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Machine Unlearning: Bridging Law and Technology

¢® Legislation: Right to be forgotten/right to delete

General Data Protection Regulation (GDPR) 1 EU 2016
California Consumer Privacy Act (CCPA) 2 USA 2018
Personal Information Protection Law (PIPL)3 CHINA 2021
Consumer Privacy Protection Act (CPPA) 4 CANADA 2022
Personal Data Protection Law (PDPL)° KSA 2023

thttps://gdpr.eu/article-17-right-to-be-forgotten/

2https://oag.ca.gov/privacy/ccpattsectiond

3http://en.npc.gov.cn.cdurl.cn/2021-12/29/c _694559.htm
4https://www.parl.ca/DocumentViewer/en/44-1/bill/C-27 [first-reading
Shttps://sdaia.gov.sa/en/SDAIA/about/Documents/Personal%20Data%20English%20V2-23April2023-%20Reviewed-.pdf



https://gdpr.eu/article-17-right-to-be-forgotten/
https://oag.ca.gov/privacy/ccpa
http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm
https://www.parl.ca/DocumentViewer/en/44-1/bill/C-27/first-reading
https://sdaia.gov.sa/en/SDAIA/about/Documents/Personal%20Data%20English%20V2-23April2023-%20Reviewed-.pdf

Machine Unlearning: Challenges

¢® Legislation: Right to be forgotten/right to delete
@ Gap between the law concept to technical problem in the ML age
 Memorization: Hard to locate/delete data in a complex ML system

e Privacy Paradox: ML Application Utility VS Aligning with Data Unlearning Requirements

e Computation: Multi-times unlearning adds significantly to training time.

* Governance: Auditing black box models is difficult




Machine Unlearning on Dynamic Graph

¢® Legislation: Right to be forgotten/right to delete
@ Gap between the law concept to technical problem in the ML age

@ Towards practical framework of Graph Machine Learning applications

Applicable to Evolving graphs / Multi graphs / Unseen graphs
e Efficiency to multi-times unlearning

* Parallelization of Unlearning requests

* Transparency to Governance




Motivation for Inductive Graph Unlearning
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Motivation for Inductive Graph Unlearning

Fairness?
Balance? —— Ultility?

Structure?
Implementation Efficiency & Unlearning Efficiency?
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GUided InDuctivE Graph Unlearning Framework

Deletion
Request

Fair and Balance
Graph Partition




Guided Graph Partition with Fairness and Balance

Fair and Balance
—> Graph Partition

Theorem 2 (Transformation of Fairness and Balance Con-
straints on Embedding Matrix H). Denote the normalized bal-

anced and fair guided matrix by M € RP¥V, je., M, 5,j = \/CJ—S_L

For a partition V = U;c\,| 'V, it is fair and balanced if

and only if FTH =M, where H is the normalized group-
membership indicator matrix of the partition which has the
form in (8).”

min Tr(HTLH) + o [FTH — M||3+

BIHR —D2Y(Y'DY) 2|2 -
st. HH=LR'R=I




Efficient Subgraph Repairing
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Similarity-based Aggregation

EEI—- The importance score of each sub-model should be

o Independent to each other

o Applicable to inference on new graphs
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Results 1: Fair and Balanced Partition
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Figure 6: Partition scores of 5 methods on different datasets.

Fair enough and balance enough




Results 2: Efficient Implementation and Unlearning

Table 1: Graph partition time of 4 methods(s).

Dataset BLPA BEKM | GPFB-Fast GPFB-SR
Cora 5.41 10.10 0.24 2.85
CiteSeer  6.36 14.56 | 0.31 3.54
CS 38.77 5454.36 | 15.71 40.02
DBLP 37.30 5182.10 | 14.44 33.52
Elliptic  303.02 1089.72 | 26.19 201.99
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Results 3: Simple but Efficient Subgraph Repair

Table 3: Results of different subgraph repairing strategies on Cora(%)

Partition Method | Model | Ground Truth | No Repairing |  Mirror Feature Zero Feature MixUp
. SAGE | 77.26+0.04 | 59.98+0.19 | 63.2240.08 73.55+0.05 71.33+0.10
GPFB-Fast GIN | 79.26+0.04 70.0940.05 77.134+0.07 72.07+0.06 76.4010.05
GAT 70.52+0.10 49.63+0.08 62.90+0.09 66.5240.07 66.254+0.09

1 SAGE | 77.78£0.02 | 59.984+0.09 | 65.67+0.08 74.38+0.04 72.26+0.04
GPFB-SR GIN 78.96+0.02 69.28+0.14 75.16+0.09 72.20+0.06 77.06+£0.06
. GAT 70.854+0.06 50.00+0.20 65.184+0.09 67.084+0.08 66.4040.09
Normalized Score 100.00 0.00 54.09 62.32 73.65




Results 4: Superior Utility on Evolving Graphs
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Results 5: Superior Utility on Inductive Graphs

Table 2: Node classification accuracy of 5 graph unlearning methods with 6 inductive GNN models (%).

