
Adversarial Detection Avoidance Attacks: Evaluating the robustness of perceptual
hashing-based client-side scanning

Shubham Jain*, Ana-Maria Creţu*, and Yves-Alexandre de Montjoye†

Department of Computing and Data Science Institute, Imperial College London

Abstract

End-to-end encryption (E2EE) by messaging platforms en-
able people to securely and privately communicate with one
another. Its widespread adoption however raised concerns that
illegal content might now be shared undetected. Following the
global pushback against key escrow systems, client-side scan-
ning based on perceptual hashing has been recently proposed
by tech companies, governments and researchers to detect
illegal content in E2EE communications. We here propose
the first framework to evaluate the robustness of perceptual
hashing-based client-side scanning to detection avoidance
attacks and show current systems to not be robust. More
specifically, we propose three adversarial attacks–a general
black-box attack and two white-box attacks for discrete co-
sine transform-based algorithms–against perceptual hashing
algorithms. In a large-scale evaluation, we show perceptual
hashing-based client-side scanning mechanisms to be highly
vulnerable to detection avoidance attacks in a black-box set-
ting, with more than 99.9% of images successfully attacked
while preserving the content of the image. We furthermore
show our attack to generate diverse perturbations, strongly
suggesting that straightforward mitigation strategies would
be ineffective. Finally, we show that the larger thresholds nec-
essary to make the attack harder would probably require more
than one billion images to be flagged and decrypted daily,
raising strong privacy concerns. Taken together, our results
shed serious doubts on the robustness of perceptual hashing-
based client-side scanning mechanisms currently proposed
by governments, organizations, and researchers around the
world.

1 Introduction

More than two billion people across the world use end-to-
end encryption (E2EE)-enabled platforms such as Signal and

*The first two authors contributed equally and are listed in random order.
† Corresponding author at demontjoye@imperial.ac.uk

pH
as

h 
co

nt
in

uo
us

Original image

2 per pixel=0.06 (T=3)

Modified image

pH
as

h

2 per pixel=0.10 (T=3)

aH
as

h

2 per pixel=0.01 (T=1)

dH
as

h

2 per pixel=0.03 (T=2)

PD
Q

2 per pixel=0.07 (T=2)

Figure 1: Examples of original and modified images for dif-
ferent hashing functions. All four modified images evade
detection for the threshold T while maintaining a small L2
perturbation per pixel and high visual similarity to the original
image.



WhatsApp [6, 53], exchanging more than 100 billion mes-
sages daily on WhatsApp alone [52]. E2EE provides a strong
privacy protection to users, preventing governments, hackers,
and platform providers themselves to access the content of
their communications. Governments and organizations have
however raised concerns that E2EE is preventing the detec-
tion of illegal content [39, 43] such as child sexual abuse
media and terrorism-related content [41]. Governments have
also recently been discussing bills looking at online safety in-
cluding the countering of disinformation and misinformation
online [17].

Following strong concerns from security experts and for-
mer national security officials alike [18, 31], key escrow sys-
tems providing governments an encryption “backdoor” have
been abandoned. Instead, client-side scanning has been pro-
posed to detect the sharing of illegal content on E2EE-enabled
platforms by tech companies [4], researchers [22, 35, 45], and
policy makers [11]. Here, a signature of a visual media (im-
age, video) would be computed on the user’s device and then
compared against the database of signatures of known illegal
images. If a match is found, the user would e.g. be flagged
and/or the unencrypted content automatically shared for fur-
ther review. Designed to be robust to small changes to the
media, as well as transformations like rotation and rescal-
ing, perceptual hashing algorithms would be used to generate
the signature. Several variations of this scheme have been
proposed. For instance, Apple’s recent proposal sends a cryp-
tographic voucher containing the encrypted images and the
results of the match. If the number of successful matches reach
a predefined threshold, the system is then able to decrypt all
the matched images [4].

A large literature has developed recently in adversarial
machine learning. The input of a machine learning classifier
is adversarially modified to fool the model. Slightly modified
but visually similar variants of an image can be designed
resulting in a misclassification by the model [32,42,49]. Some
of the most famous examples include an image of panda being
misclassified as a gibbon [20] or a road works traffic sign to
be misclassified as a give way traffic sign [42]. A wide range
of techniques in both white and black-box setup have been
developed, including [34] and [51].

Our contribution. We here propose the first framework to
evaluate the robustness of perceptual hashing-based client side
scanning to a novel detection avoidance attack. Specifically,
our framework assesses the threat posed by adversarial attacks
aiming to minimally modify an image so as to avoid detection
while preserving its content. Our framework also takes into
account the diversity of modifications produced by the attack
in terms of distances between signatures. The more diverse
the perturbation, the harder it is for the system to mitigate by
expanding the database with the modified images.

We propose three adversarial attacks against perceptual
hashing algorithms, a general black-box attack, inspired by
previous work in adversarial ML, e.g., [24, 48, 59], and two

novel and optimal white-box attacks exploiting the linearity
and orthogonality of discrete cosine transform (DCT)-based
perceptual hashing algorithms. The attacks are designed to
minimally perturb the image while avoiding detection. In par-
ticular, they produce a wide range of perturbations preventing
easy mitigation strategies such as expanding the database with
modified images.

We evaluate the robustness of perceptual hashing-based
client-side scanning mechanisms and show them to be highly
vulnerable to detection avoidance attacks. We perform a large-
scale extensive evaluation of five commonly used perceptual
hashing algorithms: pHash (continuous and discrete) [12, 62],
dHash, aHash and PDQ [27] and show that, for all of them,
our attack manages avoid detection with modified images very
similar to the original. Taken together, our results strongly
suggest that perceptual hashing-based client-side scanning is
highly vulnerable to small modifications in all scenarios con-
sidered, and that simple mitigation strategies like expanding
the database would be ineffective. This sheds serious doubts
on the robustness of currently proposed client-side scanning
mechanisms based on perceptual hashing [11, 22, 35, 45].

2 Perceptual hashing-based client-side scan-
ning

Perceptual hashing algorithms. Perceptual hashing algo-
rithms compute a signature of a visual media (e.g., image,
video) without having to share it. Perceptual hashes are dif-
ferent from cryptographic hashes in that the former changes
gradually as the image changes, while the latter changes sig-
nificantly as soon as a single pixel changes. Importantly, per-
ceptual hashes are designed to detect instances of a visual
media that are visually similar (e.g., a resized version) without
being exact copies [38]. To achieve this, they extract features
that remain invariant under small modifications, such as resiz-
ing, noise addition, format change and rotation. For example,
pHash and Facebook’s PDQ use the discrete cosine transform
(DCT) to extract image features relating to lower frequencies
in the DCT output, that remain invariant to image modifica-
tions such as blurring, resizing and watermarking [55].

Formally, a perceptual hashing algorithm h : I → O l is
a deterministic function mapping a multimedia X ∈ I to a
fixed-size vector representation, the hash, usually consisting
of bits (O = {0,1}) or real numbers (O = R). The similarity
between two media X ,X ′ ∈ I is quantified by computing the
distance between the hashes according to a metric, henceforth
denoted by d. For bit-valued hashes, d is usually the Hamming
distance, while for real-valued hashes a typical choice for d
is the Euclidean distance.

Client-side scanning. Perceptual hashing-based client-
side scanning (PH-CSS) for illegal image detection consists of
a database D = {X1, . . . ,XN} of N images Xi ∈ I ,∀1≤ i≤ N,
a perceptual hashing algorithm h, a distance d, and a threshold



T > 0. Given an image X ∈ I , the detection system computes
the distance between the hash h(X) and the hashes of images
in the database h(Xi). The image is flagged if there exists
1 ≤ i ≤ N such that d(h(Xi),h(X)) ≤ T . We note that our
framework is applicable more broadly to visual media (e.g.,
videos).

The detection system performance can be measured using
the false positive and false negative rates [62].

False positive rate. For a threshold T and database D , the
false positive rate FPR(T,D) is defined as the probability
that a media visually different from those in the database
(X 6∼D) is detected:

FPR(T,D) = P(∃1≤ i≤ N : d(h(X),h(Xi))≤ T |X 6∼D)

False negative rate. For a threshold T and database D , the
false negative rate FNR(T,D) is defined as the probability
that a media visually similar to medias in the database (X ∼
D) is wrongly rejected:

FNR(T,D) = P(∀1≤ i≤ N : d(h(X),h(Xi))> T |X ∼D)

For both the FPR and FNR, the randomness is taken over
the distribution of media shared by users.

The threshold T modulates the trade-off between the false
positive and negative rates. Intuitively, as the threshold T
decreases the system will wrongly flag fewer media outside
the database. At the same time, it would wrongly reject more
media visually similar to those in the database.

3 Attack model

3.1 Detection avoidance attack

We here propose an adversarial attack against perceptual
hashing-based client-side scanning, which we call detection
avoidance attack.

Attack model. We assume that a malicious agent, the at-
tacker, is in possession of a image from the database, hence-
forth denoted original image X ∈D . The attacker’s goal is to
minimally modify X into X ′ such that its content is preserved
while avoiding detection. More specifically, the attacker’s
goal is to modify X via an additive perturbation δ such that
the modified image: (1) is valid, i.e., X ′ = X +δ ∈ I meaning
that no pixel goes out of bounds, (2) evades detection, i.e.,
d(h(X),h(X +δ))> T , where T is the threshold used by the
detection system and (3) the perturbation is minimal in terms
of visual dissimilarity. We assume that the attacker knows the
distance d and the threshold T . We revisit these assumptions
later.

Assuming that the attacker quantifies the visual similarity
between images using a metric v (with smaller values for
higher visual similarity), the attacker’s goal can alternatively

be written as follows.

Minimize: v(X ,X +δ) (1)
s.t.: d(h(X),h(X +δ))> T (2)

X +δ ∈ I (3)

The objective function quantifies the visual similarity between
the original image X and the modified image X ′ = X +δ. The
attacker seeks to minimize this objective in order to preserve
the image content. The first constraint requires that the image
should avoid detection by not being matched with the original
image. However, it is possible the modified image might still
be flagged because its hash is close (≤ T ) to other images in
the database. Finally, the second constraint requires that the
modified image should be valid (within the image bounds).

Perturbation diversity requirement. Additionally, the at-
tack should be resistant to simple defenses that the system
could implement, such as expanding the database with hashes
of modified images. This assumption is realistic as the detec-
tion system might gain knowledge of the attack. The attack
should therefore produce a wide range of random perturba-
tions that cannot be predicted and added to the database.

Attack intuition. We provide three intuitions for why per-
ceptual hashing-based client-side scanning could be vulnera-
ble to the proposed detection avoidance attack.

First, by design, the perceptual hash of an image changes
gradually as the image changes, opening up the possi-
bility to find a minimally modified image X ′ such that
d(h(X),h(X ′))> T while X and X ′ remain visually similar.

