
USTC
University of Science and
Technology of China

Automated Inference on Financial

Security of Ethereum Smart Contracts
Wansen Wang, Wenchao Huang, Zhaoyi Meng, Yan Xiong,

Fuyou Miao, Xianjin Fang, Caichang Tu, Renjie Ji

USENIX Security 2023

Presenter: Wansen Wang

USTC
University of Science and
Technology of ChinaBackground

Wide usage
• financial industry

• Internet of Things

• …

High value
• managing assets

• market cap of ethers keeps
growing

Attractive for attackers
• June 2016, DAO, $150M

• July 2017, Parity wallet, $30M

• August 2021, Poly Network, $27M

It is necessary to guarantee the financial security of
Ethereum smart contracts

USTC
University of Science and
Technology of ChinaExisting Security Analyzers

• Automated bug-finding tools
➢ support automated analysis on a great amount of smart

contracts

➢ based on pre-defined patterns and not accurate enough

• Semi-automated verification frameworks

• Automated verifiers

USTC
University of Science and
Technology of ChinaExisting Security Analyzers

• Automated bug-finding tools

• Semi-automated verification frameworks
➢ formally verify the correctness or security of smart contracts

➢ require manually-defined properties

• Automated verifiers

USTC
University of Science and
Technology of ChinaExisting Security Analyzers

• Automated bug-finding tools

• Semi-automated verification frameworks

• Automated verifiers
➢ try to provide sound and automated verification of pre-defined

properties for smart contracts

➢ eThor does not aim for the financial security of smart contracts

➢ SECURIFY does not support solving numerical constraints

➢ ZEUS has soundness issues in transforming contracts into IR

USTC
University of Science and
Technology of ChinaExample1

R (function f(d){stmt},? ,w 0)= R (stmt,1,Jhsa(f),T c,R o,E ni,hsv(cb),T v,R l,E ni,hsv(calltype),T v,R l,E ni,hsv(depth),T v,R l,E niK

·w 0·seq(d))[{[Fr(sv(cb)),FR (s(seq(d)))]− []! [C alle(Jw 0[1],sa(f),sv(cb)K·s(seq(d)))], (ext_call)

[C alle(Jw 0[1],sa(f),sv(cb)K·s(seq(d))),Evar(e(w 0)),G var(Jw 0[1]K·g(w 0)\e(w 0))]− []! [V ar1(Jsa(f),sv(cb),EX T ,0K·s(w 0)·s(seq(d)))],...}

(recv_ext)

R (v1 v2;stmt,i,w)= R (stmt,i◦ 1,w)[{[V ari(s(w))]− []! [V ari◦1(s(w)|
sv(v1)

sv(v2)
)]} (var_assign)

R (t v1 v2;stmt,i,w)= R (stmt,i◦ 1,w ·Jhsv(v1),T v,R l,E niK)[{[V ari(s(w))]− []! [V ari◦ 1(s(w)·Jsv(v2)K)]} (var_declare)

R (return,i,w)= {[V ari(s(w))]− [P red_eq(w [3],EX T)]! [G var(Jw [5]K·g(w)\e(w)),Evar(e(w))],...} (ret_ext)

Figure 3:Parts ofthe translation offunctions and statem ents.

that term sv(v1) is replaced by sv(v2) w hen applying the
rule.If the variable v1 in an assignm ent statem ent is new ly
declared,e.g.,t v1 v2,rule var_declare is generated.A n
additional term sv(v2) is added into the Vari◦1 fact of rule
var_declare and a new tuple is added into w ,w hich m eans
thata new variable isintroduced.

2)R eturn statem ents.T he statem entreturn is translated
into rules ret_ext and ret_in.For instance,if the function
is invoked by an externalaccount,the statem entis translated
into ret_ext.T he term s denoting globalvariables ofaccount
c and the ether balances of allaccounts are putinto G varand
Evar facts respectively. T he local variables w ill no longer
be used and the corresponding term s w illnotbe m aintained.
H ere,w [5]denotes the address of the contract to w hich the
invoked function f belongs.Pred_eq is a factdenoting equal-
ity betw een term s [39].W e use itto determ ine w hether w [3],
i.e.,sv(calltype)isequalto EX T ,corresponding to the case
thatthe function is invoked by externalaccounts.Sim ilarly,
the statem entreturn is translated into ret_in to denote the
case thatthe function isinvoked by contractaccounts.

