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Abstract
BusyBox, an open-source software bundling over 300 es-

sential Linux commands into a single executable, is ubiq-
uitous in Linux-based embedded devices. Vulnerabilities in
BusyBox can have far-reaching consequences, affecting a
wide array of devices. This research, driven by the extensive
use of BusyBox, delved into its analysis. The study revealed
the prevalence of older BusyBox versions in real-world em-
bedded products, prompting us to conduct fuzz testing on
BusyBox. Fuzzing, a pivotal software testing method, aims
to induce crashes that are subsequently scrutinized to un-
cover vulnerabilities. Within this study, we introduce two
techniques to fortify software testing. The first technique en-
hances fuzzing by leveraging Large Language Models (LLM)
to generate target-specific initial seeds. Our study showed a
substantial increase in crashes when using LLM-generated
initial seeds, highlighting the potential of LLM to efficiently
tackle the typically labor-intensive task of generating target-
specific initial seeds. The second technique involves repur-
posing previously acquired crash data from similar fuzzed
targets before initiating fuzzing on a new target. This ap-
proach streamlines the time-consuming fuzz testing process
by providing crash data directly to the new target before com-
mencing fuzzing. We successfully identified crashes in the
latest BusyBox target without conducting traditional fuzzing,
emphasizing the effectiveness of LLM and crash reuse tech-
niques in enhancing software testing and improving vulnera-
bility detection in embedded systems. Additionally, manual
triaging was performed to identify the nature of crashes in the
latest BusyBox.

1 Introduction

The proliferation of IoT (Internet of Things) devices contin-
ues unabated, with a reported 16% growth rate propelling the
global count to 16.7 billion, according to IoT Analytics [1].
This remarkable expansion in the IoT ecosystem raises sig-
nificant cybersecurity concerns. Embedded devices occupy

a central role in IoT security, as vulnerabilities within them
can jeopardize an entire system’s security. Because of the
role it plays in governing most aspects of a system’s behav-
ior, firmware is of particular importance. Often, firmware is
comprised of numerous third-party software components that
can be reused across various products, thereby amplifying
concerns regarding their vulnerability; a single flaw could po-
tentially affect multiple disparate devices that rely on shared
components. Consequently, continuous analysis of these com-
ponents is imperative.

1.1 Motivation

Firmware can be broadly classified into three categories: those
based on modified generic operating systems (OS) like Linux,
those based on real-time (RTOS) or custom operating systems,
and those that do not have a formal operating system (non-
OS or bare-metal). Each of these categories poses distinct
challenges when it comes to security assessment [32] and
often require different approaches. To that end, we focus our
attention in this work on the largest subclass of OS-based
firmware: Embedded Linux.

Embedded Linux-based firmware often utilizes various
application-level software components, including BusyBox,
Lighthttpd, Dropbear, SQLite, OpenSSL, telnet server, and
various file system utilities. Consequently, there are multiple
potential attack surfaces, warranting continued exploration
and research. As a critical set of commonly used utility pro-
grams in embedded Linux, BusyBox [47] is a component of
particular interest. It provides over 300 common Unix utilities
within a single lightweight and compact executable, making
it indispensable for resource-constrained Linux-based em-
bedded devices. There are many IoT and OT(Operational
Technology) devices running BusyBox, including remote ter-
minal units (RTUs), human-machine interfaces (HMIs), and
many others that are running on Linux. However, despite its
many advantages, it can also present considerable risk, as it
is often used with elevated privileges and provides multiple
utilities that handle user input, which attackers have been able



to exploit. 14 vulnerabilities were found in Busybox in 2021,
some of which had the potential of remote code execution
or denial of service attacks [6]. Despite this, in our inves-
tigation we have identified several real-world products that
continue to use older versions of BusyBox that contain known
vulnerabilities.

Our research questions for this work can be summarized as
follows:

Q1: How widespread are variants of BusyBox and how can
similar vulnerabilities across variants be efficiently iden-
tified?

Q2: How can we leverage LLMs to improve fuzz testing on
embedded Linux utility programs like those in BusyBox?

1.2 Contributions
Fuzzing is a well-recognized software testing technique for
uncovering vulnerabilities, but its effectiveness varies depend-
ing on the chosen target, each of which can present unique
challenges. In this work, we propose and implement two tech-
niques to assist software testing for embedded linux. First,
we leverage LLM-based seed generation, in which we uti-
lize commercial large language models (LLMs) to generate
the initial input seeds for mutation-based, coverage-guided
fuzzing. In doing so, we take advantage of LLMs’ inherent
capability to generate high-quality structured inputs that ad-
here to the input grammar of a target. Second, we employ a
crash reuse strategy to identify crashes across variants of a
software component present in different targets. This strategy
is based on the intuition that an input that triggers a crashing
vulnerability on one variant of a program is likely to trigger a
crash on different variant. This allows us to more efficiently
determine if the same vulnerability is present on multiple
program variants without performing fuzzing, thus saving
significant time. When we mention a variant of a software
component, we are referring to identical software components
with varying version numbers or architectures or compiler
optimization, or any custom modification by developers.

As a proof-of-concept, we demonstrate these techniques
with AFL++ on BusyBox. This research was done in collab-
oration with NetRise’s [33] firmware security division. We
sourced BusyBox ELFs from real-world embedded products
collected from the company’s proprietary firmware dataset,
which had been constructed using in-house extraction tools.
These ELF binaries were fuzz tested without altering the tar-
get’s source code or compilation process, using AFL++ in
QEMU mode.

We evaluated the first technique, LLM-based seed genera-
tion, by comparing control runs that used randomly generated
initial seeds, to experimental runs that used initial seeds gen-
erated using OpenAI’s GPT-4 LLM API [35]. We observed
a significant increase in crashes obtained when using LLM-
generated seeds, demonstrating the potential for improving
vulnerability detection.

Figure 1: Proposed work pipeline

We then used the crash results accumulated from these ex-
periments to evaluate the second technique, crash reuse, by
testing them against the latest version of BusyBox (v1.36.1
at the time of writing). Since the accumulated crashes corre-
sponded to older versions of BusyBox, any reused inputs that
still cause crashes are likely due to the continued presence of
the same vulnerability, which allow us to discover crashes in
the latest version without fuzzing it explicitly. We also fuzz
tested the latest version and conducted a comparative analysis.
The results of our validation highlighted the effectiveness of
crash reuse with respect to time and resource efficiency.

In the context of open-source software components, collect-
ing crashes can be enhanced by instrumenting the source code
and improving crash identification. These collected crashes
can then be applied to the variant of that software component
present in different targets, even in cases involving black-box
testing. This is because, in many instances, the variant of soft-
ware component may reappear in different target. Therefore,
reusing existing crashes from a particular software component
for testing its variant on different targets can be advantageous.
This approach streamlines the provision of crash data directly
to the target before the commencement of fuzzing, resulting
in substantial time savings.

