

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

SDAIA الهيئة السعودية للبيانات والذكاء الاصطناعي Saudi Data & Al Authority

IOWA STATE UNIVERSITY

Inductive Graph Unlearning

Cheng-Long Wang^{1,4}, Mengdi Huai², Di Wang^{1,3,4} ¹King Abdullah University of Science and Technology ²Iowa State University ³Computational Bioscience Research Center ⁴SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence

Machine Unlearning: Bridging Law and Technology

Legislation: Right to be forgotten/right to delete

General Data Protection Regulation (GDPR) ¹	EU	2016
California Consumer Privacy Act (CCPA) ²	USA	2018
Personal Information Protection Law (PIPL) ³	CHINA	2021
Consumer Privacy Protection Act (CPPA) ⁴	CANADA	2022
Personal Data Protection Law (PDPL) ⁵	KSA	2023

 ¹https://gdpr.eu/article-17-right-to-be-forgotten/
 ²https://oag.ca.gov/privacy/ccpa#sectiond
 ³http://en.npc.gov.cn.cdurl.cn/2021-12/29/c 694559.htm
 ⁴https://www.parl.ca/DocumentViewer/en/44-1/bill/C-27/first-reading
 ⁵https://sdaia.gov.sa/en/SDAIA/about/Documents/Personal%20Data%20English%20V2-23April2023-%20Reviewed-.pdf

Machine Unlearning: Challenges

Legislation: Right to be forgotten/right to delete

Gap between the law concept to technical problem in the ML age

- Memorization: Hard to locate/delete data in a complex ML system
- Privacy Paradox: ML Application Utility VS Aligning with Data Unlearning Requirements
- Computation: Multi-times unlearning adds significantly to training time.
- Governance: Auditing black box models is difficult

Machine Unlearning on Dynamic Graph

Legislation: Right to be forgotten/right to delete

Gap between the law concept to technical problem in the ML age

Towards practical framework of Graph Machine Learning applications

- Applicable to Evolving graphs / Multi graphs / Unseen graphs
- Efficiency to multi-times unlearning
- Parallelization of Unlearning requests
- Transparency to Governance

Motivation for Inductive Graph Unlearning

Motivation for Inductive Graph Unlearning

GUided InDuctivE Graph Unlearning Framework

Guided Graph Partition with Fairness and Balance

Theorem 2 (Transformation of Fairness and Balance Constraints on Embedding Matrix **H**). Denote the normalized balanced and fair guided matrix by $\widetilde{\mathbf{M}} \in \mathbb{R}^{h \times v}$, i.e., $\widetilde{\mathbf{M}}_{s,j} = \frac{|C_s|}{\sqrt{nv}}$. For a partition $\mathcal{V} = \bigcup_{i \in [v]} \mathcal{V}_i$, it is fair and balanced if and only if $\mathbf{F}^{\mathsf{T}}\mathbf{H} = \widetilde{\mathbf{M}}$, where **H** is the normalized groupmembership indicator matrix of the partition which has the form in (8).²

$$\min_{\mathbf{H},\mathbf{Y}} \quad Tr(\mathbf{H}^{\mathsf{T}}\mathbf{L}\mathbf{H}) + \alpha \|\mathbf{F}^{\mathsf{T}}\mathbf{H} - \mathbf{M}\|_{2}^{2} + \\ \beta \|\mathbf{H}\mathbf{R} - \mathbf{D}^{-\frac{1}{2}}\mathbf{Y}(\mathbf{Y}^{\mathsf{T}}\mathbf{D}\mathbf{Y})^{-\frac{1}{2}}\|_{2}^{2} \\ s.t. \quad \mathbf{H}^{\mathsf{T}}\mathbf{H} = \mathbf{I}, \mathbf{R}^{\mathsf{T}}\mathbf{R} = \mathbf{I}$$

Efficient Subgraph Repairing

MixUp Augmented Repaired Subgraph

Similarity-based Aggregation

- The importance score of each sub-model should be

- Independent to each other
- Applicable to inference on new graphs

Results 1: Fair and Balanced Partition

Figure 6: Partition scores of 5 methods on different datasets.

Fair enough and balance enough

Results 2: Efficient Implementation and Unlearning

8

Eraser-BLPA

200

175

Number of Unlearning Requests on CS

Table 1: Graph partition time of 4 methods(s).

