
1

ReUSB: Replay-Guided USB
Driver Fuzzing

Jisoo Jang, Minsuk Kang, DokyungSong

Department of Computer Science

College of Computing

Yonsei University

2

➢USB driver coverage of syzbot (as of July 2023)

Low Code Coverage of USB Device Drivers

Vendor Driver source code
Total basic block of

code
Fuzzing

code coverage (%)

Qualcomm drivers/net/wireless/ath 5436 1%

Broadcom
drivers/net/wireless/broadcom 27881 2%

drivers/bluetooth/btbcm.c 212 0%

Mediatek drivers/net/wireless/mediatek 2190 0%

Ralink drivers/net/wireless/ralink 4034 0%

Realtek drivers/net/wireless/realtek 30250 1%

CSR drivers/bluetooth/btusb.c 980 11%

NXP drivers/nfc/pn533 664 11%

3

Statefulness of USB Device Drivers

<Broadcom’s Driver State Transition>
STATUS
READY

STATUS
AP CREATED

STATUS
CONNECTING

STATUS
ASSOC

SUCCESS
STATUS

EAP SUCCESS STATUS
CONNECTED

STATUS
DISCONNECTING

net_dev_open
AP mode failed

Start AP mode

Start
disconnecting

Connect failed
Receive

SET_SSID
success

EAPOL
Handshake

success

Start
connecting

Disconnected

USB device

USB message

System call

System call

USB message

Deep state

4

Statefulness of USB Device Drivers

STATUS
READY

STATUS
AP CREATED

STATUS
CONNECTING

STATUS
ASSOC

SUCCESS
STATUS

EAP SUCCESS STATUS
CONNECTED

STATUS
DISCONNECTING

net_dev_open
AP mode failed

Start AP mode

Start
disconnecting

Connect failed
Receive

SET_SSID
success

EAPOL
Handshake

success

Start
connecting

Disconnected

USB device

USB message

System call

System call

USB message

Deep stateA long sequence of specific inputs are required.

<Broadcom’s Driver State Transition>

5

Our Approach: Combining Record-and-Replay with
Fuzzing

Replay + FuzzingRecord

USB device driver

USB
Device

User-mode
Programs

System call

USB message

System call

USB message

STATUS
READY STATUS

AP
CREATED

STATUS
CONNECTIN

G

STATUS
ASSOC

SUCCESS
STATUS

EAP
SUCCESS STATUS

CONNECTED

STATUS
DISCONNECTIN

G

net_dev_open
AP mode failed

Start AP mode

Start
disconnecting

Connect failed
Receive

SET_SSID
success

EAPOL
Handshake

success

Start
connecting

Disconnected

USB device

USB message

System call

System call

USB message

6

Limitations of Coverage-Guided Evolutionary Fuzzing
State-of-the-art evolves the corpus towards smaller inputs based on coverage:

• Syzkaller’sfuzzing algorithm

• USBFuzz (uses AFL)’s fuzzing algorithm

STATUS
READY

STATUS
AP CREATED

STATUS
CONNECTING

STATUS
ASSOC

SUCCESS STATUS
EAP SUCCESS

STATUS
CONNECTED

STATUS
DISCONNECTING

net_dev_open
AP mode failed

Start AP mode

Start
disconnecting

Connect failed
Receive

SET_SSID
success

EAPOL
Handshake

success

Start
connecting

Disconnected

USB device

USB message

System call

System call

USB message

1. Minimization:
Syscalls, when not accurately replayed,
are discardeddue to minimization

Nondeterminism

Discarded

7

Limitations of Coverage-Guided Evolutionary Fuzzing
State-of-the-art evolves the corpus towards smaller inputs based on coverage:

• Syzkaller’sfuzzing algorithm

• USBFuzz (uses AFL)’s fuzzing algorithm

STATUS
READY

STATUS
AP CREATED

STATUS
CONNECTING

STATUS
ASSOC

SUCCESS STATUS
EAP SUCCESS

STATUS
CONNECTED

STATUS
DISCONNECTING

net_dev_open
AP mode failed

Start AP mode

Start
disconnecting

Connect failed
Receive

SET_SSID
success

EAPOL
Handshake

success

Start
connecting

Disconnected

USB device

USB message

System call

System call

2. Hard cap on the number of syscalls:
All inputs that exceed certain number of syscalls are
discarded

USB message

8

Limitations of Coverage-Guided Evolutionary Fuzzing
State-of-the-art evolves the corpus towards smaller inputs based on coverage:

• Syzkaller’sfuzzing algorithm

• USBFuzz (uses AFL)’s fuzzing algorithm

STATUS
READY

STATUS
AP CREATED

STATUS
CONNECTING

STATUS
ASSOC

SUCCESS STATUS
EAP SUCCESS

STATUS
CONNECTED

STATUS
DISCONNECTING

net_dev_open
AP mode failed

Start AP mode

Start
disconnecting

Connect failed
Receive

SET_SSID
success

EAPOL
Handshake

success

Start
connecting

Disconnected

USB device

USB message

System call

System call

2. Hard cap on the number of syscalls:
All inputs that exceed certain number of syscalls are
discarded

USB message

Our first goal: Accurately reproducing recorded executions

9

2.Lengthy inputs (exceeding thousands) and long execution time (5~20 seconds)
make fuzzing extremely slow

STATUS
READY

STATUS
AP CREATED

STATUS
CONNECTING

STATUS
ASSOC

SUCCESS STATUS
EAP SUCCESS

STATUS
CONNECTED

STATUS
DISCONNECTING

net_dev_open
AP mode failed

Start AP mode

Start
disconnecting

Connect failed
Receive

SET_SSID
success

EAPOL
Handshake

success

Start
connecting

Disconnected

USB device

USB message

System call

System call

USB message
Non-driver
kernel code

1. Coverage-guidance does not distinguish
driver and non-driver code paths, just
prioritizes corpus that maximizes coverage

Limitations of Coverage-Guided Evolutionary Fuzzing

System call

10

2.Lengthy inputs (exceeding thousands) and long execution time (5~20 seconds)
make fuzzing extremely slow

STATUS
READY

STATUS
AP CREATED

STATUS
CONNECTING

STATUS
ASSOC

SUCCESS STATUS
EAP SUCCESS

STATUS
CONNECTED

STATUS
DISCONNECTING

net_dev_open
AP mode failed

Start AP mode

Start
disconnecting

Connect failed
Receive

SET_SSID
success

EAPOL
Handshake

success

Start
connecting

Disconnected

USB device

USB message

System call

System call

USB message
Non-driver
kernel code

1. Coverage-guidance does not distinguish
driver and non-driver code paths, just
prioritizes corpus that maximizes coverage

Limitations of Coverage-Guided Evolutionary Fuzzing

System call

Our second goal: Efficient fuzzing for deep bugs in drivers

11

Challenges of Accurate Replay:
Sensitive to Timing of Input Injection

1. Concurrency
System calls trigger the
generation of USB message
requests by the driver
(e.g., blocking I/O)

USB response timeout error

2. Delay
Driver requires a certain delay
to generate USB messages.
(e.g., delay queue …)

respond to USB messages
without the corresponding
USB request

Driver execution flow

System
calls

1

2

USB
messages

12

Challenges of Accurate Replay:
Unordered Concurrent USB Requests

Driver execution flow

Record

USB messages
are generated in

multiple contexts

If USB request and response
are not matched

Different order!
(Nondeterminism)

Replay

Driver execution flow

Driver may execute differently from the recording, resulting in errors

USB device

Kernel
Threads

Kernel
Threads

USB device

13

T2->syz_usb_control_io(…) +12us

T1->sendmsg(…) +17us &

ReUSB Design: Recording (Phase 1)

Trace program

Compile

Recording

USB device driver

User-Mode
Kernel-Mode

System calls
• Thread ID
• Arguments

Return
• Timestamps

USB messages
• Kernel thread ID

Workqueue ID
• Payload
• TimestampsUSB Device

Program

Execution context

Timing and concurrency information

The USB message is
executed as a syscall in
replayer

14

Schedule with
1. Time-, concurrency-aware dispatch
2. Context-aware dynamic scheduling
enables accurate replay

`

ReUSB Design: Replay & Fuzzing (Phase 2)
Replayer

Main thread

Trace
program

…
…
…

`Execution
Thread

Send

Mutate &
Split into
each contexts

T2 T3T1
…USB

Messages
USB

Messages
System

Calls

Over 10 execution contexts...

