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Abstract

Voice controllable systems rely on speech recognition and
speaker identification as the key enabling technologies. While
they bring revolutionary changes to our daily lives, their se-
curity has become a growing concern. Existing work has
demonstrated the feasibility of using maliciously crafted per-
turbations to manipulate speech or speaker recognition. Al-
though these attacks vary in targets and techniques, they all
require the addition of noise perturbations. While these pertur-
bations are generally restricted to L,-bounded neighborhood,
the added noises inevitably leave unnatural traces recogniz-
able by humans, and can be used for defense. To address
this limitation, we introduce a new class of adversarial audio
attack, named Semantically Meaningful Adversarial Audio
AttaCK (SMACK), where the inherent speech attributes (such
as prosody) are modified such that they still semantically rep-
resent the same speech and preserves the speech quality. The
efficacy of SMACK was evaluated against five transcription
systems and two speaker recognition systems in a black-box
manner. By manipulating semantic attributes, our adversarial
audio examples are capable of evading the state-of-the-art de-
fenses, with better speech naturalness compared to traditional
L,-bounded attacks in the human perceptual study.

1 Introduction

The advent of voice recognition is promoting the rapid growth
of voice controllable systems (VCS). The application of VCS
is ubiquitous with some being security-sensitive, ranging from
making phone calls to controlling household security systems.
It is reported that over 120 million people in the United States
use VCS, and the number is expected to increase to 130.1
million in 2025 [63].

Adversarial Attacks on VCS: On the other hand, the key
functionalities of VCS - automatic speech recognition (ASR)
and speaker recognition (SR) are driven by deep neural net-
works (DNNs), which have been shown to be vulnerable to
adversarial examples. Existing work in the field of adversar-
ial audio attacks focuses on crafting adversarial examples
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Figure 1: SMACK compared to traditional adversarial audio
examples against speech and speaker recognition.

by adding small perturbations to the original audio, such that
they will be interpreted differently by humans and recognition
algorithms. The perturbed audio can be used to mislead ASR
for malicious command injection [8, 16, 20, 60, 79], or con-
found SR to misidentify attackers as enrolled users [18,41,74].
In these attacks, adversarial example generation is modeled
as a constrained optimization problem with restrictions on the
magnitude of the perturbations. While existing attacks vary in
methodologies and targets, the perturbation is often optimized
based on an L,-bounded norm, and the artificially introduced
noises often inevitably leave distinguishable artifacts for both
humans and algorithms.

Why Semantic Perturbations: To address this limitation,
we propose semantic perturbations to modify the inherent
speech attributes, as shown in Figure 1. In contrast to tra-
ditional perturbations that can be introduced with the finest
granularity (pixels in the image domain and sample points
in the audio domain), semantic-preserving perturbations im-
pose additional constraints on the search space to achieve
better naturalness. An example of semantic adversarial exam-
ples in the image domain against face verification systems
is to manipulate inherent attributes (e.g., smile, mustache) to
maximize the preservation of the facial features [56]. Sim-
ilarly, we propose to only perturb the inherent attributes of
speech to maximize the preservation of speech quality (natu-
ralness). Particularly, we explore the manipulation of prosody,
a representative semantic attribute, to generate adversarial
audio examples in this paper. From the security perspective,
such naturalness has the potential to significantly improve the



stealthiness of the adversarial examples (see human percep-
tual study in Section 9). Furthermore, semantic perturbations
can better evade existing detection mechanisms that check
for artifacts from Lj-bounded adversarial perturbations (see
evaluation in Section 8).

Our Attack: To gain a deeper understanding on the feasi-
bility and limitation of adversarial semantic perturbation in
audio examples, we present our exploration of a new class
of adversarial attack, Semantically Meaningful Adversarial
Audio AttaCK (SMACK). Similar to how adversarial pertur-
bation in the form of eyeglasses constrains the modification to
pixels surrounding the eye in the image domain, semantic pre-
serving adversarial perturbation on speech also has additional
constraints. Compared to introducing perturbation to each
sampling point with independent optimization, semantically
modifying prosody restricts changes to pitch and speech rate
that are specified by numerous sample points. These unique
characteristics of audio motivate us to investigate temporal
perturbations instead of spatial semantic perturbations in the
image domain [14,32,35,56]. SMACK leverages an adapted
generative model that enables prosody control with a vector
in the continuous space. We further develop a novel algorithm
incorporating our proposed expanded genetic algorithm and
gradient estimation to optimize complex prosody features.

Technical Challenges: The core technical challenges behind
SMACK lie in modeling and optimizing semantic features
(i.e., prosody) in the context of adversarial examples. First,
prosody is a composite attribute that is often described by a
combination of several speech characteristics (e.g., speech
rate and fundamental frequency), and the effective model-
ing and natural manipulation of prosody remain an open re-
search problem [31]. To address this challenge, we propose
an adapted generative model to enable fine-grained control
of prosody. To further preserve the original voice, the gener-
ative model also takes the original audio as input on which
prosody modification should be performed. Second, semantic
attributes in the audio domain are temporal features by na-
ture, and such characteristics can be of varying complexity
depending on speech content. This results in a variable-length
prosody control vector. We handle this significantly larger
search space by introducing a two-stage optimization algo-
rithm consisting of our adapted genetic algorithm and gradi-
ent estimation, where a customized genetic operator insertion
and deletion is introduced to enable variable-length prosody
vector optimization. Third, the black-box assumption and ad-
ditional constraint due to semantic preservation in SMACK
present new challenges in navigating the solution space for
the adversarial perturbation. Building on the observation that
transcription algorithms are more inclined to be confounded
with words of similar pronunciation, we propose to incorpo-
rate a new adversarial term evaluating phonemic similarity.
Furthermore, SMACK also leverages the confidence score in
SR to iteratively update estimation on the speaker verification
threshold, significantly reducing the number of queries.

Evaluation and Findings: We demonstrate the feasibility and
practicality of this new category of adversarial audio examples
by evaluating against five ASR systems and two SR systems
in a targeted black-box setting, both over-the-line and over-
the-air. Our attack was successful in both misleading ASR
transcription of commercial products and confounding vari-
ous speaker identification tasks, achieving a mean success rate
of 84.9% and 99.2% respectively. Furthermore, we showcased
the physical robustness of semantic adversarial examples by
delivering attacks in the air with different noise levels and
distances, where we observed that semantic adversarial audio
examples gain unique advantages compared to L,-bounded
methods, due to their decoupling from the traditional fine-
grained perturbations on each sample points. To understand
human perceptions of semantic adversarial audio, we further
conducted a user discernability study. Among a total of 168
participants, the majority of them appreciated the fidelity and
naturalness of semantic audio examples, as opposed to the
two typical L,-bounded adversarial attacks [17, 18].
Contributions: Our contributions are outlined as follows:

¢ We introduce semantic adversarial audio examples,
where speech is perturbed via manipulation of inher-
ent attributes while semantically preserving the original
content. Using prosody as the representative semantic
attribute, we propose SMACK that generates adversarial
audio examples by perturbing prosody features.

We model temporal semantic attributes by adapting a
generative model as a manifold of semantic transforma-
tions on speech audio. In addition, we propose a two-
stage optimization mechanism, which includes a novel
genetic operator and gradient estimation scheme to effec-
tively optimize the variable-length attribute vector that
controls the transformation. A new transcription-based
loss function and a bound-based threshold estimation
method are proposed to attack ASR systems and SR
systems.

We evaluated SMACK against a total of seven state-of-
the-art voice systems (five ASR systems and two SR
systems) including three real-world commercial prod-
ucts, with successful attacks in both over-the-line and
over-the-air attack scenarios. Besides, our attack shows
stealthiness to evade state-of-the-art defenses. We fur-
ther conducted a comprehensive user study on 168 par-
ticipants. The results indicated that our adversarial ex-
amples appear more natural to humans as compared to
traditional ones.

2 Existing Work on Adversarial Audio

Existing adversarial audio attacks can be categorized based
on the attack targets - ASR systems and SR systems.