Finally, we conducted crash analysis for the latest BusyBox
version(v1.36.1), compiled from the BusyBox source code.
Figure 1 shows the overall pipeline of the proposed techniques.
Our contributions can be summarized as follows:

• We identify versions of BusyBox still in use in commer-
cial embedded devices, emphasizing the need to update
them.

• We implement LLM-based seed generation to enhance
fuzzing by utilizing LLM for target-specific initial seed
generation, leading to faster and more efficient seed gen-
eration, more crashes, and more options for triaging to
identify vulnerabilities. We developed an automation
script to perform fuzzing on a large batch of BusyBox
targets without manual intervention, which will be made
open source.



• We propose crash reuse as a first-pass bug-finding strat-
egy, in which we reuse crashing inputs for different pro-
gram variants to quickly find duplicate vulnerabilities,
even under black-box testing conditions.

• We identify crashes in the awk applet of latest BusyBox
version and conduct manual crash triaging to determine
whether they originated from BusyBox or dependencies
in the underlying libraries. We later applied these tech-
niques to other applets including dc, man, and ash.

2 Background

In this section, we provide a brief overview of some of the
tools and techniques relevant to this paper.

2.1 BusyBox
BusyBox [47] is a single binary executable for several Unix-
based utilities designed mainly for resource-constrained em-
bedded devices. It is open source, lightweight, compact, and
has a small footprint. It allows manufacturers to include es-
sential Linux utilities without significantly increasing the
firmware size. Moreover, it is highly customizable. It can
be configured to include only the specific utilities required for
the embedded system’s functionality.

However, it has associated potential security risks. Busy-
Box often runs with elevated privileges as various tasks re-
quire root access, hence a potential risk of privilege escalation.
It also provides a variety of commands that accept user in-
put. If these commands are not properly sanitized, it can lead
to command injection [31], buffer overflow [37], and other
vulnerabilities [7]. For instance, awk applet is used for text
processing and data manipulation tasks. It can be used to
do privileged read or write outside a restricted file system
as it writes and reads data to and from files. Similarly, other
applets may possess security risks when not configured or
used correctly. Moreover, as BusyBox aims to be small and
lightweight, it may lack some of the security features, or the
issues might also occur because of its other external depen-
dencies. Given its critical role in many embedded systems and
its potential security risks, securing BusyBox through proper
configuration, regular updates, code reviews, and security as-
sessments are essential to maintaining the overall security and
reliability of embedded Linux-based firmware.

2.2 Fuzzing
Fuzzing is one of the widely used methods for software test-
ing. It leverages coverage feedback and aims to identify if any
crash occurs, which is then analyzed to identify the vulnera-
bilities. Fuzzing can be described as input testing, which is
semi-randomized due to the impossibility of exhaustive input
testing in most cases. In vanilla fuzzing, a program input such

as a variable, buffer, stream, or file is selected as the target of
the fuzzing process. The fuzzing engine, also known as the
fuzzer, generates input based on a set of rules or strategies,
typically using some element of randomness, and feeds it to
the program. The program is then executed with this input and
observed for coverage information. The process is repeated
with a newly generated input. This process can be repeated
for as long as the analyst desires. During the execution phase,
the program may crash or trigger some other error. If this
occurs, the input that caused the issue is saved for later root
cause analysis. This type of fuzzing is known as black-box
fuzzing because the fuzzer is unaware of the program’s in-
ternals. In contrast to black-box fuzzing, white-box fuzzing
assumes complete knowledge of the program’s internal struc-
ture. It allows input generation strategies to use techniques
such as taint analysis or symbolic execution, which require
understanding the program’s syntax. In between white and
black-box fuzzing is grey-box fuzzing, where there is only par-
tial access to information about the program’s internal state.
In this approach, code coverage, which refers to the number
of lines of code or basic blocks that are actually executed, is
often used to direct input generation. Program code must first
undergo instrumentation to gather coverage information, in
which additional code is inserted into the program to act as a
marker and collect runtime data.

2.2.1 AFL/AFL++

American fuzzy lop (AFL) is a coverage-guided, grey-box
fuzzer that employs compile-time instrumentation and several
different algorithms to efficiently fuzz programs [51]. At a
high level, AFL tracks branch coverage between basic blocks
(edges) for a generated input file, keeping track of all the
edges that the input file yields. Whenever a new input file is
created, AFL checks if it leads to previously unseen edges,
saves the file, and uses it to inform future mutations. AFL
uses deterministic (such as sequential bit flips and sequential
addition of small and interesting integers) and nondeterminis-
tic (such as a stacked sequence of randomized operations with
equal probability) mutation strategies [11]. AFL [51] has been
extensively used in industry and academic research. However,
the original developer ceased active development on AFL in
2017, leading to the development of a community-driven suc-
cessor, AFL++, in 2019. AFL++ features new enhancements,
fuzzing strategies, and performance improvements [11].

AFL++ provides detailed documentation for all its sup-
ported features. If the source code is available, the first stage
involves modifying and compiling the target using the AFL++
compiler. Otherwise, when the source code is unavailable,
AFL++ QEMU [3] performs internal instrumentation at run-
time. The next stage is to provide the initial seed corpus for
fuzzing the target, followed by the actual fuzzing stage and
crash triaging.



2.3 LLM in Fuzzing

Large language models (LLMs) are known for their prowess
in natural language understanding and text generation. Its pri-
mary focus has been developing AI models and technologies,
such as the GPT (Generative Pre-trained Transformer) se-
ries [36], for various applications, including natural language
understanding, generation, and automation. While LLM’s
work may not be directly related to fuzz testing, there are
potential intersections between AI and security, where AI-
powered tools and techniques could be used to enhance secu-
rity testing practices [20], including fuzzing. AI can assist in
automated test case generation, identifying patterns in code
more likely to contain vulnerabilities, and analyzing code pat-
terns, among other tasks. Some existing work leverages LLM
for fuzzing. In a recent blog by Google open source security
team [21], an LLM-aided fuzzing is proposed. OSS-Fuzz [14]
is integrated with the LLM to assess its potential to generate
new fuzz targets effectively. OSS-Fuzz’s Fuzz Introspector
tool identifies and sends the under-fuzzed and high-potential
part of the project code to the evaluation framework. A prompt
is created by the evaluation framework, which embeds project-
specific information. LLM subsequently uses the prompt to
write a new fuzz target. The newly generated fuzz target is
shared back with the evaluation framework, which executes it
and monitors for any change in the code coverage. In case of
any compilation failure, it prompts the LLM to revise the fuzz
target addressing the compilation failure. This comprehensive
approach shows how LLMs can be harnessed to completely
automate the fuzz testing process of OSS-Fuzz, contribut-
ing to its efficiency and efficacy. Other related works include
ChatFuzz [17], an LLM-based fuzzer that enhances the quality
of format-conforming inputs for fuzzing, and Fuzz4All [48].
This system utilizes LLM for input generation and mutation,
producing diverse and realistic inputs for various program-
ming languages. Fuzz4All mainly targets systems that accept
programming languages as input. Additionally, FuzzGPT [9]
uses LLM as a fuzzer to test deep-learning libraries. Simi-
larly, as discussed in Section 4.2, our work leverages LLM to
generate initial seeds for fuzzing BusyBox.