A dversaries.H ere w e introduce the m odeling of the capa-
bility C 1,C 2 of adversaries m entioned in Section 3.2,and the
m odeling ofC 3 w illbe introduced in Section 6.1.

C 1:T he operation thatan adversary,besides norm alpartic-
ipants,sends transactions can also be m odeled by ext_call.
Therefore,no additionalrules forthe operation are provided.

C 2:For each function f in the contractof accountc,m ulti-
ple rules are generated to indicate thatif the fallback function
of the adversary is triggered by the execution of the contract
ofc,the adversary can send an internaltransaction to invoke
any function f in the contractof c.T he details of these rules
are show n in A ppendix A .1.











browser/SmartWebLock2.sol

要快速掌握以太坊智能合约与DApp开发，推荐汇智网的以太坊开发教程。

编译

contract Ex1{
 mapping(address=>uint) balances;
 constructor() public{
 balances[0x12] = 100;
 }
 function transfer (address to,uint value) public{
 uint val1 = balances[msg.sender] - value;
 uint val2 = balances[to] + value;
 balances[msg.sender] = val1;
 balances[to] = val2;

 return;
 }
}

contract Ex2{
 mapping(address=>uint) balances;
 function dice(uint bet) public{
 uint prize = bet * 9 / 10;
 if (block.timestamp % 2 == 1)
 {
 balances[msg.sender] = balances[msg.sender]+prize;
 }

 if (block.timestamp % 2 == 0)
 {
 balances[msg.sender] = balances[msg.sender]-bet;
 }
 }
}

  0 [2] 仅remix交易, 脚本 

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32

以太坊开发教程

以太坊开发工具

Remix简明教程

智能合约交互工具

Remix新版本中文

Figure 4:Illustrative exam ple Ex1.

{ Calle 𝜎𝑎 (Ex1) ,𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,𝜎𝑎 (0x12) ,𝜎𝑣(value) ,Gvar 𝜎𝑎 (Ex1) ,𝜎𝑎 (100) }

{Var1 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (100) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) }

{Var11 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT, 𝜎𝑎 (Ex1) ,𝜎𝑎 (100) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (100) }

{Var111 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (100) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (0) ,𝜎𝑎 (100) }

{Var1111 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (0) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (0) ,𝜎𝑎 (200) }

{Gvar 𝜎𝑎 (Ex1) ,𝜎𝑎 (200) }

(Line 7)

(Line 8)

(Line 9)

(Line 10)

(Line 11)

var_declare

var_declare

var_assign

var_assign

ret_ext

recv_ext

{Gvar(𝜎𝑎 (Ex1) , 𝜎𝑎 (100))}

ext_call

{Var11111 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (200) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (0) ,𝜎𝑎 (200) }

Figure 5:The execution thatm odels an attack on Ex1.

4.3 A n illustrative exam ple

Fig. 4 show s a sim plified version of a practical sm art con-
tract,w hich is w ith a vulnerability of transferM int[8].H ere,
transferM int is a new type of vulnerability,w hich could be
exploited by attackers to obtain unlim ited tokens by m anip-
ulating the param eters of address type.W e use the contract
nam e Ex1 to denote the address of the account w ho ow ns
this contract.T he function constructor is used to initialize
the global variable balances denoting the token balances
ofaccounts.A fterinitialization,the accountofaddress 0x12
has 100 tokens.T he function transfer(to,value) can be
called by an accountto send a certain am ountof tokens,i.e.,
value,to the accountofaddress to.

A n execution of the m odel that corresponds to the at-
tack is show n in Fig. 5. Since function transfer does
notm odify the ether balance of any account,w e om itEvar
fact in the figure. H ence,in the execution, the initial state
is {G var(sa(Ex1),sa(100))} w here w 0[1]= sa(Ex1) and
g(w 0)\e(w 0)= Jsa(100)K.N ext,an externalaccountinvokes
transfer w hereby the rule ext_call is applied such that
Calle(sa(Ex1),sa(transfer),sv(cb),sv(to),sv(value))is
added to the new state.Since sv(cb),sv(to)and sv(value)
can be arbitrary values, in this execution, they can be in-
stantiated as sa(0x12),sa(0x12) and sc(100) respectively.

