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Abstract
Smart home devices, such as security cameras, are equipped

with visual sensors, either for monitoring or improving user ex-

perience. Due to the sensitivity of the home environment, their

visual sensing capabilities cause privacy and security con-

cerns. In this paper, we design and implement the CamShield,

a companion device to guarantee the privacy of smart security

cameras, even if the whole camera system is fully compro-

mised. At a high level, the CamShield is a shielding case that

works by attaching it to the front of the security camera to

blind it. Then, it uses its own camera for visual recording. The

videos are first protected according to user-specified policies,

and then transmitted to the security camera and hence to the

Internet through a Visible Light Communication (VLC) chan-

nel. It ensures that only the authorized entities have full access

to the protected videos. Since the CamShield is physically

isolated from the shielded security camera and the Internet, it

naturally resists many known attacks and can operate as it is

expected to.

1 Introduction

Smart home represents the intelligentization trend of house ap-

pliances, accessories, and furniture. It brings us convenience

but at the cost of our sound and video information being gath-

ered and analyzed. More than 70% of surveyed consumers

are very concerned about the risks of being spied on by their

smart home devices [11].

Their concerns are not fiction. Visual sensors are ubiqui-

tous in smart home devices. They reside in places like security

cameras and doorbell cameras, and are in new devices like

smart TVs [17], refrigerators [15], pet monitors [5], etc. They

are essential to smart devices since they render visual capabil-

ities, e.g., remote monitoring, video analysis, etc. However,

in many cases, networked smart devices are neither transpar-

ent nor secure. The recorded videos are subject to various

vulnerabilities [27] and unauthorized leakages. It is reported
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that curious cloud might spy on the content [14]. Used Nest

security cameras might leak videos about the former user [3].

When Xiaomi IoT cameras are connected to the Google Hub,

the monitoring images might show scenes of other users [24].

The security and privacy issues of visual-capable smart

devices have led to many discussions [50, 51, 64]. A common

solution is to protect videos in the device before transferring

them out, but it will fail if the device has been taken over by

the attacker [1, 23], i.e., it is fully compromised. This leads to

the concept of trusted camera, which operates strictly in the

way specified by its owner. One possible way to build a trusted

camera is to make use of the trusted execution environment

(TEE), which isolates the critical computing components so

that they cannot be tampered with. However, a complete TEE

requires secure hardware such as compatible processors [30]

and visual sensors capable of hardware encryption [53], which

cannot be satisfied by legacy devices already in use. Moreover,

since some smart devices also need to perform local video

processing, such as face detection, the TEE must also cover

the processing pipelines, which is still an open problem due

to the large code base size.

We believe a viable solution of trusted camera should be

able to resist most threats, practically feasible, and prefer-

ably compatible with legacy devices. Our key insight is that

the major complexities and vulnerabilities of trusted comput-

ing systems are rooted in their design philosophy - isolating

trusted and untrusted computing components while leaving

them sharing the same hardware or even the software. How-

ever, why can they not be physically isolated? This question

motivates our approach.

1.1 CamShield Approach

CamShield is a hardware-software co-designed system to

force ordinary visual sensing devices to become trusted cam-

eras. Without loss of generality, this paper primarily concen-

trates on smart security cameras (or smart cameras in short).

As shown in Figure 1, the CamShield system consists of the

CamShield device and the CamShield App. At a high level, the
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Figure 1: Concept of CamShield. The CamShield system

consists of the CamShield device (red) and the CamShield

App to secure the smart camera. It protects the privacy of the

video content even if the smart camera is fully compromised.

The CamShield device blinds the smart camera with its shield

and replicates the visual sensing capability with its own cam-

era sensor. It captures and delivers videos to the CamShield

App through an encrypted channel. The CamShield device

is physically and logically isolated from the network and the

smart camera, and hence resists many known attacks.

CamShield device (or the CamShield in short) is a physical

shield in front of the smart camera. When the CamShield is

properly installed, the shielded camera can only capture the

inside part of the CamShield, and hence is blinded in visually

sensing the surrounding environment, e.g., the living room.

A blind camera is no longer subject to privacy leaks and at-

tacks. To preserve the original functionalities of the smart

camera, the CamShield has a visual sensor in front of the

covered smart camera for visual sensing. The recorded video

is encrypted, and then transferred to the companion app - the

CamShield App, through the network connection of the smart

camera. The owner uses the CamShield App to decrypt the

video captured by the CamShield.

The trustworthiness of the CamShield system is based on

two facts. First, the CamShield device is standalone. Its com-

puting components are not only logically but also physically

isolated from the smart camera and the network. Such isola-

tion protects it against most practical attacks. Second, the only

input interface of the CamShield is its visual sensor, which

can hardly be abused to modify its software logic.

1.2 Contributions

To realize the idea of CamShield, we must address the fol-

lowing challenges: First, how can the CamShield transfer the

video stream to the smart camera without violating the isola-

tion? One solution is to use cables to wire their pins, but this

needs hardware and firmware modifications on smart cameras.

Our approach is to reuse the visual sensing ability of the smart

camera to perform visible light communication (VLC). The

CamShield contains a tiny screen inside its shield case. The

captured video stream is encoded into a QR-code-like stream

and displayed on it. Then, the smart camera captures and de-

codes the code stream to obtain the video. This one-way VLC

data path keeps the CamShield isolated from the smart camera

without requiring any modifications to the smart camera.

Second, CamShield uses end-to-end encryption between

the CamShield and the App to guarantee the security of

the videos. However, a fully-encrypted video eliminates the

benefits from third-party services, e.g., cloud video analysis.

CamShield adopts a partially-encryption scheme, which en-

crypts only the sensitive areas or the region of interest (ROI)

of the video, and thus allows the cloud servers to provide

useful interference, e.g., gestures, without knowing sensitive

information, e.g., the face in Figure 1. The problem is how

can the user specify the ROIs according to his/her own con-

cerns, as the CamShield is an isolated device, which lacks

common input interfaces. We use another VLC channel from

the owner’s smartphone screen to the CamShield’s camera to

send configuration messages. It incorporates authentication

protocols and hardware interfaces to enhance security and

user awareness.

Third, as a key selling feature, most smart security cameras

support motion detection, e.g., to detect intruders. However,

when using the CamShield, the smart camera captures VLC

streams rather than the actual environment, hence the original

motion detection module no longer works. We use compatibil-

ity designs to preserve this feature. Our solution is to replicate

the motion detection algorithms at the CamShield, and then

trigger the smart camera’s motion detection by emulating the

movement inside the shield.

We prototype a complete CamShield system. The hardware

of the CamShield is assembled with commercial components

and a 3D-printed case. The CamShield App is developed for

smartphones to decrypt and render videos in real-time. Our

evaluation covers five commercial off-the-shelf (COTS) smart

cameras from different manufacturers. The CamShield system

preserves most of their original features while making them

trustworthy.

This work makes the following contributions:

• We propose and practice using physical isolation and func-

tion replication to achieve trusted computing. Its merit

arises in situations where hardware replication cost is not

the major issue.

• We design and implement the CamShield system. It is a

bolt-on solution that turns a general camera into a trusted

one without incurring hardware and software modifications.

2 Background and Related Work

2.1 ROI-based Visual Privacy Protection
Digital cameras are prevalent in both public and private places.

People are concerned about whether their sensitive informa-

tion, such as the face, behaviors, properties, etc., would be

captured and abused by the camera’s owner or operator for



fun, profit, or censorship. One direct way to protect visual

privacy is to blur the entire video stream, but it would cause

information loss and reduce the utility value of the video. This

is the trade-off between privacy and functionality. An elastic

way is to use partial protection [50], where only the sensitive

areas are protected and the rest are open for functional use.

