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Machine Unlearning: Bridging Law and Technology

1https://gdpr.eu/article-17-right-to-be-forgotten/
2https://oag.ca.gov/privacy/ccpa#sectiond
3http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm
4https://www.parl.ca/DocumentViewer/en/44-1/bill/C-27/first-reading
5https://sdaia.gov.sa/en/SDAIA/about/Documents/Personal%20Data%20English%20V2-23April2023-%20Reviewed-.pdf

General Data Protection Regulation (GDPR) 1 EU 2016

California Consumer Privacy Act (CCPA) 2 USA 2018

Personal Information Protection Law (PIPL) 3 CHINA 2021

Consumer Privacy Protection Act (CPPA) 4 CANADA 2022

Personal Data Protection Law (PDPL) 5 KSA 2023

Legislation： Right to be forgotten/right to delete

https://gdpr.eu/article-17-right-to-be-forgotten/
https://oag.ca.gov/privacy/ccpa
http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm
https://www.parl.ca/DocumentViewer/en/44-1/bill/C-27/first-reading
https://sdaia.gov.sa/en/SDAIA/about/Documents/Personal%20Data%20English%20V2-23April2023-%20Reviewed-.pdf


Machine Unlearning: Challenges

Legislation： Right to be forgotten/right to delete

Gap between the law concept to technical problem in the ML age

• Memorization:  Hard to locate/delete data in a complex ML system
• Privacy Paradox: ML Application Utility VS Aligning with Data Unlearning Requirements
• Computation: Multi-times unlearning adds significantly to training time.
• Governance: Auditing black box models is difficult



Legislation： Right to be forgotten/right to delete

Towards practical framework of Graph Machine Learning applications

Gap between the law concept to technical problem in the ML age

• Applicable to Evolving graphs / Multi graphs / Unseen graphs
• Efficiency to multi-times unlearning 
• Parallelization of Unlearning requests
• Transparency to Governance

Machine Unlearning on Dynamic Graph



Motivation for Inductive Graph Unlearning
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Motivation for Inductive Graph Unlearning
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GUided InDuctivE Graph Unlearning Framework
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Guided Graph Partition with Fairness and Balance 

Fair and Balance
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Efficient Subgraph Repairing 
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Similarity-based Aggregation

The importance score of each sub-model should be

o Independent to each other 

o Applicable to inference on new graphs
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Results 1: Fair and Balanced Partition

Fair enough and balance enough



Results 2: Efficient Implementation and Unlearning

Fast enough



Results 3: Simple but Efficient Subgraph Repair



Results 4: Superior Utility on Evolving Graphs



Results 5: Superior Utility on Inductive Graphs

Method Normalized Score

Random 0.00

Eraser-BLPA 20.42

Eraser-BEKM 23.71

GUIDE-Fast 59.52

GUIDE-SR 59.40

Scratch 100.00



Results 6: Low Unlearning Privacy Risk



GUided InDuctivE Graph Unlearning Framework

GUIDE can be efficiently implemented on the inductive graph learning and unlearning tasks 

for its low graph partition cost, no matter on computation or structure information. 

https://github.com/Happy2Git/GUIDE


