
Decompiling x86 Deep Neural Network Executables

Zhibo Liu, Yuanyuan Yuan, Shuai Wang∗

The Hong Kong University of Science and Technology
{zliudc,yyuanaq,shuaiw}@cse.ust.hk

Xiaofei Xie
Singapore Management University

xfxie@smu.edu.sg

Lei Ma
University of Alberta

ma.lei@acm.org

Abstract
Due to their widespread use on heterogeneous hardware

devices, deep learning (DL) models are compiled into executa-
bles by DL compilers to fully leverage low-level hardware
primitives. This approach allows DL computations to be un-
dertaken at low cost across a variety of computing platforms,
including CPUs, GPUs, and various hardware accelerators.

We present BTD (Bin to DNN), a decompiler for deep neu-
ral network (DNN) executables. BTD takes DNN executables
and outputs full model specifications, including types of DNN
operators, network topology, dimensions, and parameters that
are (nearly) identical to those of the input models. BTD de-
livers a practical framework to process DNN executables
compiled by different DL compilers and with full optimiza-
tions enabled on x86 platforms. It employs learning-based
techniques to infer DNN operators, dynamic analysis to reveal
network architectures, and symbolic execution to facilitate
inferring dimensions and parameters of DNN operators.

Our evaluation reveals that BTD enables accurate recov-
ery of full specifications of complex DNNs with millions of
parameters (e.g., ResNet). The recovered DNN specifications
can be re-compiled into a new DNN executable exhibiting
identical behavior to the input executable. We show that BTD
can boost two representative attacks, adversarial example gen-
eration and knowledge stealing, against DNN executables.
We also demonstrate cross-architecture legacy code reuse us-
ing BTD, and envision BTD being used for other critical
downstream tasks like DNN security hardening and patching.

1 Introduction

Recent years have witnessed increasing demand for appli-
cations of deep learning (DL) in real-world scenarios. This
demand has led to extensive deployment of DL models in a
wide spectrum of computing platforms, ranging from cloud
servers to embedded devices. Deployment of models in such
a spread of platforms is challenging, given the diversity of

∗Corresponding author.

hardware characteristics involved (e.g., storage management
and compute primitives) including GPUs, CPUs, and FPGAs.

A promising trend is to use DL compilers to manage
and optimize these complex deployments on multiple plat-
forms [20, 58, 77]. A DL compiler takes a high-level model
specification (e.g., in ONNX format [4]) and generates cor-
responding low-level optimized binary code for a variety of
hardware backends. For instance, TVM [20], a popular DL
compiler, generates DNN executable with performance com-
parable to manually optimized libraries; it can compile models
for heterogeneous hardware backends. To date, DL compilers
are already used by many edge devices and low-power chips
vendors [44, 66, 67, 75]. Cloud service providers like Amazon
and Google are also starting to use DL compiler in their AI
services for performance improvements [12,92]. In particular,
Amazon and Facebook are seen to spend considerable effort
to compile DL models on Intel x86 CPUs through the usage
of DL compilers [45, 55, 61].

Compilation of high-level models into binary code typically
involves multiple optimization cycles [20, 58, 77]. DL com-
pilers can optimize code utilizing domain-specific hardware
features and abstractions. Hence, generated executables man-
ifest distinct representations of the high-level models from
which they were derived. However, we observe that different
low-level representations of the same DNN operator in exe-
cutables generally retain invariant high-level semantics, as
DNN operators like ReLU and Sigmoid, are mathematically
defined in a rigorous manner. This reveals the opportunity of
reliably recovering high-level models by extracting semantics
from each DNN operator’s low-level representation.

Extracting DNN models from executables can boost many
security applications, including adversarial example genera-
tion, training data inference, legacy DNN model reuse, mi-
gration, and patching. In contrast, existing model-extraction
attacks, whether based on side channels [28,42,43,95,96,103]
or local retraining [68, 70, 71, 85], assume specific attack en-
vironments or can leak only parts of DNN models with low
accuracy or high overhead.

w1 w2 …

mergeable nodes operator optimization

Model
Specification

Computation
Graph Creation

Graph IR &
Optimization

Low-Level IR

Hardware-specific
Optimization

(Auto) Scheduling
& (Auto) Tuning

Code Gen &
Optimization

DNN
Executable

(a) DNN compilation pipeline.

(b) Sample DNN computation graph. DNN compiler frontend looks for holistic
opt. chances like mergeable nodes, whereas backend explores efficient machine
code for each operator.

Conv ReLU ConvPool

Figure 1: The high-level workflow of DL compilation.

We propose BTD, a decompiler for DNN executables.
Given a (stripped) executable compiled from a DNN model,
we propose a three-step approach for full recovery of DNN op-
erators, network topology, dimensions, and parameters. BTD
conducts representation learning over disassembler-emitted
assembly code to classify assembly functions as DNN oper-
ators, such as convolution layers (Conv). Dynamic analysis
is then used to chain DNN operators together, thus recover-
ing their topological connectivity. To further recover dimen-
sions and parameters of certain DNN operators (e.g., Conv),
we launch trace-based symbolic execution to generate sym-
bolic constraints, primarily over floating-point-related com-
putations. The human-readable symbolic constraints denote
semantics of corresponding DNN operators that are invariant
across different compilation settings. Experienced DL experts
can infer higher-level information about operators (e.g., di-
mensions, the memory layout of parameters) by reading the
constraints. Nevertheless, to deliver an automated pipeline,
we then define patterns over symbolic constraints to automat-
ically recover dimensions and memory layouts of parameters.
We incorporate taint analysis to largely reduce the cost of
symbolic execution which is more heavyweight.

BTD is comprehensive as it handles all DNN operators
used in forming computer vision (CV) models in ONNX
Zoo [69]. BTD processes x86 executables, though its core
technique is mostly platform-independent. Decompiling ex-
ecutables on other architectures requires vendor support for
reverse engineering toolchains first. We also find that DNN
“executables” on some other architectures are not in stan-
dalone executable formats. See the last paragraph of Sec. 2
for the significance of decompiling x86 DNN executables,
and see Sec. 8 for discussions on cross-platform support.

BTD was evaluated by decompiling 64-bit x86 executables
emitted by eight versions of three production DL compil-
ers, TVM [20], Glow [77], NNFusion [58], which are de-
veloped by Amazon, Facebook, and Microsoft, respectively.
These compilers enable full optimizations during our eval-
uation. BTD is scalable to recover DNN models from 65
DNN executables, including nearly 3 million instructions, in
60 hours with negligible errors. BTD, in particular, can re-
cover over 100 million parameters from VGG, a large DNN
model, with an error rate of less than 0.1% (for TVM-emitted
executable) or none (for Glow-emitted executable). More-
over, to demonstrate BTD’s correctness, we rebuild decom-
piled model specifications with PyTorch. The results show

that almost all decompiled DNN models can be recompiled
into new executables that behave identically to the reference
executables. We further demonstrate that BTD, by decom-
piling executables into DNN models, can boost two attacks,
adversarial example generation and knowledge stealing. We
also migrate decompiled x86 DNN executables to GPUs, and
discuss limits and potential future works. In summary, we
contribute the following:

• This paper, for the first time1, advocates for reverse engi-
neering DNN executables. BTD accepts as input (stripped)
executables generated by production DL compilers and out-
puts complete model specifications. BTD can be used to aid
in the comprehension, migration, hardening, and exploita-
tion of DNN executables.

• BTD features a three-step approach to recovering high-
level DNN models. It incorporates various design principles
and techniques to deliver an effective pipeline.

• We evaluate BTD against executables compiled from large-
scale DNN models using production DL compilers. BTD
achieves high accuracy in recovering (nearly) full specifica-
tions of complex DNN models. We also demonstrate how
common attacks are boosted by BTD.

We provide BTD and data (e.g., recompiled executables)
at [9]. We will maintain BTD to benefit follow-up research.
We also provide an extended version of this paper at [9] which
includes full details of this work.

2 Preliminary

Fig. 1(a) depicts DNN model compilation. DNN compila-
tion can be divided into two phases [53], with each phase
manipulates one or several intermediate representations (IR).
Computation Graph. DL compiler inputs are typically high-
level model descriptions exported from DL frameworks like
PyTorch [72]. DNN models are typically represented as com-
putation graphs in DL frameworks. Fig. 1(b) shows a simple
graph of a multilayer convolutional neural network (CNN).
These graphs are usually high-level, with limited connections

1This paper was submitted to USENIX Security 2022 (Fall Round) on
October 12, 2021. We received the Major Revision decision and re-submitted
the revised version to USENIX Security 2023 (Summer Round) on June 07,
2022. When preparing the camera-ready version, we notice a parallel work
DnD [94], which considers decompiling DNN executables across architec-
tures (BTD only considers x86 executables). Nevertheless, DnD does not
deeply explore the impact of compiler optimizations compared to our work.

to hardware. DL frameworks export computation graphs often
in ONNX format [4] as DL compiler inputs.
Frontend: Graph IRs and Optimizations. DL compilers
typically first convert DNN computation graphs into graph
IRs. Hardware-independent graph IRs define graph structure.
Network topology and layer dimensions encoded in graph
IRs can aid graph- and node-level optimizations including
operator fusion, static memory planning, and layout transfor-
mation [20, 77]. For instance, operator fusions and constant
folding are used to identify mergeable nodes in graph IRs af-
ter precomputing statically-determinable components. Graph
IRs specify high-level inputs and outputs of each operator,
but do not restrict how each operator is implemented.
Backend: Low-Level IRs and Optimizations. Hardware-
specific low-level IRs are generated from graph IRs. Instead
of translating graph IRs directly into standard IRs like LLVM
IR [51], low-level IRs are employed as an intermediary step
for customized optimizations using prior knowledge of DL
models and hardware characteristics. Graph IR operators can
be converted into low-level linear algebra operators [77]. For
example, a fully connected (FC) operator can be represented
as matrix multiplication followed by addition. Such repre-
sentations alleviate the hurdles of directly supporting many
high-level operators on each hardware target. Instead, trans-
lation to a new hardware target only needs the support of
low-level linear algebra operators. Low-level IRs are usually
memory related. Hence, optimizations at this step can include
hardware intrinsic mapping, memory allocation, loop-related
optimizations, and parallelization [15, 20, 76, 98].
Backend: Scheduling and Tuning. Policies mapping an op-
erator to low-level code are called schedules. A compiler
backend often searches a vast combinatorial scheduling space
for optimal parameter settings like loop unrolling factors.
Halide [76] introduces a scheduling language with manual and
automated schedule optimization primitives. Recent works
explore launching auto scheduling and tuning to enhance opti-
mization [10,20,21,62,88,100,101]. These methods alleviate
manual efforts to decide schedules and optimal parameters.
Backend: Code Gen. Low-level IRs are compiled to gener-
ate code for different hardware targets like CPUs and GPUs.
When generating machine code, a DNN operator (or sev-
eral fused operators) is typically compiled into an individual
assembly function. Low-level IRs can be converted into ma-
ture tool-chains IRs like LLVM or CUDA IR [65] to explore
hardware-specific optimizations. For instance, Glow [77] can
perform fine-grained loop-oriented optimizations in LLVM
IR. DL compilers like TVM and Glow compile optimized
IR code into standalone executables. Kernel libraries can be
used by DL compilers NNFusion [58] and XLA [86] to stati-
cally link with DNN executables. Decompiling executables
statically linked with kernel libraries are much easier: such
executables contain many wrappers toward kernel libraries.
These wrappers (e.g., a trampoline to the Conv implementa-
tion in kernel libraries) can be used to infer DNN models. This

work mainly focuses on decompiling “self-contained” exe-
cutables emitted by TVM and Glow, given their importance
and difficulty. For completeness, we demonstrate decompiling
NNFusion-emitted executables in Sec. 4.4.
Real-World Significance of DL Compilers. DL compilers
offer systematic optimization to improve DNN model adop-
tion. Though many DNN models to date are deployed using
DL frameworks like Tensorflow, DL compilers cannot be dis-
regarded as a growing trend. Edge devices and low-power pro-
cessors suppliers are incorporating DL compilers into their ap-
plications to reap the benefits of DNN models [44, 66, 67, 75].
Cloud service providers like Amazon and Google include DL
compilers into their DL services to boost performance [12,92].
Amazon uses DL compilers to compile DNN models on Intel
x86 CPUs [45, 55]. Facebook deploys Glow-compiled DNN
models on Intel CPUs [61]. Overall, DL compilers are increas-
ingly vital to boost DL on Intel CPUs, embedded devices, and
other heterogeneous hardware backends. We design BTD,
a decompiler for Intel x86 DNN executables. We show how
BTD can accelerate common DNN attacks (please see the
extended paper [9] for details) and migrate DNN executables
to GPUs (Sec. 8). Sec. 8 explains why BTD does not de-
compile executables on GPUs/accelerators. GPU/accelerator
platforms lack disassemblers/dynamic instrumentation infras-
tructures, and the DL compiler support for GPU platforms is
immature (e.g., cannot generate standalone executables).

