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Abstract
Utilizing sensitive images (e.g., human faces) for training DL
models raises privacy concerns. One straightforward solution
is to replace the private images with synthetic ones generated
by deep generative models. Among all image synthesis meth-
ods, diffusion models (DMs) yield impressive performance.
Unfortunately, recent studies have revealed that DMs incur
privacy challenges due to the memorization of the training
instances. To preserve the existence of a single private sample
of DMs, many works have explored to apply DP on DMs
from different perspectives. However, existing works on dif-
ferentially private DMs only consider DMs as regular deep
models, such that they inject unnecessary DP noise in addition
to the forward process noise in DMs, damaging the model
utility. To address the issue, this paper proposes Differentially
Private Diffusion Probabilistic Models for Image Synthesis,
dp-promise, which theoretically guarantees approximate DP
by leveraging the DM noise during the forward process. Ex-
tensive experiments demonstrate that, given the same privacy
budget, dp-promise outperforms the state-of-the-art on the
image quality of differentially private image synthesis across
the standard metrics and datasets.

1 Introduction

Nowadays, it is widely acknowledged that the performance
of deep neural networks (DNNs) greatly benefits from large-
scale training data. However, in numerous sensitive domains
relying on image data, such as face recognition and medical
image processing, the collection or release of a large-scale
dataset often proves exceedingly challenging due to privacy
issues [26, 64]. Intuitively, a straightforward solution to mit-
igate the risk of privacy leakage is using synthetic images,
following the same distribution as the private images, to train
those models. Nevertheless, recent works [6, 21] discovered
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Figure 1: Comparison between dp-promise and other DP-
SGD-based approaches for differentially private image syn-
thesis using DMs.

that synthetic images produced by generative models, includ-
ing generative adversarial networks (GANs) and diffusion
models (DMs), still leak the privacy of the private data. Since
DMs are more powerful than GANs in synthetic image gener-
ation, we target at preserving the privacy of training data for
DMs in this paper [10].

Differential privacy [15], as a de facto privacy standard,
is commonly used in preserving the individual privacy of a
private dataset [41]. Specifying in machine learning tasks, dif-
ferentially private stochastic gradient descent (DP-SGD) [1]
incorporates gradient clipping and noise injection during the
stochastic gradient descent process to ensure the privacy of
training data. Later, DPDM [11] applies DP-SGD during
the training procedure of DMs and then generates differ-
entially private synthetic data. In a more recent study [17],
Ghalebikesabi et al. pre-train DMs with public data and then



fine-tune the pre-trained DMs with DP-SGD on private data.
On top of DPDM, DP-LDM [37] explores the usage of latent
DMs (LDMs) [44] to reduce the number of network parame-
ters and training time while achieving similar privacy-utility
trade-offs as DPDM.

Though the aforementioned studies have demonstrated the
remarkable performance of DMs in differentially private im-
age generation, they might have injected unnecessary noise
when achieving DP. As shown in the upper dashed-dotted
block of Figure 1, existing DPDM solutions, in general, in-
jected both DM noise and DP noise into the DM’s forward
process based on the schemes of DM and DP-SGD, respec-
tively. However, we observed that the gradients, calculated
based on the DM noise-injected images, are "noisy" gradients
having the same effect as DP-SGD gradients for a particular
privacy budget. Hence, it is possible to achieve the same DP
as the existing solutions with less DP noise injected. That
is, we could inject the same amount of DP noise as the ex-
isting solutions, where partial DP noise was implemented by
the DM noise. This way, we could enhance the model utility
while ensuring the same DP guarantee as the existing works.

