
Auditing Frameworks Need Resource Isolation: A
Systematic Study on the Super Producer Threat

to System Auditing and Its Mitigation

1

Peng Jiang, Ruizhe Huang, Ding Li*, Yao Guo, Xiangqun Chen

MOE Key Lab of HCST, School of Computer Science, Peking University

Jianhai Luan, Yuxin Ren and Xinwei Hu

Huawei Technologies

Provenance Data & Auditing Framework

• Auditing framework is the fundamental component of a provenance
analysis system, which collects provenance data (e.g. syscalls) from
OS kernels. It can be taken as “provenance collector”.

• SoTA: Sysdig, LTTng, Linux Audit, Camflow.

2

Super Producer Threat

Fig. "data-integrity vs. efficiency” dilemma

3

• Three types of processes: Super producer and Malware and Nginx
• PDos Attack causes event dropping (Sysdig, Lttng and Linux Audit)
• PADos Attack causes performance degrade (Camflow)

Centralized

Challenges Under This Architcture

• Straightforword solution based on nowadays architecture
• Suppress the super producer's generation speed with some specified threshold.

For example Cgroups.

• Challenges
• Hard to determine an effective threshold.

• Attackers can use a set of super producers to avoid reaching the threshold.

• This solution is impractical !

4

Mitigation – Insights

• The centralized architecture of collectors breaks the logic and resource
isolation between processes.

• Audit logs should be the process’s own data and be processed using its
own resource quota.

5

Design of NODROP

Insight: We need logic and resource isolation.

Design Goal: Zero Data Lost, Performance Isolation, Low Overhead.

Isolation Strategy:

• Self-consuming execution. Each running thread digests the
provenance data it generates. (logic isolation)

• Synchronized logging buffer. Allocate a dedicated logging buffer for
each thread and synchronously digests provenance data within it.
(data isolation)

6

Design of NODROP

• We proposed a threadlet-based design
based on these two principles, called
NODROP.

• Instantiates the provenance data
processing logic (consumer) as a
threadlet.

• Consumer is insterted into the memory
of the current running thread.

• Consumes the provenance data stored in
the dedicated logging buffer.

7

Memory protection:
Address randomness and MPK

High-Level Workflow

S1: The kernel captures a system call () and executes it
(). System call is recored in a dedicated in-kernel
logging buffer ().

S2: Buffer is not full: returns control to the host thread ().
Buffer is full or the thread exits: control is passed to the
consumer ().

S3: Consumer is instrumented into the running thread(∗).

S4: Consumer process the transferred provenance data ().

S5: Control is returned to the original thread ().

8

Evaluation

Research Questions

• RQ1: Can NODROP avoid dropping provenance data?

• RQ2: Can NODROP prevent a super producer from slowing down
other applications?

• RQ3: What is the runtime overhead of NODROP?

• RQ 4: Can data reduction techniques address the super producer threat?

• RQ 5: Can increasing the buffer size address the super producer threat?

9

RQ1: Preventing the PDos attacks

• NODROP prevents the PDoS attack.

• NODROP has no events dropping.

• The successful attack rate for
NODROP is ZERO.

Sysdig LTTng Linux Audit NODROP
Default 120/120 107/120 120/120 0/120

Cgroup 115/120 107/120 120/120 0/120

Table. Attack success rate of the PDoS attack (#success / #attempts)

10

RQ2: Preventing the PADos attacks

• When the workload of the super producer grows, NODROP
maintains the performance of applications stable regardless of the
hardware configurations.

• NODROP is robust against PADoS attacks.
11

RQ3: Runtime Overhead

12

RQ4 and RQ5: Alternatives

• Log reduction techniques (CPR)
• The kernel CPR can handle 2,000 events per second per core.

• The super producer can easily generate 100,000 events per second.

• The kernel CPR greatly blocks the running applications, amplifying the PADos attack.

• Increasing buffer size
• Maximum size: 768M for Sysdig and LTTng and 77,000 messages for Linux Audit.

• Still dropping when the generation speed per core reaches 1.6 million per second.

13

Conclusion

• Existing auditing frameworks suffer from the super producer threat.

• We find that attackers can either disable existing provenance collectors
or paralyze the whole system with a super producer.

• We propose a novel auditing framework, NODROP, that addresses the
super producer threat by providing resource isolation.

• Our evaluation shows that NODROP introduces 6.30% lower
application overhead on average across eight different hardware
configurations than SOTA(Sysdig).

14

Related Pointers:

- Open-Source Repository:

https://github.com/PKU-ASAL/NODROP

- Contact me:

pengjiang_pku2020@stu.pku.edu.cn

15

Thank you and question?

	Auditing Frameworks Need Resource Isolation: A Systematic Study on the Super Producer Threat to System Auditing and Its Mitigation
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15