The first step of partial protection is to identify the region

of interest (ROI), which represents the sensitive areas of the

video/image. An example in common is the face, but in gen-

eral, ROIs are quite subjective. ROI detection usually relies

on computer vision (CV) techniques, such as traditional hand-

crafted filters and recent deep neural network detectors. Some

approaches utilize additional sensors to detect special ROIs.

For example, thermal image sensor [67] and biological signal

sensor [43] are used to differentiate the human face from the

background.

The step after ROI detection is to protect the ROI areas.

Blanking, blurring, pixelation, replacing to an object, etc.,
are common methods used to reduce the information the

ROI contains to protect privacy [50]. ROI areas can also be

protected with encryption [33]. ROI encryption is lossless and

thus retains raw information, which allows authorized entities

to access the complete video.

We follow the above ROI-based protection framework to

design CamShield. Related work can be classified into the

following two categories.

2.1.1 Pre-capture Protection
The visual content is protected before being captured by the

smart camera. This is usually achieved by intervening the

protection system in the original imaging system.

One way is to use a computational visual sensor, whose

pixels can be flexibly controlled. Fernández-Berni et al. [35]

show that once ROIs are detected, the sensors can be con-

figured to obfuscate the areas. Another way is to use optical

filters. Tan et al. [54] design optics to blur the scenes to a level

to destroy sensitive information but retain the detectability

of the human face. Pittaluga et al. [48] attach a small lens in

front of the camera to defocus and blur sensitive information.

Anonymous camera [67] utilizes an additional thermal cam-

era to detect the face and then uses a programmable optical

filter to block the areas in the scene. Kitajima et al. [43] keep

the camera defocused and use a pulse wave sensor to detect

human faces based on the color variation due to heartbeats.

CamShield is similar to the above approaches in that it also

performs ROI-protection prior to the digitization of the smart

camera. However, CamShield pursues a trustworthy and com-

plete system while they mainly focus on specific techniques

and components. For the functional aspects, computational

sensors are experimental and not suitable for commercial

devices. Optical filters lack flexibility and cannot easily be

modified for different ROIs. Further, their protection schemes

irreversibly destroy ROIs or even the entire frame, while the

ROIs of CamShield can be recovered after decryption.

2.1.2 Post-capture Protection
The visual content can also be protected after the camera’s

digitization. Many discussions assume the camera system is

trustworthy and focus on other aspects of the privacy protec-

tion problem [50, 51, 64], e.g., computational overhead [65],

timing channel [45], etc.
Instead, we are concerned about the assumption and want

to make smart cameras’ digital world secure even if they are

found in the hands of attackers. This is a challenging problem

since smart cameras are subject to various attacks in practice.

The security flaws lying in the camera’s firmware, operat-

ing system (OS), processing software, and network protocols

might all be made use of by attackers to access the raw video

content or even compromise the whole camera system.

A potential solution is trusted computing. It is based on

isolation and verification techniques to ensure that specific

computing components cannot easily be tampered with. Early

work takes advantage of the Trusted Platform Modular (TPM)

chip to build cameras [62, 63]. TPM allows for secure boot

and has a sealed key for hardware encryption, but it does not

protect the running OS and video processing components.

Hence it has a weaker threat model. Apart from the above,

little work has been done to realize trusted cameras. This

is because if the OS/driver managing the raw data from the

visual sensor is compromised, little can be done in the soft-

ware to protect the video content. In fact, achieving trusted

peripherals I/O is a longstanding problem in trusted comput-

ing. Some approaches rely on virtualization for isolation but

assume trusted hypervisors [29, 60]. Hardware TEE is free

of the assumption but is limited to specific lightweight func-

tions such as the control path [26, 44], the display UI [46],

the keyboard [32], etc. The complexity comes from the large

code base of the camera driver and the video processing stack,

e.g., OpenCV, TensorFlow, etc. It is challenging to cover all

of them in the trusted computing base (TCB) [52].

An alternative approach is to use dedicated hardware, such

as FPGA [37], embedded processors [28,49,61] as a separated

and isolated middle layer to perform the video processing and

protection tasks before delivering the content to the camera’s

host system. CamShield is similar in that they all perform

ROI processing in independent hardware to isolate sensitive

information from untrusted software. However, CamShield

is different in that it replicates the imaging and processing

components of the smart camera. It renders physical and

hence likely stronger isolation. Importantly, CamShield is a

bolt-on solution and compatible with legacy camera devices.

2.2 Screen-to-camera Channel
Screen-to-camera communication is a form of visible light

communication (VLC). It transmits data from screens to cam-

eras [42]. At a high level, one device displays QR-code-like vi-

sual content on the screen, and the other uses its camera to cap-

ture and decode the QR-code stream. It has become a popular



way to bridge devices that cannot be conveniently connected

by traditional means [42]. Recent research [38, 40, 57, 58, 66]

improved the screen-to-camera communication primarily on

throughput and invisibility.

CamShield uses VLC to build the one-way data path be-

tween the CamShield device and the shielded smart camera.

Its VLC design is inspired by existing work, but due to its

unique scenario, it differs from them in many aspects. It does

not pursue invisibility [57] and has a fixed field of view, which

allows for simpler designs in some aspects. On the other hand,

it needs to handle color dispersion, high compression noise,

and at the same time achieve high and stable throughput with

a low camera sampling rate. These technical problems are

unique and have not been explored.

3 Threat Model

The overall goal of CamShield is to preserve the function-

alities of the smart camera and protect its sensitive visual

contents from being leaked.

As it has been reported, we assume a remote attacker may

leverage some loopholes to compromise the network [24] and

the cloud service [14] of the smart camera. For a powerful

attacker, we assume it might take full control of the camera [1],

including accessing and modifying the captured video.

As shown in Figure 1, we assume the CamShield device is

correctly installed on the smart camera. We would like to use

the CamShield to protect the information of the raw videos

on the owner’s demand. The raw videos are videos captured

by the smart camera as if it is not shielded by the CamShield

device. We want to ensure that the authorized parties, e.g., the

owner’s CamShield App, can get full access to the raw videos,

and the unauthorized parties, e.g., the attackers, third-party

cloud, will be regulated by the privacy policies issued by the

device owner. We assume there will be a trusted initial setup

phase where the CamShield device and CamShield App can

exchange keys securely, e.g., a user buys a new CamShield

device and pairs it with the CamShield App.

We assume that the attacker does not have physical access

to the CamShield device. A physical attacker can tamper, alter,

and disable software and hardware components. We note that

software attestation and solid manufacturing can increase

the complexity of such attacks, but both are out of the scope

of this paper. A physical attacker at close proximity might

attempt to perform side-channel attacks to gain credentials,

which is also out of the model. The attacker having direct sight

on the smart camera might attempt to use optical tools, e.g.,
laser projector, to interfere with the CamShield’s operations.

Optical shielding, e.g., curtain, can overcome such attacks. We

note that the CamShield can resist simple physical attackers

such as copying video content via common data interfaces

like USB, which it simply does not have.

We assume the way the owner consumes the raw content

is secure. We assume that the attacker does not compromise

the CamShield App. The CamShield App represents an ap-

plication of a general trusted computer. It can be but does not

have to be a smartphone app like our current implementation.

For example, it can also be installed on a trusted desktop with

strong security protection. A trusted computer might have dif-

ferent implementations. In the harshest scenario, where any

network attacks might occur, a program can still be executed

with hardware-based TEE [32]. We also assume the attacker

cannot spy on the monitor to view the raw video, e.g., via

social engineering and optical reflections [25].