However, what sets our approach apart is that we exclu-
sively employ LLM for the initial seed generation stage target-
ing embedded application, unlike other works where LLM is
integrated into the entire fuzzing or mutation process. As pre-
viously discussed, fuzzers rely on initial input seeds for the tar-
get. While random seeds can be used, the performance signifi-
cantly improves when the initial seeds align with the expected
inputs for the target. Common initial test cases for various
inputs, such as images, videos, PDFs, XML, and HTML, are
readily available. However, in some cases, generating these
initial seeds can be challenging. In such situations, leveraging
LLM allows us to generate initial seeds simply by providing
information about the target type.

3 Related Works

3.1 Command Line Fuzzing

CLI programs were the first to be subjected to what is now the
fuzz testing technique with Miller et al.’s studies on the relia-
bility of UNIX utility programs [27–29]. Miller et al. recently
repeated the classic fuzz test for a number of Unix utilities
on Linux, FreeBSD, and MacOS [30], demonstrating the rele-
vance of classical fuzz testing for command line utilities even
now. They used random input generation technique.

Since the original studies, fuzz testing has grown into a
flourishing area of research, with CLI utilities continuing to be
a major target [5,14,38,51,55,56]. Significant improvements
have been made by considering grammars to define input
formatting constraints during seed generation [2,4,13,45,46],
which is also relevant to fuzzing command line arguments in
particular.

Song et al. [42] noted that most off-the-shelf fuzzers do not
deal well with conditional option parameters and introduced
CrFuzz to more efficiently explore multi-purpose programs by
adding input validity prediction to existing fuzzers. Gupta et
al. [15] took a different approach to enable systematic testing
of command line options by defining a grammar for valid se-
quences of options and arguments based on the getopt func-
tion. Zhang et al. [53] propose ConfigFuzz, which transforms
the program under test to treat configuration parameters as
potential fuzzing inputs. Wang et al. [44] propose CarpetFuzz
to extract command line option relationships from documenta-
tion using NLP to improve the efficiency of fuzzing different
option combinations.

The introduction of LLMs is already making waves in
the fuzzing community. OSS-fuzz [14, 18] has begun ex-
periments to explore fuzzing new targets with LLMs [21].
Huang et al. [18] survey a number of LLM-based fuzzers,
at least 4 of which appear to be directly applicable for CLI
tools [17, 25, 48, 50]. Other works have employed LLMs for
the purposes of direct input generation [49, 52], mutation [8],
and seed generation [17, 25]. LLMs have also been employed
to generate inputs that have irregular or unique input gram-
mars and semantics [23, 39]. These, however, were applied
to software meant for general-purpose systems, and none of
these have explored the application to fuzzing in embedded
environments like BusyBox.

3.2 Fuzzing in Embedded Environments

To our knowledge and upon conducting thorough research,
we have found no dedicated paper addressing the topic of
BusyBox fuzzing. However, there have been various blogs
and articles discussing this subject. For instance, Claroty and
JFrog [26] identified 14 vulnerabilities in BusyBox version
1.34.0. It’s worth noting that other related works often focus
on uncovering vulnerabilities in specific targets. However,



fuzz testing in Linux-based embedded systems is an active
area of research.

In an early application of fuzzing in embedded systems,
Sim et al. [41] applied black-box fuzzing to the Out-Of-
Memory Killer process on embedded Linux, which revealed
a number of failure modes that would cause the kernel to
remain in the Out-Of-Memory state and unresponsive. They
implemented an adaptive random approach to input genera-
tion that reduced the number of inputs necessary to expose
failures.

Du et al. [10] presents AFLIoT, an on-device fuzzing frame-
work for Linux-based IoT firmware. It involves binary-level
instrumentation techniques. It leverages an AFL fuzzer. It has
two phases, namely, the instrumentation and fuzzing phase.
The implementation involves storing the fuzzer and the in-
strumented program on the device. AFL fetches the execution
information of the target binary by shared memory. It sets
up a shared memory before forking the target program and
then maps it into its memory space. The instrumented code is
responsible for keeping track of basic block transition, which
AFL then analyzes to assess the value of the test case. The
authors have also implemented the input redirection mech-
anism between the fuzzer and the target network daemon
program. AFLIoT identified 437 unique crashes, out of which
95 were newly found. It was tested on 13 binary programs.
The authors have evaluated both benchmarks and real-world
IoT devices.

Zheng et al. [54] proposed EQUAFL, an efficient greybox
fuzzing for Linux-based IoT devices using enhanced user-
mode emulation. It automatically sets up the execution envi-
ronment to execute embedded applications. It first executes
the application under full-system emulation and observes the
points where the target may crash or stuck during user-mode
emulation. Then, depending on the observed information,
it migrates the needed environment for user-mode emula-
tion. It supports the replay of system calls of network and
resource management behavior. The approach involves using
lightweight program instrumentation to collect execution feed-
back of the program under test (PUT), such as code coverage,
to guide the entire testing process. The authors propose to ob-
serve the dynamic configuration file generation and NVRAM
configurations with process awareness, network behaviors
with state awareness, and other information such as launch
variables and process resource limits using several heuristics.
The authors conducted experiments on several real-world IoT
devices and demonstrated that their approach outperforms
existing techniques regarding code coverage, vulnerability
discovery, and execution time.

All the work described above has involved a significant
effort to develop improved techniques for enhancing the secu-
rity assessment of respective targets. Other works that involve
fuzzing embedded Linux have focused on enabling effec-
tive fuzzing through emulation and or rehosting [19, 22, 43],
which is an open problem on its own. Our work is intended

to continue improving fuzzing techniques and strategies for
embedded Linux targets by utilizing LLMs and crash reuse.

4 Experiment

In this section we outline the sample collection process, our
implementation of LLM-based seed generation, using the
Awk applet as an example, and our experimental procedures
for crash reuse and analysis.

