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➢USB driver coverage of syzbot (as of July 2023)

Low Code Coverage of USB Device Drivers

Vendor Driver source code
Total basic block of 

code
Fuzzing

code coverage (%)

Qualcomm drivers/net/wireless/ath 5436 1%

Broadcom
drivers/net/wireless/broadcom 27881 2%

drivers/bluetooth/btbcm.c 212 0%

Mediatek drivers/net/wireless/mediatek 2190 0%

Ralink drivers/net/wireless/ralink 4034 0%

Realtek drivers/net/wireless/realtek 30250 1%

CSR drivers/bluetooth/btusb.c 980 11%

NXP drivers/nfc/pn533 664 11%
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Statefulness of USB Device Drivers

<Broadcom’s Driver State Transition>
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Statefulness of USB Device Drivers
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Deep stateA long sequence of specific inputs are required.
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Our Approach: Combining Record-and-Replay with 
Fuzzing

Replay + FuzzingRecord
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Limitations of Coverage-Guided Evolutionary Fuzzing
State-of-the-art evolves the corpus towards smaller inputs based on coverage:

• Syzkaller’sfuzzing algorithm

• USBFuzz (uses AFL)’s fuzzing algorithm
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Limitations of Coverage-Guided Evolutionary Fuzzing
State-of-the-art evolves the corpus towards smaller inputs based on coverage:

• Syzkaller’sfuzzing algorithm

• USBFuzz (uses AFL)’s fuzzing algorithm
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Limitations of Coverage-Guided Evolutionary Fuzzing
State-of-the-art evolves the corpus towards smaller inputs based on coverage:

• Syzkaller’sfuzzing algorithm

• USBFuzz (uses AFL)’s fuzzing algorithm
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Our first goal: Accurately reproducing recorded executions
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2.Lengthy inputs (exceeding thousands) and long execution time (5~20 seconds)
make fuzzing extremely slow
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2.Lengthy inputs (exceeding thousands) and long execution time (5~20 seconds)
make fuzzing extremely slow
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Limitations of Coverage-Guided Evolutionary Fuzzing

System call

Our second goal: Efficient fuzzing for deep bugs in drivers
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Challenges of Accurate Replay:
Sensitive to Timing of Input Injection

1. Concurrency
System calls trigger the
generation of USB message 
requests by the driver
(e.g., blocking I/O)

USB response timeout error

2. Delay
Driver requires a certain delay
to generate USB messages.
( e.g., delay queue … )

respond to USB messages 
without the corresponding 
USB request

Driver execution flow

System
calls

1

2

USB 
messages
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Challenges of Accurate Replay:
Unordered Concurrent USB Requests

Driver execution flow

Record

USB messages
are generated in

multiple contexts

If USB request  and response
are not matched 

Different order!
(Nondeterminism)

Replay

Driver execution flow

Driver may execute differently from the recording, resulting in errors

USB device

Kernel
Threads

Kernel
Threads

USB device
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T2->syz_usb_control_io(…) +12us

T1->sendmsg(…) +17us &

ReUSB Design: Recording (Phase 1)

Trace program

Compile

Recording

USB  device driver

User-Mode
Kernel-Mode

System calls
• Thread ID
• Arguments

Return
• Timestamps

USB messages
• Kernel thread ID

Workqueue ID
• Payload
• TimestampsUSB Device

Program

Execution context

Timing and concurrency information

The USB message is
executed as a syscall in 
replayer
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Schedule with
1. Time-, concurrency-aware dispatch
2. Context-aware dynamic scheduling
enables accurate replay

`

ReUSB Design: Replay & Fuzzing (Phase 2)
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Main thread

Trace
program

…
…
…

`Execution
Thread

Send

Mutate &
Split into
each contexts

T2 T3T1
…USB

Messages
USB

Messages
System

Calls

Over 10 execution contexts...