To achieve this goal, we propose a novel framework,
Differentially Private Diffusion Probabilistic Models for
Image Synthesis (dp-promise), which promotes the model
utility by reducing the injected noise based on the theoreti-
cal analysis of the privacy guarantee provided in the DM’s
forward process. Specifically, dp-promise splits the normal
DM forward process [1,T ] into two phases. In Phase I, we
train DMs at [S,T ], where the training is conducted using
a non-private optimization algorithm as usual DMs and DP
noise are implemented by injecting DM noise into the images.
In Phase II, we train DMs at [1,S−1], where we ensure DP
through DP-SGD since images at this stage do not contain
enough DM noise. Furthermore, we incorporate various im-
provements over existing work to achieve a better trade-off
between privacy and utility, e.g., freezing unnecessary lay-
ers before fine-tuning to reduce noise injection. Resulting
from the above, the comprehensive experiments on four fa-
mous image datasets (MNIST, Fashion-MNIST, CelebA, and
CIFAR-10 used by existing works [11, 17–19]) confirm that,
given the same privacy budget, the synthetic images gener-
ated by dp-promise outperform the state-of-the-art methods
roughly from 5% (compared with [17]) to 99% (compared
with [19]) under commonly used performance metrics.

Our main contributions are summarized as follows.

• We propose a novel differentially private diffusion model
framework, dp-promise, which provides an enhanced
privacy-utility trade-off by employing a two-phase DM
training process to reduce the overall noise injection.

• We provide a rigorous theoretical study on the rela-
tionship between DM noise and DP guarantees for dp-
promise, making dp-promise the first work to take ad-
vantage of DM noise to achieve (approximate) DP.

• We conduct experiments on four benchmarking image
datasets, including MNIST, Fashion-MNIST, CelebA,
and CIFAR-10. The experimental results demonstrate
that dp-promise achieves a non-trivial improvement
(roughly from 5% to 99%) over state-of-the-art meth-
ods.

2 Related Work

In this section, we present a review of the related work in
the field of differentially private generative models for image
synthesis. We classify state-of-the-art into feature matching-
based [18,19,32,52] and diffusion model-based approaches [8,
11, 17, 34, 37]. Note that there are also many works achieving
DP on Generative Adversarial Networks (GANs) [7,25,33,36,
51,53,59]; however, those DP-GANs did not show promising
image generation quality due to issues like mode collapse [38],
hence, we do not take DP-GANs as baselines in this paper.

Approaches based on feature matching. Feature matching-
based approaches utilize generative models to match the fea-
ture distributions of original data with those of generated data.
Specifically, these approaches train these generative models
by minimizing the Maximum Mean Discrepancy (MMD), a
metric quantifying the distance between two feature distri-
butions. To achieve DP, feature matching-based approaches
inject noise into the features of the original data distribution.
DP-MERF [18] trains the network by minimizing the distance
of the mean embeddings between the real data and the gener-
ated data distribution, where Gaussian noise was injected into
the mean embeddings of the real data distribution to achieve
DP. DP-HP [52] employs hermit polynomial features instead
of random Fourier features as in DP-MERF to estimate kernel
mean embeddings more effectively. PEARL [32] considers
training models using private embeddings constructed by a
characteristic function. DP-MEPF [19] uses the perceptual
feature of public data to fit a generator distribution.

Approaches based on diffusion models. Diffusion model-
based approaches mainly rely on DP-SGD to achieve DP
on top of diffusion models for image synthesis. DPDM [11]
demonstrates how to train score-based generative models with
DP-SGD and proposes a training strategy named noise mul-
tiplicity to improve performance. Both DPGEN [8] and Liu
et al. [34] employ energy-based generative models trained on
differentially private scores, which are constructed by random-
ized responses. DP-Diffusion [17] utilizes DMs pre-trained on
extra public data and then fine-tunes the DMs on private data.
More recently, DP-LDM [37] pre-trains latent DMs (LDMs)
and fine-tunes attention modules.