We do not handle denial of service (DoS) attacks, e.g., the

compromised smart camera refuses to stream videos, since

they do not hurt privacy. We also do not handle side channels

of the network traffic, e.g., inferring activity through event

timing [45], which can be eliminated by injecting dummy

event notifications.

4 Overview

The hardware and software architecture of the CamShield

device is shown in Figure 2 and Figure 3, respectively. The

rightmost camera in Figure 2 is the smart camera to be secured.

It is denoted as a sink camera, i.e., there is no information

flowing from the sink camera to the CamShield device.

As shown in Figure 2, the hardware of the CamShield de-

vice consists of five components: visual sensor, processing

unit, screen, lens, and LEDs. The leftmost one is the visual

sensor of the CamShield. It takes the place of the visual sensor

of the sink camera and captures video frames to the mem-

ory of the processing unit. The processing unit manages the

visual sensor to its left and the screen to its right. It is also

responsible for executing image/video processing algorithms,

encryption, and communication protocols. The screen is used

as the output interface to convey encrypted video streams

from the CamShield device to the sink camera. In front of

the sink camera, we put a lens to focus the sink camera on

the screen. There are two LEDs connected to the processing

unit. The inner alarming LED is used to trigger the motion

detection mechanism of the sink camera. The outer Msg (mes-

sage) LED is used to inform the owner about the status of the

CamShield. Finally, all of the above components are packed

into a 3D-printed shielding case, which can be attached to a

general smart camera through the adjustable seizers.

The overall software workflow of the CamShield device

is shown in Figure 3. The CamShield first enforces typical

ROI-based privacy protection on the captured video stream.

We adopt standard CV modules to detect the ROI areas of the

raw videos. While compressing the raw video, the encryption

module encrypts the video content belonging to the ROI areas.

Then, the CamShield encodes the encrypted and compressed

video stream into VLC frames, which are filled into the frame

buffer and displayed on the CamShield screen. The VLC

frames are captured by the sink camera and transferred to

the CamShield App over the network. The owner uses the
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Figure 3: Software Workflow of the CamShield Device.

CamShield App with the key to retrieve the raw video streams

captured by the CamShield, which basically follows a reverse

process of encryption and VLC encoding.

In the following sections, we introduce the VLC data path

in Section 5, the ROI-encryption and configuration in Sec-

tion 6, and the compatibility designs in Section 7. We discuss

other design choices in Section 8.

5 One-way VLC Data Path

The CamShield device is isolated from the network for se-

curity considerations, but there must be a way to transfer its

video stream to the owner. From the security perspective, any

two-way connections such as Bluetooth, USB cable might

bring breaches to the isolation. Further, as we also want to

secure smart cameras already in use, the installation must be

simple enough, better without hardware and firmware mod-

ifications. CamShield takes advantage of the visual sensing

capability of the sink camera to construct a one-way VLC

data path that meets all these needs.

5.1 VLC Overview
At a high level, the VLC works like scanning a QR-code

stream. An example of the VLC frame is shown in Fig-

ure 4 (a), which looks like a colored QR-code. The CamShield

chops the captured video stream into sequential pieces and

loads them into VLC frames (see Section 6). VLC frames

are displayed sequentially on the CamShield’s screen and

captured by the sink camera. Through decoding the captured

VLC frames, the loaded video stream can be extracted.

To formally describe the VLC design, we use the following

notations. A VLC frame for transmission i.e., txFR, is a matrix

of pixels, with each matrix element representing the color of

the pixel. Our VLC scheme uses different colors to represent

bits. In practice, a single pixel is usually too small to be robust

to noises, hence neighboring pixels are grouped to illustrate

the same color. We use a k×k square block to group them.

Pixels in the same block have the same color. A subscript n is

used to denote the sequence of the VLC frames, e.g., txFRn
is the n-th transmission frame. Similarly, rxFR denotes the

VLC frame captured by the sink camera. rxFR is related to

txFR, but is distorted and even merged from multiple txFRs.

Extracting information from rxFRs is the major challenge

of the VLC design. While there are plenty of existing VLC

implementations, we face unique challenges specific to the

CamShield’s unique scenario.

5.2 Calibrating Distortions
To perform VLC decoding, the initial step is to determine

the area of txRF in rxRF. Then, the location of blocks can be

determined and their colors and hence bits can be extracted.

In practice, this process is not straightforward due to various

distortions. For example, most VLC systems are subject to

perspective distortions [47], which transform the txFR to

a trapezoid when viewing the screen from an angle. The

CamShield’s screen is fixed towards the sink camera and thus

is free of them. However, it is subject to another two types of

distortion, which are rooted in the compact form factor of the

shield.

5.2.1 Lens Distortion
Smart cameras are designed to capture scenes centimeters

away, but the screen of CamShield is placed only several

centimeters in front of the sink camera. This distance is below

the minimum object distance of most smart cameras [7], and

thus leads to significant blur 1. Similar to wearing glasses, we

add a lens to refocus it on the screen, as shown in Figure 2.

A side effect of adding a new lens to an imaging system is

the lens distortion. As shown in Figure 4 (b), straight lines of

pixels bend outward from the center of the image.

5.2.2 Chromatic Distortion
Another subtle problem of the new lens is that the distor-

tions differ among colors. The reason is that the lens has

different refraction ratios for different colors of light. As a

consequence, the focal plane or the magnified size slightly

differs among colors [4]. The more the incidence location

from the center of the lens, the more color dispersion can be

observed. As shown in the zoomed part of Figure 4 (b), the

blue and red components are shifted off to the right and left

of the original white square. Quite similar to the TikTok icon.

This adds complexities in determining the precise locations

of the blocks, as their locations are different when displaying

different colors.

1like our eyes, the distance that they see clearly has a wide range but does

not cover the nose.
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are used to calibrate various distortions and biases. The VLC is subject to the rolling shutter effect, which merges transmission

frames (txRF) if they are captured (rxRF) during screen refreshes. We use frame interpolation in (e) to minimize the difference

between adjacent frames to amortize throughput penalty.

We note that the above two types of distortion are so unique

that they have not been addressed in other VLC systems. Since

the pixel blocks must be located at the pixel level, existing

distortion adjustment methods cannot be used due to ineffi-

cient accuracy. For example, the anchor fields [12] used for

adjusting the perspective distortion are not applicable, since

pixels are distorted non-linearly in space. Model-based cali-

brations [68] are not accurate enough either, since the general

mathematical distortion model does not perfectly fit the actual

distortions.

Our calibration method is motivated by wireless communi-

cation, where distortions are measured by a known sequence -

the preamble. The distortion is quantified by comparing the

received preamble with its ideal values. We adopt a similar

method by introducing a preamble frame prior to the VLC

data frames. As shown in Figure 4 (c), the preamble frame

is a black and white chessboard with a grid size equal to the

block size. We use CV methods to accurately localize every

black and white block in the rxFR and their locations are

recorded. To handle chromatic distortion, the above process

is performed in the Red, Green, and Blue channels indepen-

dently. These locations are used to index the blocks in the data

VLC frames to extract colors and thus the information that

they convey. Note that since the CamShield is fixed to the sink

camera, the block locations are stable, hence the preamble

frames are played only in the initialization process after the

device boot. Optionally, they can be inserted once for a while

to increase stability.

5.3 Boosting Throughput via Color Modulation

Even if the color blocks are perfectly located, it remains diffi-

cult to convey High-definition (HD) videos, which has been

the default resolution of current smart cameras. For streaming

720p HD videos, the minimum required data rate is 768 kbps

when using the HEVC (H.256) compression [21]. As the sam-

pling rate of the sink camera is fixed at 20 fps or 15 fps in

most COTS smart cameras, a single rxFR must at least contain

38.4 kb. For a quick comparison, the capacity of the densest

standard QR-code is 23.6 kb [12].