Attack ASR: This line of research primarily focuses on craft-
ing adversarial examples that are transcribed differently by
machines and humans. Carlini et al. [16] proposed the hidden
voice command attack to mislead GMM-based recognition
models, where they designed obfuscated audio fragments that
can be understood by speech recognition algorithms but re-
main unintelligible to humans. Following this work, Yuan et
al. [79] studied attacks targeting DNN-based speech recogni-
tion systems, where they perturb songs to deliver adversarial
commands. In the same vein, Carlini et al. [17] optimized
adversarial audio examples targeting DeepSpeech [29] with
gradient descent based on the CTC loss. However, these at-
tacks rely on white-box knowledge of the targets. To address
this limitation, Abdullah et al. [8] developed a model-agnostic
attack that exploits signal processing algorithms prior to the
DNN-based classification stage. To improve the practicality,
Chen et al. [20] studied mechanisms to enhance the survival
of the adversarial audio examples in over-the-air transmission.
To improve the stealthiness of adversarial audio examples,
Schonherr et al. [60] adopted a psychoacoustic model lower-
ing the signal guided by human hearing thresholds to avoid
human perception. SMACK explores perturbation mecha-
nisms that preserve semantics yet improve stealthiness.
Attack SR: There are also attempts that leverage adversarial
audio to attack speaker recognition systems [18,40,41,74].
Kreuk et al. [40] were the first to develop adversarial attacks
on end-to-end speaker verification systems. However, they
targeted an end-to-end binary system and the attack was deliv-
ered over-the-line. Following this work, Li et al. [41] proposed
attacks on the xvector system, and further improved practi-
cality by enabling over-the-air attack delivery with modeled
impulse response of the room. Xie et al. [74] also developed
over-the-air attacks on xvector systems, but with the additional
advantage of efficiency enabled by the universal perturbations
that can be directly added to arbitrary utterance. More re-
cently, Chen et al. [18] proposed FakeBob attack, where a
threshold estimation scheme was first proposed to improve
attack effectiveness. SMACK leverages semantic perturbation
which requires a new mechanism for threshold estimation.

3 Semantic Adversarial Examples

Semantic Adversarial Attacks in the Image Domain: The
concept of semantic attribute was first introduced in the image
domain as a method for data augmentation to mitigate overfit-
ting [58, 70]. The key intuition is to translate a data sample
in the linearized feature space along semantic directions, re-
sulting in a feature representation corresponding to another
sample with the same class identity but different semantics.
Examples of semantic attributes include eyeglasses, beard,
as well as changing facial expression and makeup. Semantic
adversarial attack on images was later developed to manip-
ulate only higher-level features (e.g., adding eyeglasses to
faces) to deceive image recognition algorithms [14,32,35,56].
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Figure 2: The intensity, word duration, and fundamental fre-
quency of three types of prosody applied to the same speech.

While semantic-preserving visual modifications are known to
be effective, semantically meaningful perturbation of audio
is less understood. Image and audio exhibit distinct semantic
principles: semantic attributes in images (e.g., eyeglasses)
are represented by pixels that entail spatial correlations to
hierarchical object associations and color descriptions, while
semantic properties of audio waveforms (e.g., prosody) take
the format of time sequence that possess temporal dependency.
As spatial semantic perturbations in images can be leveraged
to attack recognition models, it remains unknown if temporal
semantic modifications can have a similar effect.

Semantic Attributes in the Audio Domain: Though a few
existing works in the audio domain proposed the concept of
semantic attributes including prosody [36], accent [25], and
word order [66] for data augmentation, the feasibility of using
them for stealthy adversarial example generation has not been
explored yet. For a semantic feature to be used in stealthy
adversarial attacks, it has to meet three key requirements.
Inherent Attributes: In the audio domain, inherent attributes
refer to the attributes that should not be dependent on speech
content or speaker identity but instead should widely exist in
almost all speech. Typical inherent attributes include emotion,
speech rate, accent, prosody, etc.

Identity/Content Preserving: Another requirement lies in the
preservation of the original label from the human perspec-
tive. For ASR systems, the content (i.e., transcripts) of the
semantic adversarial audio example should be the same as the
original for humans. Note that we do not consider substituting
a word with a synonym as satisfying this requirement. For SR
systems, the identity information of the semantic adversarial
audio example and the original audio should be the same.
Naturalness: Naturalness (or realism) is also an important
requirement. Besides preserving the original identity, we also
emphasize naturalness in semantic perturbations. Intuitively,
although the semantic attributes are the inherent properties
of human speech, modifying them to a large degree will in-
troduce artifacts that make the speech sounds abnormal to



human. For instance, speech rate cannot be excessively fast.

Prosody as Semantic Attribute of Speech: In this work,
we leverage prosody as the representative semantic attribute.
Prosody is often described as intonation and rhythm — the
musical qualities and melodic aspect of speech [71]. It encom-
passes multiple characteristics of a speech, including pitch
contour or intonation of an utterance, the length of a syllable,
the loudness of a word, etc [75]. Compared to the pixel-level
spatial modification in the image domain, perturbations in
the audio domain are often temporal modifications. Figure 2
shows the quantitative analysis of prosody on the three speech
clips sourced from the SAVEE dataset [33]. These three audio
clips contain the same speech content (‘“will you tell me why”)
but are spoken in three types of prosody: anger, happiness, and
sadness. The three figures at the top depict the spectrum and
intensity of the speech, where intensity is measured in deci-
bels (dB) at each moment. The bottom three figures present
the fundamental frequency (FO), which is the frequency at
which the vocal cords vibrate in voiced sounds. In psychoa-
coustic models, the FO frequency is generally perceived as the
acoustic pitch of a sound by humans. In addition, the duration
of each word is indicated in the middle and represents the
rate of speech. Speech with different prosody is observed to
have varying time duration and, consequently, varying speech
rates. For example, word 3 (“tell”) in anger has a duration of
167 milliseconds, which is significantly shorter than word 3
in happiness (186 milliseconds) and sadness (225 millisec-
onds). Therefore, prosody is a complex attribute described by
a variety of frequency and time domain descriptors.

Prosody was selected because it meets the three require-
ments for semantic adversarial example generation. First,
prosody is one of the most important inherent features of
human speech that has been widely studied in a variety of
domains, including emotion recognition [44], speech synthe-
sis [61], and linguistic research [23,69]. Second, unlike other
language-specific characteristics like accent and word order,
prosody is not limited to speech content and is universally
applicable. Third, prosody can be represented by fine-grained
features in each frame, and semantically restricting the ma-
nipulation of prosody can preserve content and naturalness.
To achieve coherent manipulation of prosody, we build on top
of the existing work in generative model [27].

Relevance to Other Attacks Using Generative Models:
Generative models are widely used in different applications
including adversarial attacks [21,73]. One related concept is
Audio DeepFake, where the attacker aims to impersonate the
victim by generating speech recordings in the voice of the
target speaker [21]. While DeepFake and SMACK share sim-
ilarities, such as using generative models and targeting VCS,
they differ in attack goals and techniques. First, the synthetic
speech from DeepFake is designed to sound like the victim
for both humans and computer systems [34,53,67]. However,
SMACK follows the line of research on adversarial audio
generation and aims to create audio examples that are imper-

ceptible, which do not sound like the victim at all to humans
and only mislead the recognition algorithms. Second, though
both use generative models, DeepFake leverages them to learn
and mimic the characteristics of the victim’s speech, which
often requires non-trivial efforts in collecting the victim’s
speech for training [50]. In contrast, SMACK uses generative
models to create perturbations on the original audio without
requiring the victim’s voice. Since SMACK aims to mislead
the recognition models, it relies on a designed multi-objective
function incorporating adversarial loss and human perceptibil-
ity, while DeepFake usually does not include adversarial loss.
We further evaluated SMACK against a DeepFake defense
to raise awareness of the new threats introduced by SMACK
and motivate new defenses (Section 8.4).