Limitation. For approaches based on feature matching, e.g.,
DP-MERF [18] and DP-MEPF [19], they are unable to gener-
ate clear images due to noise injection on the feature of the
original data distribution and then directly train the network
on the noisy features to achieve DP. For approaches based



Table 1: Notation and definition.
Notation Definition

t ∈ {1,2, . . . ,T} diffusion time-steps
βt ,αt pre-defined diffusion noise scale
xxx ∈ Rd data point in d-dimensional space
Dpriv = {xxxi}n

i=1 private dataset with n items
Dpub public dataset
zzzθ neural network with parameters θ

1≤ S≤ T the time-step boundary between
Phase I and Phase II

m1,m2 the batch size of Phase I and Phase
II, respectively

N1,N2 the number of iterations in Phase I
and Phase II, respectively

η1,η2 the learning rate in Phase I and Phase
II, respectively

PoissionSamplep Poisson sub-sampling with probabil-
ity p

clipC clipping function with clipping con-
stant C

σ DP-SGD noise scale
K the number of samples for noise aug-

mentation
T ′ the number of sampling steps
ρ the variance hyper-parameter of sam-

pling
w the guidance scale of sampling

on DMs, e.g., DPDM [11] and DP-Diffusion [17] integrate
DP-SGD to the training of the network in DMs but ignore the
inherent privacy features within DM. Additionally, DPDM
performs poorly on higher-dimensional datasets (e.g., 64×64
CelebA), and DP-Diffusion does not conduct experiments on
higher-dimensional datasets.

3 Preliminaries

In this section, we present the preliminaries for this paper,
including a brief introduction to DMs and the definition and
properties of DP variants. Table 1 gives the definition of all
the notations used in this paper.

3.1 Diffusion Models
Diffusion models (DMs) aim to learn the latent structure
of a dataset by modeling the way in which data points dif-
fuse through their latent (pixel, if in image generation task)
space [50]. In a nutshell, DMs are implemented in two ar-
chitectures: discrete diffusion models (denoising diffusion
probabilistic models, DDPMs [22, 47]) and continuous dif-
fusion models (score-based diffusion models [50]). In fact,
the two architectures use different mathematical tools for

modeling DMs, with one based on probabilistic forms and
the other on stochastic differential equations (SDEs). Several
works [48, 50] show that DDPM is an equivalent form of
score-based DMs. Because of the high quality of image gen-
eration [40], in this paper, we use DDPM as the architecture
for DMs.

Denoising diffusion probabilistic models (DDPMs) [22,47]
contain a forward diffusion process and a reverse diffusion
process. In the forward process, we slowly inject Gaussian
noise into the original image through a series of T steps.
Then, in the reverse process, we aim to learn models that
reconstruct the real/original image from noisy images pro-
duced in the forward process. Formally, given an original data
point xxx(0), the forward process can be represented as a Markov
chain {xxx(0),xxx(1), . . . ,xxx(T )}, where xxx(t), at diffusion time-step
t ∈ {1,2, . . . ,T}, was produced by injecting carefully scaled
Gaussian noise into xxx(t−1) using noise scale {βt}. For the
entire forward process, the posterior q(xxx(1),xxx(2), . . . ,xxx(T )|xxx(0))
holds that

q(xxx(t)|xxx(t−1)) = N (xxx(t);
√

1−βtxxx(t−1),βtIII), (1)

q(xxx(1),xxx(2), . . . ,xxx(T )|xxx(0)) =
T

∏
t=1

q(xxx(t)|xxx(t−1)). (2)

It is worth noting that, as the time-step t approaches T , the
noisy data xxx(t) approximates a standard normal distribution
due to the cumulative impact of the injected noise. By utilizing
the inherent properties of the Gaussian distribution, we have

q(xxx(t)|xxx(0)) = N (xxx(t);
√

αtxxx
(0),(1−αt)III), (3)

where αt = ∏
t
s=1(1−βs). Following Equation (3), the noisy

data at time-step t can be calculated as

xxx(t) =
√

αtxxx(0)+
√

1−αtzzz, (4)

where random noise zzz∼N (000,III).
In DMs, the reverse process is also defined as a Markov

chain {xxx(T ),xxx(T−1), . . . ,xxx(0)}. We leverage Denoising Diffu-
sion Implicit Models (DDIMs) [48] as the reverse process to
predict the noise distribution between two adjacent time-steps
t and t−1, then recover xxx(t−1) from xxx(t) by removing the noise.
To do so, we first learn models zzzθ to predict noise injected
between xxx(0) and xxx(t), t ∈ {1,2, . . . ,T}, then derive the mean
of the predicted distribution as