A typical way to increase the capacity is to use multiple

colors in one block to represent information. If the color is

chosen from Nc different colors, log(Nc) bits are contained in

one block. The modulation scheme determines how the colors

represent bits. An 8-color modulation scheme is shown in

Figure 4 (d). However, Nc cannot be ultimately increased due

to the following noise sources in rxRF: First, the sink camera

adopts multiple non-configurable schemes to auto-adjust the

contrast, brightness, saturation, etc., of the captured video.

These schemes work as blackboxes and bring color biases

to rxFR. Second, some cameras we tested have the vignette

effect [22], where the center area of rxFR is brighter than the

periphery areas, which affects the block color spatially.

We note that while the auto-adjustment and the vignette

effect are model-dependent, they can be calibrated with an-

other preamble frame. As shown in Figure 4 (c). This frame is

filled with identical color palettes, showing the colors used by

txFR. These palettes are used as the reference for decoding.

i.e., choosing the closest color in the palette for determining

the color of blocks in rxFR. Since the palettes are piled up on

the entire screen, the bias caused by the vignette effect can be

compensated as well.

5.4 Amortizing Rolling Shutter Effect
The rolling shutter effect is caused by unsynchronized line ex-

posure of the CMOS sensor array [40]. When an rxFR is taken

during the transition period between txFRi and txFRi+1, the

rxRF will be a merge of txFRi and txFRi+1. Some of its por-

tions are from txFRi, as these lines expose first, while others

are from txFRi+1. Since the camera exposure and the screen

refresh are not finished instantly, a large portion of rxRF is a

merge from both txFRi and txFRi+1, which complicates the

color extraction [66].
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Figure 5: Example of ROI-Based Video Encryption. The

frame is encrypted in units of tiles. The tiles overlapping with

the ROI are encrypted and their visual contents are destroyed.

Exiting work proposed several solutions. A very recent

work, ERSCC [66], achieved the best-reported results, i.e.,
log(4.36) bits per block. It separates the colors in merged

areas but its throughput cannot be further improved as the

separation depends on a limited number of encoding colors.

An alternative solution is to abandon the merged areas and

use the error correction code to automatically make use of

the information in the merge-free areas [58]. In this way, the

merged frames contain less information while the merge-free

frames contain more. When putting them together, all of them

adaptively contribute to the overall capacity. However, due to

the slight rate misalignment of rxFRs and txFRs, the merged

frames occur in periodic bursts. Each burst might last for

several seconds or even more. The actual capacity during

such a worst-case period is very low, which results in video

streaming latency and usability frictions.

The application scenario of CamShield has stringent re-

quirements for both throughput and latency. To make use of

VLC for such a purpose, we handle the rolling shutter effect

in a distinct way: instead of splitting the merged areas in every

frame or leaving them alone in a burst, we propose a hybrid

scheme that intentionally distributes the merged areas evenly

among all the rxFRs to amortize their negative impact, and at

the same time, incorporates more colors in a block to maintain

the capacity.

The key insight is that the merged areas occur only when

the content of consecutive txFRs are different. If we keep the

consecutive txRFs as similar as possible, then the merged area

will be reduced. To do so, our approach takes advantage of

the asymmetric frame rate of txFR and rxFR. As mentioned

earlier, the rxFR rate is usually up to 20 fps, and the txFR rate

of a typical LCD screen is around 60 fps. That is to say, the

frame rate of txFR is at least 3 times that of rxRF. As shown

in Figure 4 (e), instead of refreshing the entire txFR, which

results in a large merged area if the rxRF encounters the re-

fresh period, our method is to gradually change, or interpolate

VLC Data 
Frame Coded with Error Correction Code

NALU 
Header

Tile
Info

Tile0
Data … NALU 

Header
Tile
Info

Enc( key, nonce, Tilek Data ||
Hash( Framei || timestampi ))

…

Seq CRC Frame0 Framei Framen… …

Video
Framei

nonce, timestampi Tile Overlapping with ROIs

Figure 6: VLC Frames for End-to-end ROI-Encryption
and Transmission. Video frames captured by the CamShield

device are encrypted based on the ROI information and in

units of a tile. Multiple encrypted video frames are packed

into a VLC data frame for transmission. The VLC frame is

coded with error correction codes to resist the noise of the

VLC channel.

txRFs by making any adjacent txRFs differ by 1/3 parts. In

this way, for any rxRF, at most 1/3 is affected by the rolling

shutter effect, while the remaining 2/3 is unaffected. The over-

all capacity is stable at 2/3 of the merge-free case (it relies

on an inter-frame coding scheme explained in Appendix A).

We also note that the capacity can be further increased if high

refresh rate screens are used, e.g., 120 Hz LCDs are becoming

prevalent in the latest smartphones and PC monitors.

6 ROI-based Video Encryption

CamShield adopts a typical ROI-based video encryption

framework. It first uses standard CV methods to identify ROI

regions, and then encrypts them. We refer the reader to the

ROI-based video encryption schemes [33] for more technical

details. This section describes the end-to-end video transmis-

sion protocol built upon the ROI encryption and the interface

used to configure the ROI-based privacy policies.

6.1 End-to-end Video Delivery

CamShield uses encryption to secure the information be-

tween the CamShield device and authorized parties, e.g., the

CamShield App. To fulfill our security goals, we adopt ROI-

based encryption instead of encrypting the whole frame. ROI

encryption allows the owner to flexibly specify the areas they

would like to protect. It leaves room for the owner to trade off

utility and privacy, e.g., disclosing more information to the

cloud might gain a better user experience.

The encryption is based on a pre-shared secret, i.e., a sym-

metric key. The key is shared through a trusted initialization

step. For example, the key of a CamShield device is sealed

in its hardware and is printed on a disposable paper shipped

with the new device. The device owner inputs the key into

the CamShield App to authorize it to access the encrypted

information.



Index ROI Invert Alg. Time Enable
1 all F / all F
2 none F / all F
3 face F mobile

net
all T

4 body F opencv all F

5 text F opencv work 
days F

CamShield
APP

CamShield
Device

(1) HELLO
Via QR-Code

(2) REQ:
nonce

Via VLC and the Sink Camera

Via QR-Code

(3) RES: 
nonce’||Enc(key, nonce’, ConfigMsg
||Hash (key||nonce||ConfigMsg))

Shared Secret {
"config": {

"ROI Policy": {
"Index": 3,
"ROI": "all",
"Invert": false,
"Algorithm": "moiblenet",
"Time": ["Mon","Fri"],
"Enable": true

}
},
"timestamp": {

"Value": 1391141532000,
"Time Zone": "GMT008:00"

}
}

(b) ROI Configuration Protocol(a) Table of ROI Entries (c) ROI ConfigMsg

Figure 7: ROI Configuration Interface. The CamShield device allows the owner to flexibly configure the ROI policies in (a)

with the configuration message ConfigMsg in (c). A challenge and response protocol in (b) is used to authenticate ConfigMsg.

Modern video coder-decodes, such as HEVC (or H.265),

divide a video frame into uniform rectangles, i.e., the tiles.

HEVC provides a clean interface - the Network Abstraction

Layer (NAL), to pack tiles into NAL units (NALU) for gen-

eral network transmissions. CamShield’s video encryption

and transmission take advantage of this feature. The structure

of VLC frames from the CamShield device is shown in Fig-

ure 6. We highlight several points: 1) Multiple video frames

after HEVC compression are packed into one VLC frame.

2) Each video frame contains multiple encrypted and unen-

crypted tiles. Any tile overlapping with the ROI is encrypted

with the key and a randomly-generated nonce. The nonce

is inserted between the NALU header and the NALU data.