5

• Normal case:

balances[msg.sender]-=value, balances[to]+=value

USTC
University of Science and
Technology of ChinaExample1

R (function f(d){stmt},? ,w 0)= R (stmt,1,Jhsa(f),T c,R o,E ni,hsv(cb),T v,R l,E ni,hsv(calltype),T v,R l,E ni,hsv(depth),T v,R l,E niK

·w 0·seq(d))[{[Fr(sv(cb)),FR (s(seq(d)))]− []! [C alle(Jw 0[1],sa(f),sv(cb)K·s(seq(d)))], (ext_call)

[C alle(Jw 0[1],sa(f),sv(cb)K·s(seq(d))),Evar(e(w 0)),G var(Jw 0[1]K·g(w 0)\e(w 0))]− []! [V ar1(Jsa(f),sv(cb),EX T ,0K·s(w 0)·s(seq(d)))],...}

(recv_ext)

R (v1 v2;stmt,i,w)= R (stmt,i◦ 1,w)[{[V ari(s(w))]− []! [V ari◦1(s(w)|
sv(v1)

sv(v2)
)]} (var_assign)

R (t v1 v2;stmt,i,w)= R (stmt,i◦ 1,w ·Jhsv(v1),T v,R l,E niK)[{[V ari(s(w))]− []! [V ari◦ 1(s(w)·Jsv(v2)K)]} (var_declare)

R (return,i,w)= {[V ari(s(w))]− [P red_eq(w [3],EX T)]! [G var(Jw [5]K·g(w)\e(w)),Evar(e(w))],...} (ret_ext)

Figure 3:Parts ofthe translation offunctions and statem ents.

that term sv(v1) is replaced by sv(v2) w hen applying the
rule.If the variable v1 in an assignm ent statem ent is new ly
declared,e.g.,t v1 v2,rule var_declare is generated.A n
additional term sv(v2) is added into the Vari◦1 fact of rule
var_declare and a new tuple is added into w ,w hich m eans
thata new variable isintroduced.

2)R eturn statem ents.T he statem entreturn is translated
into rules ret_ext and ret_in.For instance,if the function
is invoked by an externalaccount,the statem entis translated
into ret_ext.T he term s denoting globalvariables ofaccount
c and the ether balances of allaccounts are putinto G varand
Evar facts respectively. T he local variables w ill no longer
be used and the corresponding term s w illnotbe m aintained.
H ere,w [5]denotes the address of the contract to w hich the
invoked function f belongs.Pred_eq is a factdenoting equal-
ity betw een term s [39].W e use itto determ ine w hether w [3],
i.e.,sv(calltype)isequalto EX T ,corresponding to the case
thatthe function is invoked by externalaccounts.Sim ilarly,
the statem entreturn is translated into ret_in to denote the
case thatthe function isinvoked by contractaccounts.

A dversaries.H ere w e introduce the m odeling of the capa-
bility C 1,C 2 of adversaries m entioned in Section 3.2,and the
m odeling ofC 3 w illbe introduced in Section 6.1.

C 1:T he operation thatan adversary,besides norm alpartic-
ipants,sends transactions can also be m odeled by ext_call.
Therefore,no additionalrules forthe operation are provided.

C 2:For each function f in the contractof accountc,m ulti-
ple rules are generated to indicate thatif the fallback function
of the adversary is triggered by the execution of the contract
ofc,the adversary can send an internaltransaction to invoke
any function f in the contractof c.T he details of these rules
are show n in A ppendix A .1.











browser/SmartWebLock2.sol

要快速掌握以太坊智能合约与DApp开发，推荐汇智网的以太坊开发教程。

编译

contract Ex1{
 mapping(address=>uint) balances;
 constructor() public{
 balances[0x12] = 100;
 }
 function transfer (address to,uint value) public{
 uint val1 = balances[msg.sender] - value;
 uint val2 = balances[to] + value;
 balances[msg.sender] = val1;
 balances[to] = val2;

 return;
 }
}

contract Ex2{
 mapping(address=>uint) balances;
 function dice(uint bet) public{
 uint prize = bet * 9 / 10;
 if (block.timestamp % 2 == 1)
 {
 balances[msg.sender] = balances[msg.sender]+prize;
 }

 if (block.timestamp % 2 == 0)
 {
 balances[msg.sender] = balances[msg.sender]-bet;
 }
 }
}

  0 [2] 仅remix交易, 脚本 

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32

以太坊开发教程

以太坊开发工具

Remix简明教程

智能合约交互工具

Remix新版本中文

Figure 4:Illustrative exam ple Ex1.