3 Decompiling DNN Executables

Definition. BTD decompiles DL executables to recover DNN
high-level specifications. The full specifications include: 1
DNN operators (e.g., ReLU, Pooling, and Conv) and their
topological connectivity, 2 dimensions of each DNN oper-
ator, such as #channels in Conv, and 3 parameters of each
DNN operator, such as weights and biases, which are im-
portant configurations learned during model training. Sec. 4
details BTD’s processes to recover each component.
Query-Based Model Extraction. Given a (remote) DNN
model with obscure specifications, adversaries can continu-
ously feed inputs x to the model and collect its prediction
outputs y. This way, adversaries can gradually assemble a
training dataset (x,y) to train a local model [71, 87].

This approach may have the following challenges: 1) for a
DNN executable without prior knowledge of its functionality,
it is unclear how to prepare inputs x aligned with its normal
inputs; 2) even if the functionality is known, it may still be
challenging to prepare a non-trivial collection of x for models
trained on private data (e.g., medical images); 3) local retrain-
ing may require rich hardware and is costly; and 4) existing
query-based model extraction generally requires prior knowl-
edge of model architectures and dimensions [71]. In contrast,
BTD only requires a valid input. For instance, a meaningless
image is sufficient to decompile executables of CV models.
Also, according to the notation in Definition, local retraining

(a) Glow (b) TVM -O0 (c) TVM -O3 (d) NNFusion

Figure 2: Compare CFGs of a Conv operator in VGG16 compiled by different DL compilers. TVM refers to enabling no
optimization as “-O0” while enabling full optimizations as “-O3”. Glow and NNFusion by default apply full optimizations.

assumes 1 + 2 as prior knowledge, whereas BTD fully
recovers 1 + 2 + 3 from DNN executables.
Model Extraction via Side Channels. Architectural-level
hints (e.g., side channels) leaked during model inference can
be used for model extraction [28, 42, 43, 95, 96, 103]. These
works primarily recover high-level model architecture, which
are 1 or 1 + 2 according to our notation in Definition. In
contrast, BTD statically recovers 1 and then dynamically
recovers 2 + 3 from DNN executables (but coverage is
not an issue; see Sec. 4.2 for clarification). Sec. 9 further
compares BTD with prior model extraction works.
Comparison with C/C++ Decompilation. BTD is different
from C/C++ decompilers. C/C++ decompilation takes exe-
cutable and recovers C/C++ code that is visually similar to
the original source code. Contrarily, we explore decompiling
DNN executables to recover original DNN models. The main
differences and common challenges are summarized below.
Statements vs. Higher-Level Semantics: Software decompi-
lation, holistically speaking, line-by-line translates machine
instructions into C/C++ statements. In contrast, BTD recovers
higher-level model specifications from machine instructions.
This difference clarifies that a C decompiler is not sufficient
for decompilation of DNN executables.
Common Uncertainty: There is no fixed mapping between
C/C++ statements and assembly instructions. Compilers may
generate distinct low-level code for the same source state-
ments. Therefore, C/C++ decompilers extensively use heuris-
tics/patterns when mapping assembly code back to source
code. Likewise, DL compilers may adopt different optimiza-
tions for compiling the same DNN operators. The compiled
code may exhibit distinct syntactic forms. Nevertheless, the
semantics of DNN operators are retained, and we extract the
invariant semantics from the low-level instructions to infer
the high-level model specifications. See Sec. 4.3 for details.
End Goal: C/C++ compilation prunes high-level program fea-
tures, such as local variables, types, symbol tables, and high-
level control structures. Software decompilation is fundamen-
tally undecidable [23], and to date, decompiled C/C++ code
mainly aids (human-based) analysis and comprehension, not
recompilation. Generating “recompilable” C code is very chal-
lenging [30, 89, 90, 93]. In this regard, DNN compilation has
comparable difficulty, as compilation and optimization dis-
card information from DNN models (e.g., by fusing neighbor
operators). BTD decompiles DNN executables into high-level

DNN specifications, resulting in a functional executable after
recompilation. Besides helping (human-based) comprehen-
sion, BTD boosts model reuse, migration, security hardening,
and adversarial attacks. See discussion in Sec. 8 and case
studies in extended paper [9].
Opacity in DNN Executables. Fig. 2 compares VGG16 [81]
executables compiled using three DL compilers. For simplic-
ity, we only plot the control flow graphs (CFGs) of VGG16’s
first Conv operator. These CFGs were extracted using IDA-
Pro [38]. Although this Conv is only one of 41 nodes in
VGG16, Glow compiles it into a dense CFG (Fig. 2(a)).
Sec. 2 has introduced graph-level optimizations that selec-
tively merge neighbor nodes. Comparing CFG generated by
TVM -O0 (Fig. 2(b)) and by TVM -O3 (Fig. 2(c)), we find
that optimizations (e.g., operator fusion) in TVM can make
CFG more succinct. We also present CFGs emitted by NNFu-
sion in Fig. 2(d): NNFusion-emitted executables are coupled
with the Mlas [60] kernel library. This CFG depicts a simple
trampoline to the Conv implementation in MlasGemm.

As in Fig. 2, different compilers and optimizations can re-
sult in complex and distinct machine code realizations. How-
ever, BTD is designed as a general approach for decompila-
tion of executables compiled by these diverse settings.
Design Focus. Reverse engineering is generally sensitive to
the underlying platforms and compilation toolchains. As the
first piece of work in this field, BTD is designed to process
common DNN models compiled by standard DL compilers.
Under such conservative and practical settings, BTD delivers
highly encouraging and accurate decompilation. Similarly,
obfuscation can impede C/C++ decompilation [56]. Modern
C/C++ decompilers are typically benchmarked on common
software under standard compilation and optimization [14,19,
90, 93], instead of extreme cases. We leave it as a future work
to study decompiling obfuscated DL executables.

4 Design

Decompiling DNN executables is challenging due to the mis-
match between instruction-level semantics and high-level
model specifications. DNN executables lack high-level in-
formation regarding operators, topologies, and dimensions.
Therefore, decompiling DNN executables presents numerous
reverse engineering hurdles, as it is difficult to deduce high-

Type Dimension Parameter Operators

Ⅰ NA NA
ReLU; Sigmod; … Add; Sub; Negative; Sqrt; …

ExpandDims; BatchFlatten; …

Ⅱ ✓ NA Pooling;

Ⅲ NA ✓ BiasAdd; Multiply; Divide; BN;

Ⅳ ✓ ✓ Conv; FC; Embedding

(b) Four types of operators.

DNN
Executable

Disassembling
DNN Operator

Recovery

Topology
Recovery

Dimension &
Parameter Recovery

Model

(a) Workflow.

Figure 3: Decompilation workflow. Here “NA” in the “Dimension” column denotes an easy case where output dimension of
an operator O equals to its input dimension and no other dimensions associated with O. We find that in non-trivial DNN, it is
sufficient to decide O’s dimensions after propagating dimensions from other operators on the DNN computation graph.

level model specifications from low-level instructions. We
advocate DL decompilers to satisfy the following criteria:
R1 (Generalizability): Avoid brittle assumptions. Generalize
across compilers, optimizations, and versions.
R2 (Correctness): Use effective, resilient methods and pro-
duce correct outputs.
R3 (Performance): Be efficient when necessary.
R4 (Automation): Avoid manual analysis and automate the
decompilation process.

BTD delivers practical decompilation based on the invari-
ant semantics of DNN operators that aims to meet all four
criteria. Our intuition is simple: DL compilers generate dis-
tinct low-level code but retain operator high-level semantics,
because DNN operators are generally defined in a clean and
rigorous manner. Therefore, recovering operator semantics
should facilitate decompilation generic across compilers and
optimizations (R1). Besides, as invariant semantics reflect
high-level information, e.g., operator types and dimensions,
we can infer model abstractions accurately (R2).

Fig. 3(a) depicts the BTD workflow. Sec. 4.1 describes
learning-based techniques for recognizing assembly functions
as DNN operators like Conv. Given recovered DNN operators,
we reconstruct the network topology using dynamic analysis
(Sec. 4.2). We then use trace-based symbolic execution to ex-
tract operator semantics from assembly code and then recover
dimensions and parameters with semantics-based patterns
(Sec. 4.3.2). Some operators are too costly for symbolic exe-
cution to analyze. We use taint analysis to keep only tainted
sub-traces for more expensive symbolic execution to ana-
lyze (R3), as noted in Sec. 4.3.1. BTD is an end-to-end, fully
automated DNN decompiler (R4). BTD produces model spec-
ifications that behave identically to original models, whose
focus and addressed challenges are distinct from C/C++ de-
compilation. BTD does not guarantee 100% correct outputs.
In Sec. 5, we discuss procedures users can follow to fix errors.

Dimensions and parameters configure DNN operators. We
show representative cases in Fig. 3(b). Type I operators, in-
cluding activation functions like ReLU and element-wise
arithmetic operators, do not ship with parameters; recovering
their dimensions is trivial, as clarified in the caption of Fig. 3.
Type II and III operators require dimensions or parameters,
such as Pooling’s stride S and kernel size K. In addition to
simple arithmetic operators, BiasAdd involves bias B, as extra

parameters. Type IV operators require both parameters and di-
mensions. These operators form most DNN models. Sec. 7.1
empirically demonstrates “comprehensivness” of our study.