The remaining tiles are left unencrypted for the third party to

make use of. 3) An ordinary HEVC player can still render the

encrypted tiles but the visual content is destroyed (see Fig-

ure 5). To identify the encrypted tiles in the CamShield App,

we use a reserved bit in the NALU header as the encryption

indicator, and set it to “1” for encrypted tiles. 4) The data of

the whole frame and its timestamp are hashed and appended

to the encrypted content for integrity and authenticity.

6.2 ROI Policy Configuration Interface
CamShield allows the owner to flexibly configure the pri-

vacy policies to specify how its ROI-based encryption works.

An example of the policy entries is shown in Figure 7 (a),

which looks similar to the Access Control List (ACL) rules

of firewalls. Each row of the table defines the CamShield’s

protection behavior of the associated ROI.

The ‘Index’ and ‘ROI’ uniquely identify the policy of that

ROI. The ROI detection can be conducted by multiple meth-

ods, which are specified by the ‘Alg.’ column. The ‘Invert’

column specifies the ROI region as the detected region or the

corresponding complement region, e.g., the body or the back-

ground other than the body. The ‘Time’ column and ‘Enable’

column determine when and whether this policy entry should

be enabled. Multiple ROI policies can be enabled simultane-

ously, where the ROI region is the union of the regions of all

the enabled ROIs.

To allow the owner to configure ROI policies, the

CamShield preserves a convenient and secure input interface.

It not only allows for configuring devices out of the cabling

range but also retains physical isolation. The idea is to lever-

age the CamShield’s visual sensor to scan the information

displayed on the CamShield App. Specifically, the owner uses

the app to generate a QR-code containing the configuration

message, and shows it to the CamShield to configure it. An ex-

ample of the configuration message for modifying the active

period of the face ROI is shown in Figure 7 (c).

As the configuration interface is very sensitive, we use a

typical challenge and response protocol shown in Figure 7 (b)

to protect it against spoofing and replay attacks. To start the

configuration, the CamShield App first displays a QR-code

showing the HELLO message. Once the CamShield receives

the HELLO, it sends a challenge message REQ containing

a nonce to the app through the VLC data path. The app re-

sponses to the challenge with another QR-code called RES,

which contains the hash of the nonce and the shared key. Since

the key is only shared with the authorized CamShield App,

the CamShield authenticates the app by verifying the hash.

If the authentication is correct, the CamShield accepts the

encrypted configuration message, i.e., ConfigMsg, appended

in the RES message.

In addition to the configuration interface, CamShield uses

a MsgLED to physically notify the owner about its working

status, e.g., whether the Face ROI is enabled. This interface is

used to avoid possible breaches due to the owner’s subjective

factors. For example, if the owner forgot to enable the ROI

(for some reason it was disabled), then the CamShield can

do nothing to protect privacy. Similar usability designs are

essential to practical protection systems [39]. The CamShield

prototype will allow us to continue the study on its usable

privacy and security issues in future work.



7 Compatibility Designs

The major usability goal of CamShield is to preserve the

functionalities of the shielded smart camera. The primary

function of smart cameras is video previewing We further

identify two other features that are valuable to users: motion

detection and cloud video analysis. This section describes our

designs to preserve them after introducing the CamShield.

Real-time Preview: Current COTS smart cameras achieve

real-time video preview mainly in two ways: via direct IP con-

nections or centralized servers. The majority of smart cameras

in the market use the first solution. The smart camera stores

videos locally and streams preview to the companion app

via standard protocols such as RTSP. 2 With proper config-

urations [20], the CamShield App can directly receive their

videos. The representative product of the centralized solu-

tion is the Google Nest camera. Its videos are encrypted and

uploaded to the cloud storage. When the user requests, the

cloud distributes the video to the native app. Since directly

accessing these videos is hacky and ad-hoc [8], we propose

to download and copy the video clips from the native app to

the CamShield App to decode. We note that this process does

not involve manual overhead since it can be automatized by

tools such as Tasker [19].

Emulating Motion Detection: Usually, the smart camera

detects motion locally, and then sends notifications (includ-

ing a video clip or figure showing the detected event) to the

companion app. The problem is the sink camera can only

capture the VLC streams rather than the real scenes (see 1st

and 2rd design choices in Section 8). Our approach follows

the replication idea. The CamShield device detects the motion

by analyzing the video stream, and then stimulates the sink

camera to generate motion notifications to the Internet. To

save the screen resource for VLC, it blinks an alarming LED

inside the shielding case to emulate the motion event. As the

VLC streams shown on the screen might also be treated as

motions and cause false alarms, we leverage the virtual fenc-

ing feature of the sink camera to exclude the screen showing

the VLC streams from the motion detection areas.

Cloud Analysis: In centralized solutions, the video

streams from the sink camera are uploaded to the cloud stor-

age, but the content is still the VLC streams. As the VLC

decoding algorithm is publicly known and no encryption is

applied on VLC frames, it is possible for the cloud servers to

implement the VLC decoding to analyze the videos from the

CamShield. Since current cloud servers have not supported

this feature, we make a workaround: the CamShield App de-

codes the VLC streams and uploads the ROI encrypted videos

to the cloud for video analysis.

2The solution might also have servers responsible for setting up connec-

tions and relaying streams if necessary [16].

8 Design Choices

This section discusses the design choices behind CamShield.

VLC v.s. Bare-metal Videos: Another way to deliver the

video stream to the smart camera is to directly play the

recorded video on the CamShield screen. This bare-metal

approach has good compatibility since it directly delivers sim-

ilar scenes as the ones not using the CamShield to the camera.

However, due to noise, the video quality of the re-recorded

video is much lower. Further, the re-recorded video does not

preserve encryption, i.e., if the video is ROI-encrypted, even

the authorized entities cannot decrypt and recover the raw

video, affecting the usability of the smart camera.

Decoding VLC at App v.s. at Smart Camera: The orig-

inal functionalities of smart cameras can be retained by de-

coding the VLC streams locally to obtain the video content

from the CamShield and then feeding the content into the

camera’s original processing pipeline. However, it requires

firmware modification. This is possible but practically hard.

To our knowledge, very few cameras have open firmware that

can be modified 3.

Encrypting Video v.s. Encrypting VLC: The VLC data

path is like an end-to-end tunnel from the CamShield device

to the app. An alternative way to secure the video data is

to encrypt the entire VLC payload. The two approaches are

not exclusive and can be used simultaneously. The reason we

choose unencrypted VLC streams is to leave an interface for

cloud analysis (recall Cloud Analysis in Section 7).

Motion Notification via Stimulation v.s. via VLC: Even

though the CamShield device can send notifications to the

CamShield App via the VLC data path, the app must always

be active to decode the VLC streams in order to get notifi-

cations in time. This is not a good choice for devices with

power constraints, e.g., smartphones.

9 Security Analysis

Many reports suggest that the videos recorded by the smart

cameras might be transparent to attackers due to unsecured

network connections [24], malicious cloud overlays [14],

or even compromised camera systems [1]. However, with

CamShield, the private ROIs contained in the smart camera’s

videos are still confidential. This is because they are encrypted

by the shield rather than the smart camera. The attacker can-

not decrypt the content without the key. Since the CamShield

device is isolated from the smart camera and the network, it

operates as it is expected to and naturally resists many types

of network-based attacks. In the following, we discuss several

non-trivial attacks.

