
Cryptographic Administration for Secure Group Messaging

David Balbás∗†, Daniel Collins‡, Serge Vaudenay‡

∗IMDEA Software Institute, Madrid, Spain
†Universidad Politécnica de Madrid, Spain
‡EPFL, Lausanne, Switzerland
9th August 2023

USENIX Security ’23, Anaheim, CA

1

2

2

2

Why Administration?

Insecure group membership is a common design flaw in messaging.

Servers, and sometimes even users, may mount attacks on group management.

• Burgle into the group [RMS18]

• Censorship [BCG23]

• ...

How meaningful is security if users can’t trust/control group membership?

Can we build an efficient solution for users to administrate groups securely?

3

Why Administration?

Insecure group membership is a common design flaw in messaging.

Servers, and sometimes even users, may mount attacks on group management.

• Burgle into the group [RMS18]

• Censorship [BCG23]

• ...

How meaningful is security if users can’t trust/control group membership?

Can we build an efficient solution for users to administrate groups securely?

3

Why Administration?

Insecure group membership is a common design flaw in messaging.

Servers, and sometimes even users, may mount attacks on group management.

• Burgle into the group [RMS18]

• Censorship [BCG23]

• ...

How meaningful is security if users can’t trust/control group membership?

Can we build an efficient solution for users to administrate groups securely?

3

This Work

• New formalism for groups with cryptographic administrators.

• Correctness and security notions matching modern messaging standards (forward
security, post-compromise security).

• Two modular, provably-secure constructions, IAS and DGS.
• Efficient integration with MLS, admin extensions.

4

This Work

• New formalism for groups with cryptographic administrators.
• Correctness and security notions matching modern messaging standards (forward

security, post-compromise security).

• Two modular, provably-secure constructions, IAS and DGS.
• Efficient integration with MLS, admin extensions.

4

This Work

• New formalism for groups with cryptographic administrators.
• Correctness and security notions matching modern messaging standards (forward

security, post-compromise security).
• Two modular, provably-secure constructions, IAS and DGS.

• Efficient integration with MLS, admin extensions.

4

This Work

• New formalism for groups with cryptographic administrators.
• Correctness and security notions matching modern messaging standards (forward

security, post-compromise security).
• Two modular, provably-secure constructions, IAS and DGS.
• Efficient integration with MLS, admin extensions.

4

Group Messaging

Security of Group Messaging

• Forward security (FS): past messages safe after compromise.
• Post-compromise security (PCS): self-healing via key updates.

• Security game: A controls network, can expose users [ACDT20, KPWK+21].
• Group dynamics: cryptographic adds and removes from group G .
• Administration: only admins G∗ ⊆ G can make group changes.

5

Security of Group Messaging

• Forward security (FS): past messages safe after compromise.
• Post-compromise security (PCS): self-healing via key updates.

• Security game: A controls network, can expose users [ACDT20, KPWK+21].
• Group dynamics: cryptographic adds and removes from group G .

• Administration: only admins G∗ ⊆ G can make group changes.

5

Security of Group Messaging

• Forward security (FS): past messages safe after compromise.
• Post-compromise security (PCS): self-healing via key updates.

• Security game: A controls network, can expose users [ACDT20, KPWK+21].
• Group dynamics: cryptographic adds and removes from group G .
• Administration: only admins G∗ ⊆ G can make group changes.

5

Key Agreement: (A-)CGKA

Popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20]. Basis of
MLS.

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

• Later, ID′ commits several proposals.

CGKA (simpl.):

• Init(1λ, ID)
• Create(G) → T
• Prop(ID, type) → P
• Commit(P⃗) → T
• Proc(T) → I ′

6

Key Agreement: (A-)CGKA

Popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20]. Basis of
MLS.

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

• Later, ID′ commits several proposals.

CGKA (simpl.):

• Init(1λ, ID)
• Create(G) → T
• Prop(ID, type) → P
• Commit(P⃗) → T
• Proc(T) → I ′

6

Key Agreement: (A-)CGKA

Popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20]. Basis of
MLS.

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

• Later, ID′ commits several proposals.

CGKA (simpl.):

• Init(1λ, ID)
• Create(G) → T
• Prop(ID, type) → P
• Commit(P⃗) → T
• Proc(T) → I ′

6

Key Agreement: (A-)CGKA

Popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20]. Basis of
MLS.

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

• Later, ID′ commits several proposals.