Second, mitigation strategies like increasing the threshold
T or expanding the database with hashes of modified images
could lead to an increase in the detection system’s false posi-
tive rate, rendering it unsuitable for the use case.

Third, the hash space likely contains many valid image
hashes that are at least T away from the original image hash.
Formally, the d-ball of radius T around the hash of the original
image B(X ,T ) = {X ′ ∈ I : d(h(X),h(X ′))≤ T} is such that
its complement B(X ,T ) contains potentially many images
X ′ for typical distances (Hamming, Euclidean) and suitable
threshold values. Furthermore, common perceptual hashing
algorithms are non-injective, meaning that multiple inputs can
lead to the same output. This suggests that it may be possible
to obtain several and possibly many different perturbations of
the same image such that d(h(X),h(X ′))> T .

Finally, PH-CSS is similar but different from a classifi-
cation model. It is a threshold-based detection system for
matches in a database. This poses unique challenges: first,
as the threshold T can be quite large, it is not trivial to see
why adversarial perturbations can be found that still preserve
the original image content, and second, the detection system
could expand the database with hashes of adversarial images
produced using our attack, making perturbation diversity a
core requirement.



3.2 Attacker access to the perceptual hashing
algorithm

We consider two levels of attacker access to the perceptual
hashing algorithm.

Black-box access. Unless otherwise specified, we assume
that the attacker has black-box access to the perceptual hash-
ing algorithm. In a black-box setting, the attacker can provide
an input image X to retrieve its corresponding hash h(X)
but does not know how the algorithm works. We believe this
assumption to be realistic in the context of perceptual hashing-
based client-side scanning context. Most of the proposed im-
plementations of PH-CSS, including Apple’s recent proposal,
would compute the image hashes on the device [4, 8]. Our
black-box assumption is further supported by the fact that Ap-
ple’s model was made accessible in a recent iOS version, and
by subsequent statements by Apple that this was "expected
behavior" [13].

We further assume that the attacker can retrieve output
hashes for as many inputs as needed, without the hashes being
uploaded to the server. This can be made possible for example
by automating the image upload through the app and creating
a honeypot to catch all the requests, read the hash sent in the
request and send it back to the attacker.

White-box access. In some cases, the attacker could have
full knowledge of the algorithm used by the detection system.
This can for example be the result of reverse-engineering
work and the limited number of available perceptual hashing
algorithms available. This knowledge consists of the rules or
transformations used by the algorithm to map the input to the
output hash. In this paper, we develop two novel attacks for
DCT-based perceptual hashing algorithms such as the popular
pHash and Facebook’s PDQ (see Sec. 4.3). These attacks
provide a strong attack targeting DCT as they are optimal in
the sense of minimally modifying the input to evade detection.
They also provide theoretical insights into the vulnerability
of existing approaches.

4 Attack methodology

We present the methodology for a general black-box attack
against perceptual hashing-based client side scanning and two
novel attacks against DCT-based hashes.

4.1 Notation
General. We consider real-valued images I = [0,1]n and de-
fine an image as an element X ∈ I. The image size n is equal
to the number of pixels in the image. For 1≤ i≤ n, we use X i

to denote the i-th element of the (flattened) image X . Given
an image X ∈ I , the space of valid perturbations is denoted
by I −X = {δ ∈ [−1,1]n : 0≤ δi +X i ≤ 1,∀1≤ i≤ n}

Distance from original image. All our attacks aim to mod-
ify an original image X into X ′ = X + δ such that the dis-

tance between their respective hashes is larger than a given
threshold T . We denote by fX : I → O ′ the function map-
ping a perturbation δ to the distance between the hashes of
X ′ = X +δ and X : fX (δ) = d(h(X),h(X +δ)). For example,
for real-valued hashes O ′ = R, while for bit-valued hashes
O ′ ⊂ N (for details see Section 5). For convenience and be-
cause each image is attacked separately, we drop the subscript
and use f := fX when there is no ambiguity.

Visual similarity. We quantify the visual similarity be-
tween original image X and a modified image X ′ using the Lp

norm of X−X ′, where Lp : X ∈Rn→||X ||p =
( n

∑
i=1
|X i|p

)1/p.

The Euclidean (p= 2),L1 and L∞ norms are common choices
in the adversarial ML literature to measure visual similarity.
To compare the visual similarity between original and mod-
ified images independently of the image size, we will use
the Lp perturbation per pixel, defined as Lp,pixel : X ∈ Rn→( 1

n

n
∑

i=1
|X i|p

)1/p.

4.2 Black-box attack

Approach. Our black-box attack attempts to maximize the
distance f (δ) between the hashes of original and modified
images X and X ′ = X + δ while ensuring the perturbation
||δ||p is smaller than a fixed constant ε. We take this approach
instead of directly minimizing the perturbation under the con-
straint that f (δ)> T as we found it impractical to enforce the
constraint on f in a black-box setting.

More specifically our attack seeks a solution to the follow-
ing optimization problem:

Find: max
δ

min(T, f (δ)) (4)

s.t.: ||δ||p ≤ ε (5)
δ ∈ I −X (6)

The objective is either T or f (δ); when it is equal to the for-
mer, the program stops, while when it is equal to the latter, i.e.,
f (δ)≤ T , we perform gradient ascent in search for a better
solution. The first constraint requires that the perturbation’s
Lp norm does not exceed ε. The second constraint requires
that the modified image remains valid.

To ensure that the perturbation is as small as possible, we
start with a very small admissible perturbation ε and gradually
increase it when the above program fails to find a solution
within a reasonable amount of steps.

Gradient estimation. We use zero-order gradient estima-
tion via Natural Evolutionary Strategies (NES) [48, 59] to
estimate the gradient of the distance function f with respect to
the perturbation δ and perform gradient ascent. This is a pop-
ular technique for optimization under black-box assumptions
and has already been used to obtain adversarial perturbations
against image classification models [24].



Algorithm 1 GRAD: Gradient estimation for f (δ)
1: Inputs:

f : Function whose gradient is to be estimated.
X : Original image to be attacked, of size n.
δ: Point at which the gradient is to be estimated.
d′: Number of Gaussian samples (should be even).
σ: Scaling factor for Gaussian samples ∼ N(0, In).

2: Output:
grad: ∇δE[ f (δ)], estimate of the gradient of f (δ)

3: Initialize:
θi← N(0, In), for i ∈ {1, ..., d′

2 }
θi←−θd′−i+1, for i ∈ {( d′

2 +1), ...,d′}
grad← 0

4: for i = 1 to d′ do
5: θ′i←max(min(1,X +δ+σθ),0)−X−δ

6: grad← grad + f (δ+θ′i)∗θ′i ∗ 1
σd′

7: end for

The NES-based strategy for gradient estimation can be de-
scribed as a special case of estimation using finite-differences
on a random Gaussian basis. We estimate the gradient of f
using the following equation:

∇δE[ f (δ)]≈ 1
σd

d′

∑
i=1

δi f (δ+σθi) (7)

where θi ∼ N(0, In),1 ≤ i ≤ d′ are samples from a stan-
dard multivariate normal distribution over Rn. Nesterov and
Spokoiny [40] showed through theoretical analysis that the
number of samples d′ required to estimate the gradient scales
linearly with the input dimension n.

Alg. 1 details the black-box gradient estimation procedure.
To reduce the variance of our estimate, we use antithetic sam-
pling: we sample Gaussian noise θi for i ∈ {1, ..., d′

2 } and set
θ j =−θd′− j+1 for j ∈ {( d′

2 +1), ...,d′} with d′ an even num-
ber (line 3). This optimization has been empirically shown
to improve performance of NES [48]. To satisfy the image
bound constraints for X +δ+σθ which will be given as input
to the hashing function (in order to compute f (δ+σθ)), we
replace each noise sample with a clipped version (line 5).

Perturbation update. Alg. 2 details the perturbation up-
date. At each step t, we use the sign of the estimated gradient,
sign(grad) along with momentum µ to update δt (lines 3-4).
Sign gradients have been previously used by Goodfellow et
al. to develop adversarial perturbations against image classi-
fication models [20]. We clip the resulting image X + δt+1
to ensure it is within the image bounds (line 5), and we en-
force the visual similarity constraint on the updated δt+1 by
projecting it onto the ball of Lp norm ε (lines 6-7).

Perturbation bound. To ensure that the visual similarity is
comparable across images of different sizes, the bound on the

Algorithm 2 UPDATE: Estimating δt+1 via gradient ascent
1: Inputs:

δt : Perturbation after the tth iteration.
gradt : ∇δE[ f (δt)], estimate of the gradient of f (δt).
prev_gradt : Weighted sum of previous gradients.
X : Original image to be attacked.
ε: Upper bound on ||δ||p.
µ: Momentum parameter.
η: Step size to update δ in each iteration.

2: Output:
δt+1: Perturbation after the (t +1)th iteration.
prev_gradt+1: Updated weighted sum of gradients.

3: gradt ← µ∗ prev_gradt +(1−µ)∗gradt
4: δt+1← δt +η∗ sign(gradt)
5: δt+1←min(max(X +δt+1,0),1)−X
6: if ||δt+1||p > ε then
7: δt+1← δt+1 ∗ ε/||δt+1||p
8: end if
9: prev_gradt ← gradt

perturbation norm (ε) is derived from a constant independent
of the image size (denoted εnorm) for each image attacked.
Perturbing each pixel by 1% in the same image but with dif-
ferent sizes would result in a visually similar perturbation but
different values of ||δ||p. In the attack, we increment εnorm
starting from small values, and the corresponding actual per-
turbation bound used in the attack (dependent on the image
size) will be ε = εnorm ∗n

1
p .

Making the attack more efficient. Because the number
of samples d′ required to estimate the gradient scales linearly
with the image size [40], we attack a small-dimension resized
and grayscaled version of the original image, which we de-
note by X̄ (of size n′ < n). The attack produces a perturbation
δ̄, which we map to a final perturbation δ in the original space
using Alg. 3. Our strategy, which we show to work in practice,
is informed by three insights: (1) most perceptual hashing
algorithms are known to be invariant to grayscaling and resiz-
ing of the image [56]. This means that, for an image X , h(X)
does not change much even when X is recolored or resized.
(2) both grayscaling, i.e., converting a three-channel RGB
image to single-channel image, and resizing to a smaller sized
image reduce the size of the original image X and (3) opti-
mizing the perturbation for the grayscale image and mapping
it to a corresponding perturbation in the RGB space leads to
smoother perturbations than directly optimizing for the RGB
image.

Alg. 3 details our algorithm for inverting the perturbation.
Using a resize transformation, we map the single-channel
perturbation δ̄ (of size n′) to a corresponding perturbation
of same single-channel size as the original image X (n/3),
denoted by δgray. The final pixel value δi

c for channel c is
derived from δgray such that (1) δi

c is proportional to X i
c, the



intensity for pixel i in the original image, and (2) the modified
pixel X i

c +δi
c is within the image bounds.