{ Calle 𝜎𝑎 (Ex1) ,𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,𝜎𝑎 (0x12) ,𝜎𝑣(value) ,Gvar 𝜎𝑎 (Ex1) ,𝜎𝑎 (100) }

{Var1 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (100) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) }

{Var11 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT, 𝜎𝑎 (Ex1) ,𝜎𝑎 (100) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (100) }

{Var111 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (100) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (0) ,𝜎𝑎 (100) }

{Var1111 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (0) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (0) ,𝜎𝑎 (200) }

{Gvar 𝜎𝑎 (Ex1) ,𝜎𝑎 (200) }

(Line 7)

(Line 8)

(Line 9)

(Line 10)

(Line 11)

var_declare

var_declare

var_assign

var_assign

ret_ext

recv_ext

{Gvar(𝜎𝑎 (Ex1) , 𝜎𝑎 (100))}

ext_call

{Var11111 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (200) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (0) ,𝜎𝑎 (200) }

Figure 5:The execution thatm odels an attack on Ex1.

4.3 A n illustrative exam ple

Fig. 4 show s a sim plified version of a practical sm art con-
tract,w hich is w ith a vulnerability of transferM int[8].H ere,
transferM int is a new type of vulnerability,w hich could be
exploited by attackers to obtain unlim ited tokens by m anip-
ulating the param eters of address type.W e use the contract
nam e Ex1 to denote the address of the account w ho ow ns
this contract.T he function constructor is used to initialize
the global variable balances denoting the token balances
ofaccounts.A fterinitialization,the accountofaddress 0x12
has 100 tokens.T he function transfer(to,value) can be
called by an accountto send a certain am ountof tokens,i.e.,
value,to the accountofaddress to.

A n execution of the m odel that corresponds to the at-
tack is show n in Fig. 5. Since function transfer does
notm odify the ether balance of any account,w e om itEvar
fact in the figure. H ence,in the execution, the initial state
is {G var(sa(Ex1),sa(100))} w here w 0[1]= sa(Ex1) and
g(w 0)\e(w 0)= Jsa(100)K.N ext,an externalaccountinvokes
transfer w hereby the rule ext_call is applied such that
Calle(sa(Ex1),sa(transfer),sv(cb),sv(to),sv(value))is
added to the new state.Since sv(cb),sv(to)and sv(value)
can be arbitrary values, in this execution, they can be in-
stantiated as sa(0x12),sa(0x12) and sc(100) respectively.

5

• Abnormal case:

msg.sender=to, balances[to]+=value

overwrite the result of line 9

USTC
University of Science and
Technology of ChinaQuestions

• How to generate properties automatically?

• How to translate contracts into models automatically?

• How to verify the properties against the models
automatically?

USTC
University of Science and
Technology of ChinaAutomated Property Generation

Challenge

• There is no uniform standard for the security requirements of
contracts

• Most existing automated tools define patterns or properties
according to known vulnerabilities
➢ The vulnerabilities that can be covered are limited to known ones

➢ Even a variant of a known vulnerability may evade their detection

USTC
University of Science and
Technology of ChinaAutomated Property Generation

Our goal

• Analyze the financial security
of smart contracts

• Most of the contracts are
finance-related

(related to ethers or tokens)

Observation

• ethers and tokens

Focus on

USTC
University of Science and
Technology of ChinaAutomated Property Generation

Method

• Categories

➢ ether-related

➢ token-related

➢ indirect-related

➢ non-finance-related

USTC
University of Science and
Technology of ChinaAutomated Property Generation

Method

• Identification

➢ ether-related : transfer, send, call, payable

➢ token-related : balances, ownedTokenCount

(most token contracts use similar variable names to denote token

balances)

USTC
University of Science and
Technology of ChinaAutomated Property Generation

Method

• Property generation

➢ Invariant property（token-related）:

෍

𝑎∈𝐴1

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 = 𝐶1

USTC
University of Science and
Technology of ChinaAutomated Property Generation

Method

• Property generation

➢ Equivalence property (ether-related, token-related):

given two sequences A and B consisting of the same transactions

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠𝐴 𝑎𝑑𝑣 = 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠𝐵 𝑎𝑑𝑣
∧

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝐴 𝑎𝑑𝑣 = 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝐵(𝑎𝑑𝑣)