4 Threat Model

Attack Goal: The adversary aims to conduct targeted at-
tacks against ASR or/and SR systems. In the attack against
ASR, the adversarial audio shall be transcribed to a different
word/sentence compared to what the human would interpret.
For the attack on SR systems, the attacker aims to craft and
play the adversarial audio, such that it is misrecognized by the
SR algorithms as coming from one of the enrolled speakers.
Assumption on Attacker’s Knowledge: We assume that the
adversary only has black-box knowledge (access to neither ar-
chitecture nor parameters of the targeted models) with limited
access to the audio sources [8,9, 18,68]. For attacks on ASR,
we assume the adversary only has access to the transcription,
thus it is considered a hard-label black-box attack [78, 83].
For attacks on SR, we follow the same setting from the most
recent attack [18] and assume that the attacker has access to
the final result (accept/reject) and confidence score. We also
assume the attacker does not have access to the voice samples
of the enrolled user in the system, therefore he/she cannot use
DeepFake to create audio examples that sound like the victim.
Assumption on Target Systems: Similar to [60], we assume
that the ASR and SR systems are configured to give the best
possible recognition rate, and the recognition models remain
unchanged over time. We also make the same assumption
as [22] that the services provided by commercial API and
VCS are similar for the same platform.

Adversarial Example Generation and Delivery: Similar to
existing work [8,9, 16, 68, 79], adversarial audio examples
are generated ahead of time and can be delivered to the target
either over-the-line to an API or played over-the-air to an
ASR/SR device. We assume the attacker can play the entire
adversarial audio example rather than part of it.

5 Overview of SMACK

SMACK aims to manipulate the prosody of the original audio
to cause misclassification of ASR and SR systems. There are



three key technical challenges.

C1. Prosody is a complex attribute incorporating multiple
features, including speech rate, intonation, loudness, lengths
of syllables, etc. Such complexity brings the challenge of ef-
fectively modeling and controlling it in a given speech. To
address it, we designed an adapted generative model for frame-
wise fine-grained prosody control (Section 5.1). Prosody in-
volves not only the temporal features of the speech, but also
the interactions between the feature vectors. To tackle the lack
of concrete mathematical formulation and enable accurate ma-
nipulation of speech prosody, we adapt the latest generative
model for speech. To further enable preservation of the orig-
inal voice, we modify the generative model to include the
original audio on which prosody modification should occur,
allowing modification of voice rather than direct synthesis.
C2. Under the existing approach of prosody manipulation
via generative models, the prosody vector is often of a fixed
dimension. However, when the speech has different lengths
and wording, it requires an appropriate level of manipulation
granularity governed by the dimensions of the prosody control
vector. To ensure the naturalness of the generated adversarial
example, we propose a two-stage optimization framework
coupled with a novel InsDel operator (Section 5.2) to enable
variable-length search of prosody vector.

C3. Unlike previous black-box attacks on ASR, SMACK
is based on prosody manipulation, which sets an additional
constraint on how perturbations can be added. To facilitate
a more accurate calculation of the gradient, we developed
a new loss function based on phonemes. To enable a more
effective attack against SR systems, we designed an algorithm
that leverages the result and confidence score of each query
to iteratively estimate the threshold value used in speaker
recognition.

5.1 Modeling and Controlling Prosody

Due to the complexity of prosody, its control remains an open
research problem [31]. Without concrete analytical solutions,
we build on top of existing advances in generative models [19]
to enable fine-grained manipulation of prosody, where it is
adapted to serve as a transformation function for semantic
editing on audio examples. Figure 3 shows the architecture of
our generative model design with four major components: the
content network, the prosody network, the prosody-content
cross-attention module, and the decoder network.

Content Network: It uses the text of the original speech to
constrain the content of reconstructed speech (i.e., semantic
adversarial audio examples) to be identical to the original.
Prosody Network: The prosody of the generated audio is
defined by two components. (1) Global prosody represents
the tone of voice that is unique to each speaker, which there-
fore characterizes the speaker identity. It is represented by
global prosody embedding extracted from the original audio
via Wav2Vec 2.0 [13] feature extractor. To satisfy the iden-
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Figure 3: Overall structure of the adapted generative model

tity preserving requirement (Section 3), the global prosody
embedding is kept unchanged in SMACK. (2) Local prosody
focuses on frame-level prosody features, which result from
matrix multiplication of the variable-length input prosody
vector (i.e., the vector that the attacker aims to optimize) and
a trainable prosody token codebook. The input prosody vector
is of variable length, because its richness (i.e., the dimension
of the prosody vector p) is configurable and dependent on the
speech content (e.g., the length of the speech content). The
prosody representation is obtained by broadcast-adding global
and local prosody embedding across the time dimension.
Attention Module and Decoder: It aligns the information
from context network and prosody network to get the fused
embedding, which will be used to reconstruct the speech au-
dio via the decoder network (i.e., WaveGlow vocoder [55]).
Incorporating the above elements, we denote the generated
semantic example x* as x* = G(fo,x9, p), where # represents
the original content text, x¢ is the original audio, and p is the
prosody vector that controls the frame-wise prosody. Within
this context, generating semantically meaningful adversarial
audio examples is equivalent to optimizing the prosody vector
p, which controls the adversarial manipulation. In the next
section, we introduce how to optimize p.

5.2 Prosody Optimization Mechanism

As discussed in challenge C2, the variable length of the
prosody vector p and black-box settings present unique chal-
lenges for optimization. To address these challenges, we pro-
pose a two-stage optimization mechanism. It consists of an
adapted genetic algorithm (AGA) and a gradient estimation
scheme (ES), namely AGA-ES algorithm. The first stage
(AGA) performs a global search, which is designed to reduce
the search space by optimizing both the length and values of
the prosody vector. The second stage (ES) serves as a fine-
grained local optimization scheme that refines the prosody
towards the adversarial goal and speech naturalness. Notably,
the proposed AGA-ES framework can be adapted to attack
both ASR and SR systems with different loss functions. This
section describes the framework, and loss functions adapted
to ASR and SR will be defined in Section 6 and 7. For more
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implementation details please see the project website'.
Adapted Genetic Algorithm: Genetic algorithm is a search-
based optimization technique based on the principles of genet-
ics and natural selection. It works by applying genetic opera-
tors including selection, mutation, and crossover, and has been
demonstrated to be competitive with deep reinforcement learn-
ing across multiple application domains [65]. In SMACK, two
unique advantages make it well-suited for our optimization
problem. First, the variable length and unbounded value of
the prosody vector result in a large search space. Genetic
algorithm has proven effective in searching over a large do-
main [37]. Second, our attack is developed under a black-box
setting. The genetic algorithm works well in this setting since
it does not require gradient information.

In SMACK, the potential solutions of p are modeled as
chromosomes and thus each gene represents a value in the
prosody vector. However, the standard genetic algorithm can-
not be directly applied to SMACK because the search space
is rigid, meaning that the length of the chromosome is fixed in
genetic operators. Building on top of the concept of variable-
length genetic algorithm [38], we introduce a new operator
named insertion and deletion (InsDel), which is prevalent in
biological chromosomes [46]. Figure 4 depicts the underlying
concept of this procedure. As described in Alg. 1, a portion
of genes will be added to or removed from the original chro-
mosome in accordance with an adaptive probability. Down to
the design details, there are five factors that characterize the
effectiveness of the operator. First, we design the probability
of InsDel to be reversely related to the fitness value and score
improvements, thus achieving a balance between convergence
speed and fitness improvement. Second, the insert and delete
are designed to happen with equal probability to introduce
unbiased length variations. Third, the inserted/deleted genes
were randomly selected to introduce additional value varia-
tions. Fourth, the edit length is devised to be dependent on
the iteration number and the original prosody control vector
to improve naturalness and run time. Lastly, the inserted val-
ues are sampled from the distribution of the original prosody
vector for naturalness.

(1) Operation probability (line 5 in Alg. 1). We set the
probability to be dependent on fitness values, aiming to in-

"https://semanticaudioattack.github.io/

Algorithm 1: Insertion and deletion (InsDel) operator

Original population pop
Input: Hyperparameters o, B, pr
Current iteration of optimization iter
Output: New population newPop
1: function Fitness(individual)
2 return fitness value of individual
3: for i in range(popSize) do
4:  fitness[i] < Fitness(pop|i])
5:  probli] (xm#sﬁi[n’]cssm Bx |m\
6 Alli] + (pr~e’i"”/‘ -chromoSize(i]]
7 locations|i] <— Sample(0,chromoSize[i] — 1, Al[i])
8:  ifuniform(0,1) < 0.5prob|i| then
9: for gene in range(Al) do

10: calculate i, 6 from [[i]

11: draw gene ~ N (u,6?)