Algorithm 3 INVERSEDELTA: Calculate perturbation δ for
original image X from perturbation δ̄

1: Inputs:
X : Original image to be attacked of size n.
δ̄: Optimal perturbation for X̄ .

2: Output:
δ: Perturbation for X .

3: Initialize:
Xc← channel c of X , for c ∈ {R,G,B}
mean(Xc)← XR+XG+XB

3
ngray← n/3

4: δgray = resize(δ̄,ngray)
5: for c in {R,G,B} do
6: for i = 1 to ngray do
7: if δi

gray ≤ 0 then

8: δi
c = δi

gray
X i

c
mean(X i

c)

9: else
10: δi

c = δi
gray

1−X i
c

1−mean(X i
c)

11: end if
12: δi

c = min(max(X i
c +δi

c,0),1)−X i
c

13: end for
14: end for

Complete attack. The complete attack for an image and
X of size n and threshold T is described in Alg. 4. The
image-independent perturbation bound is initialized to ε0. We
grayscale and resize X to obtain X̄ of smaller size n′. In each
iteration t, the algorithm estimates the gradient and performs
a gradient update. If the distance fX̄ (δ̄) reaches a plateau
as quantified by the finite difference ∆ f (and the number of
previous iterations for which ∆ f ≤ 0), we consider that the
current ε is too small to allow for f (δ̄)> T . We thus increase
the image-independent perturbation bound εnorm by a fixed
step ηε and update ε accordingly. As soon as the distance
fX̄ (δ̄) > T , δ is computed from δ̄. The algorithm stops if
fX (δ) > T as well, in which case the attack is considered
successful. If after m iterations the distance fX (δ) does not
exceed T , the attack is considered unsuccessful.

Diversity of perturbations. For the attack to be resis-
tant against simple mitigation strategies like expanding the
database with hashes of the modified image X ′, the attack
should generate multiple random perturbations for an im-
age, resulting in different and unpredictable output hashes.
To achieve this objective, we make two modifications to
our black-box attack. First, we initialize our perturbation
δ̄0 to be a valid random non-zero perturbation such that
||δ̄0||p = εstart ∗n′

1
p for some small value of εstart . More specif-

ically, we uniformly sample δ̄0 from a set of valid perturba-
tions, scale it to have an Lp-norm of εstart and clip to limit it

Algorithm 4 Black-box attack against perceptual hashing
algorithms

1: Inputs:
X : Original image to be attacked of size n.
h: Perceptual hashing algorithm to be attacked.
d: Distance metric corresponding to perceptual hashing
algorithm h.
T : Threshold to be attacked.
n′(< n): Size of the resized and grayscaled image X̄
ε0: Starting value for the maximum perturbation allowed.
ηε: Step size for ε.
k: Number of previous iterations used to detect
plateauing of fX̄ .
µ, η: Parameters required for updating the gradient.
d′, σ: Number of samples and scale for Gaussian
samples used in gradient estimation.
s: Seed defined by the attacker.
m: Maximum number of iterations.

2: Output:
δ: Perturbation for original image X.

3: Initialize:
X̄ ← resize(rgb2gray(X),n′)
δ̄0← 0
prev_grad0← 0
seed← (X ,s)
εnorm← ε0

ε← εnorm ∗n
1
p

4: setseed(seed)
5: for t = 0 to m−1 do
6: gradt ← GRAD( fX , X̄ , δ̄t ,d′,σ)
7: δ̄t+1, prev_gradt+1← UPDATE(

δ̄t ,gradt , prev_gradt ,X ,ε,µ,η)
8: ∆ ft ← fX (δ̄t+1)− fX (δ̄t)
9: if Count([∆ ft−k+1, ...,∆ ft ]≤ 0)> k

2 then
10: εnorm← εnorm +ηε

11: ε← εnorm ∗n′
1
p

12: end if
13: if fX (δ̄t+1)> T then
14: δ = INVERSEDELTA(X , δ̄t+1)
15: if fX (δ)> T then
16: break
17: end if
18: end if
19: end for

within bounds.

δ̄0 ∼U(−X̄ ,1− X̄)

δ̄0 = εstart ∗n′
1
p ∗ δ̄0

||δ̄0||p
δ̄0 = min(max(δ̄0,0),1)

(8)



Second, we observe that requiring the perturbation to be
smaller than the constant used in the default black-box attack
can lead to less diverse outputs, even when different starting
points are used in the optimization. So we allow for a larger
maximum perturbation.

The two algorithm modifications lead to more diverse
hashes, at a small cost to the visual similarity.

Reproducibility. In order to ensure our attack results are
reproducible, we initialize the attack using both the image X
and the attacker-defined seed s (line 4 in Alg. 4). This ensures
that the directions θ being probed for gradient estimation are
not the same for all images even when the attacker-defined
seed s remains the same. For diversity, using different attacker-
defined seeds leads to diverse perturbations for the same im-
age. An attacker can either manually define the seed, or set it
based on processor clock to generate a diverse perturbation
everytime.

4.3 White-box attacks for DCT-based hashes

We develop a principled attack to devise a minimum pertur-
bation for DCT-based perceptual hashing algorithms. The
Discrete Cosine Transform (DCT) [2] is a very popular image
compression algorithm. DCT maps a discrete signal to linear
combinations of the original signal and cosines of different
frequencies. The signal can then be compressed by noting
that coefficients corresponding to lower frequencies encode
the most important features. This property makes DCT suit-
able for JPEG image compression [58] and several perceptual
hashing algorithms like pHash [12] and Facebook’s PDQ [14].

Attack intuition. Our attack exploits the linearity and or-
thogonality of DCT. By using the Euclidean distance to mea-
sure both the input perturbation and the distance between
original and modified hashes, we show that minimal pertur-
bations can be found as linear combinations of eigenvectors
derived from the linear transform. We further show that the
minimal perturbation needed to exceed the threshold T is
equal to T exactly.

Overview of DCT-based perceptual hashing. In what
follows, we assume that the DCT operates on an image X
of size k× k. DCT-based perceptual hashing algorithms in-
deed typically work by applying a set of transformations to the
original image, such as converting to grayscale, resizing, or
blurring resulting in a smaller k×k image. The 2-dimensional
DCT (see below) is applied to the k×k image, resulting in an
output of the same size. Next, the dimensionality of the output
is reduced by keeping a submatrix of pixels and discarding the
rest. For the pHash algorithm, k = 32 and the 8×8 submatrix
of pixels from the intersection of rows and columns 2 to 9 is
preserved, while for PDQ k = 64 and the 16×16 submatrix
of pixels from the intersection of rows and columns 2 to 17 is
preserved.

DCT transform. The DCT transform for an image k× k
is defined as follows:

hDCT : X −→MXMT

M ∈ Rk×k,Mi j =

√
2
k

Λi cos
[

π

k

(
j+

1
2

)
i
]
,1≤ i, j ≤ k (9)

Λi =

{
1√
2
, if i = 0

1, otherwise
(10)

M is orthogonal, i.e., MMT = Ik.
The submatrix extraction step applied in perceptual hashing

can be written as h′DCT : X → (MXMT )a:b,a:b, containing pix-
els from rows a to b and columns a to b, where 1≤ a≤ b≤ k
are parameters chosen when developing a perceptual hashing
algorithm. a is typically small to extract lower frequencies
while b controls the hash size. We rewrite the mapping as
h′DCT : X → M′XM′T , with M′ = Ma:b,1:k ∈ R(b−a+1)×k, i.e.,
M′ is the matrix obtained by extracting rows a to b from M.
Similarly to above, M′M′T = Ib−a+1. For more conciseness
we set from now on c = b−a+1.

Linearity of DCT. It is straightforward to show that h′DCT
is a linear transformation mapping a k× k-dimensional in-
put to a c× c-dimensional output. Simplifying the notation,
h′DCT can be rewritten as the linear transform of a vector (the
flattened input matrix X):

h′DCT :

{
I −→ Rc2

X −→ AX

A ∈ Rc2×k2

Ac1×c+c2,k1×k+k2 = M′1+c1,1+k1
×M′1+c2,1+k2

(11)

for 0≤ c1,c2 ≤ c−1,0≤ k1,k2 ≤ k−1

An important property of A, which we exploit later, is that
AAT = Ic2 (see Appendix). This is due to the orthonormality
of the rows of M′.

Perturbation bound for a given threshold. We prove that
when f (δ) ≥ T then necessarily ||δ||2 ≥ T . Using d as the
Euclidean distance, we can write fDCT (δ) = ||hDCT (X)−
hDCT (X +δ)||2 = ||Aδ||2 =

√
δT AT Aδ. Since AT A is symmet-

ric, it is diagonalizable in a real orthonormal basis of eigen-
vectors (δi)1≤i≤k2 by the spectral theorem. The eigenvalues
are non-negative because AT A is positive semidefinite. Since
AAT = Ic2 , it follows that the eigenvalues can only be 1 or 0.
We prove in the Appendix that the multiplicities of eigenval-
ues are c2 for 1 and k2− c2 for 0. Without loss of generality,
we reorder the eigenvectors by decreasing eigenvalue. Fi-

nally, if δ=
k2

∑
i=1

αiδi, we can write f (δ) =

√
c2

∑
i=1

α2
i ≤

√
k2

∑
i=1

α2
i .

Equality holds if and only if the perturbation δ belongs to the
vector space spanned by eigenvectors (δi)1≤i≤c2 .



We provide two practical ways to obtain perturbations δ

such that f (δ)≥ T .
Attack as an optimization program. We frame the attack

as the following non-convex optimization program:

Maximize :||Aδ||22
s. t. :||δ||22 ≤ T 2

δ ∈ I −X

(12)

The first constraint requires that the L2 norm of the input
perturbation is no larger than T . The second constraint is
linear and requires that the perturbed image is valid. We use
the Disciplined Convex Concave Programming toolbox [50]
to find a solution.

Attack using sampling. This attack samples valid pertur-
bations of norm T uniformly at random, using rejection sam-
pling. Alg. 5 describes our procedure to sample perturbations
of norm T along eigenvectors that are not canceled by the
linear mapping (δi)1≤i≤c2 until a valid perturbation is found
meaning that δ ∈ I − X . Given a threshold T , we sample
uniformly at random a vector α on the L2-sphere of radius
T in c dimensions (lines 5-6). We set the perturbation to be

δ =
c
∑

i=1
αiδi (line 7). Due to the orthonormality of the eigen-

vector basis, indeed ||δ||22 =
c
∑

i=1
α2

i = T 2.

Algorithm 5 White-box attack using rejection sampling
1: Inputs:

T : Threshold to be attacked.
(δi)1≤i≤c: Orthonormal eigenvectors of AT A for
eigenvalue 1.