USTC
University of Science and
Technology of ChinaExample: invariant property

R (function f(d){stmt},? ,w 0)= R (stmt,1,Jhsa(f),T c,R o,E ni,hsv(cb),T v,R l,E ni,hsv(calltype),T v,R l,E ni,hsv(depth),T v,R l,E niK

·w 0·seq(d))[{[Fr(sv(cb)),FR (s(seq(d)))]− []! [C alle(Jw 0[1],sa(f),sv(cb)K·s(seq(d)))], (ext_call)

[C alle(Jw 0[1],sa(f),sv(cb)K·s(seq(d))),Evar(e(w 0)),G var(Jw 0[1]K·g(w 0)\e(w 0))]− []! [V ar1(Jsa(f),sv(cb),EX T ,0K·s(w 0)·s(seq(d)))],...}

(recv_ext)

R (v1 v2;stmt,i,w)= R (stmt,i◦ 1,w)[{[V ari(s(w))]− []! [V ari◦1(s(w)|
sv(v1)

sv(v2)
)]} (var_assign)

R (t v1 v2;stmt,i,w)= R (stmt,i◦ 1,w ·Jhsv(v1),T v,R l,E niK)[{[V ari(s(w))]− []! [V ari◦ 1(s(w)·Jsv(v2)K)]} (var_declare)

R (return,i,w)= {[V ari(s(w))]− [P red_eq(w [3],EX T)]! [G var(Jw [5]K·g(w)\e(w)),Evar(e(w))],...} (ret_ext)

Figure 3:Parts ofthe translation offunctions and statem ents.

that term sv(v1) is replaced by sv(v2) w hen applying the
rule.If the variable v1 in an assignm ent statem ent is new ly
declared,e.g.,t v1 v2,rule var_declare is generated.A n
additional term sv(v2) is added into the Vari◦1 fact of rule
var_declare and a new tuple is added into w ,w hich m eans
thata new variable isintroduced.

2)R eturn statem ents.T he statem entreturn is translated
into rules ret_ext and ret_in.For instance,if the function
is invoked by an externalaccount,the statem entis translated
into ret_ext.T he term s denoting globalvariables ofaccount
c and the ether balances of allaccounts are putinto G varand
Evar facts respectively. T he local variables w ill no longer
be used and the corresponding term s w illnotbe m aintained.
H ere,w [5]denotes the address of the contract to w hich the
invoked function f belongs.Pred_eq is a factdenoting equal-
ity betw een term s [39].W e use itto determ ine w hether w [3],
i.e.,sv(calltype)isequalto EX T ,corresponding to the case
thatthe function is invoked by externalaccounts.Sim ilarly,
the statem entreturn is translated into ret_in to denote the
case thatthe function isinvoked by contractaccounts.

A dversaries.H ere w e introduce the m odeling of the capa-
bility C 1,C 2 of adversaries m entioned in Section 3.2,and the
m odeling ofC 3 w illbe introduced in Section 6.1.

C 1:T he operation thatan adversary,besides norm alpartic-
ipants,sends transactions can also be m odeled by ext_call.
Therefore,no additionalrules forthe operation are provided.

C 2:For each function f in the contractof accountc,m ulti-
ple rules are generated to indicate thatif the fallback function
of the adversary is triggered by the execution of the contract
ofc,the adversary can send an internaltransaction to invoke
any function f in the contractof c.T he details of these rules
are show n in A ppendix A .1.











browser/SmartWebLock2.sol

要快速掌握以太坊智能合约与DApp开发，推荐汇智网的以太坊开发教程。

编译

contract Ex1{
 mapping(address=>uint) balances;
 constructor() public{
 balances[0x12] = 100;
 }
 function transfer (address to,uint value) public{
 uint val1 = balances[msg.sender] - value;
 uint val2 = balances[to] + value;
 balances[msg.sender] = val1;
 balances[to] = val2;

 return;
 }
}

contract Ex2{
 mapping(address=>uint) balances;
 function dice(uint bet) public{
 uint prize = bet * 9 / 10;
 if (block.timestamp % 2 == 1)
 {
 balances[msg.sender] = balances[msg.sender]+prize;
 }

 if (block.timestamp % 2 == 0)
 {
 balances[msg.sender] = balances[msg.sender]-bet;
 }
 }
}

  0 [2] 仅remix交易, 脚本 

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32

以太坊开发教程

以太坊开发工具

Remix简明教程

智能合约交互工具

Remix新版本中文

Figure 4:Illustrative exam ple Ex1.