USB
Device
Driver

Execute

Input buffer

User-Mode Kernel-Mode

USB
Request

15

Time-, Concurrency-Aware Dispatch: Concurrency

`

T2 T3T1

syz_usb_control_io(…)

ioctl(…) &
……

T1->ioctl(…) + 412 us &

T3->syz_usb_control_io(…) + 2066 us

T1->poll(…) + 51773us

T3->syz_usb_control_io(…) + 131 us
Replayer

Execute

Schedule & execute

blocking I/O
ioctl()

1
USB

Device
Driver

ioctl() triggers the
generation of USB request

and is blocked

2

Schedule & execute
USB response message

without waiting for
return

3

16

Time-, Concurrency-Aware Dispatch: Concurrency

`

T2 T3T1

syz_usb_control_io(…)

ioctl(…) &
……

T1->ioctl(…) + 412 us &

T3->syz_usb_control_io(…) + 2066 us

T1->poll(…) + 51773us

T3->syz_usb_control_io(…) + 131 us
Replayer

Execute

Schedule & execute

Blocking I/O
ioctl()

1
USB

Device
Driver

ioctl() triggers the
generation of USB request

and is blocked

2

Schedule & execute
USB response message

without waiting for
return

3ReUSB can execute system calls in different contexts
asynchronously.

17

Time-, Concurrency-Aware Dispatch: Delay

USB
Device
Driver

The replayer
experiences

a temporary delay

Schedule, send,
execute, and return

from poll()

1

2

Schedule & execute
next system call

after delay

3

Execute

Replayer

T1->ioctl(…) + 412 us &

T3->syz_usb_control_io(…) + 2066 us

T1->poll(…) + 51773us

T3->syz_usb_control_io(…) + 131 us

`

T2 T3T1

syz_usb_control_io(…)

poll(…) +51773us ……

18

Time-, Concurrency-Aware Dispatch: Delay

USB
Device
Driver

The replayer
experiences

a temporary delay

Schedule, send,
execute, and return

from poll()

1

2

Schedule & Send
next system call

after delay

3

Execute

Replayer

T1->ioctl(…) + 412 us &

T3->syz_usb_control_io(…) + 2066 us

T1->poll(…) + 51773us

T3->syz_usb_control_io(…) + 131 us

`

T2 T3T1

syz_usb_control_io(…)

poll(…) +51773us ……

ReUSB can inject delays between system calls
to account for time-dependent behavior of drivers.

19

`

T2 T3T1

syz_usb_control_io(…) ………

Execution
context

Payload

Context-Aware Dynamic Scheduling

T1->syz_usb_control_io(…) + 2066 us

Find best-matched
USB response & reorder it

compares the full payload of USB requests
with the USB responses in buffer

23 F1 00 5F

23 01 FF 5F
23 01 FF 78

USB packet

Replayer

Execute

USB
Device
Driver

USB response

USB request1

2

3 Schedule

20

`

T2 T3T1

syz_usb_control_io(…) ………

Execution
context

Payload

Context-Aware Dynamic Scheduling

T1->syz_usb_control_io(…) + 2066 us

Find best-matched
USB response & Reorder it

compares the full payload of USB requests
with the USB responses in buffer

23 F1 00 5F

23 01 FF 5F
23 01 FF 78

USB packet

Replayer

Execute

USB
Device
Driver

USB request
USB response

1

2

3 Schedule
ReUSB can handle unordered concurrent USB requests

by reordering USB response injection.

21

Efficient USB Driver Fuzzing

Checkpoint

Replay trace Replay trace

Mutated trace

Mutation

Replay-guided fuzzing Replay checkpointing
Too large mutation surface Excessively slow and lengthy

22

Efficient USB Driver Fuzzing

Checkpoint

Replay trace Replay trace

Mutated trace

mutation

Replay-guided fuzzing Replay checkpointing
Too large mutation surface Excessively slow and lengthy

More information available in the paper about
our mutation & replay checkpointing policies!

