
SyzScope: Revealing High-Risk Security Impacts of Fuzzer-

Exposed Bugs in Linux kernel

Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, Zhiyun Qian

Linux kernel bugs

seed
seed

seed
seed

sending

Crash

Bug’s security impacts

Memory
Write
(UAF/OOB)

Overwrite
uid/gid

Overwrite
function
pointer

PWN!

PWN!

Memory
Write
(UAF/OOB)

Memory
Read
(UAF/OOB)

Leak kernel
info

Sometimes necessary
But not mandatory

WARNING INFO

GPF BUG

Non-security bugs

Memory
Read
(UAF/OOB)

WARNING INFO

GPF BUG

Invalid free
(Double
free)

Too many bugs to fix

Prioritize limited resources to fix high-risk bugs

UAF Write
37 days

OOB Write
29 days

UAF Read
63 days

OOB Read
89 days

What if? Let’s fix them this
week

It’s fine to leave
these bugs for next

month
OH GOD!

Insights

seed
seed

seed

sending Crash
System Call Entry

seed

WARNING

Fuzzer

Found a WARNING!
What we do now?

Stop and report
immediately!

Double Free UAF Write

What about us?

Can’t hear you

Insights

seed
seed

seed

sending Crash
System Call Entry

seed

WARNING

Fuzzer

Found a WARNING!
What we do now?

Stop and report
immediately!

Double Free UAF Write

What about us?

Can’t hear you

Fuzzing only present the first impact of a bug

But the first impact may not represent the most critical impact

Insight

High-risk impacts:
● UAF/OOB Write

● Invalid Free

● Control flow hijacking

● Arbitrary/Constrained value write

● Arbitrary/Constrained address write

Low-risk impacts:
● UAF/OOB Read

● WARNING/INFO

● General protection fault

● BUG

● All other non-security bugs

Blue means this impact can be detected by fuzzing

Red means this impact can not be detected by fuzzing

Follow up impacts

Motivating example

void dummy_UAF()
{

struct A* obj = kmalloc(sizeof(struct A), flag);
kfree(obj);

if () {
void *func = ;
func();

}
}

Reading a data
pointer…wait, it’s not a
valid memory address

Oops, use-after-free
Read, but let’s

continue executing

obj->ops
obj->ops[0]; *obj->ops

Motivating example

void dummy_UAF()
{

struct A* obj = kmalloc(sizeof(struct A), flag);
kfree(obj);
make_symbolic(obj);
if () {

void * =
;

}
}

Reading a data
pointer…data

pointer is symbolic,
it’s fine

Oops, read from a
freed memory – UAF

read

obj->ops
obj->ops[0];func

func()

Read from symbolic
data pointer, func is

symbolic too.

Dereferencing a
symbolic function

pointer!
Control flow hijacking

*obj->ops

Heap Spray?

Workflow - Fixed bugs & Open bugs

Evaluation
1170 valid bugs from syzbot

Low-risk bugs to high-risk
Syzbot only found around
170 high-risk bugs in the

past 4 years, we double the
number of high-risk bugs

183
High-risk WARN & INFO

SyzScope found 15
WARNING and INFO bugs
had strong security impacts

15
High-risk GPF & BUG

SyzScope found 17 general
protection fault bugs and

BUG bugs had strong
security impacts

17
Control flow hijacking

SyzScope discovered 179
control flow hijacking among
183 seemingly low-risk bugs

179

Overall results
High-risk
bug
found

OOB/UA
F write

Arbitrary
address
write

Constrained
address
write

Arbitrary
value
write

Constrained
value write

Control
flow
hijacking

Invalid
Free

Fixed
GPF and BUG 17 71 124 62 29 20 8 9

WARNING and
INFO 15 85 166 66 20 30 9 3

UAF and OOB
Read 99 319 1490 446 271 153 104 83

Open
GPF and BUG 4 4 0 0 2 0 0 2

WARNING and
INFO 10 97 213 91 47 22 18 13

UAF and OOB
Read 38 151 381 113 43 22 40 18

Total 183 727 2374 778 410 247 179 128

Disclosure
We submitted 32 high-risk bugs since Linux kernel v4.19 to CVE
maintainers and 8 of them have been assigned CVE, the rest ones are
still pending for responses.

● CVE-2021-33034
● CVE-2021-33033
● CVE-2019-25044
● CVE-2020-36386
● CVE-2020-36385
● CVE-2018-25015
● CVE-2020-36387
● CVE-2019-25045

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33034

Q&A
Thank you for listening

Access my portfolio

Looking for summer intern for 2023

Twitter: @ETenal7