BTD recovers dimensions/parameters of all DNN opera-
tors used by CV models in ONNX Zoo (see Sec. 7.1). Due to
limited space, Sec. 4.3 only discusses decompiling the most
challenging operator, Conv. The core techniques explained
in Sec. 4.3 are utilized to decompile other DNN operators.
However, other operators may use different (but simpler) pat-
terns. Our extended paper [9] lists other operator patterns. We
further discuss the extensibility of BTD in Sec. 7.3.
Disassembling and Function Recovery. BTD targets 64-
bit x86 executables. Cross-platform support is discussed in
Sec. 8. BTD supports stripped executables without symbol
or debug information. We assume that DNN executables can
be first flawlessly disassembled with assembly functions re-
covered. According to our observation, obstacles that can
undermine disassembly and function recovery in x86 executa-
bles, e.g., instruction overlapping and embedded data [30],
are not found in even highly-optimized DNN executables.
We use a commercial decompiler, IDA-Pro [38] (ver. 7.5), to
maximize confidence in the credibility of our results.
Compilation Provenance. Given a DNN executable e, com-
pilation provenance include: 1) which DL compiler is used,
and 2) whether e is compiled with full optimization -O3 or
no optimization -O0. Since some DNN operators (e.g., type
IV in Fig. 3(b)) in e are highly optimized when compiled,
the compilation provenance can be inferred automatically by
analyzing patterns over sequences of x86 instructions derived
from e. We extend our learning-based method from Sec. 4.1
to predict compilation provenance from assembly code. Our
evaluation of over all CV models in ONNX Zoo finds no
errors. Overall, we assume that compilation provenance is
known to BTD. Therefore, some patterns can be designed
separately for Glow- and TVM-emitted executables; see de-
tails in the extended paper [9]. To show e’s decompilation is
flawless, we must recompile decompiled DNN models with
the same provenance (see Sec. 7.1.4). Using different com-
pilation provenances may induce (small) numerical accuracy
discrepancies and is undesirable.

This section focuses on decompilation of self-contained
DNN executables compiled by TVM and Glow. Decompila-
tion of NNFusion-emitted executables is easier because of its

distinct code generation paradigm. We discuss decompiling
NNFusion-emitted executables in Sec. 4.4.

4.1 DNN Operator Recovery

As introduced in Sec. 2, one or a few fused DNN operators are
compiled into an assembly function. We train a neural model
to map assembly functions to DNN operators. Recent works
perform representation learning by treating x86 opcodes as
natural language tokens [26, 27, 54, 73, 97]. These works help
comprehend x86 assembly code and assist downstream tasks
like matching similar code. Instead of defining explicit pat-
terns over x86 opcodes to infer DNN operators (which could
be tedious and need manual efforts), we use representation
learning and treat x86 opcodes as language tokens.
Atomic OPs. Launching representation learning directly over
x86 opcodes syntax can result in poor learning quality. Due to
x86 instructions’ flexibility, opcodes with (nearly) identical
semantics may have distinct syntactic forms, e.g., vmulps and
mulps denoting multiply over floating numbers of different
sizes. Rare words machine translation [80] are recently ad-
vanced from the observation that natural language words can
be divided into atomic units. Translators can use atomic units
to translate rare words. Accordingly, we define atomic OPs
over x86 opcodes: an atomic OP represents an atomic and in-
divisible unit of an x86 opcode. Each opcode is thus split into
atomic OPs. While a DNN operator could be compiled into
various x86 opcode sequences, induced atomic OP sequences
can better reflect “semantics” in a noisy-resilient way.
Dividing Opcodes into Atomic OPs. As a common approach,
we segment opcodes using Byte Pair Encoding (BPE) [33].
BPE iteratively replaces the most frequent consecutive bytes
in a sequence with a single, unused byte. We split each op-
code into a sequence of characters and counted consecutive
characters to find the most frequent ones. BPE iterates until
the opcodes of all atomic OPs have been merged. For instance,
opcodes vmulps and mulps are first split into “v m u l p s” and
“m u l p s”, and an atomic OP mulps is eventually extracted.
Learning over Atomic OPs. We train a neural identifier
model with a sequence of atomic OPs from an assembly func-
tion as inputs. This model outputs a 1D vector with N dimen-
sions (N is the total number of unique DNN operators), where
multiple “1” in the vector implies that this assembly function
represents several fused DNN operators. All “0” in the vector
implies this function may be a DL compiler-inserted utility
function (e.g., for memory management). The order of fused
operators is represented in symbolic constraints extracted in
Sec. 4.3. Thus, predicted operator labels and network topol-
ogy will be refined after symbolic execution. Our model’s
frontend learns a neural embedding for each atomic OP and
then embeds a function’s entire atomic OP sequence. The
order of atomic OPs is found to be vital in prediction. There-
fore, we preserve the order of collected atomic OPs within

the assembly function. We encode orders with LSTM [40]
(see Sec. 5) and enhance learning with neural attention [16].
From Operators to Compilation Provenance. As noted
in Sec. 4, our decompilation pipeline requires compilation
provenance. We extend the model presented in this section to
recover compilation provenance. The extended model predicts
compilation provenance using embeddings of all functions
in an executable as its input (function embeddings have been
generated above). We clarify this task is generally simple; hu-
mans can easily distinguish assembly functions in executables
from different compilation provenances.

4.2 DNN Network Topology Recovery
Recovering DNN network topology is straightforward, re-
gardless of underlying operator semantics. DNN operators
are chained into a computation graph. Generally, a DNN oper-
ator has a fixed number of inputs and outputs [6]. According
to our observation, DL compilers compile DNN operators into
assembly functions and pass inputs and outputs as memory
pointers through function arguments. We use Intel Pin [57], a
dynamic instrumentation tool, to hook every callsite. During
runtime, we record the memory addresses of inputs/outputs
passed to callsites and connect two operators if the successor’s
inputs match the predecessor’s outputs.

We do not rely on any compiler-specific assumptions like
function signatures. This step is independent of later steps and
only uses shallow information readily available in binaries.
In case the inputs and outputs are passed differently (e.g., not
using pointers) in further compiler implementation changes,
we envision updating the instrumented code accordingly with-
out much engineering effort required. Also, we clarify that
this dynamic analysis is not limited by “coverage”. We do not
require “semantically meaningful” inputs (not like a query-
based model extraction [71, 87]), just a format-valid input to
record how each operator in the executable accesses mem-
ory. One format-valid, trivial (meaningless) input can achieve
100% coverage. Besides, whether a model accepts images or
text as its valid inputs is easy to determine.

4.3 Dimension and Parameter Recovery
As in Fig. 3, certain complex DNN operators are configured
with dimensions and parameters. This section details solu-
tions to recover parameters/dimensions. To present a compre-
hensive working example, we use Conv, the most complex
operator in our dataset, to introduce our solutions. Nonethe-
less, our solutions are general enough to cover all operators in
CV models of ONNX Zoo (see Sec. 7.1) and can be extended
to support more operators with trivial effort (see Sec. 7.3).

Fig. 4(a) shows the input, the kernel, and the output of a
simple Conv computation. Suppose no optimization is applied,
we present the memory layout of Conv in Fig. 4(b). Inputs and
parameters are typically stored separately in memory, whereas

0 1 0
1 0 0
1 1 1

0 1
1 1 2

w0 [:, :, 0]
0 * 0 = 0
0 * 1 = 0
1 * 1 = 1

+ 1 * 1 = 1
2

Output (2x2x1)Filter W0 (2x2x1)Input 3x3x1

output =
load(0x29b8,4) * load(0x4470,4) +
load(0x29bc,4) * load(0x4474,4) +
load(0x29c4,4) * load(0x4478,4) +
load(0x29c8,4) * load(0x447c,4)

(a) One Convolution Operation (c) Corresponding Symbolic Formula

mem address: input locations
mem address: weight locations

(b) Memory Layout and Addresses

0 1 1 1

0x4470 0x4478

0x29b8 0x29c4

0 1 0 1 0 0 1 1 1

Figure 4: Launching trace-based symbolic execution (SE) to infer dimensions and localize parameters for Conv operators.

neighbor input/parameter elements are stored contiguously.
Fig. 4(c) reports the invariant semantics of the Conv operator
in Fig. 4(a), in the form of a symbolic constraint.
General Workflow. Recovering dimensions and parameters
has several tasks. The essential of our solution is to summa-
rize operator invariant semantics with symbolic execution.
We first log execution traces and use taint analysis to shorten
the traces. We then use symbolic execution to summarize the
input-output constraint of each assembly function, infer di-
mensions using patterns defined over constraints, and further
extract parameters. We detail each task below.

4.3.1 Trace Logging and Taint Analysis

Execution trace-based analysis is ideal to analyze DNN exe-
cutables, because any non-trivial inputs achieve full coverage.
We use Intel Pin [57] to log the execution trace of an opera-
tor’s assembly function. Complex DNN operators like Conv
are computation intensive, and a single Conv execution trace
can reach to hundreds of gigabytes. Pin takes several hours to
log one trace. Nonetheless, Conv is generally compiled into
nested loops. Hence, analyzing a subtrace containing one iter-
ation of the outermost loop is sufficient (as long as a complete
calculation of an output element is reflected in this subtrace).
Taint Analysis. The subtrace can still be up to several giga-
bytes in size. We further use backward taint analysis [47, 78]
to rule out instructions that are not involved in computing
outputs. We mark this operator’s output elements as taint
sources and analyze the trace backward. Our taint propaga-
tion is straightforward to track data dependency [47, 78, 91].
Trace logging records each instruction’s execution context,
including concrete memory address values. Thus, for each
memory access during taint propagation, we compute con-
crete addresses to taint/untaint memory cells accordingly.

4.3.2 Symbolic Execution (SE)

We launch SE over tainted x86 instructions. While existing
symbolic execution tools do not support pervasive SSE in-
structions in DNN executables, we reimplement a trace-based
SE engine that models all SSE floating-point computations
encountered in tainted traces. We ignore irrelevant semantics
like CPU flags. As with taint analysis, symbolic pointers are
computed using concrete values. For instance, movss xmm1,
dword ptr [rcx] will load floating numbers from memory
pointed by rcx. Given that dword denotes 4 bytes, if rcx is

0x29b8, we create (0x29b8, 4) as xmm1’s symbolic value
while the upper 16-4 bytes are reset to zero. After performing
SE on tainted trace, we get a (simplified) symbolic constraint
as in Fig. 4(c), which shows how inputs and parameters in
memory (see Fig. 4(b)) are used to computing an output.
Identifying Memory Layouts. To determine if each address
in the symbolic constraint points to inputs or parameters, we
form a once-for-all configuration that records the meaning
of each argument (inputs or parameters) of the correspond-
ing assembly function for different operators (see extended
paper [9]). We can collect and identify inputs and parame-
ters’ memory addresses by querying the configuration. For
the constraint in Fig. 4(c), we will identify memory addresses
and classify them into weights (marked in red) and inputs
(marked in yellow). Furthermore, by logging and identifying
all memory addresses accessed during an operator’s compu-
tation, we can cluster all addresses of the same parameter
to scope that parameter’s memory region (i.e., the starting
address and size).