USB 
Device
Driver

Execute

Input buffer

User-Mode   Kernel-Mode

USB
Request
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Time-, Concurrency-Aware Dispatch: Concurrency

`

T2 T3T1

syz_usb_control_io(…) 

ioctl(…) &
……

T1->ioctl(…) + 412 us &

T3->syz_usb_control_io(…) + 2066 us

T1->poll(…) + 51773us 

T3->syz_usb_control_io(…) + 131 us
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blocking I/O
ioctl()

1
USB 

Device
Driver

ioctl() triggers the
generation of USB request

and is blocked

2

Schedule & execute
USB response message

without waiting for 
return

3
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Time-, Concurrency-Aware Dispatch: Concurrency
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1
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ioctl() triggers the
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without waiting for 
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3ReUSB can execute system calls in different contexts 
asynchronously.
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Time-, Concurrency-Aware Dispatch: Delay
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Time-, Concurrency-Aware Dispatch: Delay

USB 
Device
Driver

The replayer
experiences 

a temporary delay

Schedule, send, 
execute, and return 

from poll()

1

2
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ReUSB can inject delays between system calls
to account for time-dependent behavior of drivers.
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`

T2 T3T1

syz_usb_control_io(…) ………
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context

Payload

Context-Aware Dynamic Scheduling

T1->syz_usb_control_io(…) + 2066 us

Find best-matched
USB response & reorder it

compares the full payload of USB requests 
with the USB responses in buffer

23 F1 00 5F

23 01 FF 5F
23 01 FF 78

USB packet
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USB request1

2

3 Schedule
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`

T2 T3T1

syz_usb_control_io(…) ………

Execution
context

Payload

Context-Aware Dynamic Scheduling

T1->syz_usb_control_io(…) + 2066 us

Find best-matched
USB response & Reorder it

compares the full payload of USB requests 
with the USB responses in buffer

23 F1 00 5F

23 01 FF 5F
23 01 FF 78

USB packet

Replayer

Execute

USB 
Device
Driver

USB request
USB response

1

2

3 Schedule
ReUSB can handle unordered concurrent USB requests

by reordering USB response injection.
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Efficient USB Driver Fuzzing

Checkpoint

Replay trace Replay trace

Mutated trace

Mutation

Replay-guided fuzzing Replay checkpointing
Too large mutation surface Excessively slow and lengthy
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Efficient USB Driver Fuzzing

Checkpoint

Replay trace Replay trace

Mutated trace

mutation

Replay-guided fuzzing Replay checkpointing
Too large mutation surface Excessively slow and lengthy

More information available in the paper about
our mutation & replay checkpointing policies!
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Implementation

• Qemu 4.0, Linux KVM

• XHCI USB controller

• STRACE, Wireshark, and USBMON

• Syzkaller

• Agamotto

• Linux’s raw gadget
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10 Wireless USB Device Drivers
Class Vendor Device Driver Source Code

Wi-Fi

Broadcom BCM43236 drivers/net/wireless/broadcom/brcm80211

Qualcomm AR9271 drivers/net/wireless/ath/ath9k

Ralink RT5370 drivers/net/wireless/ralink/rt2x00

Realtek
RTL8821BU
RTL8821AU

github.com/morrownr/88x2bu-20210702*
github.com/aircrack-ng/rtl8812au*

Mediatek
MT7601U
MT7610U

drivers/net/wireless/mediatek/mt7601u
drivers/net/wireless/mediatek/mt76/mt76x0

Blue-
tooth

Broadcom BCM20702 drivers/bluetooth/btbcm.c

CSR CSR8510 drivers/bluetooth/btusb.c

NFC NXP PN533 drivers/nfc/pn533 

* Out-of-tree drivers whose source code is available at the shown URL

BCM43236 CSR8510 PN533 MT7601U



25

Dual-VM Recording Environment

NFC

VM-A VM-B

Wireless
Communication

User-Mode
Kernel-Mode

User program

USB device drivers

User-Mode
Kernel-Mode

User program

USB device drivers

Dual-VM recording of
typical communication scenarios

• Wi-Fi: AP, client
• Bluetooth: P2P
• NFC: P2P
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Result: Number of Input Injections
VM-A VM-B

Device
# of action

(Syscall/USB)
Device

# of action
(Syscall/USB)

Duration
(sec.)