					. er 1								Eraser-B	ЗЕКМ
Dataset	BLPA	BEKM	GPFB-Fast	GPFB-SR								<u> </u>	GUIDE-F	-ast
Cora	5 4 1	10.10	0 24	2 85									GUIDE-S	SR
	5.71	10.10	0.24	2.05	с С									
CiteSeer	6.36	14.56	0.31	3.54	<u>Б</u> 4									
CS	38.77	5454.36	15.71	40.02	age S									
DBLP	37.30	5182.10	14.44	33.52	verg									
Elliptic	303.02	1089.72	26.19	201.99	∢ ∠			-			VA430			
					-	0	25	50	75	100	125	150	175	20

Fast enough

Results 3: Simple but Efficient Subgraph Repair

 Table 3: Results of different subgraph repairing strategies on Cora(%)

Partition Method Model		Ground Truth	No Repairing	Mirror Feature	Zero Feature	MixUp
	SAGE	$77.26 {\pm} 0.04$	59.98±0.19	$63.22{\pm}0.08$	$73.55 {\pm} 0.05$	$71.33{\pm}0.10$
GPFB-Fast	GIN	$79.26 {\pm} 0.04$	$70.09 {\pm} 0.05$	$77.13 {\pm} 0.07$	$72.07 {\pm} 0.06$	$76.40 {\pm} 0.05$
	GAT	$70.52{\pm}0.10$	$49.63 {\pm} 0.08$	$62.90 {\pm} 0.09$	$66.52 {\pm} 0.07$	$66.25 {\pm} 0.09$
	SAGE	$77.78 {\pm} 0.02$	59.98±0.09	$65.67 {\pm} 0.08$	$74.38 {\pm} 0.04$	$72.26 {\pm} 0.04$
GPFB-SR	GIN	$78.96{\pm}0.02$	$69.28 {\pm} 0.14$	$75.16 {\pm} 0.09$	$72.20{\pm}0.06$	$77.06 {\pm} 0.06$
	GAT	$70.85 {\pm} 0.06$	$50.00 {\pm} 0.20$	$65.18 {\pm} 0.09$	$67.08 {\pm} 0.08$	$66.40 {\pm} 0.09$
Normalized Score		100.00	0.00	54.09	62.32	73.65