4.1 Analyzing BusyBox Versions in Real-
World Products

As mentioned in Section 1.1, BusyBox is widely used in
Linux-based embedded devices. In order to understand the
scope of impact that vulnerabilities in BusyBox variants might
have (RQ1), we conducted a brief investigation on the preva-
lence of older versions of BusyBox within real-world prod-
ucts. To achieve this, we harnessed a proprietary firmware
dataset provided by the company. This dataset was curated
using the company’s platform, which was employed to ex-
tract the collected firmware samples. Within these extracted
filesystems, we identified BusyBox ELF binaries. We iden-
tified 293 BusyBox ELF binaries distributed across various
real-world firmware binaries within the small realm of the
provided dataset.

Within the scope of our analysis, we focused on approxi-
mately 80 ELFs from ARM_32 and x86_64 architectures with
30 BusyBox variants across them. Each of these BusyBox
ELF binaries possessed a unique file hash name. To extract
the version information from these binaries, we devised a
straightforward Python script that scours each ELF for oc-
currences of "BusyBox v" using the command: "strings
$busybox_file | grep ’BusyBox v’". Additionally, we
employed a regex-based version pattern-matching technique
for extracting the version information. The 80 binaries identi-
fied were used as the dataset for our fuzzing experiments and
crash reuse analysis.

4.2 Leveraging LLMs for Initial Seed Genera-
tion

We focus our attention on fuzzing the awk applet within the
identified BusyBox images as our primary target due to its po-
tential for exploitation. This applet is lightweight interpreter
for the awk scripting language, which is often employed in
embedded systems to facilitate text processing tasks such as
text filtering, pattern matching, and data manipulation. awk
scripts may process external input without proper validation,
making them susceptible to script injection attacks if the input
is not sanitized effectively. Vulnerabilities within these awk
scripts can lead to unintended data manipulation or disclo-
sure, posing significant security risks. Because awk takes as



Figure 2: Automation Framework Workflow (N.B: Target o/p contains crashes, queues along with other stats related to fuzzing)

its input an awk script, which must conform to a particular lan-
guage grammar, it is a natural choice of target for LLM-based
seed generation, as the LLM can be utilized to easily generate
conformant awk scripts. While the brunt of our focus was on
awk, LLM-based seed generation is by no means limited to
this target; we conduct additional experiments on other target
software components to demonstrate this in Section 6.

4.2.1 Execution Environment

Binaries compiled for x86 were evaluated on Ubuntu x86_64,
and ARM-based binaries were evaluated in the QEMU emula-
tor. Notably, we encountered challenges in addressing ARM-
specific dependencies, which were effectively resolved by
accessing the required dependency files from the company’s
database. The company’s platform had previously extracted
the complete filesystem of the target binary, which included
the requisite dependency files. This resource proved invalu-
able in overcoming the challenges associated with ARM target
dependencies.

Fuzzer parameters are meant to be user-defined and in-
clude the initial input corpus, AFL environment variables
to be set, and the fuzzer termination criteria. These crite-
ria include statistical metrics such as runtime, the number
of crashes, the number of cycles, and other relevant factors.
Once the fuzzer was configured and initiated, it continuously
monitored the specified criteria for termination, halting the
fuzzing process upon reaching the defined conditions or in
the event of catastrophic errors (conditions that cause AFL++
itself to crash). The outcomes of the fuzzing process were
stored separately and categorized by their respective targets,
to facilitate subsequent analysis. Failed targets were flagged
for further examination and diagnosis. Additionally, JSON
dumps of the statistics files corresponding to each target were
collected in a shared directory, enabling easy comparison
and analysis. Figure 2 provides an overview of the entire

Figure 3: Initial seed generation using LLM

workflow within this framework, illustrating the sequence
of steps from dependency management to fuzzing and re-
sult collection. The automation script is available at link -
https://github.com/asmitaj08/FuzzingBusyBox_LLM

4.2.2 LLM-based Seed Generation Pipeline

Figure 3 visually represents our approach to generating initial
seeds for fuzzing through LLM.

There are 2 scenarios under which initial seeds need to be
generated: when the target input format is well-defined and/or
standardized, and when the input format is loosely-defined or
unknown. When the input format is well-defined, as would
is the case for well-known programs like some BusyBox
applets, we reason that LLM should not require additional
training, as it already possesses knowledge of the expected
input format through its initial training on the internet. This
can also be determined empirically. However, when the input

https://github.com/asmitaj08/FuzzingBusyBox_LLM


Figure 4: Testing new targets with the existing crash database.

format of the target is ill-defined or unknown, as would be
the case for custom communication protocols, LLM would
require fine-tuning. In this scenario, LLM needs to be initially
trained with known samples to develop an understanding of
the expected input format. In the case of the BusyBox awk
applet, we reason that GPT-4 should already be aware of the
input format given the applet’s popularity. Hence, we did not
apply fine-tuning.

For seed generation, we utilized OpenAI’s GPT model "gpt-
4-0613", a chat completion model with a temperature setting
of 0.7 (chosen empirically), which we access via queries to
the web API. We provided the following prompt to guide the
seed generation process for awk:

"role": "system", "content": "You are initial seed generator
for a fuzzer that has to fuzz BusyBox awk applet. In response
only provide the list of awk scripts"
"role": "user", "content": f"Generate initial seed to fuzz Busy-
Box awk applet"

The model responded with a list of commands relevant to
the BusyBox awk applet. These commands were then trans-
lated into individual .awk scripts, which were subsequently
integrated into the input corpus. This input corpus served
as the set of initial seeds for the fuzzing process. We used
afl-cmin to minimize the input corpus before sending it to
the fuzzer, which filters the LLM-generated input corpus to
include only the seeds that are useful for fuzzing.

4.3 Crash Reuse
Having completed our fuzz testing runs on individual Busy-
Box targets, we turn our attention to triaging crashes and
investigating the potential utility of crash reuse. To recap,
we have hypothesized that we can leverage known crashing
inputs for a given target to quickly determine if variants of
that target contain a similar vulnerability or bug. As a sanity

check, we first evaluate our hypothesis on our set of fuzzed
targets by cross-validating the crashing inputs of each target
on each other target.

Crash Reuse provides several advantages in software test-
ing:
1. Efficiency: Initially testing the new target against the consol-
idated crash database offers the potential for significant time
and resource savings. By capitalizing on the crashes identi-
fied during previous fuzz testing on similar targets, we can
leveraging the resources previously expended in fuzzing and
accelerate the fuzzer’s coverage exploration by including it
in future seeds. Hence, we can potentially identify previously
discovered crashes in the new variant without extensive fuzz
testing.
2. Black-Box Testing: This technique is highly beneficial
when conducting black-box testing on new variants of a previ-
ously tested target. It is particularly advantageous in scenarios
where the target utilizes accessible or open-source software
components, even if further details are unavailable. By fuzzing
open-source variants, we can gather crashing inputs to use as
high-quality seeds that are likely to identify duplicate vulner-
abilities. This is preferable to engaging in resource-intensive
binary-only black-box fuzzing, which can be extremely diffi-
cult depending on the complexity of the system under test.

