sity of Science and
logy of China

Automated Inference on Financial
Security of Ethereum Smart Contracts

Wansen Wang, Wenchao Huang, Zhaoyi Meng, Yan Xiong,
Fuyou Miao, Xianjin Fang, Caichang Tu, Renjie Ji

USENIX Security 2023

Presenter: Wansen Wang



’ Background

Wide usage

. financial industry Attractive for attackers
* Internet of Things  June 2016, DAO, $150M
. ..  July 2017, Parity wallet, $30M

. « August 2021, Poly Network, $27M
High value

managing assets

market cap of ethers keeps
growing

It is necessary to guarantee the financial security of
Ethereum smart contracts



’ Existing Security Analyzers

« Automated bug-finding tools

> support automated analysis on a great amount of smart
contracts

> based on pre-defined patterns and not accurate enough

« Semi-automated verification frameworks

« Automated verifiers



’ Existing Security Analyzers

« Automated bug-finding tools
« Semi-automated verification frameworks

» formally verify the correctness or security of smart contracts
» require manually-defined properties

« Automated verifiers



’ Existing Security Analyzers

« Automated bug-finding tools

« Semi-automated verification frameworks

« Automated verifiers

> try to provide sound and automated verification of pre-defined
properties for smart contracts

» eThor does not aim for the financial security of smart contracts
» SECURIFY does not support solving numerical constraints
» ZEUS has soundness issues in transforming contracts into IR



’ Example1

1 contract Ex1{

2 mapping(address=>uint) balances;

3 constructor() public{

4 balances[0x12] = 100;

5 }

6 function transfer (address to,uint value) public{
7 uint vall = balances[msg.sender] - value;
8 uint val2 = balances[to] + value;

9 balances[msg.sender] = vall;
10 balances[to] = val2;
11 return;
12 }
13}

 Normal case:
balances[msg.sender]-=value, balances|to]+=value



Example1

1 contract Ex1{

2 mapping(address=>uint) balances;

3 constructor() public{

4 balances[0x12] = 100;

5 }

6 function transfer (address to,uint value) public{
7 uint vall = balances[msg.sender] - value;

8 uint val2 = balances[to] + value;

9 balances[msg.sender] = vall;
10 balances[to] = val2; overwrite the result of line 9
11 return;
12 }
13}

« Abnormal case:
msg.sender=to, balances|to]+=value



’ Questions

« How to generate properties automatically?
« How to translate contracts into models automatically?

« How to verify the properties against the models
automatically?



’ Automated Property Generation

Challenge

« There is no uniform standard for the security requirements of
contracts

« Most existing automated tools define patterns or properties
according to known vulnerabilities
» The vulnerabilities that can be covered are limited to known ones
» Even a variant of a known vulnerability may evade their detection



’ Automated Property Generation

Observation Our goal
« Most of the contracts are « Analyze the financial security
finance-related of smart contracts

(related to ethers or tokens)

NS

Focus on

« ethers and tokens



’ Automated Property Generation

Method

« Categories
> ether-related

> token-related
> indirect-related

> non-finance-related



’ Automated Property Generation

Method

» |dentification
> ether-related : transfer, send, call, payable

> token-related : balances, ownedTokenCount

(most token contracts use similar variable names to denote token

balances)



’ Automated Property Generation

Method

« Property generation

> Invariant property (token-related) :

2 balances = (C;

aEA1



’ Automated Property Generation

Method

« Property generation
» Equivalence property (ether-related, token-related):

given two sequences A and B consisting of the same transactions

balances,(adv) = balancesg(adv)
N
balance,(adv) = balanceg(adv)



’ Example: invariant property

contract Ex1{

coNOYUVTL A WN PR

¥

mapping(address=>uint) balances;
constructor() public{

balances[0x12] = 100;

function transfer (address to,uint value) public{

uint vall = balances[msg.sender] - value;
uint val2 = balances[to] + value;
balances[msg.sender] = vall;

balances[to] = val2;

return;

« Abnormal case:

msg.sender=to, balances[to]+=value



’ Example: invariant property

1 contract Ex1{

2 mapping(address=>uint) balances;

3 constructor() public{

4 balances[0x12] = 100;

5 }

6 function transfer (address to,uint value) public{
7 uint vall = balances[msg.sender] - value;
8 uint val2 = balances[to] + value;

9 balances[msg.sender] = vall;
10 balances[to] = val2;
11 return;
12 }
13}

The invariant property is violated

« Abnormal case:
Y. balances += value



’ Automated Property Generation

Advantage of our properties

« Cover 6 types of vulnerabilities
> Invariant property: overflow/underflow, transferMint
» Equivalence property: reentrancy, gasless send, TD, TOD

« Not limited to known vulnerabillities
> transferMint (not supported by automated tools in our evaluation)



’ Automated Modeling and Verification

2-step modeling

« Generates different models according to different properties

> Invariant property: 1-safety
» Equivalence property: 2-safety

« Independent modeling module generates partial models of
smart contracts (Written in Solidity language)

« Complementary modeling module modifies the models
according to different properties



’ Automated Modeling and Verification

2-step modeling

« We prove the soundness of translation from Solidity language
to our models based on KSolidity (a custom semantics of
Solidity, IEEE S&P 2022)

Theorem 1 (Soundness). If an invariant property (or equivalence
property) holds in the complementary model of FASVERIF, it holds
in real-world transactions interpreted by KSolidity semantics.