2: Output:
δ: Minimal perturbation (of L2 norm T ) such that
fDCT (δ) = T .

3: while δ /∈ I −X do
4: α∼ N(0,Ic)
5: α← T α

||α||2

6: δ←
c
∑

i=1
αiδi

7: end while

5 Experimental setup

In this section, we describe the perceptual hashing algorithms
used to instantiate our attack and how we implemented it.

5.1 Perceptual hashing algorithms
The perceptual hashing algorithms evaluated in this paper are
pHash [12, 62], aHash, dHash 1, and Facebook’s PDQ [27].

1https://hackerfactor.com/blog/index.php%3F/archives/432-Looks-
Like-It.html

They are commonly used algorithms for image deduplication
or retrieval.

pHash, aHash and dHash outputs a 64-bit hash while PDQ
outputs a 256-bit hash for any input image. The Hamming
distance is used to compare the outputs of the hashing algo-
rithms. Each algorithm applies a sequence of transformations
such as grayscaling and resizing followed by image feature
extraction (e.g. using DCT), and finally a bit discretization
step. To experiment with an algorithm with real-valued out-
puts (of size 64), we remove the discretization step of the
pHash algorithm to obtain another algorithm, which we call
pHash continuous. The Euclidean distance is used to compare
the outputs of pHash continuous.

pHash and pHash continuous apply grayscaling, box blur-
ring and resizing resulting in a 32× 32 image. They then
apply the DCT as explained in Sec. 4.3, with parameters
a = 1,b = 8,k = 32 to get a 64-sized vector. We use this
real-valued vector as the output of pHash continuous. pHash
assigns bits larger than the median to 1 and 0 otherwise to
obtain the final hash.

dHash and aHash apply grayscaling followed by resizing
to get a 9× 8 and 8× 8 image, respectively. aHash outputs
a 64-bit hash by flattening the image, and setting the pixels
above mean value to 1 and 0 otherwise. dHash computes a
difference between consecutive columns of the image, flattens
the computed difference, sets the values greater than 0 to 1,
and 0 otherwise to report a 64-bit hash.

PDQ is inspired by pHash and outputs a 256-bit hash. We
will not attempt to describe the algorithm in detail, but to
provide an overview. PDQ applies grayscaling to the image
followed by a series of image transformations to get a 64×64
image. It then applies DCT as explained in Sec. 4.3 with
a = 1,b = 16,k = 64, followed by bit quantization by setting
bits larger than the median to 1, and 0 otherwise to finally
obtain a 256-bit hash.

5.2 Attack parameters

Black-box attack. We use the following parameters to
run our black-box attack. All the images are converted to
grayscale and resized to n′= 64×64= 4,096 dimensions. We
use the L2 norm to quantify visual similarity and ε0 = ηε =
1/255. The plateauing behavior of the objective function, i.e.,
when it stops increasing steadily, is detected based on the
last k = 10 iterations. The number of Gaussian samples used
for gradient estimation in each iteration is d′ = 800. We run
the attack for a maximum number of iterations m = 10,000,
although in practice only a few hundred iterations are re-
quired for most images. We use a momentum µ = 0 for all
hashing algorithms but pHash continuous for which we use
µ = 0.8. The values for the scale of Gaussian noise σ and
learning rate η are: σ = 0.001,η = 0.001 for pHash contin-
uous, σ = 0.1,η = 0.01 for pHash, σ = 0.1,η = 0.001 for
aHash, σ = 0.1,η = 0.001 for dHash and σ = 0.1,η = 0.01



0.0 0.1 0.2 0.3
2 perturbation per pixel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

pHash continuous

T= 0.05
T= 0.6
T= 1.1
T= 1.6

0.0 0.1 0.2 0.3
2 perturbation per pixel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 pHash

T= 2
T= 6
T= 10
T= 14

0.0 0.1 0.2 0.3
2 perturbation per pixel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 aHash

T= 1
T= 3
T= 5
T= 7

0.0 0.1 0.2 0.3
2 perturbation per pixel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 dHash

T= 1
T= 4
T= 9
T= 12

0.0 0.1 0.2 0.3
2 perturbation per pixel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 PDQ

T= 30
T= 70
T= 85
T= 90

Figure 2: Cumulative distribution function (CDF) for the L2 perturbations per pixel for different algorithms and thresholds
and all successfully attacked images over 10 experiments. A lower perturbation indicates higher visual similarity between the
modified and original images. The perturbation increases slowly with the threshold, but remains small in all cases.

for PDQ. An attacker might want to adjust these parameters
for each image, e.g., in order to run the attack more efficiently.
For simplicity, we here use the same parameters for all the
images. We chose the values of these parameters for each
perceptual hashing algorithm based on early experiments on
a handful of images from the Stanford Dogs dataset [28].

Diversity. We use the algorithm with modifications for
diversity as detailed in Section 4.2. We set ε0 = 0.25 and η0 =
0.01. Our results on L2 perturbations per pixel for different
algorithms and different thresholds in Fig. 2 show that pHash
continuous requires only a small perturbation to generate
successful perturbations, while for the other algorithms we
need a threshold-specific εstart . With these observations, we
set εstart = 0 for pHash continuous for all thresholds. For
aHash and dHash we set εstart = 0.02,0.03,0.04,0.05, and
for pHash and PDQ we set εstart = 0.04,0.06,0.08,0.1 for
four respective thresholds.

Implementation details. We implement the framework
and the perceptual hashing algorithms in Python 3.7 [44]
using NumPy [23], OpenCV [7], and SciPy [57]. We further
use DCCP [50] for white-box optimization and Faiss [25] for
efficiently matching hashes against the database.

6 Results

We use the ImageNet dataset from ILSVRC 2012 chal-
lenge [47] for empirical evaluation of our attacks. For privacy
reasons we discard the images containing faces as detected by
Yang et al. [61]. At the end, we get a dataset with 1,187,974
images in total. We assume that no two images from ImageNet
are visually similar.

For each repetition (R = 10), we sample two mutually ex-
clusive sets of images, of sizes N and M, from ImageNet
uniformly without replacement. The images in the first set
are used to create the database D of size N (by default, we
use N = 100k images) and the images in the second set are
used as images visually different to those in the database, to
estimate the false positive rate (we use M = 500k images).
We select four thresholds for each perceptual hashing algo-

rithm, shown in Table 1 (see Discussion for an analysis). We
run the black-box attack on N′ = 1,000 randomly sampled
images from the database D. While the threshold will vary
depending on the use case, the first two thresholds are values
that would be typically used in practice (see e.g., [27] for
PDQ). The third and in particular the fourth threshold would
probably generate too many false positives in practice. We
include them to test our attack in more challenging scenar-
ios. Given a threshold T and N′ images to be attacked, we
compute the attack effectiveness as the proportion of images
that are successfully attacked, i.e., a perturbation is found
satisfying fX (δ)> T .

Algorithm Thresholds
pHash continuous 0.05, 0.6, 1.1, 1.6
pHash 2, 6, 10, 14
aHash 1, 3, 5, 7
dHash 1, 4, 9, 12
PDQ 30, 70, 85, 90

Table 1: Thresholds selected for the detection system.

In our experiment, our black-box attack manages to success-
fully attack all images (N′×R = 10,000) for all perceptual
hashing algorithms but one, reaching an attack effectiveness
of 99.9%. More specifically, we found that one image could
not be attacked at the thresholds considered when using aHash
for one particular instantiation of our attack . All other im-
ages were all successfully attacked for all perceptual hashing
algorithms and thresholds considered.

Fig. 1 shows examples of images successfully perturbed us-
ing our attack along with the threshold used and resulting L2
perturbation per pixel. The modified image always preserves
the visual content of the original image with PDQ seemingly
requiring the most visually perceptible modifications. Values
of up to L2,pixel≈ 0.10 resulting in very small changes are typ-
ically needed for most images even with the largest thresholds
considered. We chose images where the subject is in focus
so that the effect of perturbations can be clearly seen and
we refer the reader to the Appendix section of the extended



0.05 0.6 1.1 1.6
Threshold

10−4

10−3

10−2

10−1

100

Fa
lse

 p
os

iti
ve

 ra
te

pHash continuous

2 6 10 14
Threshold

10−4

10−3

10−2

10−1

100 pHash

1 3 5 7
Threshold

10−4

10−3

10−2

10−1

100 aHash

1 4 9 12
Threshold

10−4

10−3

10−2

10−1

100 dHash

30 70 85 90
Threshold

10−4

10−3

10−2

10−1

100 PDQ

Figure 3: False Positive Rate (FPR) for different algorithms and thresholds. The database size is N = 100k, the number of images
used to estimate the FPR is M = 500k and the number of attacked images is N′ = 1k. We show the mean with error bars for the
standard deviation (which is very small) over 10 repetitions.

version of our paper 2 for the complete results of our attack
against these images for all perceptual hashing algorithms
and thresholds.

Fig. 2 shows that a small L2 perturbation per pixel is
enough to successfully attack most of the images for all hash-
ing algorithms. We obtain similar results using the popu-
lar Learned Perceptual Image Patch Similarity (LPIPS) dis-
tance [64] (see Fig. 9 in the Appendix) that measures the
perceptual distance between images using intermediate layers
of a pre-trained image classification model. We can see that
the perturbation increases overall with the threshold for all
perceptual hashing algorithms. This is expected as a larger
perturbation might be needed to push an image at least T away
from the original. However, even for the largest thresholds,
we observe that an L2 perturbation per pixel of 0.10 is enough
to successfully attack with imperceptible modification 95.0%
of images for dHash (respectively 100.0%, 83.7%, 87.2%
and 73.3% for pHash continuous, pHash, aHash and PDQ).
While results cannot be directly compared across algorithms
as threshold are algorithm-specific, we observe interesting
difference in the shape of the various algorithm’s CDF. pHash
continuous seems to requires a similar amount of perturbation
for all images (at a given threshold) with, e.g., L2 for T = 1.6
only ranging between 0.050 and 0.077. pHash, dHash, and
aHash have similar distributions while PDQ seems to always
require some changes to the image (resulting in a CDF shifted
to the right). We hypothesize the behavior we observe for
pHash continuous to be due to two factors: (1) the attack
mostly targets the DCT step where it finds an almost opti-
mal L2 perturbation of T = 1.6 for an image size of 32×32,
yielding an L2 perturbation per pixel of ≈ 1.6/32 = 0.05 and
(2) the other transformations from original to resized images
(and from resized to original image to invert the perturbation)
roughly preserve the L2 perturbation per pixel.