Results 4: Superior Utility on Evolving Graphs

Results 5: Superior Utility on Inductive Graphs

Dataset	Model	Scratch	Random	Eraser-BLPA	Eraser-BEKM	GUIDE-Fast	GUIDE-SR
Cora	SuperGAT	89.17±0.00	$31.57 {\pm} 0.04$	41.74 ± 0.16	44.92±0.57	$65.69 {\pm} 0.04$	66.49±0.12
	GATv2	$88.94{\pm}0.00$	$31.22 {\pm} 0.04$	$43.83 {\pm} 0.68$	36.62 ± 0.55	$66.80{\pm}0.08$	68.10±0.16
	SAGE	92.73±0.00	$53.68 {\pm} 0.18$	44.20 ± 0.37	$53.57 {\pm} 0.60$	$71.33 {\pm} 0.10$	72.26±0.04
	GIN	87.07±0.13	$56.49 {\pm} 0.26$	$67.84{\pm}0.14$	65.55±0.29	$76.40 {\pm} 0.05$	77.06±0.06
	GAT	$88.97 {\pm} 0.00$	$31.90 {\pm} 0.07$	$38.91 {\pm} 0.36$	$34.10{\pm}0.34$	$66.25 {\pm} 0.09$	66.40±0.09
	APPNP	85.96±0.03	$51.28{\pm}0.13$	$38.02{\pm}0.26$	46.38±0.12	$64.14 {\pm} 0.07$	64.56±0.05
	SuperGAT	79.33±0.00	$25.44{\pm}1.34$	53.31±1.15	45.98±0.48	$70.66 {\pm} 0.02$	71.17±0.02
	GATv2	79.53±0.00	$25.88{\pm}1.45$	$58.50 {\pm} 0.36$	$41.04{\pm}1.58$	$70.78 {\pm} 0.02$	$\textbf{71.26}{\pm 0.02}$
CitaSaar	SAGE	$83.08 {\pm} 0.00$	$69.10 {\pm} 0.05$	$66.90 {\pm} 0.06$	69.25±0.05	72.71±0.02	$72.38 {\pm} 0.01$
Cheseel	GIN	81.20±0.06	58.02 ± 0.41	66.29±0.11	64.21±0.13	$69.64 {\pm} 0.07$	69.67±0.04
	GAT	79.61±0.00	$26.32{\pm}1.46$	$58.57 {\pm} 0.64$	43.46±1.17	$70.66 {\pm} 0.02$	$71.02{\pm}0.02$
	APPNP	$77.49 {\pm} 0.00$	$72.98{\pm}0.02$	$66.33 {\pm} 0.40$	$71.29{\pm}0.04$	$73.09 {\pm} 0.03$	$73.43 {\pm} 0.02$
	SuperGAT	84.21±0.00	44.67 ± 0.00	$70.27 {\pm} 0.01$	69.84±0.01	71.67±0.01	69.29±0.01
	GATv2	83.93±0.00	$44.67 {\pm} 0.00$	$70.23 {\pm} 0.01$	$69.06 {\pm} 0.05$	71.69±0.01	$69.10{\pm}0.00$
	SAGE	$86.72 {\pm} 0.00$	$60.38 {\pm} 0.02$	$70.13 {\pm} 0.00$	$69.70 {\pm} 0.00$	$71.92{\pm}0.01$	72.16±0.01
DBLF	GIN	$87.35 {\pm} 0.01$	$67.76 {\pm} 0.02$	79.09±0.02	75.78±0.09	77.11 ± 0.03	$77.51 {\pm} 0.00$
	GAT	$84.05 {\pm} 0.00$	$44.67 {\pm} 0.00$	$70.41 {\pm} 0.01$	68.51 ± 0.08	71.39±0.01	$68.70 {\pm} 0.01$
	APPNP	$83.80{\pm}0.00$	$67.53 {\pm} 0.00$	$71.56 {\pm} 0.01$	$70.96 {\pm} 0.01$	$\textbf{73.62}{\pm}\textbf{0.01}$	$72.84{\pm}0.01$
CS	SuperGAT	$87.57 {\pm} 0.00$	22.79 ± 0.01	53.01±0.02	41.98±0.25	69.63±0.00	69.53±0.01
	GATv2	$86.98 {\pm} 0.00$	$22.79 {\pm} 0.01$	$53.58 {\pm} 0.04$	$40.08 {\pm} 0.29$	73.28±0.01	$73.15 {\pm} 0.01$
	SAGE	91.79±0.00	$71.96 {\pm} 0.02$	$57.37 {\pm} 0.04$	$74.38{\pm}0.01$	$\textbf{80.68}{\pm 0.00}$	$80.67 {\pm} 0.00$
	GIN	83.69±0.18	$36.70 {\pm} 0.01$	$75.42{\pm}0.15$	83.65±0.01	$79.24{\pm}0.01$	$79.73 {\pm} 0.02$
	GAT	87.37±0.00	$22.79 {\pm} 0.01$	$53.24 {\pm} 0.01$	43.17±1.04	69.55±0.01	$69.45 {\pm} 0.01$
	APPNP	$78.70{\pm}0.01$	$58.03 {\pm} 0.01$	$48.24 {\pm} 0.10$	47.81±0.09	$74.38{\pm}0.01$	$\textbf{74.44}{\pm}\textbf{0.01}$
Normalize	d Score	100.00	0.00	20.42	23.71	59.52	59.40

Table 2: Node classification accuracy of 5 graph unlearning methods with 6 inductive GNN models (%).

Method	Normalized Score
Random	0.00
Eraser-BLPA	20.42
Eraser-BEKM	23.71
GUIDE-Fast	59.52
GUIDE-SR	59.40
Scratch	100.00

Results 6: Low Unlearning Privacy Risk

Table 5: AUC of membership inference attack on GUIDE(%).

Dataset	SAGE	GAT	GIN
Cora	$51.34{\pm}0.08$	49.78±0.02	53.57±0.19
CiteSeer	$53.36 {\pm} 0.10$	$50.97 {\pm} 0.12$	$50.70 {\pm} 0.08$
DBLP	$53.34 {\pm} 0.07$	51.22 ± 0.19	$55.83 {\pm} 0.7$
CS	$50.34{\pm}0.14$	51.27 ± 0.14	$48.09 {\pm} 0.14$

GUided InDuctivE Graph Unlearning Framework

GUIDE can be efficiently implemented on the inductive graph learning and unlearning tasks for its low graph partition cost, no matter on computation or structure information.

https://github.com/Happy2Git/GUIDE