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’ Background

Wide usage

. financial industry Attractive for attackers
* Internet of Things  June 2016, DAO, $150M
. ..  July 2017, Parity wallet, $30M

. « August 2021, Poly Network, $27M
High value

managing assets

market cap of ethers keeps
growing

It is necessary to guarantee the financial security of
Ethereum smart contracts



’ Existing Security Analyzers

« Automated bug-finding tools

> support automated analysis on a great amount of smart
contracts

> based on pre-defined patterns and not accurate enough

« Semi-automated verification frameworks

« Automated verifiers



’ Existing Security Analyzers

« Automated bug-finding tools
« Semi-automated verification frameworks

» formally verify the correctness or security of smart contracts
» require manually-defined properties

« Automated verifiers



’ Existing Security Analyzers

« Automated bug-finding tools

« Semi-automated verification frameworks

« Automated verifiers

> try to provide sound and automated verification of pre-defined
properties for smart contracts

» eThor does not aim for the financial security of smart contracts
» SECURIFY does not support solving numerical constraints
» ZEUS has soundness issues in transforming contracts into IR



’ Example1

1 contract Ex1{

2 mapping(address=>uint) balances;

3 constructor() public{

4 balances[0x12] = 100;

5 }

6 function transfer (address to,uint value) public{
7 uint vall = balances[msg.sender] - value;
8 uint val2 = balances[to] + value;

9 balances[msg.sender] = vall;
10 balances[to] = val2;
11 return;
12 }
13}

 Normal case:
balances[msg.sender]-=value, balances|to]+=value



Example1

1 contract Ex1{

2 mapping(address=>uint) balances;

3 constructor() public{

4 balances[0x12] = 100;

5 }

6 function transfer (address to,uint value) public{
7 uint vall = balances[msg.sender] - value;

8 uint val2 = balances[to] + value;

9 balances[msg.sender] = vall;
10 balances[to] = val2; overwrite the result of line 9
11 return;
12 }
13}

« Abnormal case:
msg.sender=to, balances|to]+=value



’ Questions

« How to generate properties automatically?
« How to translate contracts into models automatically?

« How to verify the properties against the models
automatically?



’ Automated Property Generation

Challenge

« There is no uniform standard for the security requirements of
contracts

« Most existing automated tools define patterns or properties
according to known vulnerabilities
» The vulnerabilities that can be covered are limited to known ones
» Even a variant of a known vulnerability may evade their detection



’ Automated Property Generation

Observation Our goal
« Most of the contracts are « Analyze the financial security
finance-related of smart contracts

(related to ethers or tokens)

NS

Focus on

« ethers and tokens



’ Automated Property Generation

Method

« Categories
> ether-related

> token-related
> indirect-related

> non-finance-related



’ Automated Property Generation

Method

» |dentification
> ether-related : transfer, send, call, payable

> token-related : balances, ownedTokenCount

(most token contracts use similar variable names to denote token

balances)



’ Automated Property Generation

Method

« Property generation

> Invariant property (token-related) :

2 balances = (C;

aEA1



’ Automated Property Generation

Method

« Property generation
» Equivalence property (ether-related, token-related):

given two sequences A and B consisting of the same transactions

balances,(adv) = balancesg(adv)
N
balance,(adv) = balanceg(adv)



’ Example: invariant property

contract Ex1{

coNOYUVTL A WN PR

¥

mapping(address=>uint) balances;
constructor() public{

balances[0x12] = 100;

function transfer (address to,uint value) public{

uint vall = balances[msg.sender] - value;
uint val2 = balances[to] + value;
balances[msg.sender] = vall;

balances[to] = val2;

return;

« Abnormal case:

msg.sender=to, balances[to]+=value



’ Example: invariant property

1 contract Ex1{

2 mapping(address=>uint) balances;

3 constructor() public{

4 balances[0x12] = 100;

5 }

6 function transfer (address to,uint value) public{
7 uint vall = balances[msg.sender] - value;
8 uint val2 = balances[to] + value;

9 balances[msg.sender] = vall;
10 balances[to] = val2;
11 return;
12 }
13}

The invariant property is violated

« Abnormal case:
Y. balances += value



’ Automated Property Generation

Advantage of our properties

« Cover 6 types of vulnerabilities
> Invariant property: overflow/underflow, transferMint
» Equivalence property: reentrancy, gasless send, TD, TOD

« Not limited to known vulnerabillities
> transferMint (not supported by automated tools in our evaluation)



’ Automated Modeling and Verification

2-step modeling

« Generates different models according to different properties

> Invariant property: 1-safety
» Equivalence property: 2-safety

« Independent modeling module generates partial models of
smart contracts (Written in Solidity language)

« Complementary modeling module modifies the models
according to different properties



’ Automated Modeling and Verification

2-step modeling

« We prove the soundness of translation from Solidity language
to our models based on KSolidity (a custom semantics of
Solidity, IEEE S&P 2022)

Theorem 1 (Soundness). If an invariant property (or equivalence
property) holds in the complementary model of FASVERIF, it holds
in real-world transactions interpreted by KSolidity semantics.