12: insert gene to popli] at locations|i]

13: end for

14:  else if 0.5prob[i] < uniform(0,1) < prob[i] then
15: remove genes at location[i] from pop|i]

16:  endif

17:  newPop.append(popli])

18: end for

19: return newPop

troduce variations to enhance chromosomes with poor per-
formance. Intuitively, chromosomes with lower scores re-
quire more alterations, whereas those with higher scores
may have attained optimal sizes. Inspired by momentum up-
date [68], a term that is inversely proportional to changes in
fitness is also introduced. As such, the probability increases
if the fitness merely changes, thereby facilitating the InsDel
operation and assisting in the avoidance of local optimal.
As a result, the probability is designed as a weighted term
balancing the convergence speed and fitness improvement:
filik) B
Yier fit(ik) © |fit(ik)—fir(ik—=1)]
fit(i,k) are the operation probability and fitness for the i
chromosome in the k" iteration, and o and B are the weights.

(2) Insertion vs. deletion (line 8, 14 in Alg. 1). Due to the
uninterpretable nature of the prosody vector, the fitness value
alone is insufficient to determine whether insert or delete oper-
ations should be performed. To introduce unbiased variations,
SMACK ensures that the two actions have equal probability.

(3) Operation location (line 7, 12, and 15 in Alg. 1). Genes
are inserted or deleted at multiple positions rather than a fixed
location (e.g., at the end of each chromosome). This design
introduces additional value variations.

(4) Edit length (line 6 in Alg. 1). The number of inserted
and deleted genes characterizes the efficacy of the operation.
The design of this parameter needs to consider two aspects.
First, the number of altered genes /A\ly should be proportional
to the original length of the chromosome [ to preserve the
speech naturalness. Second, it should be adaptive to the opti-
mization procedure in order to strike a balance between the
efficiency and effectiveness of searching. Therefore, we de-
velop an adaptive edit length Al as: Al = [prx e /¢ x Iy],

prob¥ = aux , where prob* and
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where pr is the percentage, iter is the current number of iter-
ations, c is a constant that controls the decay.

(5) Insertion values (line 8-12 in Alg. 1). In contrast to
deletion, which merely eliminates a portion of genes from
the original chromosome (line 15 in Alg. 1), insertion adds
genes whose values have yet to be defined. To preserve the
general naturalness of the prosody, we construct the values to
be sampled from the original distribution (line 11 in Alg. 1).
Gradient Estimation Scheme: Even though the adapted ge-
netic algorithm works well with large-space exploration, it
becomes less effective when approaching the optimal solu-
tion. Therefore, we complement the optimization by tuning
the prosody guided by gradient directions. In this phase, we do
not change the prosody vector size and only refine its values.

As we consider a black-box setting where the gradient of
the target model is not accessible to the attacker, we approx-
imate the gradient for i/ iteration via a gradient estimation
scheme named natural evolution strategy (NES) [72]. It works
by adding noises to the prosody vector along various direc-
tions and approximating the gradient as the mean direction
weighted by loss values. We first create the K Gaussian noises
u; ~ AL(0,1), with which the gradient is calculated as:

VpL(pi) = & YK | L(G(to,x0, pi+oug),1) xue (1)

where ¢ is the attack target and L is the task-dependent loss
function that evaluates the distance between the generated
audio G(fy,xo, p; + ouy) and target 7.

The direction of the estimated gradient will be multiplied
with a learning rate 1 and added to the optimized vector:

pi = pi—1+M-sign(V,L(pi-1)) (2)

More details regarding the loss function, fitness heuristics,
and the newly proposed threshold estimation technique for
SR will be further discussed in Section 6 and 7.

6 Attack Speech Recognition Systems

6.1 Problem Formulation

We denote the target ASR system as ASR(x), which takes an
audio clip x as input and returns its transcript. The attacker
aims to generate a semantic adversarial example x* such that:

ASR(x") =t,s.t. x* = G(t9,x0, p),t £ to, H(x*) =H(x0) (3)

where ¢ is the attack target, and H(-) denotes a human that
interprets the audio x into transcript as he/she perceives.

To achieve the attack goal shown in Eq. 3, the attacker aims
to obtain the adversarial example x,4, by minimizing the
multi-objective loss function consisting of two components:

L = argmin . {Lssr(ASR(x"),1) + wQ(x")}, 4)

Algorithm 2: SMACK against black-box ASR

Prosody control vector p
Original speech xo with content #y
Target transcription ¢
Maximum number of iterations N
Output: Adversarial audio example x,4,

1: pop <« [p] * popSize

2: function Fitness(pop,t)

Input:

3:  popAudio < G(fo,X0,pop)
4:  fitness < Lasg(ASR(popAudio),t) + aQ(popAudio)
5:  return fitness
6: for i in range(N) do
7:  fitness < Fitness(pop,t)
8:  bestPop < pop|Argmax(fitness)]
9:  if Fitness(bestPop,7) < Threshold then
10: topPop « Select(pop, fitness)
11: for j in range(childSize) do
12: newPop <« InsDel (topPop)
13: newPop < Mutate(newPop)
14: newPop < Crossover(newPop)
15: end for
16: else
17: bestFitness «— Fitness(bestPop, 1)
18: probePop < [bestPop]| x K + ou
19: gradEst < # Y Fitness(probePop,) x u
20: bestPop < bestPop + M - sign(gradEst)
21: end if
22: end for

23: get x4q, generated by G(fo,xo, bestPop)
24: return x,q,

where Lssg is the adversarial term that pushes the generated
audio towards the adversarial transcript, Q(+) is introduced
to measure the human interpretability of reconstructed audio,
with w serving as the weighting factor to trade-off between
the adversarial goal and attack stealthiness.

6.2 Attack Method

The complete algorithm for semantic adversarial example
generation based on AGA-ES is presented in Alg. 2. Particu-
larly, we construct a multi-objective loss function £ adapted
to SMACK, where we propose a new distance function that
incorporates measurement of edit distance and pronunciation
similarity, and also introduce the NISQA score [47] as the
quality monitoring factor that preserves naturalness.
Adversarial Term with Levenshtein Distance: Ultimately,
the adversarial term aims to measure the distance between
the current transcript to the target phrase, which allows the
algorithm to adjust optimization strategies accordingly. This
term is generally derived from the loss values or probability
distribution over the labels [17,79]. However, such informa-
tion is usually not available in practice as assumed in our
threat model. Therefore, our adversarial term can only be
built using hard labels of the final transcripts. Levenshtein
distance [80], also known as edit distance, has been used to
measure the difference between two sentences by computing
the minimum cost of transforming one string into another with



a series of single-character edits (e.g., insertions, deletions,
or substitutions). However, such measurement is insufficient
in our attack, as it only takes character editing into consider-
ation. For example, the edit distance of “book”—“back’ is
2, which is the same as the edit distance of “book”—“0k”.
However, “back” and “book’ have a higher degree similarity
in their pronunciation, making it relatively easier to confound
ASR into misclassification by manipulating speech attributes
(i.e., prosody). The underlying reason for such disparity stems
from the fact that Levenshtein distance treats each character
in a word independently while disregarding the pronunciation
factor, which generally depends on the character combinations
and correlations.

Adversarial Term with Phonological Similarity: Recog-
nizing the limitations of using Levenshtein distance as the
sole metric in our attack, we turn to phonology and linguis-
tics techniques in an effort to quantify distances based on the
constituent phonemes, where a phoneme is a unit of sound
that can distinguish between words. The phonemes can be
obtained directly from transcripts via Grapheme-to-phoneme
(G2P) transcriptors. Nonetheless, merely applying edit dis-
tance to phonemes has limitations for two reasons. First, vow-
els and consonants contribute differently to speech. Therefore,
substituting a consonant with a vowel should be measured
as a larger distance as oppose to replacing it with another
vowel. Secondly, some phonemes display more similarities to
each other, such that any substitution between these phonemes
should incur fewer costs. Take ARPAbet [57] for example, the
measured distance of the substitution operation on phonemes
“EM”—*“EN” should be at a smaller cost than the measured
distance of “EM”—*“V”’, even though all these phonemes are
consonants.