µ̂µµθ(xxx
(t), t) =

√
αt−1x̃xx(0)+

√
1−αt−1− Σ̂2

t ·zzzθ(xxx(t), t), (5)

where Σ̂t = ρ
√
(1−αt−1)/(1−αt)

√
βt , x̃xx(0) = (xxx(t) −√

1−αtzzzθ(xxx(t), t))/
√

αt , and the hyper-parameter ρ con-
trols variance during sampling procedure. After having
µ̂µµθ(xxx

(t), t), we will predict the noise distribution immediately
as p̂θ(xxx(t−1)|xxx(t)) = N (xxx(t−1);µ̂µµθ(xxx

(t), t), Σ̂2
t III).



To train the neural network, the parameters θ are optimized
by the following objective

argmin
θ

Et,xxx(0),zzz

[
∥zzz−zzzθ(

√
αtxxx(0)+

√
1−αtzzz, t)∥2

2

]
, (6)

where t is uniformly selected from {1,2, . . . ,T}, xxx(0) ∼ D,
and zzz∼N (000,III). In practice, to reconstruct the desired data
from noise, denoted as x̂xx(T ) ∼N (000,III), we iteratively generate
the synthetic data as follows

x̂xx(t−1) =
√

αt−1
x̂xx(t)−

√
1−αtzzzθ(x̂xx(t), t)√

αt
+√

1−αt−1− Σ̂2
t ·zzzθ(x̂xx(t), t)+ Σ̂tξξξ,

(7)

where t ranges from T to 1, and ξξξ ∼ N (000,III). Note that
in DDIM, the synthetic data generation process can be
accelerated by sampling in a small subset of time-steps
{τ1,τ2, . . . ,τT ′} instead of the entire diffusion time-steps as
in DDPM.

3.2 Differential Privacy
Differential privacy (DP) mathematically ensures the indistin-
guishability between the computing outcomes on two datasets
with or without an arbitrary individual.

Definition 1 ( (ε,δ)-differential privacy [14] ). A randomized
mechanism M satisfies (ε,δ)-DP, if for any two neighboring
datasets D≃ D′ and all S⊆ Range(M ), it holds that

Pr[M (D) ∈ S]≤ exp(ε)Pr[M (D′) ∈ S]+δ. (8)

In Definition 1, the neighboring datasets D and D′ can be
transformed into each other by adding or removing a single
item, ε is the privacy budget bounding the divergence of the
output distribution between two neighboring datasets, and
δ is negligible on the number of items in D measuring the
probability that the above constraint is violated. When δ = 0,
(ε,δ)-DP becomes ε-DP, which is the first and strict definition
of DP introduced by Dwork et al. [15].

Generally, a common approach to achieving ε-DP or (ε,δ)-
DP is to inject noise following Laplace or Gaussian distri-
bution into the original input/output/computing process. The
magnitude of noise injection is related to the sensitivity of the
function, f , for the computation. We provide the definition of
ℓ2-sensitivity as below

Definition 2 (ℓ2-sensitivity [15]). Given a function f : D→
Rk, for all D ∈D , the ℓ2-sensitivity of f is

S f := max
D≃D′
∥ f (D)− f (D′)∥2, (9)

where ∥ · ∥2 denotes ℓ2-norm of the vector.

In practice, we say f̃ satisfies (ε,δ)-DP if we inject
scaled Gaussian noise N (0,S2

f σ2III) into each component
in a non-private f , where S f is the ℓ2-sensitivity of f and
σ≥

√
2ln(1.25/δ)/ε. The Gaussian mechanism is

f̃ (D) := f (D)+N (0,S2
f σ

2III). (10)

Dong et al. [12] propose a variant of DP named Gaussian
Differential Privacy (GDP). Let φ be a rejection rule used for
testing the hypothesis to distinguish between two distributions
P and Q. The trade-off function F(P,Q) : [0,1]→ [0,1] is
defined as F(P,Q)(α) := infφ{1−EQ[φ] : EP[φ]≤ α}, where
EP[φ] is Type I error, and 1−EQ[φ] is Type II error. Let
Gµ :=F(N (0,1),N (µ,1)), where µ≥ 0. In practice, Gµ has a
close-form expression as Gµ(α) = Φ(Φ−1(1−α)−µ), where
Φ denotes the Cumulative Distribution Function (CDF) of
standard normal distribution and Φ−1 is the inversion of Φ.
Based on the trade-off function F , we have the definition of
GDP as follows.