Fig. 3 shows that a detection system would have a very
large False Positive Rate (FPR), even for the lowest threshold
considered. We here empirically estimate FPR as the fraction
of images among the M images outside the database flagged
by the system. Even for the smallest threshold considered,

2https://arxiv.org/abs/2106.09820

the false positive rate is larger than 0.1%. While seemingly
small, such values of FPR would, in practice, result in a large
number of images being detected by the system and having e.g.
to be sent unencrypted to be analyzed. In 2017, 4.5B images
were shared daily on Whatsapp alone [5]. For a prevalence
rate of illegal content of p = 10−4 and a database size of
N = 100k, this would result in >4M false positive images
having to be shared unencrypted daily (see Table 2), raising
very significant privacy concerns. For the largest thresholds,
the false positive rate increases to rates between 14.8% for
pHash continuous to 73.0% for pHash resulting in hundreds
of millions of images being incorrectly flagged and shared
daily. We show in the Appendix how this number does not
vary much as a function of prevalence rates.

Hash Rough estimate of the number of wrong-
ly detected images daily / Threshold T

pHash con- ∼ 5M ∼ 23M ∼ 184M ∼ 665M
tinuous T = 0.05 T = 0.6 T = 1.1 T = 1.6

pHash ∼ 5M ∼ 7M ∼ 108M ∼ 3.3B
T = 0.2 T = 6 T = 10 T = 14

aHash ∼ 44M ∼ 179M ∼ 498M ∼ 1.1B
T = 1 T = 3 T = 5 T = 7

dHash ∼ 5M ∼ 8M ∼ 112M ∼ 798M
T = 1 T = 4 T = 9 T = 12

PDQ ∼ 5M ∼ 7M ∼ 135M ∼ 1.6B
T = 30 T = 70 T = 85 T = 90

Table 2: Rough estimate of the number of images that would
be wrongly detected daily on WhatsApp alone for different
perceptual hashing algorithms and thresholds. We here con-
sider a database size of N = 100k, 4.5B images being shared
daily [5], and a prevalence rate of illegal content of 10−4.

Diversity. Contrary to the ML case, ensuring that an at-
tack generates diverse enough perturbations every time it
is run is essential to make it a practical concern for client-
side scanning. Deterministic attacks could indeed easily be
thwarted by expanding the database to include the original
images and its modifications. To assess the ability of our at-

https://arxiv.org/abs/2106.09820


0 1 2 3
Distances

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

pHash continuous

T=0.05
T=0.6
T=1.1
T=1.6

0 5 10 15 20 25 30
Distances

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 pHash

T=2
T=6
T=10
T=14

0 5 10 15 20 25 30
Distances

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 aHash

T=1
T=3
T=5
T=7

0 10 20 30 40
Distances

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 dHash

T=1
T=4
T=9
T=12

0 25 50 75 100 125
Distances

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 PDQ

T=30
T=70
T=85
T=90

Figure 4: Pairwise distances between hashes of the multiple modified images generated for the same image, for different
algorithms and thresholds. D = 50 modified images are generated for each (N′ = 100) original image.

0 1 2 3 4 5 6 7
2 perturbation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

T= 1.6
BB-NES against images 
 succ. att. by WB-Sampling
BB-NES against images 
 succ. att. by WB-Optim
BB-NES against all images

WB-Sampling
WB-OptimBB-NES

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 e

ffe
ct

iv
en

es
s

Figure 5: Cumulative distribution function (CDF) for the
L2 norm of perturbations using our black-box attack (BB-
NES) against the DCT step and a threshold T = 1.6 (gray
dotted line) for N′ = 1,000 images. The inset shows the attack
effectiveness for the three attacks.

tack to produce different perturbations, we attack N′′ = 100
images sampled uniformly at random without replacement
from the database. Each image is attacked D = 50 times, us-
ing the diversity-focused version of the attack and different
random initializations (seeds) (see Section 4.2). Fig. 10 (see
Appendix) shows the L2 perturbation per pixel is slightly
larger than in the default black-box attack. Yet, most pertur-
bations are imperceptible and have L2 perturbation per pixel
≤ 0.15 for all thresholds and algorithms.

Fig. 4 shows the pairwise distances between hashes of mod-
ified images generated from the same image. The distances
between modified images are roughly similar to the threshold
used for all the perceptual hashing algorithms evaluated. This
suggests that the modified images are well distributed around
the ball centered on the original image and not clustered in
one part of the space. This also strongly suggests that simple
mitigation strategies like expanding the database would not
be sufficient to counter the attack.

Finally, we assess the capacity of the black-box approach
to produce optimal perturbations against the DCT step. We
compare the results of the black-box attack to those of the
white-box attacks and to our theoretical lower-bound (for

a threshold T and the Euclidean distance, the L2-norm ≥
T , see Sec. 4.3). We attack N′ = 1,000 images randomly
sampled from ImageNet after resizing them to k× k with
k = 32 and use the black-box attack parameters from the DCT-
based pHash continuous. For the WB-Sampling approach,
we generate up to 1M samples and we consider the attack
successful as soon as δ∈ I−X (see Alg. 5 for details). For the
WB-Optim approach, we run the optimization program for a
maximum of 1,000 iterations and for up to 10 times, until a
solution is found; if none is found, the attack is considered
unsuccessful. Fig. 5 shows that the black-box attack achieves
an input perturbation no larger than 2 times the theoretical
limit 96% of the time and no more than 0.5 above the limit
74% of the time. Interestingly, in this experiment, while the
black-box attack always succeeds in finding a perturbation,
the white-box approaches are less successful. WB-Optim and
WB-Sampling achieve an attack effectiveness of only 98.7%
and 66.3% respectively. We believe that WB-Sampling is less
successful because the sampled perturbations are more likely
to go out of the image bounds for some images, resulting
in no successful perturbation. Finally, we note that the L2
perturbation is smaller for the images successfully attacked
by WB-Sampling, perhaps because it easier to devise small
perturbations for these images.

7 Discussion

Our results and, in particular, the FPRs for specific thresh-
olds are estimated using ImageNet. While ImageNet already
contains more than 1M images, results might differ in differ-
ent and, in particular, larger datasets. We randomly sample
P images from ImageNet and, for each hashing algorithm,
compute the distances between image hashes for up to 1M
pairs. We find the distribution of distances between images to
be roughly stable when the number of images varies for each
algorithm. Similarly, we run the analysis on another dataset,
Stanford Dogs [28], and show the distribution of distances to
be similar to that of ImageNet and stable. This suggest that
our FPRs can be safely extrapolated to larger and different



1k 10k 100k 500k
Database size N

10−6

10−5

10−4

10−3

10−2

10−1

100

Fa
lse

 p
os

iti
ve

 ra
te

pHash continuous

T= 0.05
T= 0.6
T= 1.1
T= 1.6

1k 10k 100k 500k
Database size N

10−6

10−5

10−4

10−3

10−2

10−1

100 pHash

T= 2
T= 6
T= 10
T= 14

1k 10k 100k 500k
Database size N

10−6

10−5

10−4

10−3

10−2

10−1

100 aHash

T= 1
T= 3
T= 5
T= 7

1k 10k 100k 500k
Database size N

10−6

10−5

10−4

10−3

10−2

10−1

100 dHash

T= 1
T= 4
T= 9
T= 12

1k 10k 100k 500k
Database size N

10−6

10−5

10−4

10−3

10−2

10−1

100 PDQ

T= 30
T= 70
T= 85
T= 90

Figure 6: False Positive Rate (FPR) for each algorithm, threshold, and database size N. The number of images visually different
from those in the database that are used to estimate the FPR is M = 500k.

datasets. For the figure supporting this analysis, we refer the
reader to the Appendix of the extended version of our paper 3.

We have, throughout this work, assumed that the attacker
knows the threshold and distance function used by the system
to flag images. We believe this assumption to be reasonable
as a) pairwise distances are fairly similar across datasets and
stable, allowing an attacker to reasonably estimate acceptable
thresholds and b) our attack works well, producing images
very similar to the original one, even with very high thresholds.
We also believe the assumption that the attacker knows the
distance function used to be reasonable, as an attacker is likely
to be able to infer the distance being used based on the output
values, especially with the Euclidean and Hamming distance
being the most commonly used.

While we report results on a database size of N = 100k,
larger databases are often used in practice (e.g., the National
Center for Missing and Exploited Children in the US reported
a database size of 47.2M [1] and the Global Internet Forum
for Counter Terrorism reported a database of size 250k [19]).
Fig. 6 shows that the FPR of a system increases with the
database size N. Even for the lowest threshold, the FPR for
N = 500k reaches 0.55% for pHash continuous (T = 0.05),
0.59% (T = 2) for pHash, 2.13% (T = 1) for aHash, 0.55%
(T = 1) for dHash and 0.59% (T = 30) for PDQ. This strongly
suggest that the FPRs we report are a lower bound on the
FPRs and therefore the privacy risk in practice.

We have so far considered our attack to be successful when
the modified image is at a distance > T from the original
image. In practice, however, a modified image might be at a
distance > T from the original image but still be at a distance
≤ T from another image in the database and be (correctly,
even if for the wrong reason) flagged. To evaluate the impact
this has on the detection avoidance capability of our attack,
we compute the False Negative Rate (FNR), the fraction of
modified images incorrectly rejected by the system. Fig. 7
shows that the FNR stays extremely high for all perceptual
hashing algorithms at reasonable thresholds, indicating that
very few modified images get flagged for being at a distance
≤ T from another image in the database. As expected, FNR

3https://arxiv.org/abs/2106.09820

decreases (and FPR increases) when databases becomes large
and a large threshold is used, leading to a significant fraction
of the space being considered “close” to at least one illegal
image. For instance, for a database size N = 500k and the
highest threshold, 2.2% of modified images would still be
flagged for pHash and 23.3% for PDQ.

Our black-box attack relies on a heuristic to minimize the
perturbation while increasing the distance to the original im-
age above a threshold T . Although we produce imperceptible
perturbations for most of the attacked images, our results are
only an upper estimate of the actual minimum perturbation.
Prior work studying the robustness of machine learning clas-
sification models to adversarial perturbations showed that
finding minimal perturbation is a hard problem [26] and even
lower perturbations might be achieved in future work.

We focus, in our white-box attack, on DCT-based percep-
tual hashing algorithms, exploiting the linearity of the DCT
transform. Our attack is likely to be extendable to other linear
image transforms, e.g. image scaling [60], opening the door to
future attacks as well as potentially novel theoretical insights.

Countermeasures. We discuss several countermeasures
that a detection system could implement to thwart our attack.

First, the system could use a larger threshold. We showed
in Sec. 6 that the larger thresholds are not only ineffective
in detecting adversarially modified images but also lead to a
significant increase in false positives.

Second, one could use our attacks to generate hashes and
add them to the database. We show in Sec. 6 that our attack is
able to generate diverse perturbations so as to prevent such
countermeasures.

Third, systems (such as Apple’s protocol [4]) could flag
users only after the number of matches exceed a predefined
threshold k, rather than on a single match. Using a simple
model, we show that such a measure is not a trivial counter-
measure to our attack.