Based on these insights, we propose an improved edit dis-
tance, where the edit cost for each phoneme pair is assigned
with a customized weight. We follow the assumption in ex-
isting phonological research [30], which states that an edit
operation is less costly when it occurs frequently between
two alternative pronunciations of the same word. As such,
we collect phonemes for different pronunciations of words
extracted from CMU’s Pronouncing Dictionary [15], and
adopt Needleman-Wunsch algorithm [4] to align each pair
of pronunciations with minimized edit distance. We then de-
velop phonemic similarity S(a,b) via statistical analysis of
occurrence frequency: S(a,b) = %, where p(a,b)
represents the occurrence of substituting phoneme a with b,
p(a), p(b) are the occurrences of phoneme a and b respec-
tively. As such, a larger S(a,b) value indicates a higher simi-
larity between phonemes a and b.

However, such similarity developed from alternative pro-
nunciation focus on extracting similar phonemes, thus incom-
plete for phonemes pairs with significant disparities (e.g., a
vowel and a consonant). We complement this by calculating
phonemic differences based on Kondrak’s ALINE cognate
alignment system [39], where phonemes are described with

a set of features F weighted on their salience - the features’
impact on similarity. The difference is measured as:

D(a,b) = Z df(a,b, f) x saliences + |V (a) — V(b)|
f€F
&)

| Vesr, if phoneme is a consonant,
V (phoneme) = { v otherwise
wwls .

where df(a,b, f) calculates the difference between a and b
given the feature f, v s and v,,,; are the heuristic values that
determine the relative weights of consonant and vowel.
Lastly, we incorporate the aforementioned Levenshtein dis-
tance to avoid local minimum caused by words with very
similar pronunciations but different transcripts.
Combining Levenshtein Distance and Phonological Simi-
larity: As a result, the adversarial term can be formulated as:

Leven(t*,1)

LAsR =W ——————~
ASR = W1 Len(t*) + Len(t)

+waD(ty,1p) —w3S(ty,1p) (6)

where 7 is the phoneme constitutions of the transcript £*,
Len(-) returns the length of the string input, wy,wy, w3 are the
factor weights.

Quality Assessment Term: We also introduce a term to the
loss function to evaluate the quality and naturalness of the
transformed speech. Traditional L, norm and signal-to-noise
ratio (SNR) are insufficient for our problem because they
merely assess the noise level by computing deviations on
sample points. Changing prosody could affect a number of
values, but the audio example could still sound natural. For
instance, a speech uttered in anger could differ significantly
from one spoken in neutral when measured in L, norm, but
it remains semantically meaningful and sounds like human.
Therefore, we employ and incorporate NISQA [47], a state-
of-the-art DNN-based speech assessment system that quantify
the overall quality and naturalness of speech on a scale from 1
to 5. This term is weighted and combined with the adversarial
term described previously to form a complete loss function.

7 Attack Speaker Recognition Systems

7.1 Problem Formulation

Similar to Section 6.1, we denote the target SR system as
SR(x), which takes an audio clip x as input and returns the rec-
ognized speaker label. Different from ASR systems, speaker
recognition algorithms generally include a threshold 6 for de-
cision making. For a SR system that hosts n enrolled speakers
{51,582, ...8, }, it can be modeled as:

5€G 5i€G (7)

argmax S;(x), if max S;(x) >0
SR(x) =
Reject,

otherwise.



Algorithm 3: SMACK against black-box SR

Initial range of threshold [in fy, supo]
Target speaker s;
Output: Adversarial audio example x4,

1: pop + [p] x popSize

2: 0« (info+supg)/2

3: function S(pop)

Input

4:  popAudio + G(ty,x0,pop)

5:  Get scores S;(x) for each s; € G

6:  return max S;(x)

5i€G

7: for i in range(N) do

8:  fitness < Fitness(pop,t,0)

9:  for j in range(popSize) do
10: if S(pop) > 6 and SR(pop],]) = Reject then
11: inf < S(popl[/])
12: else if S(pop) < 6 and SR(pop],]) # Reject then
13: sup <— S(popl[/])
14: end if
15:  end for

16: 0+« (inf+sup)/2
17:  bestPop < pop[Argmax(fitness)]
18:  if Fitness(bestPop,t,8) < Threshold then

19: Generate children with InsDel, Mutate, and Crossover
20:  else

21: for k in range(X) do

22: 0« %inf—k %sup

23: Estimate gradient and update bestPop

24: if S(bestPop) > 6 and attack fail then break

25: end for

26:  end if

27: end for

28: get x4, generated by G(1g,xo, bestPop)
29: return x,g,

where S;(x) is the calculated score for the speaker s;. As such,
the attack objective can be formulated as:

SR(x*) = s¢,8.t. x* = G(t0,x0,p), 8t # s0,H(x*) =H(x) (8)

where so and s, are the original and targeted speakers respec-
tively. Similar to Eq. 4, the adversarial example x,4, can be
obtained by minimizing the loss function consisting of the
adversarial term Lgg(SR(x*),) and quality assessment term
O(x*): Xaqy = argmin,.Lsg(SR(x*),t) + wQ(x*), where the
speech quality monitoring function Q(-) is the same as the
one adopted in Eq. 4 (i.e., NISQA score). However, the adver-
sarial term is significantly different due to the distinct working
principles of SR, which will be detailed in the following.

7.2 Attack Method

While attacks against ASR and SR share similar problem
formulations, the difference in how these two systems operate
necessitates the use of distinct attack approaches. As modeled
in Eq. 7, SR recognition tasks incorporate a unique threshold

0, and a speaker s; will be identified only if its score S;(x) is
the highest amongst all enrolled speakers and also exceeds 6.
Therefore, the adversarial term can be written as: Lgg(x) =
max {6, max,cc\ 1} Si(x)} — St (x).

However, the threshold 0 is not available to the attacker
given the black-box setting of our attack. Inspired by the
concept of differential in mathematics, we approximate the
threshold by iteratively shrinking its range. As illustrated
by the complete algorithm outlined in Alg. 3, our proposed
threshold estimation scheme runs concurrently with adversar-
ial example optimization. More specifically, we set an initial
range [inf,sup] for 8, and the infimum and supremum are
iteratively updated using query results and the corresponding
confidence scores. Moreover, the exact value for 0 that par-
ticipates in the calculation for each iteration is calculated as
the average of the infimum and supremum. (1) If the audio is
rejected and the output maximum confidence score is higher
than our estimated 0, it indicates that the current estimated 0
is under-estimated and therefore the inf should be increased
to the query output confidence score. (2) Similarly, if the au-
dio is accepted and the maximum query-output confidence
score is lower than 0, then 0 is over-estimated and the sup
should be decreased to the query output confidence score. The
estimation of 0 is updated iteratively in a bisection manner
until reaching a small range (i.e., sup — inf < €).

8 [Evaluation

Target Systems: The target ASR systems include Deep-
Speech 2 [11], CMU Sphinx [1], Google API [5], Microsoft
Azure [6], and iFlytek [2]. The Pytorch implementation of
DeepSpeech 2 [3] was trained on the LibriSpeech dataset [52],
achieving a word error rate (WER) of 10.46 on its clean test
set. The two evaluated SR systems include ivector-PLDA [24]
and GMM-UBM [59]. The ivector and GMM systems are in-
corporated in Kaldi [54], both enrolled with 5 speakers (3
female and 2 male) from the LibriSpeech dataset. Although
some systems like DeepSpeech 2 have publicly available net-
work structure and model weights, our attack treated them as
black-box and did not leverage such information.
Generative Model and Source Audio: Our generative model
was trained on LibriSpeech dataset [52] of over 1000 hours
of English human speech. For the attack against ASR,
we selected the latest English version of Common Voice
dataset [12] which contains 81085 sentences of human speech.
In addition, we also utilized TIMIT [26] corpus as the audio
source for attacking SR systems, which consists of 10 sen-
tences spoken by each of 630 speakers from 8 major dialect
regions of the United States. In the attack against SR, we
selected four major regions and a male/female speaker for
each region, a total of 8 speakers.