Wi-FI

BCM43236 1,894(1,495/ 399) MT7601u - 20

AR9271 8,143(1,577/ 6,566) MT7601u - 19

RT5370 6,311(1,568/ 4,743) MT7601u - 19

RTL8812BU 24,529(2,761/21,768) MT7601u - 23

RTL8821AU 9,328(2,550/ 6,778) MT7601u - 23

MT7601U 4,099(1,494/ 2,605) MT7601u 9,489(2,047/ 7,442) 20

MU7610U 15,011(2,639/12,372) BCM43236 1,484(1,051/ 433) 20

MT7601u - AR9271 11,094(2,600/ 8,494) 24

MT7601u - RT5370 11,272(2,244/ 9,028) 21

MT7601u - RTL8812BU 12,577(1,104/11,473) 21

MT7601u - RTL8821AU 6,728(1,104/ 5,624) 19

Bluetooth
BCM20702 6,108(3,866/ 2,242) CSR8510 1,219(1,037/ 182) 21

CSR8510 9,219(6,423/ 2,796) BCM20702 2,004(1,035/ 969) 24

NFC PN533 475( 437/ 38) PN533 528( 484/ 44) 4

The number of recorded input mostly exceeds thousand!
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Result: Coverage Increase in Replay

Record

Replay

Baseline
After

Time-and-concurrency
-aware dispatch

After 
Context-aware 

dynamic scheduling

AR9271
Client

AP
3,956
4,311

1,709 (34.5%)
1,447 (33.6%) 

2,808 (56.7%) 
2,721 (63.1%) 

2,808 (56.7%)
2,721 (63.1%) 

BCM43236
Client

AP
3,533
3,205

1,346 (38.1%)
1,295 (40.4%) 

2,507 (71.0%)
1,440 (44.9%)

3,441 (97.4%) 
2,827 (88.2%)

MT7610U
Client

AP
4,458
3,976

1,629 (36.5%)
1,326 (33.4%)

1,762 (39.5%)
1,437 (36.1%)

2,265 (50.8%)
2,240 (56.3%)

RT5370
Client

AP
4,232
3,724

1,269 (30.0%)
1,005 (27.0%)

1,832 (43.3%)
2,073 (55.7%)

1,933 (45.7%)
2,831 (76.0%)

… … … …

Geometric mean 42.0% 62.5% 69.7%
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Result: Finding 15 Previously Unknown Bugs
Device Role(s) Error Type Upstream patch

BCM43236

Client & AP Slab-out-of -bounds 4920ab1

Client & AP Slab-out-of -bounds 4920ab1

Client & AP Stack-out-of –bounds 0a06cad

Client & AP Stack-out-of -bounds 660154d

Client & AP Null pointer dereference 683b972

Client & AP Shift-out-of-bounds 81d17f6

Client & AP Slab-out-of -bounds 6788ba8

Client Slab-out-of -bounds 0da40e0

MT7601U Client Null pointer dereference 803f317

MT7610U Client & AP Null pointer dereference Bd5dac7

AR9271
Client & AP Stack-out-of -bounds 8a2f35b

Client Use-after-free F099c5c

PN533

Master Slab-out-of -bounds 9f28157

Master & Slave Use-after-free 9dab880

Slave Use-after-free 4bb4db7

CVE-2023-1380

CVE-2022-3628
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Result: Coverage Increase in Fuzzing

Using all of our 19 trace programs as an initial seed corpus

Threat model: attack from USB side
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Result: Coverage Increase in Fuzzing

Using all of our 19 trace programs as an initial seed corpus

Threat model: attack from USB side

More evaluation results available in the paper!
(More coverage results, throughput, comparison with prior work, etc.)
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Conclusion

• We proposed a replay-guided approach to USB driver fuzzing.
• Controlling timing, concurrency, order of input injection matters for accurate replay of 

USB drivers.

• The overhead stemming from accurate replay can be compensated through replay-
guided fuzzing and replay checkpointing.

• We showed that replay-guided fuzzing is effective.
• Fuzzed 10 stateful USB drivers, increased the coverage by up to 76%.

• Found 20 bugs, of which 15 were previously unknown.
• Obtained 2 CVEs: CVE-2022-3628, CVE-2023-1380
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Thank you!

Contact

Jisoo Jang, a Ph.D. student at Yonsei University

jisoo.jang@yonsei.ac.kr
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