IS a.: 7 J’ >4 \"’
NEZTES S
508 PEKING UNIVERSITY

HUAWEI

Auditing Frameworks Need Resource Isolation: A
Systematic Study on the Super Producer Threat
to System Auditing and Its Mitigation

Peng Jiang, Ruizhe Huang, Ding Li*, Yao Guo, Xiangqun Chen
MOE Key Lab of HCST, School of Computer Science, Peking University
Jianhai Luan, Yuxin Ren and Xinwei Hu

Huawei Technologies

Provenance Data & Auditing Framework

* Auditing framework is the fundamental component of a provenance

analysis system, which collects provenance data (e.g. syscalls) from
OS kernels. It can be taken as “provenance collector™.

* SoTA: Sysdig, LTTng, Linux Audit, Camflow.

= CamFlow

N :
Q sySd I g LT Tn AU_]__DTTD Practical Linux Provenance

Ax7 followers) Canada

Super Producer Threat

H Pro-Integrity:
H PADoS attack

Processed events

i Pro-Performance:
PDoS attack

\ . Dropped events
1] Centralized
| Processing

User-space | Super ® (?\/Ialware PRI
processes | Producer A
Provenance 4 ; '
Events 88 \V
OS kernel

Fig. "data-integrity vs. efficiency” dilemma

Three types of processes:
PDos Attack causes event dropping (Sysdig, Lttng and Linux Audit)
PADos Attack causes performance degrade (Camflow)

and

o>

and Nginx

Challenges Under This Architcture

* Straightforword solution based on nowadays architecture

» Suppress the super producer's generation speed with some specified threshold.
For example Cgroups.

* Challenges
* Hard to determine an effective threshold.

 Attackers can use a set of super producers to avoid reaching the threshold.

 This solution is impractical !

Mitigation — Insights

* The centralized architecture of collectors breaks the logic and resource

isolation between processes.

* Audit logs should be the process’s own data and be processed using its

own resource quota.

ISOLATION J

Design of NODROP

Insight: We need logic and resource isolation.
Design Goal: Zero Data Lost, Performance Isolation, Low Overhead.
Isolation Strategy:

* Self-consuming execution. Each running thread digests the

provenance data it generates. (logic isolation)

* Synchronized logging buffer. Allocate a dedicated logging buffer for
each thread and synchronously digests provenance data within it.

(data isolation)

Design of NODROP

* We proposed a threadlet-based design
based on these two principles, called
NODROP.

* Instantiates the provenance data
processing logic (consumer) as a
threadlet.

* Consumer is insterted into the memory

of the current running thread.

* Consumes the provenance data stored in
the dedicated logging buffer.

Host Stack

Memory Mapping Region

Dedicated Stack
Logging Buffer
i Dedicated Heap
map'to
random Global Data
address Executable Code
v «<— Entry point

Host Heap

(b) Structure of Consumer

Host is running Consumer is running

Enter

consumer
4 —
x L
eave
Accessl 2 key0 | consumer key0

PKRU PERM PKRU PERM
key0: Write+Read key0: Write+Read
key1: Inaccessible key1: Write+Read

(a) Memory Layout of host thread

(¢) Memory Protection with MPK

Memory protection:
Address randomness and MPK

7

High-Level Workflow

S1: The kernel captures a system call (®) and executes it
(@). System call is recored in a dedicated in-kernel
logging buffer (®).

S2: Buffer is not full: returns control to the host thread (®).

Buffer is full or the thread exits: control is passed to the

consumer (®).

S3: Consumer is instrumented into the running thread(®*).

S4: Consumer process the transferred provenance data (®).

S5: Control is returned to the original thread (@).

Kernel Module Host Thread Consumer

JapI0 2uI) uf

1— Start
4 running

-
-
. =

@ Workflow when
buffer is NOT full
©®-(Workflow when
buffer is full
v

=)

Evaluation

Research Questions

* RQI: Can NODROP avoid dropping provenance data?

RQ2: Can NODROP prevent a super producer from slowing down
other applications?

RQ3: What 1s the runtime overhead of NODROP?

RQ 4: Can data reduction techniques address the super producer threat?

RQ 5: Can increasing the buffer size address the super producer threat?

Received Events (1 Million/sec)

RQ1: Preventing the PDos attacks

1.6

1.2

0.8

0.4

(b) 32CPU + 64GB on VM

(d) 32CPU + 64GB on PM

(a) 1CPU + 2GB on VM
T

(c) 1CPU + 2GB on PM
T T

Generated Events (1 Million/sec)

Generated Events (1 Million/sec)

 NODROP prevents the PDoS attack.

Generated Events (1 Million/sec)

T T T T T T T T T
NoDrop ‘ : s s s s s s
~ Sysdig = - = *3”””””“;1’*‘*“ . S T P e 1 A A 7
LTTng = =+ &~ s s 3 L tnii s s
s - - S b o o 110 B R
,,,,,,,,,,,,,,,,,,, L e VL e]
1 ; Il - —L-—-—l ----- Jo— e w Il ; Il — —L-—-—l ----- Jo— w e
0 0.4 0.8 1.2 16 0 0.4 0.8 1.2 16 0 0.4 0.8 1.2 16 0 0.4 0.8 1.2 1.6

Generated Events (1 Million/sec)

Table. Attack success rate of the PDoS attack (#success / #attempts)

° NODROP has no events dropping. Sysdig LTTng Linux Audit (\[o]n]3{0]
Default 120/120 107/120 120/120 0/120
 The successful attack rate for Ceroup 115/120 107/120 120/120 0/120

NODROP is ZERO.