Figure 4 provides a visual representation of our approach to
crash reuse. We actively curate a database of crashes obtained
from previously fuzzed software components. Then, when we
encounter variants of these software components in the future,
we leverage the collected crashes to identify potential issues
in the new variant under test without fuzzing. This provides
us with a rapid initial assessment of the new target, which can
later undergo more thorough fuzzing for in-depth inspection.
As detailed in Section 6, this technique is applicable to any
target whose variant has undergone previous fuzzing, and for
which we possess a corresponding collection of crashes.

4.4 Evaluating a New Target

After encountering a substantial number of crashes within the
collected versions of BusyBox during our research, we ap-
plied our techniques to the latest version (1.36.1); this served
as an evaluation of our techniques for a new target, as we had
collected no samples that contained the most recent BusyBox
version. We built our target by compiling the BusyBox from
its source code for x86_64, following the prescribed instruc-
tions. We opted not to inject AFL++ instrumentation into the
binary.

Our approach to testing the latest BusyBox version was
executed in two distinct stages to leverage both techniques
effectively:
Stage 1: Crash Reuse - In this stage, we applied Technique 2,
that is, crash reuse. This technique involved testing the latest
version against all the previously obtained crashes from our
research without subjecting it to additional fuzzing. The goal



Figure 5: Crash triaging process.

was to determine whether some existing crashes can crash the
latest version of BusyBox, i.e., increasing the scope of finding
vulnerabilities without hours of fuzzing.
Stage 2: Fuzz Testing - In the second stage, we fuzz tested the
target in AFL-QEMU mode using initial seeds generated by
GPT-4 with the aim of uncovering additional potential crashes
and vulnerabilities. We performed 10 hours of fuzzing on the
latest BusyBox on x86_64 host machine running Ubuntu
22.04.

After our testing stages, we analyzed the collected crashes
to identify unique ones, determine the underlying causes, and
ascertain whether similar issues had been previously docu-
mented. To our knowledge at the time of our research, there
was no fully automated tool capable of reliably and com-
prehensively analyzing fuzzer-induced crashes, making tool-
assisted manual analysis the most reliable method of investi-
gation. We performed our analysis using Ghidra [34], GDB
(GNU Debugger) [12], and AFL-Triage [16]. We started our
analysis with AFL-Triage, which utilizes GDB to triage crash-
ing input files. It categorizes crashes based on their type and
reports the debugger’s output, making it easier to identify the
cause of the crash. It also supports crash deduplication, thus
assisting in identifying unique crashes.

Once we obtained the list of unique crashes, we analyzed
the input that caused each crash and attempted to minimize it.
Moreover, we conducted manual reverse engineering using
Ghidra and GDB to identify the root cause. It was followed
by searching the CVE (Common Vulnerabilities and Expo-
sures) database to identify similar bugs and conducting further
analysis to determine if the bug was because of BusyBox or
other libraries on which it was dependent. Figure 5 shows the
overview of the triaging process.

5 Results

This section provides an overview of the results obtained
through the exploration of the aforementioned techniques.

5.1 BusyBox Versions in Real-World Embed-
ded Devices

As discussed in Subsection 4.1, our first objective is to shed
light on the older versions of BusyBox that are still in use
within real-world embedded products. Table 1 presents an
overview of the versions of BusyBox that we discovered in
approximately 80 embedded products spanning various cat-
egories, including wireless access points, telecom devices,
building automation systems, routers, printers, power distri-
bution units, and others. Our findings revealed that many of
these devices continue using significantly older BusyBox ver-
sions. Notably, the latest version of BusyBox, as of the time
of writing this paper, is v1.36.1. However, Table 1 illustrates
that many older versions are still in use. This discovery is con-
cerning, especially given the well-documented vulnerabilities
associated with these older versions.

It is important to emphasize that our investigation focused
on a limited set of firmware samples. Considering the vast ar-
ray of embedded devices that populate the modern landscape,
this situation raises significant concerns that demand attention
and remediation. In summary, the outcomes underscore the
pressing need for increased awareness and action concerning
the usage of outdated and vulnerable versions of BusyBox in
real-world embedded devices. A similar situation could arise
with other software components.

5.2 Leveraging LLMs for Initial Seed Genera-
tion

Initially, we executed the AFL++ fuzzer for 3 hours on each
BusyBox AWK applet target, utilizing the default AFL++ set-
tings in QEMU mode. This means that no AFL++ instrumen-
tation was applied during compilation. During this phase, we
recorded the number of crashes that occurred in each target as
well as the number of edges identified throughout the fuzzing
process. Then, as detailed in Subsection 4.2, we employed
GPT-4 to generate the initial seeds. In this phase, we repeated
the 3-hour fuzzing process for each target. We repeated the
same metrics analysis, counting the number of crashes and
edges discovered for each target.

The results from some of the ARM_32 and x86_64-based
BusyBox targets are presented in Table 2. It illustrates that sig-
nificantly more crashes were identified during fuzzing when
the initial seeds were generated by LLM compared to the ones
with random seeds. Moreover, the same pattern was observed
in the case of the number of edges found during the fuzzing
of each of the targets. To visually represent this, Figure 6
provides a graph displaying data from four targets, contrast-
ing the number of edges discovered in the two scenarios, i.e.,
initial seeds generated by LLM versus random seeds. Note:
In the tables and figures, the term "without-LLM" signifies
scenarios where random initial seeds were used, while "with-
LLM" denotes cases where initial seeds were generated using



Table 1: BusyBox versions in real-world embedded devices
BusyBox
Version

No. of
Occurrence

Product
Types

BusyBox
Version

No. of
Occurrence

Product
Types

BusyBox
Version

No. of
Occurrence

Product
Types

v1.7.2 2 wireless access point, v1.19.4 4

network management tool,
wireless access point,

network hardware,
security camera

v1.27.2 1 power distribution unit

v1.10.2 1 telecom device v1.20.2 2 security camera, v1.28.3 1 network management tool

v1.11.1 1 building automation v1.21.1 5
drone, ip phone,

medical device, bmc v1.28.4 1 operating system

v1.13.2 1 building automation v1.22.1 7
wireless aceess point,

network switch,
operating system

v1.29.3 1 operating system

v1.15.2 2 wireless aceess point v1.23.0 3 wireless access point, v1.30.1 6
wireless access point,
building automation,

power managemnet system
v1.17.2 1 router v1.23.1 7 bmc, router, v1.33.0 1 power management system

v1.17.3 1 telecom device v1.24.1 7
wireless access point,

network switch, v1.34.0 1 network controller card

v1.17.4 1 printer v1.25.0 3
drone,

network attached storage v1.34.1 4
building automation,
wireless access point

v1.18.2 1 wireless aceess point v1.25.1 3 wireless access point, v1.35.0 1 router

v1.19.2 1 wireless aceess point v1.26.2 6
power management system,

building automation, v1.36.0 1 router

Table 2: Comparison of number of crashes with and without
LLM

Target
Version
(ARM)

