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 Browsing history, communication records, ...
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Big Data Era
 Data collection

 Improving user experience, recommendation, ...

 Data analysis

User Data Data Collection Data Analysis
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Privacy Accidents

2017, Yahoo

breached 3 billion user data

2021, Facebook

1.5 billion user data sold

2020, Microsoft

exposed 250 million records

2022, Twitter

breached 540 million user data
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Laws for Privacy Protection
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Problem Definition

The edges of a graph may contain users’

Social Contacts Email CommunicationVote Network

sensitive information.
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Problem Definition
Related Tasks

Advertising Epidemiological StudyUser Protrait
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Problem Definition
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A graph G

An edge neighboring graph G’

Edge-DP: Limit the impact of any edge in the graph on the output 

Randomization

Algorithm

Statistical result

T satisfy

Pr[𝐴(𝐺) ∈ 𝑇]

Pr[𝐴(𝐺′) ∈ 𝑇]
≤ 𝑒𝜀
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Problem Definition

Private Tasks

Our goal: Synthesize a graph under edge-DP while ensuring high utility 

Private Data Synthesis
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Intuition

Dense Connection

Sparse Connection



Community Division
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Workflow of PrivGraph

Phase 1

Community Division 

Community Division
Phase 2

Information Extraction 

Community Division
Phase 3

Graph Reconstruction
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Workflow of PrivGraph
 Phase 1: Community Division (CD)

 Phase 2: Information Extraction (IE)

 Phase 3: Graph Reconstruction (GR)
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Experiment Setup

 6 real world datasets

 Dataset
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Experiment Setup
 Metrics

 TmF[2]

 Competitors
 PrivHRG[3]

 DER[4]
 LDPGen[1]

 Community Discovery: Normalized Mutual Information

 Node Information: Eigenvector Centrality Score

 Path Condition: Diameter

 Topology Structure: Clustering Coefficient, Modularity

 Degree Distribution

[2] 2015 ASONAM Differentially Private Publication of Social Graphs at Linear Cost

[3] 2015 SIGKDD Differentially Private Network Data Release via Structural Inference

[4] 2014 VLDBJ Correlated Network Data Publication via Differential Privacy

[1] 2017 CCS Generating Synthetic Decentralized Social Graphs with Local Differential Privacy
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Performance

Higher is better

PrivGraph outperforms other methods in most cases.

Lower is better
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PrivGraph outperforms other methods in most cases.
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Comparison with Tailored Methods

Lower is better

PrivGraph achieves competitive performance on the degree distribution.
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Preservation for Small Communities

Higher is better

PrivGraph can compensate the shortcoming of Louvain since the 
information extraction and graph reconstruction processes help to 
recover the small communities.

 Louvain adopted in phase 1 might miss the small communities[1] 

during the modularity optimization process.

[1] S. Fortunato and M. Barthelemy. Resolution limit in community detection. PNAS, 104(1):36–41, 2007. 
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Conclusion

 A deep analysis of existing solutions on differentially private 

graph synthesis

 A practical method PrivGraph to generate a synthetic graph 

under DP

 An extensive evaluation on multiple datasets and metrics to 

illustrate the superiority of PrivGraph
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Thank you for your attention

Email:

Q & A

yq21@zju.edu.cn