23

Implementation

• Qemu 4.0, Linux KVM

• XHCI USB controller

• STRACE, Wireshark, and USBMON

• Syzkaller

• Agamotto

• Linux’s raw gadget

24

10 Wireless USB Device Drivers
Class Vendor Device Driver Source Code

Wi-Fi

Broadcom BCM43236 drivers/net/wireless/broadcom/brcm80211

Qualcomm AR9271 drivers/net/wireless/ath/ath9k

Ralink RT5370 drivers/net/wireless/ralink/rt2x00

Realtek
RTL8821BU
RTL8821AU

github.com/morrownr/88x2bu-20210702*
github.com/aircrack-ng/rtl8812au*

Mediatek
MT7601U
MT7610U

drivers/net/wireless/mediatek/mt7601u
drivers/net/wireless/mediatek/mt76/mt76x0

Blue-
tooth

Broadcom BCM20702 drivers/bluetooth/btbcm.c

CSR CSR8510 drivers/bluetooth/btusb.c

NFC NXP PN533 drivers/nfc/pn533

* Out-of-tree drivers whose source code is available at the shown URL

BCM43236 CSR8510 PN533 MT7601U

25

Dual-VM Recording Environment

NFC

VM-A VM-B

Wireless
Communication

User-Mode
Kernel-Mode

User program

USB device drivers

User-Mode
Kernel-Mode

User program

USB device drivers

Dual-VM recording of
typical communication scenarios

• Wi-Fi: AP, client
• Bluetooth: P2P
• NFC: P2P

26

Result: Number of Input Injections
VM-A VM-B

Device
of action

(Syscall/USB)
Device

of action
(Syscall/USB)

Duration
(sec.)

Wi-FI

BCM43236 1,894(1,495/ 399) MT7601u - 20

AR9271 8,143(1,577/ 6,566) MT7601u - 19

RT5370 6,311(1,568/ 4,743) MT7601u - 19

RTL8812BU 24,529(2,761/21,768) MT7601u - 23

RTL8821AU 9,328(2,550/ 6,778) MT7601u - 23

MT7601U 4,099(1,494/ 2,605) MT7601u 9,489(2,047/ 7,442) 20

MU7610U 15,011(2,639/12,372) BCM43236 1,484(1,051/ 433) 20

MT7601u - AR9271 11,094(2,600/ 8,494) 24

MT7601u - RT5370 11,272(2,244/ 9,028) 21

MT7601u - RTL8812BU 12,577(1,104/11,473) 21

MT7601u - RTL8821AU 6,728(1,104/ 5,624) 19

Bluetooth
BCM20702 6,108(3,866/ 2,242) CSR8510 1,219(1,037/ 182) 21

CSR8510 9,219(6,423/ 2,796) BCM20702 2,004(1,035/ 969) 24

NFC PN533 475(437/ 38) PN533 528(484/ 44) 4

The number of recorded input mostly exceeds thousand!

27

Result: Coverage Increase in Replay

Record

Replay

Baseline
After

Time-and-concurrency
-aware dispatch

After
Context-aware

dynamic scheduling

AR9271
Client

AP
3,956
4,311

1,709 (34.5%)
1,447 (33.6%)

2,808 (56.7%)
2,721 (63.1%)

2,808 (56.7%)
2,721 (63.1%)

BCM43236
Client

AP
3,533
3,205

1,346 (38.1%)
1,295 (40.4%)

2,507 (71.0%)
1,440 (44.9%)

3,441 (97.4%)
2,827 (88.2%)

MT7610U
Client

AP
4,458
3,976

1,629 (36.5%)
1,326 (33.4%)

1,762 (39.5%)
1,437 (36.1%)

2,265 (50.8%)
2,240 (56.3%)

RT5370
Client

AP
4,232
3,724

1,269 (30.0%)
1,005 (27.0%)

1,832 (43.3%)
2,073 (55.7%)

1,933 (45.7%)
2,831 (76.0%)

… … … …

Geometric mean 42.0% 62.5% 69.7%

28

Result: Finding 15 Previously Unknown Bugs
Device Role(s) Error Type Upstream patch