Hardware Devices: We conducted experiments on a server
with Ubuntu 16.04 and RTX 3080 GPU with 12GB RAM.
For over-the-air experiments, we evaluated with four different



Table 1: Results of transcription attacks across ASR platforms

ASR system | WER | MSR | NISQA | Queries
CMU Sphinx | 14.0% | 79.7% | 3.23 1386

DeepSpeech2 | 9.8% | 88.3% 3.30 1275
Google API | 13.6% | 81.8% 3.46 1149
iFlyTek 73% | 90.6% 3.20 908
Azure 12.4% | 84.2% 3.34 1067

smartphones: iPhone 8, LG Q6, Nexus 5X, and Redmi 5A.

8.1 Attacking ASR

Experimental Design: We evaluated the targeted transcrip-
tion attack against ASR with a strategy similar to [68]. We
randomly selected 500 examples from the Common Voice
dataset as source audio, each with 5 targeted phrases. Each
target phrase was generated by replacing either part or entire
of the sentences with other words of the same part-of-speech
(e.g., noun, verb). As a result, the number of characters con-
tained in the original sentence has a range of [6,36], and that
of the generated target phrases is [2,49]. This design enabled
us to get source-target pairs at varying Levenshtein distances
to understand feasibility limitations. To show the feasible
threat in the real world, we also generated semantic adversar-
ial examples that target six malicious commands.
Evaluation Metrics: We evaluated the attack capabilities
based on the mean successful rate (MSR) and WER, where
same transcript with the target counts as a success. We also
measured the computational cost in terms of query number
and resource occupation. The audio quality and naturalness
of adversarial examples are assessed with the NISQA score.
ASR Attack Results: The results with randomly selected
original speech and target phrases are shown in Table 1. It
achieves a mean WER of 11.42 and success rate of 84.9%
across the five ASR models. A well-trained transcription
model generally has a similar WER (e.g., DeepSpeech 2 of
10.46). The crafted semantic adversarial examples exhibit
good audio quality with a mean NISQA score of 3.31, which
is comparable to normal human speech’. The mean number
of queries required for a successful attack is 1157. We also
randomly selected 100 out of these 2500 crafted examples
and generated L,-based adversarial examples using [68] with
the same original audio and target phrases, where the mean
number of queries is 9620. The query efficiency of our mecha-
nism is likely due to the better guidance provided by phoneme
similarity. Our algorithm occupies 2846 MB GPU memory.
Each iteration takes 0.41s, and each example takes 474s on
average. Lastly, these adversarial examples are later used to
evaluate against defenses (Section 8.4).

The results of malicious commands are summarized in Ta-
ble 2. SMACK achieves a mean success rate of 87.7%, with

>The NISQA of clean speech for another emotional speech dataset
RAVDESS [43] is 3.37£0.82.

g
=}

100

—o— Google

S, pel
hA

Stressed phonemes
All phonemes

bt
Y

—— iFlyTek

4
o

60

40 \ \
20 \M\

o
IS

Attack Success Rate
Attack Success Rate

o
N

o
)

0 3 6 9 121518212427 3033 Q,%-\;,03/03)’,05&:&;}33/“3/%%»
. 0707070707070 o
Levenshtein Distance LCSR

(a) (b)
Figure 5: Attack success rate with respect to edit distance and
LCSR between original and target phrases.

the attack success rate of individual malicious command de-
pendent on the target phrase. In addition, simpler transcription
targets such as “open the door” present higher success rates.
This is potentially because a longer and more complex target
generally requires more perturbations, and therefore such opti-
mal solution may not be easily achieved for some recognition
models. We also observed that while the attack succeeds for
all six commands, the audio quality degrades as the target
phrase becomes longer due to the need for higher dimension
of prosody manipulation vector. However, we include these
samples in the user discernability study, and the results turned
out that humans still perceive them as normal (Section 9).

Table 2: Results on malicious commands

Malicious Command WER | MSR | NISQA
Airplane mode on 2.2% | 93.3% 3.38
Open the door 0 100% 3.46
Turn off the light 5% | 86.7% 3.70

Turn on wireless hot spot 2.7% | 93.3% 3.31
Transfer evil a thousand dollars | 9.3% | 73.3% 3.14
Make a credit card payment 8% 80% 2.95

To understand the limitation, we conduct further experi-
ments on attacks against three commercial ASR models with
different edit distances between the original and target phrase.
As shown in Figure 5(a), we observed that the attack success
rate is generally higher when the target phrase spells similar
to the original (i.e., edit distance is smaller), and vice versa.
However, as we revealed in our design, Levenshtein distance
falls short as it fails to incorporate the factor of pronunciation.

To further understand how the attack success rate is affected
by phoneme similarities, we borrowed the concept of longest
contiguous matching subsequence rate (LCSR) [45] from lin-
guistics. LCS works by finding the longest subsequence that
has the same order of elements given two sequences. Such
metric in our context of phoneme sequences addresses both
pronunciation (i.e., phoneme) and temporal (i.e., phoneme
order) information. LCSR is calculated by dividing the length
of LCS by the longest length of the two compared phoneme
sequences, thereby measuring the similarity. Note that the
LCSR for stressed phonemes is calculated as dividing the
length of the matched stressed phonemes by the longest length



Table 3: Results of semantic attacks against SR systems

Attack Type | Task GMM-UBM ivector-PLDA
MSR | NISQA | Queries | MSR | NISQA | Queries

CSI | 100% 3.42 645 100% 3.39 753

Intra-gender | OSI | 100% 3.46 574 95% 3.27 966

SV | 100% | 3.35 713 100% | 3.41 978
CSI | 100% | 3.44 879 100% | 3.21 868
Inter-gender | OSI | 100% 3.46 794 100% 3.32 1034
SV | 100% | 331 671 95% 3.40 1309

of the two stressed phoneme sequences. The results are shown
in Figure 5(b). Overall, the attack success rate is generally
higher when more phonemes are overlapped in the original
and target phrases. We also observed that under the same
LCSR, having overlapped stressed phonemes often leads to
a higher success rate compared to general phonemes. This
is because stressed phonemes play an important role in tran-
scription for both humans and machines, while overlapping
some other types of phonemes (e.g., consonants) are less help-
ful to execute the attack. Lastly, we observed that it is also
possible to mistranscribe two phrases even though they have
no similar phonemes (such as “Like who”—*“What’s wrong”).

8.2 Attacking SR

Experimental Design: For each SR system, we consider three
target tasks, open-set identification (OSI), close-set identifica-
tion (CSI), and speaker verification (SV). The attacks were
designed in a targeted manner, where each source audio be-
longing to a source speaker will be semantically perturbed to
be identified as the target speaker enrolled in the system. As
the SR system was enrolled with five speakers (3 female and
2 male), we designed two sets of speakers for adversarial at-
tacks: inter-gender and intra-gender, where each source-target
speaker pair is of different and same gender respectively. Note
that all the source speakers are different from the five enrolled
speakers. And four speech files with different utterances were
randomly chosen for each source speaker, based on which the
adversarial examples were crafted. As a comparison, we also
reproduced the latest L,-based attack [18] against SR systems
following the same strategies.

Evaluation Metrics: The attack capability is evaluated based
on the success rate, where a successful attack means the ad-
versarial audio is attributed to the target speaker. We also
measured queries number, computational costs, and audio
quality similar to the experiments in attacking ASR systems.
SR Attack Results: Table 3 summarizes the results of attacks
against SR systems. Our attack achieves a mean success rate
of 99.2% with two failed attacks in attacking OSI and SV sys-
tems, and in both cases the adversarial audio examples were
misclassified as another enrolled speaker instead of the tar-
geted one. This was caused by the fact that the optimization ex-
hausted the maximum iteration and the best results turned out
to be getting accepted by SR as another speaker. While the at-
tacker still achieved the malicious goal in both “failed” cases,
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Figure 6: Evaluation of our modeling on air channel

we still regard them as failures because the algorithm failed to
find the optimal prosody vector. To understand if it was feasi-
ble to succeed in the attack, we increased the learning rate and
the attack succeeded within 1000 queries. More importantly,
while the gender difference between the original speaker and
target speaker poses more challenges, we observed that the at-
tack feasibility is not impacted by this factor, with both attack
scenarios achieving a mean success rate of 99.2%. However,
the mean number of queries indeed increased and indicated
more efforts to find such optimal prosody. The mean number
of queries made by our attack is 848, which occupies 3463
MB GPU memory. Each iteration involving threshold estima-
tion and adversarial example generation takes 0.62s, and each
example takes 525s on average. For comparison, the state-of-
the-art black-box attack [18] achieves 99.0% success rate with
an average number of queries at 1766. However, compared to
white-box-attack in [74] that does not require query and ap-
pends a universal perturbation to create adversarial examples,
query-based black-box methods like SMACK remains more
time-consuming. For a more detailed comparison, please see
Appendix A. Lastly, the mean NISQA value for the semantic
adversarial examples is 3.37, which is similar to the results in
attack ASR systems and indicates relatively good quality and
naturalness of the semantic adversarial examples.