4.3.3 Dimension Recovery

For reverse engineering, heuristic are hardly avoidable [89,90].
We now present patterns defined over the extracted constraints,
which enable recovering dimensions and parameter layouts.
Without compromising generality, we mainly introduce pat-
terns we use to recover Conv operator dimensions and layouts.
Other operators in our dataset can be covered smoothly with
simpler patterns, as we stated in Sec. 4.3.
Kernel Size K, Input Channel IC, Zero Padding P. Con-
sider Fig. 4(c), given the relative offsets of four marked input
memory addresses are [0, 4, 12, 16], we can infer the
kernel shape as 2×2 (the continuous sequence has length 2),
indicating that K = 2. Further, we calculate #input channels
IC = 4

2×2 = 1, as to compute one output element, we recog-
nize four inputs (which belong to one input channel) in the
symbolic constraint. Also, considering the memory layout
in figure b, it should be easy to infer that “12” denotes the
first element from the next row (element at row 3, column
2). Hence, we can compute the shape of the input matrix as
12
4 = 3 where 4 denotes the size of one floating number on 64-

bit x86 platforms. The input shape is therefore 3×3. As the
network topology has been recovered in Sec. 4.2, we compare
the output of the prior operator with the input of this Conv to

decide zero padding P. Suppose the output shape of the prior
operator is 1×1, P is decided as 3−2

2 = 1.
Output Channels OC. To infer OC, we re-run Pin and log
all accessed memory locations when executing Conv. Since
we do not need to log every instruction and its associated
context (which involves lots of string conversions and I/Os),
Pin runs much faster than being used to log execution traces
in Sec. 4.3.1. We then re-launch the analysis detailed in Iden-
tifying Memory Layouts to identify all addresses belonging
to weights and then determine the size of the memory region
that stores weights, which implies the size of weights. Let the
memory region size be Mw, OC can be computed as Mw

IC×K×K .
Stride S. Let the input (output) height be IHi (OHi), we com-
pute stride S using the following dimension constraint:

OHi = [(IHi +2P−K)/S]+1

The memory region size Mi of Conv inputs can be decided
in the same way as deciding Mw. Hence, the input height

can be computed as IHi =
√

Mi
Ic

. Similarly, we can compute

OHi as
√

Mo
Oc

, where Mo is the memory region size of Conv
outputs. Stride S is thus computed using the constraint above.

In sum, BTD extracts a series of facts based on the sym-
bolic constraint and runtime information of DNN executa-
bles, including 1) the memory regions size of inputs, outputs,
and parameters, 2) the relative offsets of the input memory
addresses, 3) the relative offsets of the parameter memory
addresses, and 4) the number of specific arithmetic operations
inside a symbolic constraint. Lacking any of these cannot
fully recover a (complex) DNN operator. Nevertheless, since
these facts are consistantly presented in DNN executables
generated by different DL compilers, our dimension recovery
techniques are generic across compilers and optimizations.
See [9] for handling other operators (in the same procedure)
and Sec. 7.2 for the generalization evaluation.

4.3.4 Recover Parameters

Recovering parameters requires to identify their starting ad-
dresses and memory layouts. As clarified in #Output Chan-
nels OC, we identify memory region Mw that stores parame-
ters. We then use Pin to dump parameters to disk at runtime.
With recovered dimensions and dumped parameters in data
bytes, we can recover well-formed parameters. Operators
may have multiple parameters, and more than one pointers
to distinct parameters may appear in the assembly function
arguments (see extended paper [9] for function interfaces of
operators). Each pointer’s parameter is recovered separately.
Handling Compiler Optimizations. Fig. 4(b) depicts a
Conv’s memory layout. However, compilers may optimize
Conv to reduce runtime cost. Both TVM and Glow may per-
form layout alteration optimizations to take advantage of SSE
parallelism by reading 4 (or 8) floating numbers from con-
tiguous memory into one register. These floating numbers

can be computed with one SSE instruction (optimized mem-
ory layout is depicted in Sec. 7.1.6). These optimizations
modify Conv’s standard memory layout, impeding parameter
recovery. Similar to dimension inference, we use patterns to
identify optimized layouts. We detail patterns in extended
paper [9]. In short, BTD is nearly flawless; see discussion in
Sec. 7.1.6.

4.4 Executables Emitted by NNFusion
The procedure described in Sec. 4 decompiles self-contained
DNN executables — outputs of the dominant compilers TVM
and Glow. As introduced in Sec. 2, some DL compilers, in-
cluding NNFusion [58] and XLA [86], generate executables
statically linked with kernel libraries. It is easier to decompile
NNFusion- and XLA-emitted executables since they contain
wrapper functions to invoke operator implementations in ker-
nel libraries. We can easily determine DNN operator types
by matching those wrapper functions. During runtime, we
use Pin to recover network topology and intercept data sent
via wrappers. While this work primarily focuses on decom-
piling more challenging code generation patterns adopted by
industrial-strength DNN compilers, TVM [20] and Glow [77],
we only empirically demonstrate the feasibility of decompil-
ing NNFusion executables in Sec. 7.1.5.

5 Implementation

BTD is primarily written in Python with about 11K LOC.
Our Pin plugins contain about 3.1K C++ code. The current
implementation decompiles 64-bit executables in the ELF
format on x86 platforms, See discussion on cross-platform
support in Sec. 8. We use LSTM for DNN operators inference
in an “out-of-the-box” manner to deal with distinct optimized
low-level code of the same type of operator resulting from
different dimensions. The model is a one-layer LSTM [40]
whose hidden dimension is 128. The LSTM is implemented
using PyTorch [72], with CUDA 10.0 [64] and cuDNN [22].

6 Usage & Error Fixing

BTD offers an end-to-end, automated decompilation. All
tasks of Fig. 3(a) require no human intervention. However,
decompilation is inherently challenging, and BTD may make
mistakes. This section first explains how a user use BTD in
practice, and then discuss error fixing.
Usage. Given a DNN executable, a user first disassembles
it (e.g., using IDA-Pro) and recovers all assembly functions.
The user also need to provide a format-valid input of this
executable for use. Next, as an end-to-end procedure, BTD
predicts compilation provenance and each disassembly func-
tion’s operator type. BTD then launches the network topology
recovery before conducting symbolic execution and recov-
ering dimensions and parameters for each operator, as ex-

plained in Sec. 4. Note that at this step, BTD uses a set of
error detection rules (see below) to detect and fix potential
errors. Decompilation process is then re-invoked if errors are
fixed. If the error cannot be resolved, human intervention is
required. The user needs to read and understand the symbolic
constraints to fix the error. Human comprehension at this step
is the only uncertain but necessary step of the decompilation if
complex errors occur. Finally, the user can rebuild the model
using the recovered model specification on DL frameworks
like PyTorch.

Error Fixing. To augment BTD’s decompilation pipeline,
we provide a set of rules based on the basic knowledge of
ML models, whose violation uncovers decompilation errors.
Some rules have error-fixing actions, but not all errors can
be fixed in an automated manner. In that case, the user can
inspect and fix those errors manually. Also, the user may
extend the rules based on their observation and experience
of ML models. Currently, we have six error detection rules,
of which Rules 1–4 have follow-up automated fixing actions,
while Rules 5–6 require human intervention for error fixing:

1. Dimensions of Conv operators must be integers. Other-
wise, BTD reports an error and instead uses input/output
of predecessor/successor operators to form the dimen-
sions; see a relevant case study in the extended paper [9].

2. Inputs of Add operators must be other operators’ outputs.
If not, BTD infers this operator type as BiasAdd.

3. The Split operator’s output memory region size should be
smaller than its input memory region size. If not, BTD
instead infers this operator type as Concatenate.

4. The symbolic constraint of an operator with ReLU label
(e.g., “Conv+ReLU”) must contain a “max” operation. If
not, BTD fixes its inferred operator type by removing the
“ReLU” label (e.g., “Conv+ReLU” → “Conv”).

5. If operator inference model’s confidence score is below
80%, and no error is detected by Rules 2-4, BTD throws
an error and requires human intervention.

6. An operator’s input shape must match its predecessor’s
output shape. Otherwise, BTD throws an error and re-
quires human intervention.

Conceptually, Rule 1 and 6 validate dimension inference,
whereas Rules 2–5 validate operator inference results. Rules
2–5 are designed based on observations of our manual explo-
ration, not failed cases when inferring test models.

Table 1: Compilers evaluated in our study.
Tool Name Publication Developer Version (git commit)

TVM [20] OSDI ’18 Amazon
v0.7.0
v0.8.0

v0.9.dev

Glow [77] arXiv Facebook
2020 (07a82bd9fe97dfd)
2021 (97835cec670bd2f)
2022 (793fec7fb0269db)

NNFusion [58] OSDI ’20 Microsoft v0.2
v0.3

7 Evaluation

In this section, we evaluate BTD by exploring the following
four research questions (RQs) below:
RQ1 (Comprehensiveness and Correctness): Is BTD com-
prehensive and correct to process all operators used in com-
mon DL models compiled with different compilers and opti-
mization options?
RQ2 (Robustness): Is BTD robust to survive frequent DL
compiler implementation changes?
RQ3 (Extensibility): Can BTD be easily extended to support
new operators and models? What efforts are needed?
RQ4 (Error Fixing): How does BTD handle decompilation
errors?

We evaluated BTD with seven real-world CV models and
an NLP model compiled with eight versions of compilers
to provide a comprehensive evaluation. BTD can produce
correct model specifications on 59 of 65 DNN executables,
and experienced users can quickly fix 3 of 6 remaining errors.
Nevertheless, we recognize that some errors cannot be easily
fixed by normal users. In the evaluation, we only use ground
truths to verify the correctness of decompilation results. BTD
is designed to cope with real-world settings and does not rely
on any ground truth. Setup and results are below.
Compilers. Table 1 lists compilers we used. We select eight
versions of three state-of-the-art DL compilers. Glow does
not have a release yet, so we use three versions that are at
least six months apart. Glow and NNFusion only generate
fully-optimized executables, but TVM can be configured to
use different optimization levels. Therefore, we use TVM
with no and full optimizations to build two sets of executa-
bles, while using Glow and NNFusion with default settings.
All models are compiled into 64-bit x86 executables. Sec. 2
and Sec. 4.4 describe NNFusion’s distinct code generation
paradigm. We study decompiling NNFusion-emitted executa-
bles in Sec. 7.1.5. Other evaluations in this section use TVM-
and Glow-compiled executables.
Test Data. Table 2 lists all evaluated DNN models. All these
models, except FasstText, are extensively used in CV tasks.
NNFusion can only compile its own shipped VGG11. Our
large-scale dataset includes a total of 675 operators and more
than 178 million parameters. Note that these operators have
covered all types of DNN operators used in the CV models in
ONNX Zoo. FastText is a common NLP model that contains
Embedding, FC, and Pooling. Embedding is a frequently-
used DNN operator in NLP models that encodes text into
embedding vectors. Since Embedding is not included in the
training dataset, we manually label functions in FastText.

