Y,
MMIO[bar+4] & 0x8

10/16



Solution 1: Differential Learning on Input Semantics

#2. 10 order semantics

e 10 operations wouldn’t work correctly without prerequisite 10 operations
o absence of 10 operations = may distort some following coverage
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Challenge 2: Coverage Noises

e The measured input coverage includes unwanted coverage
o due to the asynchronous event handling (e.g., timer, interrupt event)
o asynchronous event introduces non-deterministic (noise) coverage

11/16



Challenge 2: Coverage Noises

e The measured input coverage includes unwanted coverage
o due to the asynchronous event handling (e.g., timer, interrupt event)
o asynchronous event introduces non-deterministic (noise) coverage
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Example: SCSI command input

[] : target
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Challenge 2: Coverage Noises

e The measured input coverage includes unwanted coverage
o due to the asynchronous event handling (e.g., timer, interrupt event)
o asynchronous event introduces non-deterministic (noise) coverage

Input

SCSI
Command
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Hypervisor Operation
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v
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Write Data

[—expected coverage—}

# of execution : 1

[] : target
[] : noise

measured coverage
{ Cov. #1 I

Example: SCSI command input
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Challenge 2: Coverage Noises

e The measured input coverage includes unwanted coverage
o due to the asynchronous event handling (e.g., timer, interrupt event)
o asynchronous event introduces non-deterministic (noise) coverage
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Timer event

[—expected coverage—}

# of execution : 2

measured coverage
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[] : target
[] : noise

Example: SCSI command input
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Challenge 2: Coverage Noises

e The measured input coverage includes unwanted coverage
o due to the asynchronous event handling (e.g., timer, interrupt event)
o asynchronous event introduces non-deterministic (noise) coverage
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Example: SCSI command input
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Solution 2: Statistical Differential Coverage Measurement
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Solution 2: Statistical Differential Coverage Measurement

/ measured coverage \
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Solution 2: Statistical Differential Coverage Measurement

/ measured coverage \

-

coverage #1

coverage #2

coverage #N

J

e Target coverage ([])
o is always captured for all execution

. (O)

o is captured differently for each
execution
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Solution 2: Statistical Differential Coverage Measurement

e Remove noise coverage by intersecting all measured coverages

/ measured coverage
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Solution 2: Statistical Differential Coverage Measurement

e Remove noise coverage by intersecting all measured coverages

o the result only contains target coverage
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hypervisor
input trace

Architecture of MundoFuzz
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What MundoFuzz Found?

MundoFuzz found new 40 bugs in QEMU and Bhyve

o 23 bugsin QEMU
o 17 bugs in Bhyve

o 9 of these were acknowledged as CVEs

Hypervisor

Bug Types

Numbers

QEMU

Use-after-free
Heap Overflow
Segmentation Fault
Infinite Loop

Stack Overflow
Assertion

Bhyve

Segmentation Fault
Floating Point Exception
Assertion
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Our result

Overall coverage: MundoFuzz outperforms state-of-art hypervisor fuzzer
o HyperCube: +4.91%
o Nyx: +6.60%

MundoFuzz shows higher coverage than Nyx+ (with manual grammar rule)
o for USB-XHCI device (48 hours)
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Conclusion

e Proposed MundoFuzz, a hypervisor fuzzing technique
o statistically removes noise coverage in raw coverage
o automatically learns the grammar using two hidden semantics

e MundoFuzz discovered 40 new bugs (including 9 CVEs)

e MundoFuzz presented better coverage, compared to state of the arts.
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Thank you!

Q&A

Contact Cheolwoo Myung
Ph.D. Student at Seoul National University (SNU)
cwmyung@snu.ac.kr
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