BCM43236

Client & AP Slab-out-of -bounds 4920ab1

Client & AP Slab-out-of -bounds 4920ab1

Client & AP Stack-out-of –bounds 0a06cad

Client & AP Stack-out-of -bounds 660154d

Client & AP Null pointer dereference 683b972

Client & AP Shift-out-of-bounds 81d17f6

Client & AP Slab-out-of -bounds 6788ba8

Client Slab-out-of -bounds 0da40e0

MT7601U Client Null pointer dereference 803f317

MT7610U Client & AP Null pointer dereference Bd5dac7

AR9271
Client & AP Stack-out-of -bounds 8a2f35b

Client Use-after-free F099c5c

PN533

Master Slab-out-of -bounds 9f28157

Master & Slave Use-after-free 9dab880

Slave Use-after-free 4bb4db7

CVE-2023-1380

CVE-2022-3628

29

Result: Coverage Increase in Fuzzing

Using all of our 19 trace programs as an initial seed corpus

Threat model: attack from USB side

30

Result: Coverage Increase in Fuzzing

Using all of our 19 trace programs as an initial seed corpus

Threat model: attack from USB side

More evaluation results available in the paper!
(More coverage results, throughput, comparison with prior work, etc.)

31

Conclusion

• We proposed a replay-guided approach to USB driver fuzzing.
• Controlling timing, concurrency, order of input injection matters for accurate replay of

USB drivers.

• The overhead stemming from accurate replay can be compensated through replay-
guided fuzzing and replay checkpointing.

• We showed that replay-guided fuzzing is effective.
• Fuzzed 10 stateful USB drivers, increased the coverage by up to 76%.

• Found 20 bugs, of which 15 were previously unknown.
• Obtained 2 CVEs: CVE-2022-3628, CVE-2023-1380

32

Thank you!

Contact

Jisoo Jang, a Ph.D. student at Yonsei University

jisoo.jang@yonsei.ac.kr

	슬라이드 1: ReUSB: Replay-Guided USB Driver Fuzzing
	슬라이드 2: Low Code Coverage of USB Device Drivers
	슬라이드 3: Statefulness of USB Device Drivers
	슬라이드 4: Statefulness of USB Device Drivers
	슬라이드 5: Our Approach: Combining Record-and-Replay with Fuzzing
	슬라이드 6: Limitations of Coverage-Guided Evolutionary Fuzzing
	슬라이드 7: Limitations of Coverage-Guided Evolutionary Fuzzing
	슬라이드 8: Limitations of Coverage-Guided Evolutionary Fuzzing
	슬라이드 9: Limitations of Coverage-Guided Evolutionary Fuzzing
	슬라이드 10: Limitations of Coverage-Guided Evolutionary Fuzzing
	슬라이드 11: Challenges of Accurate Replay: Sensitive to Timing of Input Injection
	슬라이드 12: Challenges of Accurate Replay: Unordered Concurrent USB Requests
	슬라이드 13: ReUSB Design: Recording (Phase 1)
	슬라이드 14: ReUSB Design: Replay & Fuzzing (Phase 2)
	슬라이드 15: Time-, Concurrency-Aware Dispatch: Concurrency
	슬라이드 16: Time-, Concurrency-Aware Dispatch: Concurrency
	슬라이드 17: Time-, Concurrency-Aware Dispatch: Delay
	슬라이드 18: Time-, Concurrency-Aware Dispatch: Delay
	슬라이드 19: Context-Aware Dynamic Scheduling
	슬라이드 20: Context-Aware Dynamic Scheduling
	슬라이드 21: Efficient USB Driver Fuzzing
	슬라이드 22: Efficient USB Driver Fuzzing
	슬라이드 23: Implementation
	슬라이드 24: 10 Wireless USB Device Drivers
	슬라이드 25: Dual-VM Recording Environment
	슬라이드 26: Result: Number of Input Injections
	슬라이드 27: Result: Coverage Increase in Replay
	슬라이드 28: Result: Finding 15 Previously Unknown Bugs
	슬라이드 29: Result: Coverage Increase in Fuzzing
	슬라이드 30: Result: Coverage Increase in Fuzzing
	슬라이드 31: Conclusion
	슬라이드 32: Thank you!