These ONNX files are compiled with TVM and Glow and
then disassembled with IDA-Pro. Table 2 presents assembly
code statistics. In general, one (or several fused) operator cor-
responds to one TVM/Glow compiled assembly function. Be-
sides, TVM and Glow will add utility functions (e.g., for mem-

Table 2: Statistics of DNN models and their compiled executables evaluated in our study.
Model #Parameters #Operators TVM -O0 TVM -O3 Glow -O3

Avg. #Inst. Avg. #Func. Avg. #Inst. Avg. #Func. Avg. #Inst. Avg. #Func.
Resnet18 [36] 11,703,912 69 49,762 281 61,002 204 11,108 39
VGG16 [81] 138,357,544 41 40,205 215 41,750 185 5,729 33
FastText [18] 2,500,101 3 9,867 142 7,477 131 405 14
Inception [83] 6,998,552 105 121,481 615 74,992 356 30,452 112
Shufflenet [99] 2,294,784 152 56,147 407 34,637 228 33,537 59
Mobilenet [41] 3,487,816 89 69,903 363 46,214 228 37,331 52
Efficientnet [84] 12,966,032 216 89,772 546 49,285 244 13,749 67

ory management). Table 2 reports average statistics across
different versions of DL compilers.
Training the DNN Operator Identifier. To train the DNN
operator identifier, we form a dataset using all 15 image classi-
fication models (we have excluded image classification mod-
els that are in our test dataset) provided by ONNX Zoo [69],
such as AlexNet [49] and Inception [82]. These models are
all commonly-used in daily DL tasks. To prepare training
data, we use TVM and Glow to compile the ONNX files
of these models into executables. DL compilers can be con-
figured to output rich meta information during compilation,
which describes the topology of the compiled model and di-
mensions/types information of operators. We take this meta
information as the ground truth.
Processing Time. All experiments run on Intel Xeon CPU
E5-2678 with 256GB RAM and an Nvidia RTX 2080 GPU.
Generally, processing time is not a concern for BTD. Training
operator identifier described in Sec. 4.1 takes less than one
hour. The total operator identification time is about one sec-
ond. Recovering DNN network structures (Sec. 4.2) requires
only a few seconds since DNN executables are all lightweight
instrumented in this task. Taint analysis can take from min-
utes to hours, depending on model size. Symbolic execution
and parameter extraction usually take several minutes. Our
extended paper [9] report details of processing time.
Boosting DNN Attacks. BTD extracts high-level model spec-
ifications from executables, allowing attackers to carry out
white-box attacks toward the decompiled DNN models. In
contrast, when attackers can only interact with DNN exe-
cutables, attackers have to launch black-box attacks. With
BTD, we demonstrate two attacks: adversarial example (AE)
generation [63] and knowledge stealing [39] in a white-box
setting. The results suggest that the white-box attacks enabled
by BTD are much more powerful than the black-box settings.
BTD enables recovering 151.4× more AEs than the black-
box setting within 20 minutes, and the knowledge stolen from
white-box models are of much higher quality than from the
black-box executables; see details in the extended paper [9].

7.1 RQ1: Correctness and Comprehensiveness
This section answers RQ1. Our evaluation dataset contains
landmark CV models and a common NLP model listed in Ta-
ble 2. These CV models contains all kinds of operators used
by CV models in ONNX Zoo. We first present an in-depth

Table 3: Average accuracy of DNN operator inference.
Model Glow TVM -O0 TVM -O3

2020 2021 2022 v0.7 v0.8 v0.9.dev v0.7 v0.8 v0.9.dev
ResNet18 100% 100% 100% 99.79% 99.84% 100% 98.15% 99.06% 99.69%
VGG16 100% 100% 100% 99.95% 99.79% 99.57% 99.75% 100% 100%

Inception 100% 100% 100% 99.98% 99.88% 99.98% 100% 100% 100%
ShuffleNet 100% 100% 100% 99.96% 99.82% 100% 99.62% 99.71% 99.31%
MobileNet 100% 100% 100% 99.35% 99.46% 99.40% 99.80% 100% 100%

EfficientNet 100% 100% 100% 99.65% 99.68% 99.59% 99.81% 99.91% 100%

evaluation of decompiling CV models, assessing the correct-
ness and comprehensiveness of BTD’s technical pipeline over
all included DNN operators. We then discuss the comprehen-
siveness over NLP and audio processing models.

7.1.1 Predicting DNN Operator Type

In our test dataset, Glow-compiled executables have 14 types
of DNN operators and TVM-compiled executables have 30.
As introduced in Sec. 4.1, our operator identifier outputs a
1D vector of 14 or 30 elements for each assembly function,
where a “1” in kth element indicates that this function should
be labeled to kth operator. We allow multiple “1”, because
operators can be fused into one assembly function. As a result,
DNN operator inference is performed as two-class classifi-
cation tasks over 14 or 30 labels. DL compilers provide the
ground truth (function labels). We report the overall accuracy
in Table 3, where prediction of an function is correct, when
the predicted label describes exactly the same operation as
the ground truth label. We interpret the prediction as highly
accurate. Particularly, we achieve 100% accuracy for all exe-
cutables compiled by Glow. We check all errors in TVM and
discuss the root causes as follows:
Data Bias. Conv is commonly used with a following ReLU
for feature extraction. Given “Conv+ReLU” patterns are fre-
quent in training data, a ConvAdd operator emitted by TVM
-O3 is mislabeled as ConvAddReLU. In contrast, Dense is
often used in the last few layers of DNN without ReLU. There-
fore, when ReLU is fused with DenseAdd under TVM -O3,
our model mislabels DenseAddReLU as DenseAdd. Unbal-
anced real-world training data causes these mislabels. Errors
may be eliminated by post-checking if symbolic constraints
indicating ReLU (i.e., containing “max”) exists.
Operators with Similar Assembly Code. In TVM generated
code, BiasAdd can be predicted as Add, and vice versa. As ex-
pected, assembly code of these two operators are similar. Our

identifier’s confidence scores when labeling such operators
with similar assembly code are close to the decision bound-
ary, i.e., 50%. However, for other cases, the confidence scores
are all significantly higher. We thus use the error detection
method introduced in Sec. 6 to detect such errors in the early
stage. Rules 2–4 in Sec. 6 are sufficient to detect all opera-
tor labelling errors. Morevoer, after applying fixing actions
associated with Rules 2–4, we get the correct results over all
models, i.e., all results in Table 3 become 100%. Besides,
Rule 6 in Sec. 6 will throw a warning and require human
validation when confidence is lower than 80%.

Table 4: Parameter/dimension inference. Each column reports
dimension inference accuracy/parameter inference accuracy.
The complete data is available in the extended paper [9].

Model Glow TVM -O0 TVM -O3
(2020, 2021, 2022) (v0.7, v0.8, v0.9.dev) (v0.7, v0.8, v0.9.dev)

ResNet18 100%/100% 92.15%/99.37% 100%/99.37%

7.1.2 DNN Network Topology Recovery

Recovering network topology (Sec. 4.2) is straightforward
and rapid. To validate correctness, we compare the recovered
network topology with the reference DNN’s computation
graph for executables compiled by TVM -O0. For all evalu-
ated DNN models, the recovered network structure is fully
consistent with the reference. As for executables compiled by
TVM -O3 and Glow, optimizations can change the high-level
graph view of models. Thus, it becomes difficult to compare
the recovered topology with reference models. Nevertheless,
we note that all these test cases are shown as flawless in the
recompilation study (Sec. 7.1.4). Therefore, the correctness
of topology recovery for optimized cases is validated.

7.1.3 Parameter and Dimension Recovery

Table 4 reports parameter/dimension recovery accuracy. We
only list results for ResNet (as its recovery at this step has
defects). Besides ResNet, the accuracies for all other models
are 100%, and results are consistent across different compiler
versions; see complete data in [9]. Except for TVM -O0,
it is difficult to compare the recovered dimensions/parame-
ters with the reference due to compiler optimizations. Hence,
#failures in Table 4 equals #dimensions or #parameters that
need to be fixed before the recovered models can be com-
piled into executables showing identical behavior with the
references. Some operator inference failures do not involve
dimensions/parameters, and are thus not reflected in Table 4.

Overall, BTD can determine dimensions of different DNN
operators with negligible errors over all settings. Four failures
in ResNet18 (TVM -O0) are due to a Conv optimization (see
Sec. 7.1.6), while all dimensions of ResNet18 (TVM -O3) are
correctly recovered. Besides, despite huge volume of parame-
ters in each model, the results are promising. BTD failed to

Table 5: Recompilation. “NA” means that some errors are not
fixed, thus the rebuilt models manifest inconsistent behavior.
See full results in the extended paper [9].

Model Glow TVM -O0 TVM -O3
(2020, 2021, 2022) (v0.7, v0.8, v0.9.dev) (v0.7, v0.8, v0.9.dev)

ResNet18 100% 100% (with fixing) NA → 100%

recover about 73K parameters of an optimized Conv opera-
tor in ResNet18 (TVM -O3) due to its specially-optimized
memory layout; see root causes in Sec. 7.1.6.

7.1.4 Recompilation

Recompilation is an active field in reverse engineering,
though recompiling decompiled C/C++ code is challeng-
ing [30, 89, 90, 93]. This section demonstrates the feasibility
of recompiling decompiled DNN models. Recompilation re-
quires a fully fledged decompilation, with the end results
again being a functional executable exhibiting identical be-
havior with the reference. This demonstrates the feasibility
of DNN model reuse, migration, and patching. To do so, we
re-implement DNN models in PyTorch using recovered DNN
models, then export models as ONNX files and compiled into
DNN executables using the same compilation provenance.

It is not desirable to directly compare the recovered high-
level model specifications with the reference model’s specifi-
cations: compilation and optimization inevitably change DNN
model representation (e.g., fusing operators). Thereby incon-
sistency of two high-level specifications does not necessarily
indicate a difference in model outputs. Instead, We compare
recompiled and reference executables directly. Specifically,
we compare the predicted labels and confidence scores yielded
by recompiled and reference executables over every input
from validation dataset. Two executables are deemed iden-
tical if labels and confidence scores are exactly identical or
with only negligible floating-point precision loss. For image
classification models, we randomly select 100 images from
100 different categories in ImageNet [25] to form a validation
dataset. For FastText, we randomly crafted 50 inputs.

Table 5 reports the results (only including ResNet18 as its
recompilation has defects). All recompiled models manifest
identical behavior with references over all inputs in the valida-
tion dataset except ResNet. Errors in ResNet (TVM -O0) can
be fixed automatically with error fixing rules (see Sec. 7.4),
and we mark “100% (with fixing)”. BTD fails to detect an er-
ror in recovering the parameter layout of a Conv in ResNet18
(TVM -O3); we mark it “NA”. To verify the correctness of
the remaining recovered operators in this model, we manually
fixed this error with ground truth and re-ran the recompilation
study; this model also gets 100% correct outputs, marked as
“NA → 100%” in Table 5. In this case, BTD does not pro-
duce the correct and directly usable model specification, and
the manual fixing here is merely to prove that all remaining
operators in ResNet18 are correctly decompiled.

We also measure the size and speed of recompiled and ref-
erence executables. We report that no noticeable changes can
be observed comparing recompiled and original executables.

7.1.5 Decompiling NNFusion Outputs

As clarified in Sec. 4.4, decompiling executables emitted by
NNFusion and XLA are much easier, as these executables
are linked with kernel libraries. For completeness, we run
an automated process to decompile executables emitted by
NNFusion v0.2 and v0.3. NNFusion cannot compile VGG
provided by ONNX Zoo. We thus compile the VGG11 model
shipped by NNFusion. To verify the correctness, we reimple-
ment VGG in PyTorch using recovered VGG descriptions and
parameters. We follow the same step in Sec. 7.1.4 to validate
the recovered model. Note that PyTorch and DNN executables
may show negligible deviation between results, which, we
believe is from numerical accuracy instead of errors. We set a
threshold to allow 10−4 difference in the outputs of VGG in
PyTorch and in executable. All validation inputs are passed.
Therefore, we conclude that decompilation is correct.

Input

Conv

Reshape
Reshape

OptimizationsParameters

Output

Input

Conv

Parameters

Output

Padding

(a) Data Flow of Standard Conv (b) Data Flow in Optimized Executable

Figure 5: Reshapes inserted before Conv by TVM.

7.1.6 Root Cause Analysis

Besides errors due to mislabeled operators, two failures oc-
curred when inferring parameters and dimensions. We now
discuss the root causes.
Case One. All dimension/parameter recovery failures of
ResNet (TVM -O0) are from one Conv operator. The fail-
ure is due to a Reshape operator inserted by TVM before
Conv. To speed up program execution, TVM may add extra

1 1 1 1 1 1 1 1

1 1 1

1 2 2 2

2

[OC, IC, K, K]
[64, 3, 3, 3]

Low High

High1 1
1
1

1
1

1
1
1

2 2
2
2

2
2

2
2
2

64 64
64
64

64
64

64
64
64

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

×9…
…

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

…
…

…

[OC/8, IC, K, K, 8]
[8, 3, 3, 3, 8]

layout
optimization

3 3

×9

×9

×9

×9

×9

…

…

64 filters

Figure 6: Layout optimization.