8.3 Over-the-air Attack

Over-the-air Attack: In addition to the over-the-line attack
in which semantic adversarial examples were fed directly
into ASR and SR systems, we also evaluated our attacks in
a more realistic scenario where adversarial audio examples
were delivered over-the-air. We first re-evaluated the attack
performance by directly playing the raw audio in the air, with
varying devices, distances, and noise levels. To improve the at-
tack performance, we further employed air channel estimation
via room impulse response (RIR) [62,74] and evaluated the



Table 4: Attack success rate on over-the-air attacks

Distance (cm) Noise (dB)

50 100 150 200 -10 -5 0
SMACK | 56.8% | 44.0% | 38.1% | 30.4% | 41.7% | 28.6% | 12.3%
Raw [68] 23.6% | 104% | 47% | 47% | 29.5% | 18.8% | 9.6%

[18] 337% | 26.6% | 163% | 12.8% | 26.8% | 11.9% | 4.7%
SMACK | 64.7% | 45.2% | 39.6% | 30.4% | 43.1% | 24.3% | 16.3%
RIR [68] 302% | 21.4% | 9.6% | 7.3% | 31.6% | 16.3% | 82%
[18] 40.3% | 29.5% | 17.9% | 14.6% | 28.3% | 20.0% | 11.9%

Attack

attacks. Our semantic adversarial audio examples were com-
pared against the traditional L,-bounded examples generated
from the aforementioned existing work [18, 68].
Over-the-air Attack Results: We conducted experiments in
aroom with size 4.14 x 5.38 x 3.14 meters. Figure 6(c) shows
the experiment setup where we used a JBL Pulse 2 speaker
to play audio clips, and each of the four phones was used
as the microphone for recording. The phones were placed at
different locations, and we simulated varying ambient noise
strengths by playing white noises in the background under
controlled volumes. The full results are shown in Table 4. We
observe that semantic adversarial examples have a relatively
higher over-the-air attack success rate compared to traditional
adversarial audio examples [18,68]. We believe this is because
semantic adversarial examples did not rely on fine-grained L,-
bounded perturbations that were susceptible to environmental
distortions. On the other hand, both SMACK and traditional
attacks can still be impacted by ambient noise, especially
when the noise level is comparable to the adversarial audio.

We also measured the performance of our developed RIR
model. Figure 6(b) shows an example of our prediction of
the audio transmitted through the air, which is very close to
the audio played in the air shown in Figure 6(a), indicating
the effectiveness of our air-channel modeling. In order to
quantitatively measure the effectiveness of our predicted air
channel, we placed the speaker at a distance of 200cm from
the microphone, which recorded a total of 117 regular speech
clips for transcription and speaker recognition. As shown
in Figure 6(d), 56.7% of these speech clips were correctly
interpreted on ASR systems and 64.2% on SR systems across
all speaker identification tasks. With this model, we observed
a significant increase in success rate. We have also conducted
experiments in a smaller room with size 1.91 x 2.57 x 2.36
meters, and obtained similar results and insights.

Therefore, similar to other adversarial audio attacks, the
performance of SMACK is affected when the distance is large
(e.g., 2 meters) or the ambient noise is high (e.g., the devices
are deployed in a room next to a street). However, the attacker
could play the adversarial examples multiple times to improve
the success rate, though at the risk of raising suspicion.

8.4 [Evaluation against Defense

SMACK against Adversarial Audio Defense: We use the
defense proposed in [77], which aims to detect adversarial au-

dio examples based on temporal dependencies. We follow the
official implementation and original setup, where a released
DeepSpeech model is used for transcription. We randomly
selected 100 semantic adversarial examples, and generated
100 corresponding L,-based adversarial audio examples with
the same original audio and adversarial transcriptions. The
corresponding original audios were combined with adversar-
ial examples to form the test set. The defense mechanism
achieved 0.92 AUC on the generated L,-based adversarial au-
dio consistent with the original 0.936 AUC. However, it only
achieved 0.534 AUC in detecting our semantic adversarial
audio examples.

SMACK against DeepFake Defense: DeepFake detector
aims to detect DeepFake-spoofed audio, another type of syn-
thesized audio. Thus, we evaluate our method against Deep-
fake detector [82] to assess feasibility. We followed the of-
ficial implementation and used their pre-trained model on
the ASVspoof corpus [76], which contains 107 speakers (46
male, 61 female). We randomly selected 3 female and 3 male
speakers to be enrolled in the SR systems. To avoid bias, we
leveraged the benign audio clips contained in the ASVspoof
speech corpus as the original audio. Specifically, we randomly
selected 10 benign audio clips for each of the 3 female and
3 male speakers (different from the enrolled speakers), and
generated a total of 120 semantic adversarial audio examples
against SR following the same strategy. We also conducted
post-processing on the sampling rate and frequency to match
the expected input format of the defense. As a result, 94.2%
(n=113) of our semantic adversarial examples were classified
as bonafide by the detection system.

9 Human Perceptual Studies

In this study, we recruited human participants to analyze the
naturalness of semantic adversarial audio examples and com-
pared our attack against the two most representative traditional
adversarial audio attacks [17,18]. The study was approved by
our University’s Institutional Review Board (IRB).

Survey Design: The study procedure consists of two phases:
pre-test surveys and listening tests. The participants were
not informed of our study goal to minimize bias, and all the
responses were collected anonymously to preserve the partic-
ipants’ privacy. Each participant was asked about their age,
gender, and familiarity with VCS. Additionally, as the study
calls for human empirical judgments, participants’ prior expe-
rience in evaluating speech quality can affect the evaluation
results. Therefore, participants are asked to rate their familiar-
ity in speech quality assessment on a 5-point Likert scale, 1
for very unfamiliar and 5 for very familiar. During the listen-
ing test, 28 selected speech samples of 6-8 seconds each are
played to the participants followed by questions. A concen-
tration test is used to filter distracted participants with a silent
file, a Gaussian noise file, and a human speech. We include
the detailed survey questions in Appendix B.



Table 5: Results of Human Perceptual Studies

Target Audio Groups WER Iden. ER | MOS
Original 2.15% - 3.77

ASR Semantic Adversarial 4.68% - 3.58
Traditional Adversarial [17] 18.8% - 1.89

Normal Same - 9.23% 3.82

SR Normal Different - 4.6% 3.77
Semantic Adversarial - 7.82% 3.61

Traditional Adversarial [18] - 13.6% 2.17

Iden. ER = Identification Error Rate

Adversarial Examples against ASR: We selected 12 speech
clips in the attack against ASR systems: 4 semantic adversar-
ial audio examples, 4 L,-bounded adversarial examples [17],
and 4 original speech of the adversarial audio examples. The
participants were asked to transcribe each file, and the WER
was calculated to indicate how well the speech is perceived.
By definition, a higher WER indicates a noisier and less natu-
ral audio file hindering human perception. In addition, mean
opinion score (MOS) [64] is used to evaluate speech quality
and naturalness on a scale from 1 to 5, with 1 being the worst
quality and 5 being the best.

Adversarial Examples against SR: In our evaluation against
SR systems, participants were asked to judge whether a pair
of speeches come from the same speaker. We prepared 4
groups of samples with 4 pairs of audio clips each, namely (1)
normal-same, two original speeches of the same speaker, (2)
normal-different, two original speeches of different speakers,
(3) semantic-adversarial, one semantic adversarial audio and
one original speech of the targeted speaker, and (4) traditional-
adversarial, one traditional adversarial example [18] and one
original speech of the targeted speaker. Each was followed by
a multiple-choice question on whether they are of the same
speaker (“Yes”, “No”, “I am not sure”). We calculated the
identification error rate as error cases divided by trials, with
the wrong answers and “I am not sure” counted as error cases.
Participants were then asked about the quality of speech and
naturalness similar to the ASR experiments.