’ Automated Modeling and Verification

Verification

| Input a property and a model |

r X 1
t Searching for a finished execution of the model Tamarin prover

earc yes

fail? v

no [ Output that the J
o . ; : — property is valid
| Z3 Solving numerical constraints | |
L -
Constraints yes

Satisfied?

[ Output that the ]
property is not valid

Current execution does not exist
I




’ Evaluation

Dataset

« Vulnerability dataset: 549 contracts collected from public datasets
of other works
- transaction order dependency (TOD)
- timestamp dependency(TD)
- Reentrancy
- gasless send
- overflow/underflow
- transferMint

« Real-world dataset: 30577 contracts crawled from Etherscan



’ Evaluation

Statistical analysis

other
9%

ether-related
21%

threshold 80 85
Acc®) 9831 9832 98.32 | 98.50
F1(%) 98.13 98.14 98.14 | 98.31

 the accuracy of our method to identify

token contracts is higher than 98%

indirect-
related
26%

98.46
98.27

token-related

25%
4

both-related
19%

« 27858/30577 finance-related contracts



Evaluation

Comparison

Table 1: A comparison of representative automated analyzers for smart contracts. (Acc and F1 outside brackets correpsond to the
finance-vulnerable contracts, while those inside brackets correpsond to the vulnerable contracts, * denote automated verifiers)

Types of Osiris SECURIFY* Mythril OYENTE VERISMART | SmartCheck Slither Manticore eThor* | TASVERIF 7| |
Vulnerabilities Acc(%)| Fl1 Acc(%) | Fl Acc(%)| F1 | Acc(%)| Fl Acc(%)| F1 | Acc(%)| F1 Acc(%) | Fl Acc(%)| Fl1 Acc(%) | Fl Acc(9%)| Fl1 U
TOD-cth / /| 9643 | 0.98 / /| 4286 | 06 / / / / / / / / / 7 100 1|10
TOD-token / / / / / / / / / / / / / / / / / / 100 1
D 71.60 | 0.83 , | 4568 [ 062 | 7654 | 087 ; ) ; , 1605 | 0.26 | 24.69 | 038 , | 9506 [ 097 [
(70.37) | (0.82) (44.44) | (0.62) | (75.31) | (0.86) (14.81) | (0.25) | (23.46) | (0.38) (93.83) | (0.96)
66.67 | 0.79 | 7857 | 0.85 | 7142 | 0.81 | 73.81 | 0.85 7381 | 0.85 | 85.71 | 0.91 | 38.09 | 041 | 83.72 | 0.92 | 9048 | 0.94
reentrancy (69.05) | (0.81) | (76.19) | (0.84) | (69.04) | (0.8) | (76.19) | (0.86)| ' "1 16.19) | (0.86) | (83.33) | 0.90) | 35.71) | (0.40) | (86.05) | (0.93)] (88.10) | 0.93) || >
gasless send / /| 9219 | 0.95 | 8235 | 0.67 / / / /| 9219 | 095 | 8594 | 091 | 29.69 | 0.26 / / 100 1 |7
cverflow/underfion | 8120 | 089 ; .| 9530 | 097 [ 9027 [ 095 [ 9899 | 0.99 ) } ; ; 1940 | 0.11 ; P RN
(81.20) | (0.89) (95.30) 1 (0,97) | (90.27) 1 (0.95) | (98.99) | (0.99) (19.40) | (011) (99,33) | (0,99)
transferMint / / / / / / / / / / / / / / / / / / 100 T |0

« FASVERIF achieves higher accuracy and F1 values than other
automated tools

« Only FASVERIF can detect all of the 6 types of vulnerabilities




’ Evaluation

Analysis of 1700 real-world contracts

1 contract Ex1{

2 mapping(address=>uint) balances;

3 constructor() public{

4 balances[©x12] = 100;

5 }

6 function transfer(address to,uint value) public{
7 uint vall = balances[msg.sender] - value;
8 uint val2 = balances[to] + value;

9 balances[msg.sender] = vall;

10 balances[to] = val2;

11 return;

12 }

13 }

« 10 contracts with transferMint, 3 contracts with TD



’ Evaluation

Limitations (Still working on them)

« The average time to analyze a contract using FASVERIF is longer
than the one using other automated tools.

« There are still some financial security properties and financial
vulnerabilities that are unsupported by FASVERIF

« Solidity language is not fully supported.
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