{ Calle 𝜎𝑎 (Ex1) ,𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,𝜎𝑎 (0x12) ,𝜎𝑣(value) ,Gvar 𝜎𝑎 (Ex1) ,𝜎𝑎 (100) }

{Var1 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (100) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) }

{Var11 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT, 𝜎𝑎 (Ex1) ,𝜎𝑎 (100) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (100) }

{Var111 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (100) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (0) ,𝜎𝑎 (100) }

{Var1111 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (0) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (0) ,𝜎𝑎 (200) }

{Gvar 𝜎𝑎 (Ex1) ,𝜎𝑎 (200) }

(Line 7)

(Line 8)

(Line 9)

(Line 10)

(Line 11)

var_declare

var_declare

var_assign

var_assign

ret_ext

recv_ext

{Gvar(𝜎𝑎 (Ex1) , 𝜎𝑎 (100))}

ext_call

{Var11111 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (200) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (0) ,𝜎𝑎 (200) }

Figure 5:The execution thatm odels an attack on Ex1.

4.3 A n illustrative exam ple

Fig. 4 show s a sim plified version of a practical sm art con-
tract,w hich is w ith a vulnerability of transferM int[8].H ere,
transferM int is a new type of vulnerability,w hich could be
exploited by attackers to obtain unlim ited tokens by m anip-
ulating the param eters of address type.W e use the contract
nam e Ex1 to denote the address of the account w ho ow ns
this contract.T he function constructor is used to initialize
the global variable balances denoting the token balances
ofaccounts.A fterinitialization,the accountofaddress 0x12
has 100 tokens.T he function transfer(to,value) can be
called by an accountto send a certain am ountof tokens,i.e.,
value,to the accountofaddress to.

A n execution of the m odel that corresponds to the at-
tack is show n in Fig. 5. Since function transfer does
notm odify the ether balance of any account,w e om itEvar
fact in the figure. H ence,in the execution, the initial state
is {G var(sa(Ex1),sa(100))} w here w 0[1]= sa(Ex1) and
g(w 0)\e(w 0)= Jsa(100)K.N ext,an externalaccountinvokes
transfer w hereby the rule ext_call is applied such that
Calle(sa(Ex1),sa(transfer),sv(cb),sv(to),sv(value))is
added to the new state.Since sv(cb),sv(to)and sv(value)
can be arbitrary values, in this execution, they can be in-
stantiated as sa(0x12),sa(0x12) and sc(100) respectively.

5

• Abnormal case:

msg.sender=to, balances[to]+=value

USTC
University of Science and
Technology of ChinaExample: invariant property

R (function f(d){stmt},? ,w 0)= R (stmt,1,Jhsa(f),T c,R o,E ni,hsv(cb),T v,R l,E ni,hsv(calltype),T v,R l,E ni,hsv(depth),T v,R l,E niK

·w 0·seq(d))[{[Fr(sv(cb)),FR (s(seq(d)))]− []! [C alle(Jw 0[1],sa(f),sv(cb)K·s(seq(d)))], (ext_call)

[C alle(Jw 0[1],sa(f),sv(cb)K·s(seq(d))),Evar(e(w 0)),G var(Jw 0[1]K·g(w 0)\e(w 0))]− []! [V ar1(Jsa(f),sv(cb),EX T ,0K·s(w 0)·s(seq(d)))],...}

(recv_ext)

R (v1 v2;stmt,i,w)= R (stmt,i◦ 1,w)[{[V ari(s(w))]− []! [V ari◦1(s(w)|
sv(v1)

sv(v2)
)]} (var_assign)

R (t v1 v2;stmt,i,w)= R (stmt,i◦ 1,w ·Jhsv(v1),T v,R l,E niK)[{[V ari(s(w))]− []! [V ari◦ 1(s(w)·Jsv(v2)K)]} (var_declare)

R (return,i,w)= {[V ari(s(w))]− [P red_eq(w [3],EX T)]! [G var(Jw [5]K·g(w)\e(w)),Evar(e(w))],...} (ret_ext)

Figure 3:Parts ofthe translation offunctions and statem ents.

that term sv(v1) is replaced by sv(v2) w hen applying the
rule.If the variable v1 in an assignm ent statem ent is new ly
declared,e.g.,t v1 v2,rule var_declare is generated.A n
additional term sv(v2) is added into the Vari◦1 fact of rule
var_declare and a new tuple is added into w ,w hich m eans
thata new variable isintroduced.