Analysis Results: After filtering the responses by the con-
centration test, a total of 168 individuals participated in the
study, including 97 females (57.7%) and 71 males (42.3%).
The majority of participants (n=137, 81.5%) rated their prior
experience as 2-3, while only a few (n=8, 4.8%) self-reported
as more experienced (larger than 4), leading to an average of
2.34 and a standard deviation of 0.81. Such distribution indi-
cates that most of the participants are regularly experienced
in speech quality assessment.

The test results are summarized in Table 5. The adversarial
examples against ASR show that our method gains similar
WER and MOS as original speech, indicating better intel-
ligibility and sound quality compared to the traditional L,-
bounded method [17]. For the adversarial examples against
SR systems, the identification error rates for normal-same
and normal-different are 9.23% and 4.6% respectively, as par-
ticipants deem it high quality. Interestingly, the error rate of

normal-different is lower than that of normal-same, this is
potentially because humans are inclined to be more sensitive
to perceive differences than similarity [51]. In comparison to
the traditional attack [18], the semantic adversarial examples
achieved lower identification error rates and higher opinion
scores, indicating their superior quality. Lastly, the majority
of participants (n=149, 88.7%) claim familiarity with VCS,
yet showed poor discernibility to the semantic adversarial
examples, further highlighting the significance of our attack.

10 Limitations and Discussions

Security Impact of SMACK: Despite being better in preserv-
ing speech quality due to attribute-only manipulation, the real-
world attack it enables is categorically identical to the existing
line of work on adversarial audio attacks [8, 18,68,79], where
the adversarial example either triggers a mistranscription in
ASR or misidentification in SR. Even though the impacts of
the attacks are similar, SMACK does make adversarial audio
examples more potent by improving stealthiness through the
preservation of speech quality. The user study in Section 9
indicates preliminary evidence of improved naturalness of
prosody-based semantic adversarial examples. Furthermore,
the demonstration of the feasibility of adversarial semantic
attributes manipulation to create adversarial audio examples
raise a new threat vector that system defender need to take
into consideration. Our preliminary investigation on testing
SMACK against both adversarial audio example detection sys-
tem and DeepFake example detection (Section 8.4) shows that
semantic attribute manipulation is quite effective in evading
existing detection mechanisms, since it contains significantly
fewer artifacts compared to L,-based adversarial perturbation.
Lastly, we hope a deeper understanding of the semantic adver-
sarial example would inform the development of more robust
(often safety-critical) voice-controlled systems in the future.
DeepFake Recognition Algorithms and Potential Defense:
While adversarial examples obtained from SMACK are differ-
ent from DeepFake, it is important to understand how potential
defenses for the two attacks may share similarities or differ-
ences. Existing DeepFake detection methods usually take two
steps: (1) conduct feature selection to extract distinguishable
features, and (2) train a classifier based on these features [84].
Thus, the key in this domain is to design effective feature
extractors. Within this context, researchers have made efforts
to extract various features, including short-term power spec-
trum features (e.g., log-spectrum, cepstrum, MFCC) [21,49],
short-term phase features (e.g., modified group delay func-
tion, relative phase shift) [85], spectral features with long-term
processing (e.g., modulation spectrum) [48], and first-order
Fourier coefficients [42] or second-order power spectrum [7].
However, one common problem with these methods is the lack
of generalizability, where they usually work for only certain
types of datasets, models, or spoofing techniques. Besides,
adversarial examples in SMACK are obtained via prosody



manipulation of real speech, which further challenges the
effectiveness of DeepFake detector algorithms.

The effectiveness of existing defenses that aims to detect

artifacts from L,-based adversarial audio examples [77] can
be limited since SMACK relies on the malicious manipula-
tion of prosody. One potential direction is to introduce our
attack into the training pipeline with the adversarial training
strategy to generate a new model [28,81]. To achieve this, the
defender needs to access the model and data, and design an
effective white-box attack to enable iterative adversarial train-
ing. Another potential defense lies in the so-called liveness
detection [10], where the acoustic characteristics induced by
the physical aspects of human speech can be leveraged to
detect the attack.
Limitations of SMACK: In this work, we assume the adver-
sarial audio examples can be pre-generated ahead of time and
the entire adversarial audio examples (not just perturbations)
can be delivered to the target either over-the-line to an API or
played over-the-air to an ASR/SR device via a speaker. How-
ever, we did not consider the real-time online attack scenario:
the attacker will generate real-time adversarial audio perturba-
tion and play it along with background sounds from the victim.
In this scenario, the attacker needs to know the starting time of
the audio and generate the corresponding adversarial perturba-
tion in real-time. This can be challenging for SMACK, which
manipulates temporal features. One possible workaround is
to generate word-based prosody perturbation. Second, chang-
ing certain semantic attributes such as speech rate or accent
is typically difficult by simply adding noises which is also
the main difference between our adversarial attack and the
traditional L,-norm attacks. Another key limitation as shown
in our experiment is that semantic-preservation limits adver-
sarial perturbation space. As a result, for original speeches
that have large differences in phoneme with the target tran-
scription, it could be quite difficult to generate adversarial
examples. To address this, a future direction is to explore the
adversarial manipulations of more semantic attributes.

11 Conclusion

In this work, we introduce a new class of adversarial audio ex-
amples - semantically meaningful adversarial audio examples.
Using prosody as the representative semantic attribute, we
propose SMACK to mislead speech transcription and speaker
recognition systems. Our experiments show that SMACK is
effective against five ASR systems and two SR systems, as
well as evading state-of-the-art defenses. During the human
perceptual study, semantic adversarial examples exhibit better
audio quality and speech naturalness compared to traditional
adversarial audio examples. By showing the feasibility and
practicality of semantic audio attacks, we hope our work shed
light on a deeper understanding of the security of voice assis-
tant technology and inspire future defense mechanisms.
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A Performance Comparison between SMACK
and White-box Attack

On the other hand, compared to another attack against speaker
recognition [74], SMACK has a weaker threat model assum-
ing black-box knowledge, as compare to the white-box setting
in [74]. This difference in attack knowledge entails different
approaches in adversarial example generation. Furthermore,

in order to preserve speech quality, prosody manipulation in
SMACK can not be applied to a small snippet of audio, as
compared to [74] where the perturbation is added to different
locations of the audio example. The success rate of universal
perturbation can also vary based on the input. Lastly, [74]
targeted one open source SR system, and SMACK works on
multiple open-source/commercial ASR and SR systems. To
summarize, while the generation of adversarial audio example
in [74] is much faster than SMACK due to its addition of a
universal perturbation, SMACK assumes a different attacker
model, preserves the speech quality, and targets multiple voice
systems.

B Survey Questions of Human Studies

At the beginning, we asked each participant about their past
experience on speech quality assessment. The exact question
is phrased as “On a scale from 1 to 5, please rate your fa-
miliarity in assessing the quality of the given speech audio
clips, with 1 indicating very unfamiliar and 5 indicating very
familiar.” For the adversarial examples against ASR systems,
we instructed the participant as “In the following tasks, you
will be guided to listen to audio clips and answer questions
accordingly. Specifically, please write down your transcript of
each of the audio clip as you listen, and rate your perception
on the quality of the audio clip.” The questions are as follows:

* For the following audio clip, please write down its tran-
script as you listen.

* For this audio clip, please rate your perception on its
quality on a scale from 1 to 5, with 1 indicating the
worst quality and 5 indicating the best.

For the adversarial examples against SR systems, we in-
structed the participants as “In the following, you will be
guided to listen to audio clips and answer questions accord-
ingly. Specifically, you will listen to two audio clips in a
group, and please judge if they are uttered from the same
person.” The exact questions we asked are listed below:

* For the two audio clips in the following, do you think
they were uttered by the same person? (“Yes”, “No”, “I
am not sure”.)

* For the two audio clips, please rate your perception on
its quality on a scale from 1 to 5, with 1 indicating the
worst quality and 5 indicating the best.

At last, we ask the participants how frequently they use
voice assistant in their daily lives. The question is phrased as
“On a scale from 1 to 5, please rate how frequently you use
voice assistants in your daily life, with 1 being never and 5
being very frequently.”
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