Table 6: NLP models compilation results. “Crash” means
compilers throw an exception and terminate. “Failed” means
executable output is inconsistent with the input model. “Suc-
cess” means the model is compiled correctly.

Model Glow Glow TVM TVM NNFusion
(2020, 2021) 2022 v0.7 (v0.8, v0.9.dev) (v0.2, v0.3)

Char-RNN [7] Success Success Failed Failed Crash
LSTM [8] Crash Success Crash Failed Crash

code to reshape the input at runtime before Conv calculation,
as shown in Fig. 5. However, the reshaped input addresses
extracted over symbolic constraints no longer solely reflect
elements in the Conv kernels, thus restraining our patterns.

Case Two. Another parameter recovery failure also roots in
Conv (TVM -O3). Fig. 6 presents the standard memory lay-
out of a Conv which is denoted as [OC, Ic,K,K]. While this
layout can be flawlessly recovered by BTD, as mentioned in
Sec. 4.3.4, DL compilers may alter memory layout of parame-
ters to take advantage of SSE instructions. As shown in Fig. 6,
the parameter layout can be optimized as [OC/A, Ic,K,K,A].
BTD can correctly infer memory layouts for 33 of 34 Conv
operators optimized this way (see our patterns in the extended
paper [9]). Nevertheless, we still encounter one rare case
where weights are not loaded in the order assumed in our
patterns, which is likely due to TVM’s auto scheduling. This
breaks our patterns to recover parameters. In contrast, while
Glow also extensively optimize memory layout, BTD can
flawlessly recover all Conv operators compiled by Glow.

7.1.7 Other Models

NLP Models. We also tried to incorporate NLP models into
our evaluation. However, existing DL compilers still lack
complete support for basic NLP operators, such as RNN and
LSTM. Table 6 reports the results of preliminary investiga-
tion. We select two common NLP models, Char-RNN [7] and
LSTM [8], from PyTorch tutorial. Only the current version
of Glow can successfully compile both models. Thus, we
evaluated BTD with Char-RNN compiled with all versions of
Glow and LSTM compiled with Glow 2022, and BTD could
smoothly output the correct model specifications. With man-
ual inspection, we find that typical NLP operators, such as
RNN, GRU, and LSTM, are decomposed into sub-operators
during compilation, including FC operators and Element-wise
arithmetic operators. We note that these decomposed opera-
tors are already included in the ONNX Zoo CV models [69].

Audio Processing Models. We expect that BTD can also de-
compile audio processing models without extension. To clar-
ify, in the era of deep learning, audios are often converted into
2D representations and then processed using CV models [37],
or directly processed as sequences using NLP models [74].

output =
max(
(load(0x22a5a84,4) * load(0x7e1f54,4) +
load(0x22a5a7c,4) * load(0x7e1f4c,4) +
load(0x22a5a80,4) * load(0x7e1f50,4) +
load(0x22a5a78,4) * load(0x7e1f48,4) +
…),

0)

(a) Symbolic Constraint of Glow

mem address: input locations
mem address: weight locations

output =
(0 +

load(0x29cfe98,4) * load(0x293cd60,16) +
load(0x29cfe9c,4) * load(0x293cde0,16) +
load(0x29cfea0,4) * load(0x293ce60,16) +
load(0x29cfea4,4) * load(0x293cee0,16) +

…)

(b) Symbolic Constraint of TVM –O0

output =
(0 +

load(0x284dcc8,4) * load(0x7a9180,16) +
load(0x284dccc,4) * load(0x7a9200,16) +
load(0x284dcd0,4) * load(0x7a9280,16) +
load(0x284dcd4,4) * load(0x7a9300,16) +

…)

(c) Symbolic Constraint of TVM –O3

Figure 7: Mostly consistent symbolic constraints extracted
from vastly different binaries.

Table 7: GitHub repo commits investigation results. We report
the #Commits in the past two years, #Commits related to
CPU code generation, the average LOC per CPU commit, and
#CPU commits with substantial changes (over 100 LOC).

Compiler #Commits #CPU Commits Avg. LOC #Substantial
TVM 4,292 121 17 3
Glow 1,435 22 47 3
NNFusion 200 13 16 1

Answer to RQ1: BTD is correct and comprehensive to
cover nearly all operators used in common CV models
compiled by different compilers and optimizations. BTD’s
applicability for other models is also promising, though
de facto DL compilers have limited support for them.

7.2 RQ2: Robustness
BTD involves patterns during decompilation. RQ2 arises: Is
this method robust to survive frequent DL compiler implemen-
tation changes? To answer this question, we evaluated BTD
with prior versions of DL compilers released in the past two
years (see Table 1). In short, after testing BTD using seven
CV models and one NLP model, we report that BTD produces
exactly identical results for different versions of compilers.

We interpret this highly encouraging result from two as-
pects. First, although BTD leverages patterns to recover di-
mensions and layouts of parameters, these patterns are based
on semantics constraints, instead of syntax. Since DNN op-
erators like Conv and ReLU are defined cleanly and rigor-
ously, these semantics-level information are consistent across
compiler implementation changes. Fig. 7 illustrates Conv
constraints derived from Glow, TVM -O0, and TVM -O3. Al-
though DL executables are drastically different, semantic con-
straints preserve mostly the same pattern. Notice that Fig. 7(a),
an extra max exists due to Glow optimizations. When design-
ing patterns, we deliberately pick components that co-exist
across different constraints to recover dimensions and layouts.
Despite complex optimizations imposed by compilers, we
find that our focused components are consistent and robust.

Table 8: Categorize ONNX operators. #with Dims. denotes
#operators with dimensions to be recovered, #with Opt. de-
notes #operators with compile-time optimizations, Workload
denotes the amount of work required to cover new operators,
and #Covered denotes #operators that currently supported.

Category #OPs #with Dims. #with Opt. Workload #Covered
Element-wise Op 56 2 0 Low 2/2

Tensor Op 32 8 0 Low 6/8
Matrix Op 2 0 0 NA NA

Pooling 9 9 0 Low 5/9
Heavyweight 11 11 11 High 7/11
Normalization 6 6 0 Low 2/6

Transpose 8 0 0 NA NA
Random 6 0 0 NA NA
Others 33 0 0 NA NA
Total 163 36 11 NA 22/36*

* 22 of the 36 operators with dimensions that require specific patterns to
recover are already covered in BTD. 4 of the remaining 8 operators can
be covered with low effort, and the rest 4 (ConvInteger, MatMulInteger,
QLinearConv, and QLinearMatMul) are rare in common models.

Second, we investigated commits related to CPU instruc-
tion generation in DL compilers’ GitHub repos over the past
two years (April 2020 to April 2022). As in Table 7, while
these compilers are frequently updated, most commits aim to
increase support for alternative hardware and model formats,
where CPU-related code has changed little. We manually
reviewed all “substantial” commits, i.e., commits with more
than 100 LOC changes, and confirmed that they do not change
optimization strategies or binary code generation that may af-
fect BTD. Besides, DL compilers heavily use parallel instruc-
tion extensions (e.g., SSE) to speed up model inference on
CPUs. These extensions have been stable and unchanged over
the long term. To answer RQ2, we again underline that BTD’s
essential assumption is that symbolic constraints extracted
from each DNN operator’s assembly function should be in-
variant across compilers and optimizations. Other features,
such as function signatures, operator fusion, and optimization
strategies, are independent of BTD’s core techniques and are
also unlikely to be largely changed in the near future.

Answer to RQ2: BTD is robust enough against changes in
current and prior versions of DL compilers. We anticipate
that compiler changes are unlikely to affect the robustness
of BTD in the near future.

7.3 RQ3: Extensibility
As stated in Sec. 7.1, BTD can cover all operators used in the
CV models from ONNX Zoo. This section measures BTD’s
extensibility through the lens of all DNN operators supported
by ONNX Zoo (RQ3). Note that not all operators are for CV
models, and not all operators have been used in DNN models;
some of them are rarely used in common models. Overall,
while most techniques (i.e., operator inference and symbolic
execution) used in BTD are independent of operator types,
patterns described in Sec. 4.3.3 are designed for each complex
operator to recover their parameters/dimensions. Supporting

a new operator may need new or existing patterns. Symbolic
constraints are generally human readable, and we typically
need several hours to design and validate a new pattern for
operators without complex optimization, like BiasAdd and
Pooling. Developing new patterns for complex operators like
Conv may take days due to complex optimization strategies.

We classified all ONNX operators [6] to scope BTD’s
applicability and the engineering effort required to extend
BTD. Consider Table 8, where “Low” in Workload column
represents hours of effort, and “High” represents several days
of work. While ONNX has 163 DNN operators [6], most
of them do not have dimensions to be recovered. Besides,
our patterns can be reused with minor modifications to sup-
port currently uncovered tensor operators, pooling operators,
and normalization operators. For heavyweight calculation
(Conv, MatMul/FC, GRU, RNN, LSTM, and their variants),
we have already covered 7 out of 11 operators. GRU, RNN,
and LSTM can be covered because they are decomposed
into sub-operators, including FC and element-wise opera-
tors, as explained in Sec. 7.1.7. Standard models rarely use
the remaining operators, including ConvInteger, MatMulInte-
ger, QLinearConv, and QLinearMatMul. BTD cannot handle
these four operators for the time being, but we expect it will
not be challenging to design patterns for these operators. Es-
sentially, they are variants of Conv and MatMul operators. We
leave support for these operators to our future work.

Answer to RQ3: Users experienced in DL models can
spend reasonable effort to add support for new operators
and models by modifying existing patterns in BTD.

7.4 RQ4: Error Fixing

This section clarifies how BTD performs error fixing (RQ4).
On one hand, with rules presented in Sec. 6, BTD can detect
and automatically fix the errors exposed when decompiling
the ResNet18 executable (compiled with TVM -O0). The
recovered model specification, after fixing, are completely
correct, as noted in Table 5. We detail the error fixing proce-
dure as a case study over the ResNet18 executable in [9].

On the other hand, when errors can not be fixed automati-
cally (ResNet compiled with TVM -O3), users are required
to read the symbolic constraints and fix errors manually. Gen-
erally, fixing an error requires users to be familiar with both
standard operators used in DL models and x86 assembly lan-
guage. Nevertheless, even partially recovered models may
boost attacks like query-based model extraction [71, 87].

Answer to RQ4: To cope with decompilation defects,
BTD provides error detection & automated fixing mecha-
nism, including a collection of rules derived from domain-
specific knowledge and observations.

8 Discussion

Downstream Applications & Countermeasures. Previous
model extraction attacks rely on repetitive queries or side
channels to leak parts of DNNs. BTD, as a decompiler, reveals
a new and practical attack surface to recover full DNNs when
DNN executables are accessible. Our extended paper [9] will
show that BTD can boost DNN attacks. In addition, legacy
DNN executables can be inspected, hardened, and migrated
to new platforms. To show the feasibility, we migrated de-
compiled x86 DNN executables onto GPUs. This step only
requires to use different compiler options over our recovered
DNN models.