CGKA (simpl.):

• Init(1λ, ID)
• Create(G) → T
• Prop(ID, type) → P
• Commit(P⃗) → T
• Proc(T) → I ′

6

Key Agreement: (A-)CGKA

Popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20]. Basis of
MLS.

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

• Later, ID′ commits several proposals.

CGKA (simpl.):

• Init(1λ, ID)
• Create(G) → T
• Prop(ID, type) → P
• Commit(P⃗) → T
• Proc(T) → I ′

6

CGKA: Create

• ID1 creates a group G = {ID1, ID2, ID3, ID4}.

7

CGKA: Proposals

• ID2 and ID3 propose changes.

8

CGKA: Commit

• ID2 commits both proposals.

9

CGKA: Process Changes

• The group evolves and I ′ is refreshed.

10

Key Agreement: (A-)CGKA

Administrated Continuous Group Key Agreement (A-CGKA).

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].
A-CGKA includes new proposal types:
add/remove/update admin.

• Later, ID′ commits several proposals.

A-CGKA (simpl.):

• Init(1λ, ID)
• Create(G , G∗) → T
• Prop(ID, type) → P
• Commit(P⃗, com-type) → T
• Proc(T) → I ′

Administration security: Non-admins cannot commit (except updates and
self-removes).

11

Protocols for Secure Administration

We introduce IAS (Individual Admin Signatures) and DGS (Dynamic Group Signature).

• Modular.
• Authenticate administrators (with different efficiency trade-offs).
• Allow for admin key refresh for PCS and FS.

12

Individual Admin Signatures (IAS)

• We construct A-CGKA on top of any CGKA.
• Based on signatures. 13

IAS

• Admins have individual signature key pairs (ssk, spk).
• Users keep an admin list L. 14

IAS: Add Participant

• Admin signs commit T with ssk1 −→ σT .
• Users verify σT with spk1 from L. 15

Practical Administration for MLS

We also integrate an IAS-based solution into MLS:

• Updates for MLS’ key credentials.
• Extended proposal types.
• Minimal overhead (from benchmarking):

• Less than 20% when |G | /8 members update simultaneously.
• Additional communication < 3% for |G | = 128 members.

16

Practical Administration for MLS

We also integrate an IAS-based solution into MLS:

• Updates for MLS’ key credentials.
• Extended proposal types.

• Minimal overhead (from benchmarking):
• Less than 20% when |G | /8 members update simultaneously.
• Additional communication < 3% for |G | = 128 members.

16

Practical Administration for MLS

We also integrate an IAS-based solution into MLS:

• Updates for MLS’ key credentials.
• Extended proposal types.
• Minimal overhead (from benchmarking):

• Less than 20% when |G | /8 members update simultaneously.
• Additional communication < 3% for |G | = 128 members.

16

Conclusions

• Securing membership is essential in
group messaging security.

• Cryptographic administration can be
implemented with small overhead.

• Modular solutions readily compatible
with CGKAs and MLS.

Open Problems:
• Prevent insider attacks efficiently.
• Advanced admin functionalities.
• Admins beyond CGKA.

Thank you!
ia.cr/2022/1411

david.balbas@imdea.org
daniel.collins@epfl.ch

Join us at the poster session to
find out about Sender Keys security!

17

ia.cr/2022/1411
david.balbas@imdea.org
daniel.collins@epfl.ch

Conclusions

• Securing membership is essential in
group messaging security.

• Cryptographic administration can be
implemented with small overhead.

• Modular solutions readily compatible
with CGKAs and MLS.

Open Problems:
• Prevent insider attacks efficiently.
• Advanced admin functionalities.
• Admins beyond CGKA.

Thank you!
ia.cr/2022/1411

david.balbas@imdea.org
daniel.collins@epfl.ch

Join us at the poster session to
find out about Sender Keys security!

17

ia.cr/2022/1411
david.balbas@imdea.org
daniel.collins@epfl.ch

Conclusions

• Securing membership is essential in
group messaging security.

• Cryptographic administration can be
implemented with small overhead.

• Modular solutions readily compatible
with CGKAs and MLS.

Open Problems:
• Prevent insider attacks efficiently.
• Advanced admin functionalities.
• Admins beyond CGKA.

Thank you!
ia.cr/2022/1411

david.balbas@imdea.org
daniel.collins@epfl.ch

Join us at the poster session to
find out about Sender Keys security!

17

ia.cr/2022/1411
david.balbas@imdea.org
daniel.collins@epfl.ch

	Group Messaging