Video Manipulation Attack: The attacker with full con-

trol of the sink camera may first decode the VLC stream, alter

some parts of the video, and regenerate the VLC stream to

3A hacked case is https://github.com/TheCrypt0/yi-hack-v4
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Figure 8: Hardware Prototype of the CamShield Device. (a)(b)(c) show different hardware components in Figure 2. The top

view (a) shows how the CamShield device is installed on a COTS smart camera. (d) is the 3D-model of the case.

lead the owner to misconfig ROIs. For example, if the ROI

policy was configured to ‘none’, i.e., the raw video is not

encrypted. The attacker can modify the video content to forge

some ROIs as if they have been protected, hence fooling the

owner that the camera has been protected. CamShield in-

volves two mechanisms to defend against this attack. First,

the CamShield device has a Msg LED to physically notify the

protection status, e.g., blinking to indicate the ‘none’ policy.

Second, all the video frames from the CamShield have an

integrity check whether there is ROI or not (Figure 6). Thus,

the CamShield App can identify whether the video content is

modified or not.

Video Replay Attack: Similar to the video manipulation

attack, this attack assumes the ROI protection was turned off

by the owner for some reason, and the attacker does not want

the owner to be aware of it being turned off. The attacker may

record the VLC stream when the ROI protection is enabled,

and replay the record stream to the owner when the ROI

protection is disabled [34]. Even though the recorded video

is not tampered with, the replay can be detected since the

timestamp is no longer valid.

Multi-device Colluding Attack: An advanced attacker

might be able to control other co-located smart devices to

compromise the CamShield. For example, if the attacker can

control the co-located TV within the scope of the CamShield,

it can initiate the CamShield configuration process by dis-

playing or replaying QR-codes on the TV screen to modify

privacy policies. Despite the high requirements, the nonce

and timestamp in the RES message in Figure 7(b) are used to

defend against unauthorized configurations.

ROI Failure Attack: The ROI-based encryption allows

the owner to adjust the privacy policies. It relied on CV al-

gorithms to identify ROIs, whose accuracy, while in many

cases is comparable to the human cognitive system, is not

100%. A patient attacker can wait for the failures, e.g., an ROI

detection miss, to partially gain the sensitive information. The

ROI-encryption cannot strictly eliminate this attack. Possible

defense approaches are to keep CV algorithms up to date (see

discussion in Section 12) or use full encryption (sacrificing

functionality for security)

10 Implementation
We describe the implementation of the CamShield device and

the CamShield App below.

10.1 CamShield Device

Hardware. We prototype the CamShield device with

COTS components and a 3D printed case. Nvidia Jetson Nano

board [10] is used as the processing unit. The visual sensor is

Raspberry Camera V2.1, featuring 60 fps@720p. The visual

sensor is directly connected to the CMOS Serial Interface

of the Nano board. The screen is SHARP LS029B3SX02

1440×1440@60fps, which is driven by an HDMI driver board.

We use a lens of 60 mm focal length to focus the sink camera

to the screen. Two LEDs are connected to the GPIO pins

of the Nano board as the alarming LED and Msg LED. As

shown in Figure 8, the above components are attached to a 3D

printed case. The CAD file of the case is shown in Figure 8(d).

The LCD screen is placed in a movable slot so that it can be

adjusted to fit the focal plane of the smart camera.

Software. OpenCV v4.1.0 and Tensorflow v1.14 are

used to implement the ROI detection. For fast prototyp-

ing, we used shipped detectors. HaarCascade [56] and

SSD+MobileNet [18] are face detectors. Histograms of Ori-

ented Gradients [31] is used to detect pedestrians and Scene

Text Detection [69] is used to extract regions containing text.

The ROI detection module is also reused for motion detec-

tion (Background Subtractor MOG2 [70]) and decoding con-

figuration message from QR-code decode (pyzbar 0.1.8 li-

brary [12]). The ROI encryption is based on an open-source

HEVC codec [55], which outputs the encoded video tile as a

Network Abstract Layer Unit (NALU). We adopt AES-GCM

for encryption. For VLC encoding, we utilize the Real-time

Transport Protocol (RTP) as an intermediate helper layer to

pack the NALU stream first and then to the VLC data frame

shown in Figure 6. To counter the errors in the VLC chan-

nel, Reed-Solomon (RS) codes are used for error correction

(Python reedsolo library [13]). To avoid burst errors, we use

Python commpy library for data interleaving before RS en-

coding. Bits are modulated by color modulation. To achieve

real-time video rendering at 60 fps, the encoded frames are

piped to GPU via the Gstreamer pipeline [9].



10.2 CamShield App
Currently, the CamShield App works with smart cameras sup-

porting RTSP streaming protocol. The app is responsible for

VLC decoding, ROI decryption, and video rendering. We im-

plement it on Xiaomi Mi Mix 2S with Qualcomm Snapdragon

845 and Android 10.

The VLC decoding first locates all blocks in the preamble

through the C++ robust corner detection algorithm [36] with

the Java Native Interface (JNI). For data decoding, it calls the

JAVA ReedSolomon library in zxing [6]. The ROI decryption

is a reversed process of the ROI encryption. Firstly, we unpack

the VLC frame to retrieve the NALU stream. Then, for each

video frame in the NALU stream, we find out all encrypted

NALUs through the flag in the NALU header. Next, we verify

the integrity and time of the frame by checking the hash.

Finally, we obtain the whole frame (ROI + non-ROI) through

the HEVC decoder. To realize real-time video display on

smartphones, we implement a pipeline scheme to speed up

the whole workflow (see Appendix C).

11 Evaluation
This section evaluates the VLC performance, the ROI encryp-

tion, and the compatibility designs.

11.1 VLC Evaluation
This subsection evaluates the VLC performance and the ef-

fectiveness of the design components.

Overall Performance: We evaluate the performance of the

VLC data path on different smart (sink) cameras shown in Ta-

ble 1. Due to the impact of resolution, focal length, automatic

image tuning, etc., the properties of the VLC channel vary by

camera model. Thus, we adjust the default VLC parameters

(see Appendix B) for different camera models to achieve their

best performance. Figure 9 (a) shows the highest throughput

of each camera model. The results show that XiaoMi, Ezviz,

and YI models could achieve a throughput of 300 to 500 kbps,

meeting the requirement of streaming 720p@10 fps video.

The Hikvison model is able to support 720p@20 fps, since

it has higher resolution and allows manual configuration to

disable the image auto-tuning, e.g., white balance, saturation,

exposure, etc. The results show that the VLC data path can

fulfill the requirement of streaming HD videos.

Grid Preamble for Distortion Calibration: We evaluate

the effectiveness of calibrating lens and chromatic distortions.

We compare our calibration scheme with a simple calibration

scheme that uses the same block locations for the three RGB

channels. The results are depicted in Figure 9 (b). In the

simple calibration scheme (combined location), more blocks

are mislocated, which is obvious in the red and blue channels.

Our calibration scheme (decoupled location) achieves better

performance as the three channels have different distortion

characteristics.

Brand Model
Frame

Rate (fps)
Resolution

Disable

Auto-tuning

Hikvison
DS-2CD3T5

6FWDV2-I3
20 2560x1920 Support

XiaoMi CMSXJ25A 20 1920x1080 No

Ezviz CS-C6CN 15 1920x1080 No

YI YYS.2919 15 1920x1080 No

Table 1: COTS Smart Cameras Used in Evaluation.

Color Palette Preamble for Color Bias Calibration: We

test different schemes for mapping colors to bits. First, we

choose HSV as a representative color space for directly clas-

sifying colors without the reference of the palette [59]. As

shown in Figure 9 (c), its performance is not good enough.

The main reason is that the hues of the colors have over-

lapping areas, resulting in demodulation errors. Second, as

identical color palettes are piled up on the screen, we test

three schemes to choose the decoding reference: 1) Single:

use the closest palette; 2) Local: use the average of multiple

single-palettes in a small area; global; 3) Global: the average

of all palettes. As shown in Figure 9 (c), the local palette

achieves the lowest error rate. It is better than the Single since

it is less noisy.