DNNs may provide business advantages. Potential security
concerns raised by BTD may be mitigated using obfusca-
tion [50]; particularly, code obfuscation could likely impede
DNN operator inference whereas data obfuscation may likely
undermine our patterns over memory layouts.
Cross-Platform. As reviewed in Sec. 2, DL compiler can
generate executables on various platforms. The core tech-
niques of BTD are platform independent. We analyze the
cross-platform extension of BTD from the following aspects.
First, decompiling DNN executables on devices like hard-
ware accelerators requires appropriate disassemblers. This
demands vendor support and considerable engineering work.
While certain GPU makers like Nvidia provides disassem-
blers [3], the architecture and ISA of such devices are only
partially or not revealed, preventing migrating BTD to these
devices. Intel recently released a dynamic instrumentation
tool, GTPin [5], but it is immature and limited to Intel proces-
sor graphics. Without vendor support, it is extremely difficult,
if not impossible, to implement disassemblers and dynamic
instrumentors on our own for various devices.

Second, DL compilers produce distinct executables on
GPUs and CPUs. For example, TVM creates a standalone
DNN executable on CPU, but a runtime library, including de-
tailed model information, and an OpenCL/CUDA executable
on GPU. Glow has an immature support for OpenCL using
JIT. In short, we see x86 CPU decompilation as more difficult
because inputs are typically standalone executables.

9 Related Work

Software Reverse Engineering. Software decompilation has
achieved primary success. Algorithms are proposed to im-
prove decompiled C/C++ code, including refining type recov-
ery [52,79], variable recovery [13,17], and control structure re-
covery [29,31]. ML accelerates decompilation [24,32,35,48].
Some decompilers are commercially available [1,2,38]. In ad-
dition, recent works have designed decompilers for Ethereum
smart contracts [34, 102]. We focus on decompiling DNN
executables by addressing domain challenges to convert DNN
executables to high-level models. We envision that BTD will

meet demands to comprehend, exploit, and harden real-world
DNN executables.
Model Extraction. We have reviewed DL compilation tech-
niques in Sec. 2. BTD enables a novel perspective to extract
DNN models. As introduced in Sec. 3, current model extrac-
tion works mostly take “black-box” forms [68, 70, 71, 85],
where adversaries can assemble a training dataset (x,y) by
continuously feeding inputs x to a target model and collecting
its prediction outputs y. The resulting training datasets can
be used to train a local model. Side channels leaked during
inference are also used for model extraction, including timing,
cache, and power side channels [28,42,43,95,96,103]. BTD is
orthogonal to these side channel-based methods. As noted in
Sec. 2, BTD can recover full model information whereas they
conduct partial recovery. We also notice reverse engineering
efforts targeting image processing software [11,46,59]. These
works use static analysis and heuristics to map (assembly)
image processing code (e.g., blurring) to high-level operators.
They analyze image processing software (e.g., Photoshop),
not DNN models.

10 Conclusion

We presented BTD, a decompiler for x86 DNN executables.
BTD recovers full DNN models from executables, including
operator types, network topology, dimensions, and parame-
ters. Our evaluation reports promising results by successfully
decompiling and further recompiling executables compiled
from popular DNN models using different DL compilers.

Acknowledgments

We thank the anonymous reviewers for their valuable com-
ments. HKUST authors are supported in part by a RGC ECS
grant under the contract 26206520. Lei Ma’s research is sup-
ported in part by the Canada First Research Excellence Fund
as part of the University of Alberta’s Future Energy Sys-
tems research initiative, Canada CIFAR AI Chairs Program,
Amii RAP program, the Natural Sciences and Engineering Re-
search Council of Canada (NSERC No.RGPIN-2021-02549,
No.RGPAS-2021-00034, No.DGECR-2021-00019), as well
as JSPS KAKENHI Grant No.JP20H04168, No.JP21H04877,
JST-Mirai Program Grant No.JPMJMI20B8.

References

[1] Hopper. https://www.hopperapp.com/, 2018.
[2] JEB. https://www.pnfsoftware.com/, 2018.
[3] Cuda binary utilities. https://docs.nvidia.com/

cuda/cuda-binary-utilities/index.html, 2021.
[4] Onnx. https://onnx.ai/, 2021.
[5] Profiling tools interfaces for intel(r) processor graphics.

https://github.com/intel/pti-gpu, 2021.

[6] ONNX Operators . https://github.com/onnx/
onnx/blob/main/docs/Operators.md, 2022.

[7] PyTorch - Char-RNN. https://github.com/spro/
practical-pytorch/blob/master/char-rnn-
generation/char-rnn-generation.ipynb, 2022.

[8] PyTorch - Sequence Models and LSTM, 2022.
https://pytorch.org/tutorials/beginner/
nlp/sequencemodelstutorial.html.

[9] Research Artifact. https://github.com/monkbai/
DNN-decompiler/, 2022.

[10] Andrew Adams, Karima Ma, Luke Anderson, Riyadh
Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit
Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, et al. Learning to optimize halide with tree search
and random programs. ACM TOG, 38(4):1–12, 2019.

[11] Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley,
Alvin Cheung, and Shoaib Kamil. Automatically trans-
lating image processing libraries to halide. ACM TOG,
38(6):1–13, 2019.

[12] Amazon. Amazon SageMaker Neo uses Apache TVM
for performance improvement on hardware target.
https://aws.amazon.com/sagemaker/neo/, 2021.

[13] Kapil Anand, Matthew Smithson, Khaled Elwazeer,
Aparna Kotha, Jim Gruen, Nathan Giles, and Rajeev
Barua. A compiler-level intermediate representation
based binary analysis and rewriting system. In EuroSys,
2013.

[14] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia
Slowinska, and Herbert Bos. An in-depth analysis of
disassembly on full-scale x86/x64 binaries. In 25th
USENIX Security 16, pages 583–600, 2016.

[15] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman
Amarasinghe. Tiramisu: A polyhedral compiler for
expressing fast and portable code. In CGO, 2019.

[16] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. arXiv:1409.0473, 2014.

[17] Gogul Balakrishnan and Thomas Reps. Wysinwyx:
What you see is not what you execute. ACM Trans.
Program. Lang. Syst., 32(6):23:1–23:84, August 2010.

[18] Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. Enriching word vectors with subword
information. TACL, 5:135–146, 2017.

[19] David Brumley, JongHyup Lee, Edward J. Schwartz,
and Maverick Woo. Native x86 decompilation using
semantics-preserving structural analysis and iterative
control-flow structuring. In USENIX Security 13, pages
353–368, 2013.

https://www.hopperapp.com/
https://www.pnfsoftware.com/
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
https://onnx.ai/
https://github.com/intel/pti-gpu
https://github.com/onnx/onnx/blob/main/docs/Operators.md
https://github.com/onnx/onnx/blob/main/docs/Operators.md
https://github.com/spro/practical-pytorch/blob/master/char-rnn-generation/char-rnn-generation.ipynb
https://github.com/spro/practical-pytorch/blob/master/char-rnn-generation/char-rnn-generation.ipynb
https://github.com/spro/practical-pytorch/blob/master/char-rnn-generation/char-rnn-generation.ipynb
https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html
https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html
https://github.com/monkbai/DNN-decompiler/
https://github.com/monkbai/DNN-decompiler/
https://aws.amazon.com/sagemaker/neo/

[20] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}:
An automated end-to-end optimizing compiler for deep
learning. In 13th USENIX OSDI, pages 578–594, 2018.

[21] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng
Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. Learning to optimize tensor
programs. NeurIPS, 31:3389–3400, 2018.

[22] Sharan Chetlur, Cliff Woolley, Philippe Vandermer-
sch, Jonathan Cohen, John Tran, Bryan Catanzaro, and
Evan Shelhamer. cuDNN: Efficient primitives for deep
learning. arXiv preprint arXiv:1410.0759, 2014.

[23] Cristina Cifuentes and K. John Gough. Decompilation
of binary programs. Softw. Pract. Exper., 25(7):811–
829, July 1995.

[24] Yaniv David, Uri Alon, and Eran Yahav. Neural reverse
engineering of stripped binaries using augmented con-
trol flow graphs. OOPSLA, 2020.

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, pages 248–255. IEEE, 2009.

[26] S. H. Ding, B. M. Fung, and P. Charland. Asm2Vec:
Boosting static representation robustness for binary
clone search against code obfuscation and compiler
optimization. In IEEE S&P, 2019.

[27] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng
Yin. DeepBinDiff: Learning program-wide code repre-
sentations for binary diffing. In NDSS, 2020.

[28] Vasisht Duddu, Debasis Samanta, D Vijay Rao, and
Valentina E Balas. Stealing neural networks via timing
side channels. arXiv preprint arXiv:1812.11720, 2018.

[29] Khaled ElWazeer, Kapil Anand, Aparna Kotha,
Matthew Smithson, and Rajeev Barua. Scalable vari-
able and data type detection in a binary rewriter. In
PLDI, 2013.

[30] Bauman Erick, Lin Zhiqiang, and Hamlen Kevin W.
Superset disassembly: Statically rewriting x86 binaries
without heuristics. In NDSS, 2018.

[31] Antonio Flores-Montoya and Eric Schulte. Datalog
disassembly. In 29th USENIX Security, 2020.

[32] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuan-
dong Tian, Farinaz Koushanfar, and Jishen Zhao. Coda:
An end-to-end neural program decompiler. NeurIPS,
32:3708–3719, 2019.

[33] Philip Gage. A new algorithm for data compression.
C Users Journal, 12(2):23–38, 1994.

[34] Neville Grech, Lexi Brent, Bernhard Scholz, and Yan-
nis Smaragdakis. Gigahorse: thorough, declarative
decompilation of smart contracts. In ICSE, 2019.

[35] Hossein Hajipour, Mateusz Malinowski, and Mario
Fritz. IReEn: Iterative reverse-engineering of black-
box functions via neural program synthesis. arXiv
preprint arXiv:2006.10720, 2020.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016.

[37] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis,
Jort F Gemmeke, Aren Jansen, R Channing Moore,
Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Sey-
bold, et al. Cnn architectures for large-scale audio
classification. In ICASSP, pages 131–135. IEEE, 2017.

[38] SA Hex-Rays. IDA Pro: a cross-platform multi-
processor disassembler and debugger, 2014.

[39] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[40] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 1997.

[41] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[42] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng,
Pengfei Zuo, Yu Ji, Xinfeng Xie, Yufei Ding, Chang
Liu, Timothy Sherwood, et al. Deepsniffer: A dnn
model extraction framework based on learning archi-
tectural hints. In ASPLOS, pages 385–399, 2020.

[43] Weizhe Hua, Zhiru Zhang, and G Edward Suh. Reverse
engineering convolutional neural networks through
side-channel information leaks. In DAC, pages 1–6.
IEEE, 2018.

[44] Texas Instruments. The AM335x microprocessors
support TVM. https://software-dl.ti.com/
processor-sdk-linux/esd/docs/latest/linux/
FoundationalComponents/MachineLearning/
tvm.html, 2021.

[45] Animesh Jain, Shoubhik Bhattacharya, Masahiro Ma-
suda, Vin Sharma, and Yida Wang. Efficient execu-
tion of quantized deep learning models: A compiler
approach. arXiv preprint arXiv:2006.10226, 2020.

[46] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Ar-
mando Solar-Lezama. Verified lifting of stencil com-
putations. In PLDI, New York, NY, USA, 2016.

[47] Min Gyung Kang, Stephen McCamant, Pongsin
Poosankam, and Dawn Song. DTA++: dynamic taint
analysis with targeted control-flow propagation. In
NDSS, 2011.