More specifically, we assume that both offenders and non-
offenders send 1000 images to the server. However, while a)
non-offenders send 0 illegal images b) offenders send exactly
100 illegal images (10%). For each type of user and each
threshold, we compute the probability for the system to flag
1 ≤ k ≤ N images using the estimated FPR and FNR for a

https://arxiv.org/abs/2106.09820


1k 10k 100k 500k
Database size N

10−2

10−1

100

Fa
lse

 n
eg

at
iv

e 
ra

te

pHash continuous

T= 0.05
T= 0.6
T= 1.1
T= 1.6

1k 10k 100k 500k
Database size N

10−2

10−1

100 pHash

T= 2
T= 6
T= 10
T= 14

1k 10k 100k 500k
Database size N

10−2

10−1

100 aHash

T= 1
T= 3
T= 5
T= 7

1k 10k 100k 500k
Database size N

10−2

10−1

100 dHash

T= 1
T= 4
T= 9
T= 12

1k 10k 100k 500k
Database size N

10−2

10−1

100 PDQ

T= 30
T= 70
T= 85
T= 90

Figure 7: False Negative Rate (FNR) for each algorithm, threshold, and database size N. The number of attacked images used to
estimate the FNR is N′ = 1,000.

100 101 102 103

Number of images k

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
to

 fl
ag

 ≥
k 

im
ag

es

PDQ

Non-offender, T= 30
Offender, T= 30
Non-offender, T= 70
Offender, T= 70
Non-offender, T= 85
Offender, T= 85
Non-offender, T= 90
Offender, T= 90

Figure 8: Probability that a detection system flags at least k
images shared by non-offenders (sharing 0 illegal images)
and offenders (sharing 100 illegal images). Both offenders
and non-offenders share a total of 1,000 images.

database size of 100k (see Appendix for the exact formulas).
Fig 8 shows that offenders and non-offenders are similarly
likely to have at least k images flagged. We obtain similar
results for the other perceptual hashing algorithms. This can
be attributed to the fact that the probability for a non-illegal
image to get flagged (FPR) is comparable to the probability
for an adversarially modified illegal image to be flagged (true
positive rate or T PR = 1−FNR). These results suggest that
flagging a user with at least k matches is not a trivial coun-
termeasure against our attack. We leave a deeper analysis of
such a mechanism for future work.

Fourth, the detection system could apply additional image
transformations before computing the perceptual hash of the
image. Such modifications would however be part of the black-
box and attacked by our algorithm. Simple transformations are
thus unlikely to prevent our adversarial detection avoidance
attack. Similarly, modifying the perceptual hashing algorithm
for instance by using a secret set of DCT coefficients that
is different from the set used by pHash or PDQ is unlikely
to prevent our attack. These would furthermore make the
algorithm less robust as the coefficients extracted by pHash
and PDQ represent the most important features of the image.

Fifth, increasing the length of the hashes is likely to help
better distinguish between different images and reduce the
false positive rate. This might allow the system to increase

what are realistic thresholds and make our attack harder. We
here use hashes of size 64 (and 256 for PDQ [27], see Sec.
5.2). Most perceptual hashing algorithms can be adapted to
provide hashes of different sizes. For instance, pHash, aHash
and dHash can all output hashes of size 256 4. While further
analysis is required, we note here that a) our attack works well
even for large thresholds and b) that longer hashes encode
more information about the image. This raises strong privacy
concerns e.g. reversal attacks [33] and, in the extreme, defeats
the purpose of perceptual hashing.

Implications. Our research shows that current perceptual
hashing (PH) algorithms are not robust to black-box detec-
tion avoidance attacks and that no straightforward mitigations
strategies exist. We believe PH algorithms, which are de-
signed to produce hashes that change gradually as the image
changes, might be inherently vulnerable to attacks. Our re-
sults, combined with the concerns PH-CSS and in particular
cryptographic-enhanced PH-CSS such as Apple’s [4] raise
on the “illegal” content being searched for, led us to believe
that even the best PH-CSS proposals today are not ready for
deployment.

8 Related work

Robustness of perceptual hashing algorithms. Previous
work have shown perceptual hashing algorithms to be robust
to small standard image transformations like resizing, recol-
oring, watermarking, cropping, and blurring [16, 63]. They
evaluate the performances of perceptual hashing algorithms
against modifications in duplicate image detection setup, i.e.
matching against a single image. They however focus on stan-
dard image transformations and do not consider adversaries
with more sophisticated tools at their disposal.

Dolhansky and Ferrer [15] studied collision (false positive)
attacks in perceptual hashing algorithms under white-box
assumptions. More specifically, their algorithm modifies an
image such that its hash is same as the hash of a given tar-
get image. They conclude that perceptual hashing algorithms
should remain secret. In this work, we instead focus on the

4https://github.com/thorn-oss/perception



client-side use case proposed recently by researchers and pol-
icy makers [11, 36] where the attacker has a black-box access
to the algorithm. Furthermore, our attack is a false negative
attack, aiming at finding minimal diverse perturbations such
that distance between the hashes of modified and input image
is greater than a given threshold.

Adversarial attacks against ML models. Adversarial at-
tacks have been widely studied against ML models [46, 49]
under both white-box [9, 20, 30, 54] and black-box assump-
tions [32, 42]. Image classification models have been particu-
larly found to be vulnerable to adversarial attacks [3] leading
the image to be misclassified by the ML model. Our attack
leverages previous work in adversarial ML including Natural
Evolutionary Strategies (NES) (see Sec. 4.2).

Adversarial attacks on ML models in a black-box setting
assume that the attacker has an access to query the model
and get the output. A commonly observed approach is to
train a substitute model to emulate the target model, and then
attack the surrogate model [42, 51]. This approach implicitly
assumes that the surrogate model has enough parameters to
provide a good approximation of the target model. This would
imply that not all substitute models would work for all the
target models and hence the attack might not always work.

Another approach is to iteratively perturb the image and
query the model to update the perturbation in each itera-
tion [21]. These methods often use gradient estimation to
estimate the perturbation update in each iteration. Natu-
ral evolutionary strategies (NES) for gradient estimation is
one of the state-of-the-art methods in black-box adversar-
ial ML [10, 24, 37]. Our black-box attack also uses NES-
based strategy for gradient estimation and perturbation update.
Lastly, we note that generating multiple perturbations for the
same image for diversity in the output space is not a require-
ment in the adversarial ML setup, while it is an important
requirement for adversarial attacks against PH-CSS.

9 Conclusion

In this paper, we introduced the first framework to evaluate the
robustness of perceptual hashing-based client-side scanning
against adversarial attacks. We proposed a general black-box
attack and showed that > 99.9% of images can be success-
fully modified while preserving the image content. We also
show our attack to generate diverse perturbations prevent-
ing straightforward mitigation strategies such as expanding
the database with modified images. We finally propose two
white-box attacks, providing a theoretical basis for attacks.

Taken together, our results shed strong doubt on the robust-
ness to adversarial black-box attacks of perceptual hashing-
based client-side scanning as currently proposed. The detec-
tion thresholds necessary to make the attack harder are likely
to be very large, probably requiring more than one billion
images to be wrongly flagged daily, raising strong privacy
concerns.

Acknowledgements

We thank the Computational Privacy Group and, in particular,
Florimond Houssiau and Ali Farzanehfar for their helpful
feedback and comments on the manuscript. We also would
like to thank the reviewers, chairs, and our shepherd for their
useful feedback and help improving the paper.

References

[1] The internet investigation report march 2020.
https://www.iicsa.org.uk/document/internet-
investigation-report-march-2020, 2020. Ac-
cessed on June 8, 2021.

[2] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine
transform. IEEE TRANSACTIONS ON COMPUTERS,
page 4, 1974.

[3] N. Akhtar and A. Mian. Threat of adversarial attacks on
deep learning in computer vision: A survey. Ieee Access,
6:14410–14430, 2018.

[4] Apple. Expanded protections for children. https://
www.apple.com/child-safety/. Accessed on Sep 18,
2021.

[5] WhatsApp blog. Connecting one billion users ev-
ery day. https://blog.whatsapp.com/connecting-
one-billion-users-every-day, 2017. Accessed on
June 6, 2021.

[6] Whatsapp Blog. Two billion users – connecting
the world privately. https://blog.whatsapp.com/
two-billion-users-connecting-the-world-
privately/, 2020. Accessed on June 6, 2021.

[7] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000.

[8] J. Callas. Thoughts on mitigating abuse in an end-to-end
world. page 16, Jan 2020.

[9] N. Carlini and D. Wagner. Towards evaluating the ro-
bustness of neural networks. In 2017 ieee symposium
on security and privacy (sp), pages 39–57. IEEE, 2017.

[10] M. Cheng, T. Le, P.-Y. Chen, H. Zhang, J. Yi, and C.-J.
Hsieh. Query-efficient hard-label black-box attack: An
optimization-based approach. In International Confer-
ence on Learning Representations, 2018.

[11] European Commission. Technical solutions to detect
child sexual abuse in end-to-end encryption communi-
cations, 2020.

https://www.iicsa.org.uk/document/internet-investigation-report-march-2020
https://www.iicsa.org.uk/document/internet-investigation-report-march-2020
https://www.apple.com/child-safety/
https://www.apple.com/child-safety/
https://blog.whatsapp.com/connecting-one-billion-users-every-day
https://blog.whatsapp.com/connecting-one-billion-users-every-day
https://blog.whatsapp.com/two-billion-users-connecting-the-world-privately/
https://blog.whatsapp.com/two-billion-users-connecting-the-world-privately/
https://blog.whatsapp.com/two-billion-users-connecting-the-world-privately/


[12] B. Coskun and B. Sankur. Robust video hash extraction.
In Proceedings of the IEEE 12th Signal Processing and
Communications Applications Conference, 2004., page
292–295, Apr 2004.

[13] J. Cox, L. Franceschi-Bicchieral, and S. Cole. Apple
defends its anti-child abuse imagery tech after claims of
‘hash collisions’.

[14] A. Davis and G. Rosen. Open-sourcing photo- and
video-matching technology to make the internet safer,
2019. https://about.fb.com/news/2019/08/open-
source-photo-video-matching/.

[15] B. Dolhansky and C. C. Ferrer. Adversarial collision
attacks on image hashing functions. arXiv:2011.09473,
2020.

[16] A. Drmic, M. Silic, G. Delac, K. Vladimir, and A. S.
Kurdija. Evaluating robustness of perceptual image
hashing algorithms. In 2017 40th International Con-
vention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO). IEEE, 2017.

[17] Department for DCMS. Draft online safety bill.
https://www.gov.uk/government/publications/
draft-online-safety-bill. Accessed on Sep 21,
2021.

