
Piranha
A GPU Platform for Accelerating Secure Computation

Jean-Luc Watson1, Sameer Wagh1,2, Raluca Ada Popa1
1University of California, Berkeley

2Devron Corporation

P3

Secure multi-party computation (MPC) [Yao86, GMW87]

2

input_2

input_3

Result!input_1

P1

P2

Secure multi-party computation (MPC) [Yao86, GMW87]

3

Result!

P3

input_2

input_3

input_1

P1

P2
???

???

MPC has a performance problem

4

Result!

Plaintext MPC-based
AES Encryption < 100 ns1 ~1 ms / block [DG21]

1https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf, assuming a 3.0GHz processor

P3

input_2

input_3

input_1

P1

P2
???

???

https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf

MPC has a performance problem

5

Result!

Plaintext MPC-based
AES Encryption < 100 ns1 ~1 ms / block [DG21]
ML Inference (VGG16) 58 ms 100 seconds [WTB+21]

1https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf, assuming a 3.0GHz processor

P3

input_2

input_3

input_1

P1

P2
???

???

https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf

MPC has a performance problem

6

Result!

Plaintext MPC-based
AES Encryption < 100 ns1 ~1 ms / block [DG21]
ML Inference (VGG16) 58 ms 100 seconds [WTB+21]

ML Training (VGG16) 250 seconds Estimated 14 days [WTB+21]

1https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf, assuming a 3.0GHz processor

P3

input_2

input_3

input_1

P1

P2
???

???

https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf

Privacy-preserving training with MPC

7

MPC

q Pick a protocol
q Implement needed

functionality
q Network parties

together
q Test for correctness
q Don’t forget to

implement training!

Privacy-preserving training with MPC

8

MPC GPU

q Pick a protocol
q Implement needed

functionality
q Network parties

together
q Test for correctness
q Don’t forget to

implement training!

q Manage data in GPU
memory hierarchy

q Build useful kernels
for application

q Communicate with
CPU

q Vectorize operations

Privacy-preserving training with MPC

9

MPC GPU

q Pick a protocol
q Implement needed

functionality
q Network parties

together
q Test for correctness
q Don’t forget to

implement training!

q Manage data in GPU
memory hierarchy

q Build useful kernels
for application

q Communicate with
CPU

q Vectorize operations

Huge gap in expertise

Bridging the gap: Piranha

10

MPC GPU

q Pick a protocol
q Implement needed

functionality
q Network parties

together
q Test for correctness
q Don’t forget to

implement training!

q Manage data in GPU
memory hierarchy

q Build useful kernels
for application

q Communicate with
CPU

q Vectorize operations

Goal: make accelerating secure MPC
practical

11

Piranha

Goal: make accelerating secure MPC
practical

12

Piranha

linear secret-sharing (LSS) protocols

Goal: make accelerating secure MPC
practical

13

Piranha

linear secret-sharing (LSS) protocols

usable

Goal: make accelerating secure MPC
practical

14

Piranha

linear secret-sharing (LSS) protocols

performantusable

Bringing MPC to the GPU with Piranha

Piranha’s architecture

Key challenges: acceleration and memory

Evaluation

Overview

Creating a usable platform for MPC

16

NN Library

Custom/
tailored MPC
functionality

Monolithic

Piranha uses a modular approach to avoid redundancy and easily reuse
MPC protocols in different settings.

Creating a usable platform for MPC

17

NN Library

Custom/
tailored MPC
functionality

Monolithic

Protocol Layer

Modular

Device Layer

Application
Layer

Piranha adds a separation-of-concerns to MPC

18

NN Library

Custom/
tailored MPC
functionality

Monolithic

Protocol Layer

Modular

Device Layer

Application
Layer

Accelerating local
computation

Composing
computation and
communication

High-level logic

In doing so, preserves the security properties of each protocol.

Piranha implements kernels for operations over local shares, which any
protocol can use.

Acceleration is protocol-independent

19

NN Library

Custom/
tailored MPC
functionality

Monolithic

Protocol Layer

Modular

Device Layer

Application
Layer

Applications see opaque vectorized data types defined by each protocol.

Applications change protocols with one #define

20

Protocol Layer

Device Layer

NN Library

Custom/
tailored MPC
functionality

Application
Layer

Monolithic Modular

#define Share RSS

Piranha’s architecture in practice

21

NN Library

Custom/
tailored MPC
functionality

Fully-connected NN
layer w/ ReLU

Secret-shared matrix
multiplication +

comparison

Matmul and
comparison kernels

Protocol Layer

Device Layer

Application
Layer

Bringing MPC to the GPU with Piranha

Piranha’s architecture

Key challenges: acceleration and memory

Evaluation

Overview

Problem 1: Performant linear operations for MPC

23

NN Library

Custom/
tailored MPC
functionality

Fully-connected NN
layer w/ ReLU

Secret-shared matrix
multiplication +

comparison

Matmul and
comparison kernels

Protocol Layer

Device Layer

Application
Layer

(1) Integer-based GPU acceleration is missing

24

LSS protocols operate over integer rings and use
fixed point encoding for ML training to encode
real values.

