

MobileAtlas

Geographically Decoupled Measurements in Cellular Networks for Security and Privacy Research

Lack of large-scale cellular measurement platforms

- Lack of large-scale cellular measurement platforms
- Cellular networks differ in terms of measurement requirements
 - (Fixed-line) Internet measurements: RIPE Atlas

- Lack of large-scale cellular measurement platforms
- Cellular networks differ in terms of measurement requirements
 - (Fixed-line) Internet measurements: RIPE Atlas
- Mobile networks are complex
 - (Legacy) protocols: E.g., 2G, 3G, OTA updates, SMS, delivery reports, etc.
 - · Complexity vs. security

Cellular Measurement Approaches

- Crowd-based measurements
 - Smartphone App (e.g., Wehe)
 - Pros.: Low economic effort, easy to increase coverage
 - · Cons.: Too little control/insights, background activity, user liable for roaming charges

Cellular Measurement Approaches

- Crowd-based measurements
 - Smartphone App (e.g., Wehe)
 - Pros.: Low economic effort, easy to increase coverage
 - Cons.: Too little control/insights, background activity, user liable for roaming charges
- Dedicated test units
 - Deployed and fully controlled by the test operator (e.g., MONROE)
 - · Pros.: More control/insights, accurate measurement results
 - · Cons.: High setup costs, limited scaling, cumbersome maintenance of test units

Platform Requirements

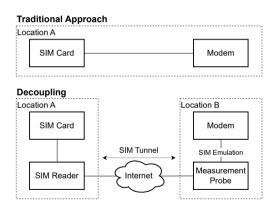
- Scalable, cost-efficient
- Flexible roaming measurements
- Controlled measurement environment
- Versatile measurement capabilities, low-level insights
 - Internet measurements
 - Calling, SMS
 - Billing, APDU analysis

MobileAtlas Measurement Platform

- SIM card limits scaling
 - For each operator one SIM card per test unit is needed
 - Physical remote SIM card switching is cumbersome

MobileAtlas Measurement Platform

- SIM card limits scaling
 - For each operator one SIM card per test unit is needed
 - Physical remote SIM card switching is cumbersome
- Our approach
 - Geographically detach the SIM card from the modem
 - Tunneling the SIM card's protocol over the Internet



Traditional Approach vs. SIM Tunnel

Traditional Approach vs. Decoupling

- Simple example:
 - Two countries, four SIM cards
 - Traditional: 2 x 4 = 8 SIMs
 - Decoupled: 4 SIMs
- Problem:
 - Increases rapidly
 - E.g., 10 countries => 40 SIMs

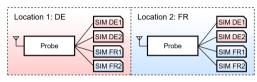
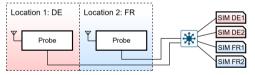
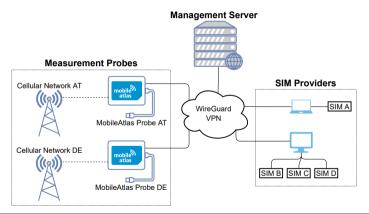
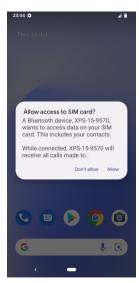


Figure 2: Traditional approach with poor scalability: Every new location needs a new set of all SIMs and mobile plans.




Figure 3: Decoupling the station from the SIM via tunneling requires only one set of SIMs.

MobileAtlas Measurement Platform: Components

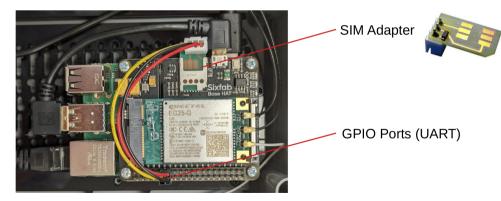


MobileAtlas Components: SIM Provider

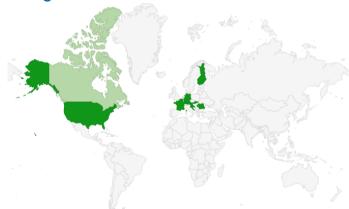
- SIM provider allows remote sharing of SIM cards
 - Measurement probes can use the shared cards at remote locations
- Various SIM reader types supported
 - PC/SC reader,
 - Serial based SIM card reader,
 - Bluetooth rSAP
 - eSIM support