Frame Interpolation: We use Fr to denote the rate at which

the VLC transmitter refreshes its content (its maximum value

is the CamShield screen refresh rate). To show the proper-

ties of the frame interpolation scheme, we compare it with

two simple approaches: 1) Fr is half of the capture rate, i.e.,
Fr=10 fps; and 2) Fr is the same as the capture rate, i.e.,
Fr=20 fps. The screen refreshes at full rate in our scheme,

i.e., Fr=60 fps, but only 1/3 parts are refreshed in adjacent

frames. Results are shown in Figure 9 (d). When Fr=10 fps,

the sink camera can always capture a merge-free frame as its

rate is 2 times of Fr. So its decoding rate (the percentage of

correctly decoded bits) is high. However, as most rxRFs are

duplicated, the overall throughput is low. When Fr=20 fps,

the sink camera is almost synced with the screen, the ideal

throughput would be two times of the Fr=10 fps case. How-

ever, as their actual refresh rates are slightly different, the

rxRFs encounter screen refresh periodically, resulting in con-

secutive undecodable merged frames. As a result, the average

throughput of this case is high but its throughput fluctuates,

which is also reflected in the decoding rate curve. Our scheme

can achieve 757 kbps, slightly less than the Fr=20 fps case,

but its decoding rate is 99.5%, indicating stable performance.

11.2 Evaluation of ROI-based Encryption
This subsection shows the effectiveness of the ROI-based

encryption in protecting the visual information.

Effectiveness of Content Protection: We adopt two image

quality metrics: Peak Signal to Noise Ratio (PSNR) and Struc-

tural Similarity (SSIM). PSNR compares the noise level of the

processed image and the original one. Larger PSNR means

less noise. SSIM compares the similarity of two images. Large

SSIM means two images are similar. The videos are collected
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Figure 9: VLC Evaluation.

Scenario Description

meeting Three men sit around the table for a meeting. There

are two cans of drinks, a bottle of water and a set of

keyboard and mouse on the table.

lecture A man in a plaid shirt writes and draws on the white

board. He occasionally looks at the camera.

office A man in a knitted hat looks at the camera and talks to

the camera, holding a whiteboard marker in his hand.

Table 2: Scenarios of Captured Videos.

in three public places 4. The detailed scenario descriptions

are shown in Table 2. Human face is selected as the ROI.

The videos are compressed by the HEVC codec with and

without the ROI-based encryption. Their ROI regions are

compared with that of the original frames. Results in Ta-

ble 3 show that the average PSNR and SSIM of all scenarios

using ROI-based encryption decrease significantly over the

No-encryption cases, meaning that the encrypted areas are

quite different from the original ones.

Effectiveness of ROI Detection: The CamShield is based

on CV algorithms to detect the ROI areas. For the legacy

OpenCV detector (HaarCascad), the false-negative rate is

around 3% in the meeting and office scenarios, and 10% in

the lecture scenario. The false-positive rate is at the same level.

The detention misses usually occur when the face moves. The

neural network detector (SSD+MobileNet) is more robust.

The false-negative rate is less than 1% and the false-positive

rate is close to 0% in the three scenarios. Unlike cryptographic

protection, ROI algorithm failure (false negative) can hardly

be completely avoided with current CV algorithms. This is a

common problem in ROI-based protection systems [41]. Our

suggestion is to keep the algorithms up-to-date and also use

stringent ROIs whenever possible, e.g., always encrypt the

full frame when the cloud video analysis is not active.

11.3 Evaluation of Compatibility Designs
This section evaluates the motion detection and cloud video

analysis capabilities of the smart cameras in Table 1 after the

installation of the CamShield.

4Collecting data in private places requires much more complex permis-

sions, and there is no difference in justifying our performance.

Scenario
No-encryption ROI-encryption

PSNR (dB) SSIM PSNR (dB) SSIM

meeting 34.43 0.90 9.08 0.292

lecture 35.27 0.91 11.41 0.323

office 35.74 0.91 9.02 0.324

Table 3: Video Quality: Original v.s. ROI-encrypted.

11.3.1 Motion Detection
We evaluate whether the smart cameras can correctly issue

motion detection notifications in time. The CamShield de-

vice deliberately generates the motion detection events for

these smart cameras. The alarming LED is set to flash for 30

seconds every five minutes to stimulate the sink camera. We

use the CamShield App to count the detected events and the

timestamps. The test lasts 16 hours for each camera. The de-

tection rate is calculated as the ratio of the number of received

notifications to the actual number of motion events generated

during the period. The results show that no camera has false

alarms, and most smart cameras have 100% detection rate

except that the YI model is 54%. We guess it is because the

YI server may filter out too-frequent notifications.

11.3.2 Cloud Video Analysis
We evaluate the performance of cloud video analysis on ROI-

encrypted videos. The scenes are described in Table 2. We

utilize the CV interfaces (describe_image and tag_image)

of Microsoft Azure [2] to see if the ROI-encrypted video can

still be used by the cloud server to infer useful information

for the owner. The CamShield App uploads the VLC decoded

and ROI-encrypted videos to the server.

We first use the describe_image interface to generate

descriptive captions together with confidence levels for the

videos.Table 4 shows the results. We can see that the ROI-

based encryption still preserves the context understanding

of the cloud server. It just lowers the confidence level in the

meeting and office scenarios by a little bit. In the lecture

scene, the captions are quite different. The reason is that the

proportion of the man in this scene is much smaller than the

whiteboard. Thus, when the the man’s face is not facing the

camera, the analyzer pays more attention to the content of the

whiteboard.

We further utilize the tag_image to analyze the fine-

grained information. This interface infers multiple tags based

on the input video. We use the number and content of the



Scenario Generated caption Confidence

meeting (w/o) ‘a group of men sitting at a table’ 55.71%

meeting (w/)
‘a group of people sitting

around a table with a computer’
45.93%

lecture (w/o) ‘a man writing on a white board’ 59.76%

lecture (w/) ‘text’ 65.61%

office (w/o) ‘a person sitting at a desk’ 55.09%

office (w/) ‘a person holding a phone’ 37.70%

Table 4:Context Understanding with (w/) and without
(w/o) ROI-encryption.

tags to quantify how much information is preserved in the

encrypted video. We first analyze the unencrypted raw videos

and record all tags with confidence level higher than 50%, i.e.,
true tags. Then, we apply two kinds of ROI-based encryption

to the raw videos, ‘face’ and ‘body’. Next, we apply tag anal-

ysis again on the encrypted videos and calculate the average

detection rate, i.e., the ratio of the detected true tags in the

encrypted video to all the true tags.

The results are shown in Table 5. The ‘Tag (All)’ column

indicates the ratio of detected true tags to all true tags. The

‘Tag (Body)’ column indicates the ratio of detected body-

related true tags to all body-related true tags. Similarly, the

‘Tag(Face)’ column indicates the ratio of detected face-related

true tags to all face-related true tags. The 0% detection rate

of the two tags validates the effectiveness of ROI protection.

However, as shown in the ‘Tag (All)’ column, the ROI-based

encryption still preserves information for the cloud server.

When the ROI is face, the ‘Tag (Body)’ column shows that

some body-related true tags are still kept, i.e., gesture recog-

nition would still be possible when the face area is encrypted.

12 Discussion
We discuss the limitations of the current implementation.

Cost: The major cost of the CamShield prototype is the

Nano board (100$) and the screen (50$). The Nano board

can be replaced with DSP chips and a low-end processor.