Dataset Model : Scratch | Random Eraser-BLPA  Eraser-BEKM | GUIDE-Fast GUIDE-SR
SuperGAT | 89.17+0.00 | 31.57+0.04  41.74+0.16 44.924+0.57 : 65.69+0.04  66.491+0.12
GATv2 | 88.9440.00 31.22+0.04  43.8310.68 36.62+0.55 66.80+0.08  68.10+0.16
Coti SAGE 92.73+0.00 53.68+0.18  44.204+0.37 53.57+0.60 71.33£0.10  72.26+0.04
GIN 87.07+0.13 | 56.49+0.26  67.84+0.14 65.55+0.29 76.40£0.05  77.06+0.06
GAT 88.974+0.00 | 31.90+0.07  38.91+0.36 34.10+0.34 66.25+0.09  66.40+0.09
APPNP 85.96+0.03 51.2840.13 38.02+0.26 46.384+0.12 : 64.14+0.07 64.56+£0.05
f SuperGAT | 79.33+£0.00 | 25.44+134  5331£1.15 45984048 | 70.66+0.02  71.17+0.02
GATv2 i 79.53+£0.00 | 25.88+1.45  58.50+0.36 41.04+1.58 70.78+£0.02  71.26+0.02
Gt SAGE 83.08+0.00 69.10+£0.05  66.90+0.06 69.25+0.05 72.71£0.02  72.384+0.01
GIN 81.20+0.06 : 58.02+0.41 66.29+0.11 64.21+0.13 69.64+0.07  69.67+0.04
GAT 79.61+0.00 26.32+1.46  58.571+0.64 43.46+1.17 70.66+0.02  71.024+0.02
APPNP 77.494+0.00 | 72.98+0.02  66.334+0.40 71.294+0.04 : 73.09+0.03  73.43+0.02
b SuperGAT | 84.214+0.00 ;| 44.67+£0.00  70.27+£0.01 69.84+0.01 | 71.67+£0.01  69.29+0.01
GATv2 i 83.93+0.00 | 44.67+0.00  70.23+0.01 69.06+0.05 71.69+£0.01  69.104+0.00
DBLP SAGE 86.72+0.00 60.38+0.02  70.13+0.00 69.70+0.00 71.924+0.01  72.16+0.01
GIN 87.35£0.01 ;| 67.76+£0.02  79.091+0.02 75.78+0.09 77.11£0.03  77.514+0.00
GAT 84.05+0.00 | 44.67+0.00  70.41+0.01 68.51+0.08 71.39+0.01  68.70+0.01
APPNP 83.80+0.00 | 67.53+0.00  71.56+0.01 70.96+0.01 73.62+0.01  72.844+0.01
T SuperGAT | 87.5740.00 | 22.79+0.01  53.01+£0.02  41.9840.25 | 69.63+£0.00  69.53+0.01
GATv2 | 86.98+0.00 | 22.7940.01 53.58+0.04 40.08+0.29 73.2840.01  73.154+0.01
cs SAGE 91.79+0.00 71.96+0.02  57.37+0.04 74.38+0.01 80.68+0.00  80.67+0.00
GIN 83.69+0.18 : 36.70+0.01 75.42+0.15 83.65+0.01 79.24£0.01  79.73+0.02
GAT 87.374+0.00 | 22.79+0.01 53.24+0.01 43.17+1.04 69.55+0.01  69.454+0.01
APPNP 78.70+0.01 | 58.03+0.01 48.24+0.10 47.814+0.09 74.38+0.01  74.4440.01
Normalized Score 100.00 0.00 20.42 23.71 59.52 59.40

Method Normalized Score
Random 0.00
Eraser-BLPA 20.42
Eraser-BEKM 2371
GUIDE-Fast 59.52
GUIDE-SR 59.40
Scratch 100.00




Results 6: Low Unlearning Privacy Risk

Table 5: AUC of membership inference attack on GUIDE(%).

Dataset | SAGE GAT GIN

Cora | 51.34+0.08 49.7840.02 53.57+0.19
CiteSeer | 53.36+£0.10  50.97+0.12  50.70+0.08
DBLP | 53.3440.07 51.2240.19  55.8340.7
CS . 50.344+0.14  51.274+0.14  48.09+0.14




GUided InDuctivE Graph Unlearning Framework

<® GUIDE can be efficiently implemented on the inductive graph learning and unlearning tasks

for its low graph partition cost, no matter on computation or structure information.

https://github.com/Happy2Git/GUIDE