Product
Type

No. of
crashes

w/o LLM

No. of
crashes

with LLM

Target
Version

(x86_64)

Product
Type

No. of
crashes

w/o LLM

No. of
crashes

with LLM

v1.34.1
embedded
wireless

controller
3 188 v1.23.1

network
controller 64 140

v1.29.3
medical
device 54 82 v1.22.1

network
management

tool
43 165

v1.34.1
embedded

PLC 3 177 v1.30.1
network

management
tool

147 229

v1.15.3
building

automation 220 404 v1.27.2
operating
system 0 114

v1.23.2 camera 50 165 v1.23.1
storage
array

controller
38 178

v1.18.4 plc 137 224 v1.21.1 firewall 44 99

v1.30.1
operating
system 49 106 v1.19.4

network
switch 49 172

v1.26.2
security
camera 55 70 v1.15.1

operating
system 166 357

v1.32.0
power
control
system

0 70 v1.23.1
network

controller 41 98

v1.27.2 drone 34 147 v1.35.0
network

management
tool

2 193

LLM, and ‘relative_time‘ is the running time of the fuzzer in
seconds.

Furthermore, Figure 7 presents a Venn diagram depicting
the number of unique crashes found in each case and the num-
ber of crashes common in both cases. This graphic emphasizes
the importance of discovering a more significant number of
crashes. When there are more crashes to work with, there
are more opportunities to discover different failing execution
paths, thereby increasing the likelihood of uncovering vul-
nerabilities. Figure 7 underscores this by revealing that more
unique crashes were identified when utilizing LLM-generated
initial seeds. However, comprehensive triaging was not car-

Table 3: Work leveraging LLM for fuzzing
Work Target LLM use case

ChatAFL
[25] Protocols

Extract a machine-readable
grammar for a protocol,

generate diverse messages
for initial seeds.

ChatFuzz
[17]

Format conforming
targets

Used at the mutationg
stage to generated
format conforming

mutated inputs

Fuz4All
[48]

Targets that need
different programming

languages as input

Generate code snippets
for different programming

languages

WhiteFox
[50] Compiler

Optimization source code
analyzer, test input

generation
Proposed

Work
Embedded applications

like BusyBox
Generate diverse and target-

specific initial seeds.

ried out for the older versions of BusyBox, and such triaging
was primarily focused on the latest version. Hence, in the dis-
cussed cases here, we conducted fuzzing, collected crashes,
used AFL-Triage to categorize them, and recorded the unique
crashes, notably more abundant in the LLM-generated initial
seed scenarios.

5.3 Crash Reuse

After we had amassed a substantial number of crashes from
fuzzed BusyBox targets, our total collection amounted to 4540
crashes that likely map to a much smaller place in the binary
where the crash happens. Subsequently, as outlined in Subsec-
tion 4.3, we subjected the latest BusyBox version (v1.36.1) to



Figure 6: Comparison of number of edges covered with and without using LLM for initial seed generation. Targets are BusyBox
in (1) Network controller, (2) Network switch, (3) Storage array controller, (4) Firewall

Figure 7: Comparison of number of unique crashes found with
and without using LLM for initial seed generation. Targets
are BusyBox in (1) Network controller, (2) Network switch,
(3) Storage array controller, (4) Firewall

Figure 8: Comparison of number of unique crashes found
using crash reuse technique vs fuzzing



testing against all these pre-existing crashes. This endeavor
discovered 97 crashes in the latest BusyBox, of which 19
were unique. Later, we conducted traditional fuzzing on the
latest BusyBox using AFL++ QEMU mode, with initial seeds
generated by LLM over 10 hours. This approach yielded 20
crashes, of which eight were unique. Remarkably, five of these
eight unique crashes were also identified using the crash reuse
technique. Figure 8 presents a graphical comparison of the
number of unique crashes discovered using the crash reuse
technique versus traditional fuzzing, as well as the common
crashes between the two methods.

These results underscore the potential utility of crash reuse
in software testing. As discussed in Section 4.3, it can reduce
substantial time and resource demands, and is a valuable tool
for blackbox fuzzing when a comprehensive crash database
is available.

Additionally, it is essential to note that not all crashes in-
dicate software bugs. Crashes can occur for various reasons,
including invalid inputs, false positives, unreachable code,
execution environment factors, platform-specific issues, and
other non-bug-related causes. Reaching conclusive determi-
nations often involves meticulous manual triaging, which can
be time-consuming and intricate. As such, we limited our
scope to identifying crashes, with triaging performed only
on a subset of crashes found in the latest BusyBox version.
However, as previously discussed, the quantity of crashes is
a vital metric in fuzzing. A higher number of unique crashes
equates to a more extensive array of test scenarios to explore
during testing. Consequently, this increases the likelihood of
identifying potential software vulnerabilities or bugs.

5.4 Crash Analysis: Latest BusyBox (v1.36.1)

Following the collection of crashes for the latest BusyBox
(v1.36.1) target using LLM-based seed generation and Crash
Reuse, we proceeded with manual crash triaging. Due to this
process’s intensive time and resource commitments, we lim-
ited our triaging efforts to 15 unique crashes that resulted in
segmentation faults. Crashes obtained from fuzzing can often
appear disordered and incomprehensible due to data random-
ization through various mutation strategies during the fuzzing
process. We attempted to minimize the crash size to facilitate
the triaging process, making it more comprehensible.

Additionally, it is important to note that BusyBox relies on
GLIBC (GNU C), which provides standard C library func-
tions and system calls for Unix-like operating systems. During
our triaging endeavor, we uncovered specific input patterns
that triggered crashes in various functions within the GLIBC
library. These patterns were identified by tracing the crash
causes using GDB. Out of the 15 crashes we triaged, we
found crashes in GLIBC functions, including free, malloc,
write, strlen, strdup, regex, and strftime. No-
tably, the crashes in regex, and strftime closely resem-
bled the known bugs documented as CVE-2010-4051 and

Figure 9: Segmentation fault in regcomp

CVE-2015-8776, respectively. Although these CVEs were
identified quite some time ago, we encountered them in
GLIBC versions 2.35 and 2.38 on a host running Ubuntu
22.04, and these issues were also reproducible in Debian dis-
tributions. It highlights the persistence of these vulnerabilities
across multiple software component versions, necessitating
renewed attention and remediation efforts. We subsequently
filed bug report for these findings; though the bugs appear
to have not been considered possibly because it is same as
the bug whose CVE has already been assigned. In addition
to the crash input patterns chosen for triaging that triggered
crashes in GLIBC, other crash inputs also induced segmenta-
tion faults within BusyBox. After manual triaging, it became
apparent that many of these crashes were primarily attributed
to improper memory access. We could not discover any read-
ily exploitable bugs. Stead, we identified crash patterns that,
after more in-depth exploration, could possibly reveal vulner-
abilities.