[18] L. Franceschi-Bicchierai. Former nsa chief:
I ’would not support’ encryption backdoors.
https://www.vice.com/en/article/8qxwda/
former-nsa-chief-strongly-disagrees-with-
current-nsa-chief-on-encryption, 2015.

[19] GIFCT. Gifct transparency report july 2020. https://
gifct.org/wp-content/uploads/2020/10/GIFCT-
Transparency-Report-July-2020-Final.pdf,
2020. Accessed on June 9, 2021.

[20] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations, 2015.

[21] C. Guo, J. Gardner, Y. You, A. G. Wilson, and K. Wein-
berger. Simple black-box adversarial attacks. In In-
ternational Conference on Machine Learning, pages
2484–2493. PMLR, 2019.

[22] H. Gupta and H. Taneja. Whatsapp has a fake news
problem—that can be fixed without breaking encryp-
tion. https://www.cjr.org/tow_center/whatsapp-
doesnt-have-to-break-encryption-to-beat-
fake-news.php, Aug 2018. Accessed on June 6, 2021.

[23] C. R. Harris et al. Array programming with NumPy.
Nature, 585(7825):357–362, September 2020.

[24] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-box
adversarial attacks with limited queries and information.
In International Conference on Machine Learning, page
2137–2146. PMLR, Jul 2018.

[25] J. Johnson, M. Douze, and H. Jégou. Billion-scale simi-
larity search with gpus. arXiv:1702.08734, 2017.

[26] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J.
Kochenderfer. Reluplex: An efficient smt solver for
verifying deep neural networks. In International Con-
ference on Computer Aided Verification. Springer, 2017.

[27] John Kerl. The TMK+PDQF video-hashing al-
gorithim and the PDQ image hashing algorithm.
https://github.com/facebook/ThreatExchange/
blob/master/hashing/hashing.pdf, 2020. Ac-
cessed on June 7, 2021.

[28] A. Khosla, N. Jayadevaprakash, B. Yao, and F. Li. Novel
dataset for fine-grained image categorization. In First
Workshop on Fine-Grained Visual Categorization, IEEE
Conference on Computer Vision and Pattern Recogni-
tion, Colorado Springs, CO, June 2011.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks.
In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, editors, Advances in neural information process-
ing systems, 2012.

[30] A. Kurakin, I. Goodfellow, S. Bengio, et al. Adversarial
examples in the physical world, 2016.

[31] I. Levy and C. Robinson. Principles for
a more informed exceptional access debate.
https://www.lawfareblog.com/principles-
more-informed-exceptional-access-debate,
2018.

[32] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into
transferable adversarial examples and black-box attacks.
arXiv:1611.02770, 2016.

[33] Nick Locascio. Black-box attacks on per-
ceptual image hashes with gans. https:
//towardsdatascience.com/black-box-attacks-
on-perceptual-image-hashes-with-gans-
cc1be11f277, 2018. Accessed on June 9, 2021.

[34] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to ad-
versarial attacks. In International Conference on Learn-
ing Representations, 2018.

[35] Jonathan Mayer. Content moderation for end-to-end
encrypted messaging. Princeton University, 2019.

https://about.fb.com/news/2019/08/open-source-photo-video-matching/
https://about.fb.com/news/2019/08/open-source-photo-video-matching/
https://www.gov.uk/government/publications/draft-online-safety-bill
https://www.gov.uk/government/publications/draft-online-safety-bill
https://www.vice.com/en/article/8qxwda/former-nsa-chief-strongly-disagrees-with-current-nsa-chief-on-encryption
https://www.vice.com/en/article/8qxwda/former-nsa-chief-strongly-disagrees-with-current-nsa-chief-on-encryption
https://www.vice.com/en/article/8qxwda/former-nsa-chief-strongly-disagrees-with-current-nsa-chief-on-encryption
https://gifct.org/wp-content/uploads/2020/10/GIFCT-Transparency-Report-July-2020-Final.pdf
https://gifct.org/wp-content/uploads/2020/10/GIFCT-Transparency-Report-July-2020-Final.pdf
https://gifct.org/wp-content/uploads/2020/10/GIFCT-Transparency-Report-July-2020-Final.pdf
https://www.cjr.org/tow_center/whatsapp-doesnt-have-to-break-encryption-to-beat-fake-news.php
https://www.cjr.org/tow_center/whatsapp-doesnt-have-to-break-encryption-to-beat-fake-news.php
https://www.cjr.org/tow_center/whatsapp-doesnt-have-to-break-encryption-to-beat-fake-news.php
https://github.com/facebook/ThreatExchange/blob/master/hashing/hashing.pdf
https://github.com/facebook/ThreatExchange/blob/master/hashing/hashing.pdf
https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate
https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate
https://towardsdatascience.com/black-box-attacks-on-perceptual-image-hashes-with-gans-cc1be11f277
https://towardsdatascience.com/black-box-attacks-on-perceptual-image-hashes-with-gans-cc1be11f277
https://towardsdatascience.com/black-box-attacks-on-perceptual-image-hashes-with-gans-cc1be11f277
https://towardsdatascience.com/black-box-attacks-on-perceptual-image-hashes-with-gans-cc1be11f277


[36] P. Melo, J. Messias, G. Resende, K. Garimella,
J. Almeida, and F. Benevenuto. Whatsapp monitor: A
fact-checking system for whatsapp. Proceedings of the
International AAAI Conference on Web and Social Me-
dia, 13:676–677, Jul 2019.

[37] L. Meunier, J. Atif, and O. Teytaud. Yet another but
more efficient black-box adversarial attack: tiling and
evolution strategies. arXiv:1910.02244, 2019.

[38] M. K. Mıhçak and R. Venkatesan. New iterative geo-
metric methods for robust perceptual image hashing. In
ACM Workshop on Digital Rights Management, pages
13–21. Springer, 2001.

[39] NCMEC. Ncmec’s statement regarding end-to-end
encryption. https://www.missingkids.org/blog/
2019/post-update/end-to-end-encryption, Mar
2019. Accessed on June 6, 2021.

[40] Y. Nesterov and V. Spokoiny. Random gradient-free
minimization of convex functions. Foundations of Com-
putational Mathematics, 17(2):527–566, 2017.

[41] Home Office. Interim code of practice on online child
sexual exploitation and abuse (accessible version).
https://www.gov.uk/government/publications/
online-harms-interim-codes-of-practice/
interim-code-of-practice-on-online-child-
sexual-exploitation-and-abuse-accessible-
version, Dec 2020. Accessed on June 6, 2021.

[42] N. Papernot et al. Practical black-box attacks against
machine learning. In Proceedings of the 2017 ACM
on Asia conference on computer and communications
security, pages 506–519, 2017.

[43] P. Patel, W. Barr, P. Dutton, A. Little, B. Blair, India, and
Japan. Internation statement: End-to-end encryption
and public safety. https://www.gov.uk/government/
publications/international-statement-end-
to-end-encryption-and-public-safety, Oct
2020. Accessed on June 6, 2021.

[44] Python Core Team. Python: A dynamic, open source
programming language. https://www.python.org/,
2021.

[45] J. C. S. Reis, P. Melo, K. Garimella, and F. Benevenuto.
Can whatsapp benefit from debunked fact-checked sto-
ries to reduce misinformation? Harvard Kennedy School
Misinformation Review, 2020.

[46] K. Ren, T. Zheng, Z. Qin, and X. Liu. Adversarial
attacks and defenses in deep learning. Engineering,
6(3):346–360, 2020.

[47] O. Russakovsky et al. Imagenet large scale visual recog-
nition challenge. International journal of computer
vision, 115(3):211–252, 2015.

[48] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever.
Evolution strategies as a scalable alternative to reinforce-
ment learning. arXiv:1703.03864, 2017.

[49] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter.
Accessorize to a crime: Real and stealthy attacks on
state-of-the-art face recognition. In Proceedings of the
2016 acm sigsac conference on computer and communi-
cations security, pages 1528–1540, 2016.

[50] X. Shen, S. Diamond, Y. Gu, and S. Boyd. Disciplined
convex-concave programming. In 2016 IEEE 55th Con-
ference on Decision and Control (CDC), pages 1009–
1014. IEEE, 2016.

[51] Y. Shi, S. Wang, and Y. Han. Curls & whey: Boosting
black-box adversarial attacks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6519–6527, 2019.

[52] M. Singh. Whatsapp is now delivering
roughly 100 billion messages a day. https:
//social.techcrunch.com/2020/10/29/whatsapp-
is-now-delivering-roughly-100-billion-
messages-a-day/, Oct 2020. Accessed on June 6,
2021.

[53] M. Singh. Signal’s brian acton talks about ex-
ploding growth, monetization and whatsapp data-
sharing outrage. https://social.techcrunch.com/
2021/01/12/signal-brian-acton-talks-about-
exploding-growth-monetization-and-whatsapp-
data-sharing-outrage/, Jan 2021. Accessed on
June 6, 2021.

[54] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus. Intriguing properties
of neural networks. arXiv:1312.6199, 2013.

[55] Thorn. Benchmarking. https://
perception.thorn.engineering/en/latest/
examples/benchmarking.html. Accessed on June 6,
2021.

[56] Thorn. Testing different image hash functions.
https://content-blockchain.org/research/
testing-different-image-hash-functions/.
Accessed on June 8, 2021.

[57] P. Virtanen et al. SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods,
17:261–272, 2020.

https://www.missingkids.org/blog/2019/post-update/end-to-end-encryption
https://www.missingkids.org/blog/2019/post-update/end-to-end-encryption
https://www.gov.uk/government/publications/online-harms-interim-codes-of-practice/interim-code-of-practice-on-online-child-sexual-exploitation-and-abuse-accessible-version
https://www.gov.uk/government/publications/online-harms-interim-codes-of-practice/interim-code-of-practice-on-online-child-sexual-exploitation-and-abuse-accessible-version
https://www.gov.uk/government/publications/online-harms-interim-codes-of-practice/interim-code-of-practice-on-online-child-sexual-exploitation-and-abuse-accessible-version
https://www.gov.uk/government/publications/online-harms-interim-codes-of-practice/interim-code-of-practice-on-online-child-sexual-exploitation-and-abuse-accessible-version
https://www.gov.uk/government/publications/online-harms-interim-codes-of-practice/interim-code-of-practice-on-online-child-sexual-exploitation-and-abuse-accessible-version
https://www.gov.uk/government/publications/international-statement-end-to-end-encryption-and-public-safety
https://www.gov.uk/government/publications/international-statement-end-to-end-encryption-and-public-safety
https://www.gov.uk/government/publications/international-statement-end-to-end-encryption-and-public-safety
https://www.python.org/
https://social.techcrunch.com/2020/10/29/whatsapp-is-now-delivering-roughly-100-billion-messages-a-day/
https://social.techcrunch.com/2020/10/29/whatsapp-is-now-delivering-roughly-100-billion-messages-a-day/
https://social.techcrunch.com/2020/10/29/whatsapp-is-now-delivering-roughly-100-billion-messages-a-day/
https://social.techcrunch.com/2020/10/29/whatsapp-is-now-delivering-roughly-100-billion-messages-a-day/
https://social.techcrunch.com/2021/01/12/signal-brian-acton-talks-about-exploding-growth-monetization-and-whatsapp-data-sharing-outrage/
https://social.techcrunch.com/2021/01/12/signal-brian-acton-talks-about-exploding-growth-monetization-and-whatsapp-data-sharing-outrage/
https://social.techcrunch.com/2021/01/12/signal-brian-acton-talks-about-exploding-growth-monetization-and-whatsapp-data-sharing-outrage/
https://social.techcrunch.com/2021/01/12/signal-brian-acton-talks-about-exploding-growth-monetization-and-whatsapp-data-sharing-outrage/
https://perception.thorn.engineering/en/latest/examples/benchmarking.html
https://perception.thorn.engineering/en/latest/examples/benchmarking.html
https://perception.thorn.engineering/en/latest/examples/benchmarking.html
https://content-blockchain.org/research/testing-different-image-hash-functions/
https://content-blockchain.org/research/testing-different-image-hash-functions/


[58] G. K. Wallace. The jpeg still picture compression stan-
dard. IEEE Transactions on Consumer Electronics,
38(1):xviii–xxxiv, Feb 1992.