10

RQ2: Preventing the PADos attacks

Nginx Perf. (1K regs/sec)

16
14
12
10

(a) 1CPU + 2GB on VM

o

[- '.*'-"-,--: ------

- “'N_lh—l\.;\-*

B i e
- 1 1 1

0 150 300 450 600

per-CPU Event Speed (1K/sec)

No Consumer
NoDrop
Sysdig == = =
LTThg = =
Sysdig-Camflow == - -
Sysdig-Integrity == - =
Audit * =

(b) 32CPU + 64GB on VM

T o,
'
—_—,
‘ T
LA]
—-_—,,

150 300 450 600
per-CPU Event Speed (1K/sec)

* When the workload of the super producer grows, NODROP
maintains the performance of applications stable regardless of the

 NODRAOP i1s robust against PADoS attacks.

hardware configurations.

11

RQ3: Runtime Overhead

Application | Collector | C1 C4 C5 C8
NODROP 9.80 3.60 1135 4.84

Nginx Sysdig 55.30 5.50 37.64 7.20
DIFF -29.30 -1.80 -19.10 -2.20

NODROP 8.90 3.10 8.660 242

Redis Sysdig 21.00 5.00 21.00 570
DIFF -11.10 2,00 -10.20 -3.10

NODROP 2550 19.10 30.60 20.65

Postmark Sysdig 96.30 8.60 95.80 13.50
DIFF -36.00 970 -33.30 630

Django NOD}IOP 1.30 2.00 1.30 -0.20
(Pythdn) Sysdig 1.10 2.30 1.10 0.30
DIFF 0.30 -0.30 020 -0.50

hitp NOD}{OP 14.10 2.20 1466 271
(Golang) Sysdig 78.90 2.20 6570 2.20
DIFF -36.20 0.10 -30.80 0.50

NODROP 0.60 0.10 0.20 0.70

OpenSSL Sysdig 0.60 0.10 0.20 0.60
DIFF 0.10 0.00 0.00 0.10

NODROP 0.30 0.80 1.20 0.70

7-Z1P Sysdig 0.20 0.70 .20 0.70
DIFF 0.10 0.10 0.00 0.00

NODROP 7.05 3.80 1020 470

PostgreSQL | Sysdig 15.20 4.70 17.40 490
DIFF -7.61 -0.80 -6.50 -0.19

Table 3: Performance scores of Imbench. All values are shown as
percentages relative to Sysdig. The negative value means NODROP

is faster than Sysdig.

Configurations Cl C4 C5 C8 Ave
Syscall Tests
NULL syscall -8.1% -17% -8.3% -719% -10.3%
stat -9.0% +5.5% -1.8% -0.6% -1.5%
fstat +4.2% -1.7% +1.7% +1.6% +2.3%
open/close file -6.1% -2.9% -0.3% -1.8% -2.8%
read file +7.4% +7.1% +4.5% +7.2% +6.6%
write file +7.7% +72% +125% +12.1% +9.9%
File Access
file create (0K) -15.8% -7.1% -10.0% +2.7% -7.5%
file delete (0K) +0.5% +3.0% -0.7% -0.9% +0.5%
file create (10K) +0.1% +2.9% -3.7% -0.8% -0.4%
file delete (10K) +4.7% +1.5% -0.9% -0.4% +1.2%
pipe +3.0% +0.8% +6.9% +1.3% +3.0%
AF_UNIX +3.8% -10.5% +53% +10.1% +2.2%

12

RQ4 and RQ5: Alternatives

* Log reduction techniques (CPR)

* The kernel CPR can handle 2,000 events per second per core.

* The super producer can easily generate 100,000 events per second.

* The kernel CPR greatly blocks the running applications, amplifying the PADos attack.

* Increasing buffer size
» Maximum size: 768M for Sysdig and LTTng and 77,000 messages for Linux Audit.

« Still dropping when the generation speed per core reaches 1.6 million per second.

Configuration C1 C4 C5 C8

Linux Audit 99.2% | 99.6% | 99.1% | 99.4%
Sysdig 19.3% | 86.1% | 25.5% | 88.1%
LTTng 0% 49.5% 0% 52.1%

13

Conclusion

* Existing auditing frameworks suffer from the super producer threat.

* We find that attackers can either disable existing provenance collectors

or paralyze the whole system with a super producer.

* We propose a novel auditing framework, NODROP, that addresses the

super producer threat by providing resource isolation.

* QOur evaluation shows that NODROP introduces 6.30% lower
application overhead on average across eight different hardware
configurations than SOTA(Sysdig).

14

Related Pointers:
- Open-Source Repository:
https://github.com/PKU-ASAL/NODROP
- Contact me:

pengjiang pku2020@stu.pku.edu.cn

Thank you and question?

15

	Auditing Frameworks Need Resource Isolation: A Systematic Study on the Super Producer Threat to System Auditing and Its Mitigation
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15