5.4.1 Crash details

The analysis of crashes was done manually using GDB
and Ghidra.The issue identified in regex was the de-
nial of service (DoS) caused by memory exhaustion. The
pattern, a long repeated character, triggered deep recur-
sion that caused stack exhaustion, leading to a segmenta-
tion fault. The crash pattern was /1((((.......12208
times/1. We passed this crash pattern to Busybox (v1.36.1)
awk and traced via gdb using gdb -args busybox awk
-f crash_pattern_file. It caused segmentation fault as
shown in Figure 9.

Having identified the segmentation fault, we inspected the
register values using gdb commands followed by doing back-
trace (bt). The outcome of bt showed the issue of deep re-
cursion leading to stack exhaustion as shown in Figure 10,
which can lead to denial of service (DoS). We further ver-
ified it by installing the latest version of GLIBC from the
source code and confirming reproducibility. This vulnerabil-
ity is nearly identical to CVE-2010-4051, which according
to Red Hat [40] is due to a failure to consider crash of client
application via regcomp. Unfortunately, even on the client
side where it is used, the provided pattern is not verified. In
this scenario, the pattern being sent to regcomp() does not
get verified beforehand, as shown in Figure 11.

Using a similar approach to the one discussed above,
we analyzed a number of other crashes. One of the
other crashes was found in strftime was also DoS be-



Figure 10: Deep recursion in regcomp

cause of invalid pointer to struct tm. The crash pat-
tern sent to BusyBox awk applet was BEGINstrftime("",
"3333333333333333333"), leading to a segmentation fault
caused by __strftime_internal(), as shown in Figure 12.
Similar to the case of regcomp, strftime is being called
within BusyBox, but the the input parameters being sent to
it is not being verified beforehand, leading to DoS. Other
crashes that were analyzed had resulted from abnormal pat-
terns in the crash input and therefore could not be conclusively
identified as software bugs.

6 Applicability of proposed techniques

The initial proof of concept targeted the BusyBox awk applet.
This section extends the application of the proposed technique
to other BusyBox applets found in various older versions used
in real-world embedded products, as detailed in Table 1. The
fuzzing process, conducted over 48 hours. Apart from the
number of crashes, we also examined the number of covered
edges (as shown for the awk applet in Figure 6) and the total
number of executions. This assessment involved testing on
the dc, man, and ash applets along with awk.

Figure 13 illustrates variations in number of crash detected
across different targets. Notably, using LLM-generated initial
seeds led to a substantial increase in crashes for certain cases
like awk, while for dc and man, crashes were decently higher
with LLM-generated seeds. For the ash applet, we conducted
fuzzing for 5 hours due to utility execution constraints. As
a minimized version of bash, ash executes shell commands.
However, abnormal behavior during fuzzing, triggered by di-
verse shell inputs, led to the cessation of the process. Conse-
quently, we opted for a shorter testing duration. This pattern
also extends to edge coverage performance as shown in Fig-

ure 14, with some cases showing higher performance and
others exhibiting negligible differences. Furthermore, when
considering the number of executions as shown in Figure 15,
it is evident that LLM-based generated seeds do not introduce
significant overhead in most cases.

The LLM-based technique for generating initial seeds plays
a supportive role in the fuzzing process, contributing quality
and diverse seeds that enhance fuzzing performance. How-
ever, it is crucial to note that this technique alone is not the
sole factor influencing the overall outcome. Various asso-
ciated factors, contingent upon the specific target, must be
considered. The effectiveness is contingent upon the target
type and the extent to which the initially provided diverse
inputs contribute to code coverage.

The primary function of LLM in this proposed technique is
to assist in producing high-quality and diversified initial seeds,
thereby potentially enhancing fuzzing performance. The seed
generation using LLM requires initial manual intervention
to validate if the generated seeds align with the target’s re-
quirements. In the case of a new target initially unknown to
LLM, model training is essential for the target-specific seed
format. However, this represents an initial, one-time effort;
once the model learns the required seed format, it expedites
the generation of diverse seeds suitable as potential initial
seeds for fuzzing. Thus, we can leverage the knowledge base
of LLM models, or train these models according to different
target requirement. Therefore, this technique is not restricted
to the BusyBox and can be adapted for use with different
targets.

Similarly, the crash reuse technique proposed can be ex-
tended to various software components across different tar-
gets. The technique isn’t limited to a particular target but
applies universally. It can be employed in any scenario where
we have previously gathered crash data by fuzzing a target and
aim to test the variant of that target by reusing those crashes.
For instance, following the collection of crashes from the
tested samples of the dc applet, akin to the approach outlined
in Section 4.3 for the awk applet, we reused these crashes to
test other BusyBox samples. These samples included different
versions and architectures. We had a total of 2112 crashes
from previously tested samples that were ARM-based Busy-
Box targets. We reused these crashes to test if they could
cause crashes in BusyBox v1.36.1, which is x86-based. Out
of 2112 crashes, 853 caused segmentation faults in this new
target, with 313 being unique occurrences. Thus, using this
technique, we identified the possibility of crashes in a new
target even without performing actual fuzzing on it. Due to
limited time, we didn’t delve deeply into these crash explo-
ration paths. The primary goal is to convey that the crash
reuse technique could be beneficial for the initial screening
of a new variant of a software component without spending
hours on fuzzing. However, this technique may not uncover all
the vulnerabilities requiring fuzzing for a thorough analysis.

While crash replay has been established for analyzing



Figure 11: Regcomp called inside Busybox

Figure 12: Crash in strftime because of invalid args send via
BusyBox awk

crashes in previously fuzzed targets, there is limited exist-
ing research on collecting crashes and reusing them to test
variant of the software components present in different targets.
For instance, different products may incorporate different ver-
sions of BusyBox. This distinction becomes crucial in the
context of embedded systems, where common third-party
software components like BusyBox are frequently shared.
However, these components may differ in version numbers,
architectures, or compilation optimizations.

The crash reuse becomes particularly advantageous when
we have access to the open-source version of specific software
components or libraries. By conducting fuzzing on these com-
ponents, we can generate potential crashes. Given our access
to the source code, the likelihood of identifying these crashes
is higher. Now, let’s consider a scenario where the same soft-
ware component is internally used in a product for which we
only have access to the binary, not the source code. Although
we are aware that it internally employs the software compo-
nent, there is a possibility that its version number differs, or
it has been customized by the developer, or compiled for a
different architecture. In such cases, where we have already
collected crashes for the known software component, we can

employ this crash-reuse technique as an initial screening to
test for the presence of vulnerabilities in the given product.