2)R eturn statem ents.T he statem entreturn is translated
into rules ret_ext and ret_in.For instance,if the function
is invoked by an externalaccount,the statem entis translated
into ret_ext.T he term s denoting globalvariables ofaccount
c and the ether balances of allaccounts are putinto G varand
Evar facts respectively. T he local variables w ill no longer
be used and the corresponding term s w illnotbe m aintained.
H ere,w [5]denotes the address of the contract to w hich the
invoked function f belongs.Pred_eq is a factdenoting equal-
ity betw een term s [39].W e use itto determ ine w hether w [3],
i.e.,sv(calltype)isequalto EX T ,corresponding to the case
thatthe function is invoked by externalaccounts.Sim ilarly,
the statem entreturn is translated into ret_in to denote the
case thatthe function isinvoked by contractaccounts.

A dversaries.H ere w e introduce the m odeling of the capa-
bility C 1,C 2 of adversaries m entioned in Section 3.2,and the
m odeling ofC 3 w illbe introduced in Section 6.1.

C 1:T he operation thatan adversary,besides norm alpartic-
ipants,sends transactions can also be m odeled by ext_call.
Therefore,no additionalrules forthe operation are provided.

C 2:For each function f in the contractof accountc,m ulti-
ple rules are generated to indicate thatif the fallback function
of the adversary is triggered by the execution of the contract
ofc,the adversary can send an internaltransaction to invoke
any function f in the contractof c.T he details of these rules
are show n in A ppendix A .1.











browser/SmartWebLock2.sol

要快速掌握以太坊智能合约与DApp开发，推荐汇智网的以太坊开发教程。

编译

contract Ex1{
 mapping(address=>uint) balances;
 constructor() public{
 balances[0x12] = 100;
 }
 function transfer (address to,uint value) public{
 uint val1 = balances[msg.sender] - value;
 uint val2 = balances[to] + value;
 balances[msg.sender] = val1;
 balances[to] = val2;

 return;
 }
}

contract Ex2{
 mapping(address=>uint) balances;
 function dice(uint bet) public{
 uint prize = bet * 9 / 10;
 if (block.timestamp % 2 == 1)
 {
 balances[msg.sender] = balances[msg.sender]+prize;
 }

 if (block.timestamp % 2 == 0)
 {
 balances[msg.sender] = balances[msg.sender]-bet;
 }
 }
}

  0 [2] 仅remix交易, 脚本 

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32

以太坊开发教程

以太坊开发工具

Remix简明教程

智能合约交互工具

Remix新版本中文

Figure 4:Illustrative exam ple Ex1.

{ Calle 𝜎𝑎 (Ex1) ,𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,𝜎𝑎 (0x12) ,𝜎𝑣(value) ,Gvar 𝜎𝑎 (Ex1) ,𝜎𝑎 (100) }

{Var1 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (100) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) }

{Var11 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT, 𝜎𝑎 (Ex1) ,𝜎𝑎 (100) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (100) }

{Var111 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (100) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (0) ,𝜎𝑎 (100) }

{Var1111 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (0) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (0) ,𝜎𝑎 (200) }

{Gvar 𝜎𝑎 (Ex1) ,𝜎𝑎 (200) }

(Line 7)

(Line 8)

(Line 9)

(Line 10)

(Line 11)

var_declare

var_declare

var_assign

var_assign

ret_ext

recv_ext

{Gvar(𝜎𝑎 (Ex1) , 𝜎𝑎 (100))}

ext_call

{Var11111 𝜎𝑎 (transfer) ,𝜎𝑎 (0x12) ,EXT,𝜎𝑎 (Ex1) ,𝜎𝑎 (200) ,𝜎𝑎 (0x12) ,𝜎𝑎 (100) ,𝜎𝑎 (0) ,𝜎𝑎 (200) }

Figure 5:The execution thatm odels an attack on Ex1.