Big issue: no performant kernels are available for
integer GEMM (general matrix multiplication)

Protocol
Layer

Device
Layer

Application
Layer

(1) Prior work adapts floating point kernels

25

Prior work [TKT+21] splits 64-bit integers into 16-
bit float chunks, incurring compute overhead.

GEMM x 10

Protocol
Layer

Device
Layer

Application
Layer

(1) Prior work adapts floating point kernels

26

Assumes floating point
performance outweighs overhead.

Protocol
Layer

Device
Layer

Application
Layer

Prior work [TKT+21] splits 64-bit integers into 16-
bit float chunks, incurring compute overhead.

GEMM x 10

Piranha provides integer kernels directly to MPC
protocols

We implement 32/64-bit integer kernels with
CUTLASS1.

(1) Piranha directly uses GPU integer cores

27

Protocol
Layer

Device
Layer

Application
Layer

1https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass

Piranha provides integer kernels directly to MPC
protocols

We implement 32/64-bit integer kernels with
CUTLASS1.

10x cuBLAS f64: 47 ms | Piranha int64: 4.9 ms

(1) Piranha directly uses GPU integer cores

28

Protocol
Layer

Device
Layer

Application
Layer

1https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass

Problem 2: Memory-efficient comparisons

29

NN Library

Custom/
tailored MPC
functionality

Fully-connected NN
layer w/ ReLU

Secret-shared matrix
multiplication +
comparison

Matmul and
comparison kernels

Protocol Layer

Device Layer

Application
Layer

● The issue: Secret-sharing induces data
duplication that stresses on-GPU memory.

(2) MPC rapidly consumes GPU memory

30

p0

p1

p2

p3

p4

p5

p6

p7

p0

p1

p2

p3

p4

p5

p6

p7

x0

x1

x2

x3

x4

x5

x6

x7

Protocol
Layer

Device
Layer

Application
Layer

● Oblivious comparisons (e.g. ReLU) add
memory stress because they compute over
secret values bit-by-bit.

● Additional allocation will constrain our
useful problem size.

(2) Comparisons are the prime culprit

31

p0

p1

p2

p3

p4

p5

p6

p7

p0

p1

p2

p3

p4

p5

p6

p7

x0

x1

x2

x3

x4

x5

x6

x7

Protocol
Layer

Device
Layer

Application
Layer

b0b1b2…b62b63

(2) Naïve string multiplication

32

b0

b1

b2

b3

𝑏! =#
"

𝑏"

(2) Naïve string multiplication

33

b0

b1

b2

b3

b0

b2

b1

b3
* =

b’0

b’1
b’0 b’1* = bc

𝑏! =#
"

𝑏"

(2) The naïve protocol wastes memory

34

b0

b1

b2

b3

b0

b2

b1

b3
* =

b’0

b’1
b’0 b’1* = bc

𝑏! =#
"

𝑏"

● Piranha allows protocols to use iterator-based views for intricate data
access patterns:

(2) Iterator-based views keep memory in one place

35

b0

b1

b2

b3

b0

b2

b1

b3
* =

b’0

b’1
b’0 b’1* = bc

𝑏! =#
"

𝑏"

● Piranha allows protocols to use iterator-based views for intricate data
access patterns:

(2) Iterator-based views keep memory in one place

36

b0

b1

b2

b3

b’0 b’1* = bc* =

b’0

b’1

𝑏! =#
"

𝑏"

● Piranha allows protocols to use iterator-based views for intricate data
access patterns:

(2) Iterator-based views keep memory in one place

37

b0

b1

b2

b3

* =

bc

* =

b’0

b’1

𝑏! =#
"

𝑏"

Bringing MPC to the GPU with Piranha

Piranha’s architecture

Key challenges: acceleration and memory

Evaluation

Overview

Developing with Piranha

39

Application Layer

Protocol Layer

Device Layer

Neural Network Library

Linear layers Pooling

Activations Normalization

Implemented Protocols

SecureML Falcon

FantasticFour

Microbenchmarks: is Piranha performant?

40

273x
faster

Microbenchmarks: is Piranha performant?

41

273x
~104 x

120x

Piranha boosts performance by several orders of magnitude across
a range implemented MPC protocols.

Memory Efficiency

42

max memory load
2.3 GB

Memory Efficiency

43

2.3 GB

1.4 GB 581 MB

Iterator-based and correct typing allows Piranha to drastically
reduce on-device memory consumption.

End-to-end training: is Piranha usable?

44

Falcon estimated that the same
training run would take it 14 days
on a CPU

Piranha accelerates a 3-party
protocol to complete 10 epochs of
VGG16 training in just 33 hours!

Piranha is a general-purpose platform for accelerating MPC on GPUs.

Use our code to build new protocols and implement new applications!

Summary

45

github.com/ucbrise/piranha

Jean-Luc Watson | jlw@berkeley.edu