As illustrated in Figure 1, our work introduces a novel
pipeline employing two techniques. In this pipeline, LLM-
generated initial seeds (technique1) assists in enhancing
fuzzing and acquiring crashes for the target under test. Subse-
quently, the obtained crashes are collected and reused (tech-
nique2) to test a new target with similar software components.

7 Discussion

In our pursuit to enhance existing software testing method-
ologies, we emphasize the significance of our proposed tech-
niques, particularly within the context of embedded systems.
Firmware in embedded systems often consists of numerous
third-party software components with custom implementa-
tions and unique input types, making it predominantly a black-
box testing scenario. The techniques introduced in this work,
namely leveraging LLM for initial seed generation and crash
reuse, have exhibited promising outcomes that can signifi-
cantly aid software testing efforts. While these techniques can
be adapted for various targets as discussed in Section 6, we
have used them to analyze BusyBox for the proof of concept.

To evaluate our results, we established the AFL++ fuzzer’s
output as our baseline and compared outcomes between
AFL++ provided with random initial seeds versus LLM-
generated initial seeds. Despite extensive research leveraging
Large Language Models (LLM) for fuzzing, as discussed in
Section 3 and exemplified by studies like [18], we have not en-
countered prior work applying LLM to real-world embedded
devices running applications like BusyBox. Table 3 illustrates
various studies leveraging LLM for different targets, making
direct comparisons unfeasible.

Similarly, regarding the crash reuse technique, we haven’t
identified any work collecting and reusing crashes to test sim-
ilar software components on a different target, as depicted
in Figure 4. Earlier methodologies, like reFuzz [24], focused
on reusing crashes and outputs within the same target during



Figure 13: Number of crashes with vs without LLM based initial seeds. The graphs are for applet awk, dc, man, ash clockwise.

different stages of fuzzing. AFL also provides a feature to
resume the fuzzer, leveraging previous crashes and queue in-
formation to enhance fuzzing outcomes on the same target.
Crashes are typically employed for replay during the analy-
sis process. Therefore, for comparison purposes, we set the
baseline as identifying the number of crashes directly using
fuzzing versus testing the target against the crashes collected
from fuzzing the variant of that target previously, as illustrated
in Figure 8

Nevertheless, it is essential to acknowledge certain limita-
tions and challenges associated with these approaches. Utiliz-
ing LLM for initial seed generation may necessitate a signifi-
cant initial effort, mainly when dealing with different targets,
especially in the complex domain of embedded systems where
a wide array of hardware protocols and custom input patterns
are encountered. Furthermore, while the crash reuse technique
represents a valuable first pass phase, it may not consistently
identify all bugs, especially zero-day vulnerabilities. Hence,
a traditional fuzzing technique remains a necessary comple-
ment for comprehensive testing. The crash reuse method pri-
marily assists in determining whether previously identified
crashes are applicable to a new target but does not guarantee
the discovery of all potential bugs. Furthermore, there is a
prospect for utilizing LLM to generate high-quality crashes

by training the model for specific targets using previously
identified crashes. We explored the feasibility of fine-tuning
LLM by providing sets of crashes corresponding to respective
target categories. We aimed to ascertain whether LLM could
generate test cases capable of inducing crashes in the new tar-
get. However, this undertaking introduced specific challenges,
primarily related to data encoding. LLM requires data to be
JSON-encoded, and managing data that cannot be UTF-8 en-
coded proved to be intricate. This challenge is particularly
pertinent, as some crash test cases may involve data types that
are not UTF-8 encoded.

In summary, while there are particular challenges and lim-
itations, substantial research potential exists for harnessing
these techniques to enhance and assist software testing en-
deavors. These approaches hold promise for improving the
efficiency and effectiveness of testing procedures, particularly
in the context of embedded systems and firmware analysis.

8 Future Work

This work opens up opportunities for further research by ex-
tending the application of LLM and crash-reuse techniques to
a broader range of targets within embedded firmware. We plan
to implement these techniques on various other targets, encom-



Figure 14: Number of edges covered with vs without LLM based initial seeds. The graphs are for applet awk, dc, man, ash
clockwise.

passing application-level targets like web servers, network-
related components, and bare-metal embedded targets that
interact with hardware and IoT protocols. Training LLM to
understand the input structures of protocols such as I2C, SPI,
UART, MQTT, Bluetooth, and others could greatly enhance
fuzz testing for these devices. Security testing for embedded
targets presents numerous challenges [32], and incorporating
these techniques could be invaluable.

Furthermore, many embedded targets lack access to source
code, and in some cases, internal details are undisclosed. In
such scenarios, the crash reuse technique can be a valuable
resource. By testing unknown targets against existing crashes
and evaluating whether any input can cause the target to crash,
these techniques can significantly improve the state of security
testing for firmware. We are dedicated to exploring these
techniques further and leveraging their potential to enhance
security testing for a wide range of embedded devices in the
future.

9 Conclusion

In conclusion, our exploration into BusyBox, driven by its
extensive presence in Linux-based embedded devices, has
yielded valuable insights and introduced techniques to en-

hance the software testing process. Our initial investigation
revealed the prevalence of older versions of BusyBox in real-
world embedded devices, prompting us to delve further into
the analysis. This exploration led to the developing of two
techniques to bolster software testing efforts. First is, lever-
aging LLM for initial seed generation. This technique sig-
nificantly improved the outcome of fuzzing by enhancing
the number of identified crashes, offering a more comprehen-
sive and effective testing approach. Second is, crash reuse
technique. We leveraged previously obtained crashes in older
versions of BusyBox to assess their applicability to the newer
version. This approach proved successful when applied to the
latest version of BusyBox, saving time and resources in the
testing process.

Subsequently, we delved into the analysis, identifying
unique crashes using AFLTriage and conducting manual crash
triaging using GDB and Ghidra on 15 of these unique crashes.
Our triaging efforts uncovered crashes that triggered issues
within the GLIBC library, a critical dependency for BusyBox.
These issues bore a resemblance to previously documented
CVEs, underscoring the persistent nature of these vulnerabili-
ties across different versions of GLIBC. While the exploitabil-
ity of the crashes found in BusyBox could not be conclusively
determined due to time constraints, our exploration of Busy-



Figure 15: Number of executions with vs without LLM based initial seeds. The graphs are for applet awk, dc, man, ash clockwise.

Box has illuminated techniques with significant potential to
benefit software testing in various domains. The findings from
this research not only shed light on the security landscape of
BusyBox but also open the door to further research and ad-
vancements in software testing methodologies.Moreover, as
discussed in Section 6, the proposed techniques could be ap-
plied to targets other than BusyBox.
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