The price of screens will always decrease. Ideally, as the

CamShield replicates the full functionalities of the smart cam-

era, it will not be cheaper but should be on the same price level

as a smart camera. We are also exploring low-cost alternatives,

for example, it might be possible to reuse smartphones that

are no longer in use as free CamShield devices.

Update: The CamShield relies on CV algorithms for ROI

detection. When better algorithms are available, they can be

updated via the policy configuration interface (Section 6.2).

The binary of the CV module is first segmented and then

transmitted by multiple configuration messages. We imple-

mented a preliminary QR-code stream decoder, through which

a legacy OpenCV detector (about 100 KB) can be updated

in several mins. For larger modules such as neural network

models (e.g., a compressed MobileNet is about several MB),

a carefully-designed high throughput scheme should be used

to transmit the messages (e.g., 100 kbps is achieved in [38]).

Scenario ROI Tags (All) Tags (Body) Tags (Face)

meeting
face 56.2% 15.0% 0%

body 17.1% 0% 0%

lecture
face 89.3% 26.2% 0%

body 61.4% 0% 0%

office
face 27.3% 3.1% 0%

body 18.1% 0% 0%

Table 5: Tags Detection Rate after ROI-encryption.

For the remaining firmware (non-algorithm parts), many risks

have been avoided by isolation. For vital firmware upgrade,

which unlikely frequently occurs, one way is to return the

device to the manufacturer/authorized parties to reload new

firmware by proprietary interface and protocols.

Timestamp: Some of the security mechanisms rely on the

timestamps of the Real Time Clock (RTC) time, i.e., the abso-

lute time. The CamShield’s RTC is powered by the battery,

which ticks even when the device is powered off. However,

due to the frequency offset of the RTC’s conciliator, its time

keeps drifting from the accurate absolute time. As a result, a

time calibration method is required. A potential solution is

through the configuration interface, which already reserves

the timestampe field.

HD Video Support: Higher throughput of the VLC data

path is required for supporting 1080p or 2k videos. Currently,

we use a square screen, but the CMOS of the sink cameras is

a rectangle, hence we can adopt a rectangle screen to increase

the VLC throughput. Further, high-refresh-rate screens are

also beneficial in increasing the throughput.

Installation Overhead: As shown in Figure 8 (a), the

CamShield device is put in front of the smart camera to fully

cover it. To maximize the VLC performance, the installation

must jointly adjust the lens of the CamShield and the lens of

the camera to optimize the focus as well as to maximize the

VLC areas. In practice, it takes us less than 5 mins to set up

a new camera with a reasonable performance. For easier and

faster installation, the manufacturer might provide pre-tuned

space occupiers for different cameras models. Then, the user

only needs to stack the CamShield, the occupier, the lens,

another occupier, and the smart camera together.

13 Conclusion
Privacy and security issues of visual sensing devices have

become a concern for consumers. This paper proposes an ap-

proach to use an isolated and fully functional copy of the orig-

inal sensing device as a bolt-on accessory to protect sensing

security and privacy. As an example, we design the CamShield

system to secure COTS smart cameras while preserving their

key smart features.
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Figure 10: VLC Parameter Selection.

txFRi txFRi+1 txFRi+2 txFRi+3

txFRx,1 A C C C
txFRx,2 B B D D
txFRx,3 A xor B A xor B A xor B C xor D

Figure 11: Inter-frame Coding Scheme.

Appendix

A. VLC Inter-Frame Coding
Considering the possible sampling cases of the rxFRs in Fig-

ure 4 (e). As the two decodable rxFR pieces are random, to

ensure they provide 2/3 capacity, the data of each piece must

be coded. We denote the three pieces as subframes: txFRi,1,

txFRi,2, txFRi,3. A valid coding scheme is shown in Figure 11

to convey information pieces: A,B,C,D, etc.
We next show that, no matter when the rxFR samples, two

distinct information pieces can be recovered. When the rxRF

captures the static txRF frames, we surely can do so. So we

consider the three cases affected by the roller shuttering effect

in Figure 4 (e). In case �, B and A xor B can be decoded, so

A can be decoded from A = B xor (A xor B). In case �, C and

D can be directly decoded. In case �, C and A xor B can be

decoded. In this case, the decoder needs to wait for the next

rxFR, from which it obtains E and C xor D. With C xor D, D

can be calculated.

B. VLC Parameter Selection
The performance of the VLC is affected by several parameters.

This section describes how we choose them.

We adopt four metrics to quantify the performance. To de-

fine them clearly, suppose there are a data bits to transmit, and

b bits are added for error correction. The VLC data path trans-

mits a+b bits out in total, of which c bits are flipped during

the transmission. After error correction, the receiver recovers

d data bits from the received a+ b bits. Then we have the

following metrics: ideal throughput denotes the transmitted

bits per second including the redundancy for error correc-

tion, i.e., (a+b)/t; throughput denotes the actual correctly

decoded data bits per second after error correction, i.e., d/t;
decoding rate denotes the ratio of correctly decoded data bits

to all transmitted data bits after the error correction, i.e., d/a;

bit error rate (BER) denotes the ratio of all error bits over

the total transmitted bits, i.e., c/(a+b). The four metrics are

measured over 100 VLC frames.

Block Size: As shown in Figure 10 (a), the ideal throughput

increases when block size decreases since more color blocks

can be used to convey bits. However, decreasing the block

size does not always turn into net capacity gain since the BER

increases with smaller block size. This is because blocks with

smaller sizes contribute less color intensity and are more frag-

ile to the noise. The highest throughput 757 kbps is achieved

at a block size of 9×9 pixels.

Number of Colors Used: We show two modulation schemes

using different numbers of colors: 8-color and 4-color modu-

lation. The colors the of 4-color modulation are black, white,

green, and magenta. The 8-color modulation is shown in Fig-

ure 4 (d). Figure 10 (b) shows the performance of the two

modulation schemes. When the block size is decreased, the

throughput of the 4-color increases due to its smaller BER.

However, a smaller block size is not possible due to the limi-

tation of the block localization algorithm. As a result, 8-color

modulation performs better with 9×9 block size. Thus, we

use it as the default modulation scheme.

Error Correction Level: The RS code is described by

RS(n,m), where n is output symbol rate and m is input data

rate. n is larger than m, reflecting the redundancy used to

recover errors. We fix n to 255 and vary m to change the error

correction level. Smaller m means more redundancy and bet-

ter error resistance. We test 4 levels as shown in Figure 10 (c).

Smaller m brings better throughput. However, this gain has an

upperbound since it needs redundancy. The optimal through-

put of 757 kbps is achieved at the error correction level of

RS(255, 205) with a 99.4% decoding rate. We use it as the

default error correction level.
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18.9 ms 12.4 ms 3.1 ms 9.7 ms
19.4 ms

44.1 ms

Table 6: Per-frame Time Cost of the CamShield App.

C. The CamShield App Run-time Efficiency
In order to achieve real-time video rendering, the total time

budget for a VLC frame in CamShield App is 50 ms given

the 20 fps capture rate of the sink camera. Our smartphone

supports real-time 60 fps video decoding with an average time

cost of 16.7 ms. Thus, the VLC decoding and ROI decryption

must be finished within the remaining time budget, i.e., 50−
16.7 = 33.3 ms.

We first measure the per-frame time cost of different com-

ponents of the CamShield App, as shown in Table 6. If they

work sequentially, the summed cost (44.1 ms) will exceed the

time budgets. To speed up the decoding, we divide the process

into three parts and use three threads for parallel decoding.

As shown in the last column of Table 6, the average per-frame

time cost of the pipeline design is 19.4 ms, within the 33.3 ms

budget. The results show the feasibility of real-time video

rendering on smartphones.