[48] Deborah S Katz, Jason Ruchti, and Eric Schulte. Us-
ing recurrent neural networks for decompilation. In
SANER, pages 346–356. IEEE, 2018.

https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Machine_Learning/tvm.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Machine_Learning/tvm.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Machine_Learning/tvm.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Machine_Learning/tvm.html

[49] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. Advances in neural information pro-
cessing systems, 25:1097–1105, 2012.

[50] Per Larsen, Andrei Homescu, Stefan Brunthaler, and
Michael Franz. SoK: Automated software diversity. In
2014 IEEE Symposium on Security and Privacy, pages
276–291. IEEE, 2014.

[51] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed
and Runtime Optimization, CGO ’04, pages 75–, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[52] JongHyup Lee, Thanassis Avgerinos, and David Brum-
ley. TIE: Principled reverse engineering of types in
binary programs. In NDSS, 2011.

[53] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin
You, Hailong Yang, Zhongzhi Luan, Lin Gan, Guang-
wen Yang, and Depei Qian. The deep learning com-
piler: A comprehensive survey. TPDS, 2020.

[54] Xuezixiang Li, Qu Yu, and Heng Yin. PalmTree: Learn-
ing an assembly language model for instruction em-
bedding. In ACM CCS, 2021.

[55] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma,
and Yida Wang. Optimizing {CNN} model inference
on cpus. In USENIX ATC, pages 1025–1040, 2019.

[56] Zhibo Liu and Shuai Wang. How far we have come:
Testing decompilation correctness of C decompilers.
In ISSTA, pages 475–487, 2020.

[57] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin: build-
ing customized program analysis tools with dynamic
instrumentation. In PLDI, 2005.

[58] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lin-
tao Zhang, and Lidong Zhou. Rammer: Enabling holis-
tic deep learning compiler optimizations with rtasks.
In 14th USENIX OSDI, pages 881–897, 2020.

[59] Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib
Kamil, Jonathan Ragan-Kelley, Sylvain Paris, Qin
Zhao, and Saman Amarasinghe. Helium: Lifting high-
performance stencil kernels from stripped x86 binaries
to halide dsl code. In PLDI, pages 391–402, New York,
NY, USA, 2015. ACM.

[60] Microsoft. Microsoft Linear Algebra Subprograms.
https://github.com/microsoft/onnxruntime/
tree/master/onnxruntime/core/mlas, 2021.

[61] Timothy Prickett Morgan. INSIDE FACE-
BOOK’S FUTURE RACK AND MICROSERVER
IRON. https://www.nextplatform.com/2020/

05/14/inside-facebooks-future-rack-and-
microserver-iron/, 2020.

[62] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet,
Jonathan Ragan-Kelley, and Kayvon Fatahalian. Auto-
matically scheduling halide image processing pipelines.
ACM TOG, 35(4):1–11, 2016.

[63] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep
neural networks are easily fooled: High confidence
predictions for unrecognizable images. In CVPR, 2015.

[64] Nvidia. CUDA. https://developer.nvidia.com/
cuda-toolkit, 2021.

[65] Nvidia. NVVM IR. https://docs.nvidia.com/
cuda/nvvm-ir-spec/index.html, 2021.

[66] NXP. NXP uses Glow to optimize models for
low-power NXP MCUs. https://www.nxp.com/
company/blog/glow-compiler-optimizes-
neural-networks-for-low-power-nxp-mcus:
BL-OPTIMIZES-NEURAL-NETWORKS, 2020.

[67] OctoML. OctoML leverages TVM to optimize
and deploy models. https://octoml.ai/features/
maximize-performance/, 2021.

[68] Seong Joon Oh, Bernt Schiele, and Mario Fritz. To-
wards reverse-engineering black-box neural networks.
In Explainable AI: Interpreting, Explaining and Visual-
izing Deep Learning, pages 121–144. Springer, 2019.

[69] ONNX. ONNX Zoo. https://github.com/onnx/
models, 2021.

[70] Tribhuvanesh Orekondy, Bernt Schiele, and Mario
Fritz. Knockoff nets: Stealing functionality of black-
box models. In CVPR, pages 4954–4963, 2019.

[71] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning.
In ACM Asia CCS, pages 506–519, 2017.

[72] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance
deep learning library. In NeurIPS, 2019.

[73] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and
Baishakhi Ray. TREX: Learning execution semantics
from micro-traces for binary similarity. arXiv, 2021.

[74] Huy Phan, Philipp Koch, Fabrice Katzberg, Marco
Maass, Radoslaw Mazur, and Alfred Mertins. Au-
dio scene classification with deep recurrent neural net-
works. Proc. Interspeech 2017, 2017.

[75] Qualcomm. Qualcomm contributes Hexagon
DSP improvements to the Apache TVM commu-
nity. https://developer.qualcomm.com/blog/
tvm-open-source-compiler-now-includes-
initial-support-qualcomm-hexagon-dsp, 2020.

https://github.com/microsoft/onnxruntime/tree/master/onnxruntime/core/mlas
https://github.com/microsoft/onnxruntime/tree/master/onnxruntime/core/mlas
https://www.nextplatform.com/2020/05/14/inside-facebooks-future-rack-and-microserver-iron/
https://www.nextplatform.com/2020/05/14/inside-facebooks-future-rack-and-microserver-iron/
https://www.nextplatform.com/2020/05/14/inside-facebooks-future-rack-and-microserver-iron/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://octoml.ai/features/maximize-performance/
https://octoml.ai/features/maximize-performance/
https://github.com/onnx/models
https://github.com/onnx/models
https://developer.qualcomm.com/blog/tvm-open-source-compiler-now-includes-initial-support-qualcomm-hexagon-dsp
https://developer.qualcomm.com/blog/tvm-open-source-compiler-now-includes-initial-support-qualcomm-hexagon-dsp
https://developer.qualcomm.com/blog/tvm-open-source-compiler-now-includes-initial-support-qualcomm-hexagon-dsp

[76] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. Acm Sigplan Notices, 2013.

[77] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Gar-
ret Catron, Summer Deng, Roman Dzhabarov, Nick
Gibson, James Hegeman, Meghan Lele, Roman Leven-
stein, et al. Glow: Graph lowering compiler techniques
for neural networks. arXiv preprint, 2018.

[78] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but
might have been afraid to ask). In IEEE SP, 2010.

[79] Edward J. Schwartz, Cory F. Cohen, Michael Duggan,
Jeffrey Gennari, Jeffrey S. Havrilla, and Charles Hines.
Using logic programming to recover c++ classes and
methods from compiled executables. In CCS, 2018.

[80] Rico Sennrich, Barry Haddow, and Alexandra Birch.
Neural machine translation of rare words with subword
units. In ACL, August 2016.

[81] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[82] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. In CVPR, 2015.

[83] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In CVPR,
pages 2818–2826, 2016.

[84] Mingxing Tan and Quoc Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In
ICML, pages 6105–6114. PMLR, 2019.

[85] Daniel Teitelman, Itay Naeh, and Shie Mannor. Steal-
ing black-box functionality using the deep neural tree
architecture. arXiv preprint arXiv:2002.09864, 2020.

[86] TensorFlow. XLA: Optimizing Compiler for Tensor-
Flow. https://www.tensorflow.org/xla, 2022.

[87] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Re-
iter, and Thomas Ristenpart. Stealing machine learning
models via prediction apis. In USENIX Sec’16.

[88] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S
Moses, Sven Verdoolaege, Andrew Adams, and Al-
bert Cohen. Tensor comprehensions: Framework-
agnostic high-performance machine learning abstrac-
tions. arXiv preprint arXiv:1802.04730, 2018.

[89] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi,
Aravind Machiry, John Grosen, Paul Grosen, Christo-
pher Kruegel, and Giovanni Vigna. Ramblr: Making
reassembly great again. In NDSS, 2017.

[90] Shuai Wang, Pei Wang, and Dinghao Wu. Reassem-
bleable disassembling. In USENIX Security, 2015.

[91] Shuai Wang and Dinghao Wu. In-memory fuzzing for
binary code similarity analysis. In ASE, 2017.

[92] Sally Ward-Foxton. Google and Nvidia Tie in
MLPerf; Graphcore and Habana Debut. https:
//www.eetimes.com/google-and-nvidia-tie-in-
mlperf-graphcore-and-habana-debut/#, 2021.

[93] David Williams-King, Hidenori Kobayashi, Kent
Williams-King, Graham Patterson, Frank Spano,
Yu Jian Wu, Junfeng Yang, and Vasileios P Kemerlis.
Egalito: Layout-agnostic binary recompilation. In AS-
PLOS, pages 133–147, 2020.

[94] Ruoyu Wu, Taegyu Kim, Dave Jing Tian, Antonio
Bianchi, and Dongyan Xu. Dnd: A cross-architecture
deep neural network decompiler. In 31st USENIX Se-
curity, pages 2135–2152, 2022.

[95] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin
Fang, Haiyang Hao, Jinyin Chen, Yi Liu, Zhefu Wu,
Qi Xuan, and Xiaoniu Yang. Open dnn box by power
side-channel attack. IEEE Transactions on Circuits
and Systems II: Express Briefs, 2020.

[96] Mengjia Yan, Christopher W Fletcher, and Josep Tor-
rellas. Cache telepathy: Leveraging shared resource
attacks to learn dnn architectures. In USENIX Sec’20.

[97] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou
Huang, and Shi Wu. Order matters: Semantic-aware
neural networks for binary code similarity detection.
AAAI, 2020.

[98] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer
Pathan, and Sanjay Rajopadhye. Alphaz: A system for
design space exploration in the polyhedral model. In
LCPC, pages 17–31. Springer, 2012.

[99] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In CVPR, 2018.

[100] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
high-performance tensor programs for deep learning.
In 14th USENIX OSDI, pages 863–879, 2020.

[101] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: An automatic schedule ex-
ploration and optimization framework for tensor com-
putation on heterogeneous system. In ASPLOS, 2020.

[102] Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason,
Andrew Miller, and Michael Bailey. Erays: reverse
engineering ethereum’s opaque smart contracts. In
27th USENIX Security, pages 1371–1385, 2018.

[103] Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and
Yantao Lu. Hermes attack: Steal {DNN} models with
lossless inference accuracy. In USENIX Security, 2021.

https://www.tensorflow.org/xla
https://www.eetimes.com/google-and-nvidia-tie-in-mlperf-graphcore-and-habana-debut/#
https://www.eetimes.com/google-and-nvidia-tie-in-mlperf-graphcore-and-habana-debut/#
https://www.eetimes.com/google-and-nvidia-tie-in-mlperf-graphcore-and-habana-debut/#

	Introduction
	Preliminary
	Decompiling DNN Executables
	Design
	DNN Operator Recovery
	DNN Network Topology Recovery
	Dimension and Parameter Recovery
	Trace Logging and Taint Analysis
	Symbolic Execution (SE)
	Dimension Recovery
	Recover Parameters

	Executables Emitted by NNFusion

	Implementation
	Usage & Error Fixing
	Evaluation
	RQ1: Correctness and Comprehensiveness
	Predicting DNN Operator Type
	DNN Network Topology Recovery
	Parameter and Dimension Recovery
	Recompilation
	Decompiling NNFusion Outputs
	Root Cause Analysis
	Other Models

	RQ2: Robustness
	RQ3: Extensibility
	RQ4: Error Fixing

	Discussion
	Related Work
	Conclusion