MobileAtlas Components: Measurement Probe

- Main components (revision 2)
 - Raspberry Pi 4
 - Modem adapter (mPCle -> USB)
 - Quectel EG25G (same as PinePhone)
- SIM tunneling
 - SIM pins of modem are connected to Raspberry GPIOs
 - UART is used to emulate the SIM
- Ca. \$200 hardware cost (+ \$100 case)



MobileAtlas Components: Measurement Probe

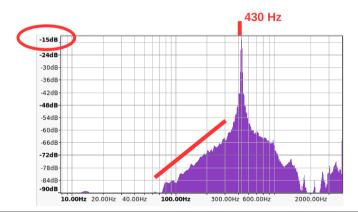


Showcase Measurements (Selection)

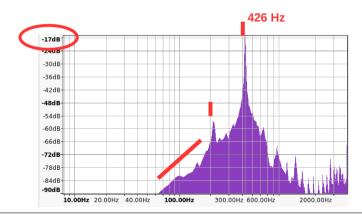
Platform Coverage and used SIMs

- We obtained SIMs from the major operators of five European countries
 - o Austria, Croatia, Romania, Slovakia, Slovenia
 - Total: 14 SIM cards
 - Measured at all available countries and operators

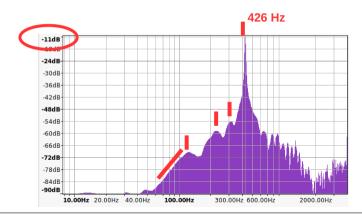
Showcase: Ringback Tone Fingerprinting


- Ringback tone is issued by the operator that is terminating the call
 - I.e., the roaming partner
- Different ringback tones in different countries
 - This can be abused to deduce the (country-level) location of the called person
 - Obvious differences between continents (e.g., US and EU), noticeable differences on country or operator levels
 - Can be used to identify the current operator
 - Potential abuse for SIM swapping attacks (within home country)

Ringback Tone Comparison: 1) RO Vodafone



Ringback Tone Comparison: 2) DE Telekom



Ringback Tone Comparison: 3) DE O2

Showcase: Ringback Tone Fingerprinting

- Amplitude
- Base frequency
- Overtones
- Duty cycle (on/off timing)

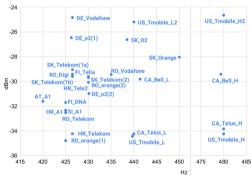
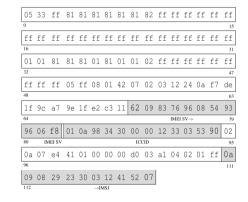


Figure 6: Fingerprinting ringback tones (without VoLTE).



Showcase: APDU Analysis

- SIM card is an often underestimated microprocessor
 - Can run JAVA cardlets
 - Proactive SIM commands: send SMS, display text, etc.
- We have full insight into APDU traffic between modem and SIM card
- We found two SIM cards that covertly send binary SMS messages to the operator
 - SMS sometimes is billed during roaming

Other Showcases: Internet Measurements

- Network- and Firewall Configuration
 - Home routing, local breakout, CGNAT
- Billing mechanisms in domestic and roaming environments
 - · Identify metrics that are used for zero-rating
 - Some metrics (e.g., host/SNI header) can be used for free-riding
- More detailed zero-rating analysis can be found in separate paper:
 Zero-Rating, One Big Mess: Analyzing Differential Pricing Practices of European MNOs

Questions?

- Contact us
 - Mail: gabriel.gegenhuber@univie.ac.at, adrian.dabrowski@cispa.de
 - Twitter: @GGegenhuber, @atrox_at

mobileatlas.eu

github.com/sbaresearch/mobile-atlas

Ethical Considerations

- Legal
 - Radio regulatory
 - SIM registration
- Operator
 - Live network influence
 - Economic losses (free-riding tests)
- Probe hoster security

Ongoing Challenges and Future Steps

- Extending coverage
 - Finding probe locations (e.g., at other Universities)
- Extending codebase
 - · Automatic measurement scheduling
 - Allowing other researchers to easily use our platform
- 5G probe version
- · Probe maintenance
- Doing actual measurements :)