[59] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters,
and J. Schmidhuber. Natural evolution strategies. The
Journal of Machine Learning Research, 15(1):949–980,
Jan 2014.

[60] Q. Xiao, Y. Chen, C. Shen, Y. Chen, and K. Li. See-
ing is not believing: Camouflage attacks on image scal-
ing algorithms. In 28th USENIX Security Symposium
(USENIX Security 19), pages 443–460, 2019.

[61] K. Yang, J. Yau, L. Fei-Fei, J. Deng, and O. Rus-
sakovsky. A study of face obfuscation in imagenet.
arXiv:2103.06191, 2021.

[62] C. Zauner. Implementation and benchmarking of percep-
tual image hash functions. Master’s thesis, 2010. https:
//www.phash.org/docs/pubs/thesis_zauner.pdf.

[63] C. Zauner, M. Steinebach, and E. Hermann. Rihamark:
perceptual image hash benchmarking. In Media wa-
termarking, security, and forensics III, volume 7880.
International Society for Optics and Photonics, 2011.

[64] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and
O. Wang. The unreasonable effectiveness of deep fea-
tures as a perceptual metric. In CVPR, 2018.

A Proofs for the DCT analysis

Proposition 1. AAT = Ic2 , where A is defined as follows:

A ∈ Rc2×k2

Ac1×c+c2,k1×k+k2 = M′1+c1,1+k1
×M′1+c2,1+k2

for 0≤ c1,c2 ≤ c−1,0≤ k1,k2 ≤ k−1

Proof. Let c = c1× c+ c2 and c′ = c′1× c+ c′2. We develop
(AAT )c,c′ as follows:

(AAT )c,c′ =
k−1

∑
k1=0

k−1

∑
k2=0

Ac1×c+c2,k1×k+k2 ×Ac′1×c+c′2,k1×k+k2

=
k−1

∑
k1=0

k−1

∑
k2=0

M′1+c1,1+k1
×M′1+c2,1+k2

×M′1+c′1,1+k1
×

×M′1+c′2,1+k2

= (
k−1

∑
k1=0

M′1+c1,1+k1
×M′1+c′1,1+k1

)×

× (
k−1

∑
k2=0

M′1+c2,1+k2
×M′1+c′2,1+k2

)

= (M′M′T )1+c1,1+c2 × (M′M′T )1+c′1,1+c′2

Because M′M′T = Ic, it follows that (A AT )c,c′ = 1 if c = c′

and 0 otherwise. Indeed, c = c′ if and only if c1 = c′1 and
c2 = c′2, meaning that the terms being multiplied in the last
equality can both be non-zero only when c = c′, in which case
they are both equal to 1.

Proposition 2. The eigenvalues of AT A are 1 with multiplicity
c2 and 0 with multiplicity k2− c2.

Proof. Let λ be an eigenvalue of AT A and x 6= 0 such that
AT Ax = λx. We multiply by A to the left and obtain λAx =
A(AT Ax) = (AAT )Ax = Ax. We distinguish two cases: (1)
Ax = 0, which implies that λ = 0 and (2) Ax 6= 0, which im-
plies that λ = 1.

Therefore the eigenvalues of AAT can only be 0 or 1.
We denote by m(λ) the multiplicity of eigenvalue λ.
It follows from the above analysis that dim(Ker(A)) ≤

m(0) and that rank(A) ≤ m(1). By summation we obtain
k2 ≤ m(0)+m(1) = k2, therefore m(1) = rank(A).

We show that the rank of A is c2. Indeed rank(A) ≤
min(c2,k2) = c2. If it were the case that rank(A) < c2, then
there would be x ∈ Rc2

such that xT A = 0 but x 6= 0. Since
AAT = Ic2 , by multiplying with AT on the right we obtain
xT = 0, a contradiction.

We thus conclude that m(1) = c2 and m(0) = k2− c2.

B Visual similarity

Fig. 9 shows the perceptual similarity between the original
and modified images as quantified by the Learned Percep-
tual Image Patch Similarity distance [64] evaluated using
AlexNet [29].

C Prevalence rate

Table 3 shows the number of wrongly detected images for
different perceptual hashing algorithms and threshold, for a
prevalence rate of 10−7 for illegal content among 4.5B images
shared daily. The results are comparable in order of magnitude
to those of Table 2 in the main paper.

D Impact of diversity on visual similarity of
perturbed images

Fig 10 shows that our modifications to black-box algorithm
leads to more diverse perturbations, but it also leads to rel-
atively higher L2 perturbation per pixel compared to black-
box algorithm without modifications. However we also ob-
serve that even for the highest thresholds, 99.9% of diverse
perturbed images generated for dHash (respectively 100.0%,
80.4%, 91.8% and 65.2% for pHash continuous, pHash, aHash
and PDQ) of perturbed images are within the L2 perturbation
per pixel of 0.13.

https://www.phash.org/docs/pubs/thesis_zauner.pdf
https://www.phash.org/docs/pubs/thesis_zauner.pdf


0.0 0.1 0.2 0.3 0.4
LPIPS distance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

pHash continuous

T= 0.05
T= 0.6
T= 1.1
T= 1.6

0.0 0.1 0.2 0.3 0.4
LPIPS distance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 pHash

T= 2
T= 6
T= 10
T= 14

0.0 0.1 0.2 0.3 0.4
LPIPS distance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 aHash

T= 1
T= 3
T= 5
T= 7

0.0 0.1 0.2 0.3 0.4
LPIPS distance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 dHash

T= 1
T= 4
T= 9
T= 12

0.0 0.1 0.2 0.3 0.4
LPIPS distance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 PDQ

T= 30
T= 70
T= 85
T= 90

Figure 9: Cumulative distribution function (CDF) for the LPIPS distance between the original and the perturbed image for
different algorithms and thresholds T , and all successfully attacked images over 10 experiments. A smaller distance indicates
higher visual similarity between the modified and original images. The distances increase slowly with the threshold but remain
small in all cases.

0.0 0.1 0.2 0.3
L2 perturbation per pixel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

pHash continuous

T= 0.05
T= 0.6
T= 1.1
T= 1.6

0.0 0.1 0.2 0.3
L2 perturbation per pixel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 pHash

T= 2
T= 6
T= 10
T= 14

0.0 0.1 0.2 0.3
L2 perturbation per pixel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 aHash

T= 1
T= 3
T= 5
T= 7

0.0 0.1 0.2 0.3
L2 perturbation per pixel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 dHash

T= 1
T= 4
T= 9
T= 12

0.0 0.1 0.2 0.3
L2 perturbation per pixel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 PDQ

T= 30
T= 70
T= 85
T= 90

Figure 10: Pairwise distances between hashes of the multiple perturbations generated for the same image. The number of
perturbations generated for each image is D = 50 and the number of images attacked is N′ = 100.

Hash Rough estimate of the number of wrong-
ly detected images daily / Threshold T

pHash con- ∼ 5M ∼ 23M ∼ 184M ∼ 665M
tinuous T = 0.05 T = 0.6 T = 1.1 T = 1.6

pHash ∼ 5M ∼ 7M ∼ 108M ∼ 3.3B
T = 0.2 T = 6 T = 10 T = 14

aHash ∼ 44M ∼ 179M ∼ 498M ∼ 1.1B
T = 1 T = 3 T = 5 T = 7

dHash ∼ 5M ∼ 8M ∼ 112M ∼ 798M
T = 1 T = 4 T = 9 T = 12

PDQ ∼ 5M ∼ 7M ∼ 135M ∼ 1.6B
T = 30 T = 70 T = 85 T = 90

Table 3: Rough estimate of the number of images that would
be wrongly detected daily on WhatsApp alone for different
perceptual hashing algorithms and thresholds. We here con-
sider a database size of N = 100k, 4.5B images being shared
daily [5], and a prevalence rate of illegal content of 10−7.

E Probability to flag k images

We consider a simple model with two types of users each
sending N images independently from one another. The first
type, which we call non-offender, sends only non-illegal im-
ages. The second type, which we call offender, sends l illegal

images that are adversarially modified using our attack and
N− l non-illegal images. The probability for the detection
system to flag an image is FPR for non-illegal images and
1−FNR for illegal images adversarially modified using our
attack.

Under this model, the number of images flagged for a non-
offender follows a binomial distribution N1 ∼ Bin(N,FPR).
Similarly, the number of images flagged for an offender can
be written as the sum of two binomial random variables N2 ∼
Bin(l,1−FNR)+Bin(N− l,FPR). The two follow the same
distribution if 1−FNR = FPR, i.e., if the adversarial images
are indistinguishable from natural images to the detection
system.

This allows us to compute, for each type of user, the proba-
bility that 0≤ k ≤ N of their images are flagged:

P(N1 = k) =
(

N
k

)
FPRk(1−FPR)N−k

P(N2 = k) =
min(l,k)

∑
i=0

(
l
i

)
(1−FNR)iFNRl−i×(

N− l
k− i

)
FPRk−i(1−FPR)N−l−k+i


	Introduction
	Perceptual hashing-based client-side scanning
	Attack model
	Detection avoidance attack
	Attacker access to the perceptual hashing algorithm

	Attack methodology
	Notation
	Black-box attack
	White-box attacks for DCT-based hashes

	Experimental setup
	Perceptual hashing algorithms
	Attack parameters

	Results
	Discussion
	Related work
	Conclusion
	Proofs for the DCT analysis
	Visual similarity
	Prevalence rate
	Impact of diversity on visual similarity of perturbed images
	Probability to flag k images