’ Automated Modeling and Verification

Verification

| Input a property and a model |

r X 1
t Searching for a finished execution of the model Tamarin prover

earc yes

fail? v

no [ Output that the J
o . ; : — property is valid
| Z3 Solving numerical constraints | |
L -
Constraints yes

Satisfied?

[ Output that the ]
property is not valid

Current execution does not exist
I




’ Evaluation

Dataset

« Vulnerability dataset: 549 contracts collected from public datasets
of other works
- transaction order dependency (TOD)
- timestamp dependency(TD)
- Reentrancy
- gasless send
- overflow/underflow
- transferMint

« Real-world dataset: 30577 contracts crawled from Etherscan



’ Evaluation

Statistical analysis

other
9%

ether-related
21%

threshold 80 85
Acc®) 9831 9832 98.32 | 98.50
F1(%) 98.13 98.14 98.14 | 98.31

 the accuracy of our method to identify

token contracts is higher than 98%

indirect-
related
26%

98.46
98.27

token-related

25%
4

both-related
19%

« 27858/30577 finance-related contracts



Evaluation

Comparison

Table 1: A comparison of representative automated analyzers for smart contracts. (Acc and F1 outside brackets correpsond to the
finance-vulnerable contracts, while those inside brackets correpsond to the vulnerable contracts, * denote automated verifiers)

Types of Osiris SECURIFY* Mythril OYENTE VERISMART | SmartCheck Slither Manticore eThor* | TASVERIF 7| |
Vulnerabilities Acc(%)| Fl1 Acc(%) | Fl Acc(%)| F1 | Acc(%)| Fl Acc(%)| F1 | Acc(%)| F1 Acc(%) | Fl Acc(%)| Fl1 Acc(%) | Fl Acc(9%)| Fl1 U
TOD-cth / /| 9643 | 0.98 / /| 4286 | 06 / / / / / / / / / 7 100 1|10
TOD-token / / / / / / / / / / / / / / / / / / 100 1
D 71.60 | 0.83 , | 4568 [ 062 | 7654 | 087 ; ) ; , 1605 | 0.26 | 24.69 | 038 , | 9506 [ 097 [
(70.37) | (0.82) (44.44) | (0.62) | (75.31) | (0.86) (14.81) | (0.25) | (23.46) | (0.38) (93.83) | (0.96)
66.67 | 0.79 | 7857 | 0.85 | 7142 | 0.81 | 73.81 | 0.85 7381 | 0.85 | 85.71 | 0.91 | 38.09 | 041 | 83.72 | 0.92 | 9048 | 0.94
reentrancy (69.05) | (0.81) | (76.19) | (0.84) | (69.04) | (0.8) | (76.19) | (0.86)| ' "1 16.19) | (0.86) | (83.33) | 0.90) | 35.71) | (0.40) | (86.05) | (0.93)] (88.10) | 0.93) || >
gasless send / /| 9219 | 0.95 | 8235 | 0.67 / / / /| 9219 | 095 | 8594 | 091 | 29.69 | 0.26 / / 100 1 |7
cverflow/underfion | 8120 | 089 ; .| 9530 | 097 [ 9027 [ 095 [ 9899 | 0.99 ) } ; ; 1940 | 0.11 ; P RN
(81.20) | (0.89) (95.30) 1 (0,97) | (90.27) 1 (0.95) | (98.99) | (0.99) (19.40) | (011) (99,33) | (0,99)
transferMint / / / / / / / / / / / / / / / / / / 100 T |0

« FASVERIF achieves higher accuracy and F1 values than other
automated tools

« Only FASVERIF can detect all of the 6 types of vulnerabilities




’ Evaluation

Analysis of 1700 real-world contracts

1 contract Ex1{

2 mapping(address=>uint) balances;

3 constructor() public{

4 balances[©x12] = 100;

5 }

6 function transfer(address to,uint value) public{
7 uint vall = balances[msg.sender] - value;
8 uint val2 = balances[to] + value;

9 balances[msg.sender] = vall;

10 balances[to] = val2;

11 return;

12 }

13 }

« 10 contracts with transferMint, 3 contracts with TD



’ Evaluation

Limitations (Still working on them)

« The average time to analyze a contract using FASVERIF is longer
than the one using other automated tools.

« There are still some financial security properties and financial
vulnerabilities that are unsupported by FASVERIF

« Solidity language is not fully supported.



STC

niversity of Science and
echnology of China

Thank you for listening!

Presenter : Wansen Wang
wangws@mail.ustc.edu.cn



mailto:wangws@mail.ustc.edu.cn