4.3 A n illustrative exam ple

Fig. 4 show s a sim plified version of a practical sm art con-
tract,w hich is w ith a vulnerability of transferM int[8].H ere,
transferM int is a new type of vulnerability,w hich could be
exploited by attackers to obtain unlim ited tokens by m anip-
ulating the param eters of address type.W e use the contract
nam e Ex1 to denote the address of the account w ho ow ns
this contract.T he function constructor is used to initialize
the global variable balances denoting the token balances
ofaccounts.A fterinitialization,the accountofaddress 0x12
has 100 tokens.T he function transfer(to,value) can be
called by an accountto send a certain am ountof tokens,i.e.,
value,to the accountofaddress to.

A n execution of the m odel that corresponds to the at-
tack is show n in Fig. 5. Since function transfer does
notm odify the ether balance of any account,w e om itEvar
fact in the figure. H ence,in the execution, the initial state
is {G var(sa(Ex1),sa(100))} w here w 0[1]= sa(Ex1) and
g(w 0)\e(w 0)= Jsa(100)K.N ext,an externalaccountinvokes
transfer w hereby the rule ext_call is applied such that
Calle(sa(Ex1),sa(transfer),sv(cb),sv(to),sv(value))is
added to the new state.Since sv(cb),sv(to)and sv(value)
can be arbitrary values, in this execution, they can be in-
stantiated as sa(0x12),sa(0x12) and sc(100) respectively.

5

• Abnormal case:

σ𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 += 𝑣𝑎𝑙𝑢𝑒

The invariant property is

USTC
University of Science and
Technology of ChinaAutomated Property Generation

Advantage of our properties

• Cover 6 types of vulnerabilities
➢ Invariant property: overflow/underflow, transferMint

➢ Equivalence property: reentrancy, gasless send, TD, TOD

• Not limited to known vulnerabilities
➢ transferMint (not supported by automated tools in our evaluation)

USTC
University of Science and
Technology of ChinaAutomated Modeling and Verification

2-step modeling

• Generates different models according to different properties
➢ Invariant property: 1-safety

➢ Equivalence property: 2-safety

• Independent modeling module generates partial models of
smart contracts (Written in Solidity language)

• Complementary modeling module modifies the models
according to different properties

USTC
University of Science and
Technology of ChinaAutomated Modeling and Verification

2-step modeling

• We prove the soundness of translation from Solidity language
to our models based on KSolidity (a custom semantics of
Solidity, IEEE S&P 2022)

Theorem 1 (Soundness). If an invariant property (or equivalence
property) holds in the complementary model of FASVERIF, it holds
in real-world transactions interpreted by KSolidity semantics.

USTC
University of Science and
Technology of ChinaAutomated Modeling and Verification

Verification

Input a property and a model

Searching for a finished execution of the model

Search
fail?

Solving numerical constraints

Constraints
Satisfied?

Current execution does not exist

Output that the
property is valid

Output that the
property is not valid

yes

yes

no

no

Tamarin prover

Z3

USTC
University of Science and
Technology of ChinaEvaluation

Dataset

• Vulnerability dataset: 549 contracts collected from public datasets
of other works
‐ transaction order dependency (TOD)

‐ timestamp dependency(TD)

‐ Reentrancy

‐ gasless send

‐ overflow/underflow

‐ transferMint

• Real-world dataset: 30577 contracts crawled from Etherscan

USTC
University of Science and
Technology of ChinaEvaluation

Statistical analysis

ether-related

21%

token-related

25%

both-related

19%

indirect-

related

26%

other

9%

threshold 70 75 80 85 90

Acc(%) 98.31 98.32 98.32 98.50 98.46

F1(%) 98.13 98.14 98.14 98.31 98.27

• 27858/30577 finance-related contracts

• the accuracy of our method to identify
token contracts is higher than 98%

USTC
University of Science and
Technology of ChinaEvaluation

Comparison

• FASVERIF achieves higher accuracy and F1 values than other
automated tools

• Only FASVERIF can detect all of the 6 types of vulnerabilities

USTC
University of Science and
Technology of ChinaEvaluation

Analysis of 1700 real-world contracts

• 10 contracts with transferMint, 3 contracts with TD

USTC
University of Science and
Technology of ChinaEvaluation

Limitations (Still working on them)

• The average time to analyze a contract using FASVERIF is longer
than the one using other automated tools.

• There are still some financial security properties and financial
vulnerabilities that are unsupported by FASVERIF

• Solidity language is not fully supported.

• …

USTC
University of Science and
Technology of China

Thank you for listening!

Presenter : Wansen Wang
wangws@mail.ustc.edu.cn

mailto:wangws@mail.ustc.edu.cn