Definition 3 (Gaussian differential privacy (GDP) [12]). A
randomized mechanism M is said to satisfy µ-GDP if any
two neighboring datasets D and D′

F(M (D),M (D′))≥ Gµ. (11)

For the Gaussian mechanism, GDP provides a more
straightforward case compared to (ε,δ)-DP. Given a specific
noise scale σ, the following theorem demonstrates that the
privacy budget of the Gaussian mechanism under GDP:

Theorem 1 (Gaussian mechanism on GDP [12]). Given a
noise scale σ, the Gaussian mechanism satisfies 1/σ-GDP.

An important DP (including GDP) property is post-
processing, which ensures the DP for post-processing of an
output of a DP mechanism.

Proposition 1 (Post-processing of DP [16]). For any data-
independent function g defined over the image of the random-
ized mechanism M , if M is (ε,δ)-DP, then g ◦M satisfies
(ε,δ)-DP, where ◦ denotes the composition operation.

When applying DP on machine learning area to train
privacy-preserved models, differentially private stochastic
gradient descent (DP-SGD) [1] is the most common tech-
nique, which injects DP noise into the gradients. This way,
the trained model will be differentially private. Then, based
on the post-processing, all predictions made by such a model
will be differentially private as well. However, one challenge
for DP-SGD is to bound the global sensitivity due to no limit
on the size of the gradients. To overcome this issue, DP-SGD
clips each gradient to bound the global sensitivity of gradients,
then injects Gaussian noise into each clipped gradient. Note
that this process can be viewed as a Gaussian mechanism.



Sensitive Forward Process

 Gradient 
Calculation

Phase I: Non-private Training Phase II: Private Training

Private Forward Process

Private Dataset

Private Training Process

Sensitive Training ProcessGradient 
Descent

Gradient 
Calculation Gradient Sanitization Gradient

Descent

Forward 
Process

with Sensitive Information
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4 Threat Model

In this paper, we define white-box privacy adversaries against
DMs as entities seeking to infer the existence of a particular
image [13] or reconstruct a set of images [6] belonging to
the DMs training data, given access to the images generated
by DMs and the model parameters of the trained DMs. To
preserve the privacy of the training data of DMs, we con-
struct differentially private DMs, ensuring the synthetic data
generated by DMs is differentially private.

Formally, we aim to train a differentially private diffusion
model G with a neural network zzzθ on a private dataset Dpriv =
{xxx1,xxx2, . . . ,xxxn}. Given random noise rrr, the generated data by
the DP DMs x̂xx← G(rrr) is differentially private. Note that we
assume the model is publicly accessible, meaning that the
adversaries have full access to both the diffusion model G
and the corresponding neural network zzzθ. We give the details
of G and zzzθ in Section 3.1.

Next, we provide the definition of the white-box member-
ship inference.

Definition 4 (White-box membership inference attacks). Let
A be a white-box adversary, D be data distribution, A be
training algorithm, and G be a diffusion model with a neural
network zzzθ. The white-box membership inference attack is

0. A has full access to G and zzzθ.

1. Select a private dataset Dpriv ∈D .

2. Train G on Dpriv with algorithm A as GA,Dpriv =
A(G ,Dpriv).

3. Flip a coin to decide whether b = 0 or b = 1.

4. Sample xxx ∈ Dpriv if b = 0, xxx ∈D if b = 1.

5. Attack is successful if A(xxx,GA,Dpriv ,D) = b, and fails
otherwise.

Note that DP limits the effect of any point in the private dataset
to final computation results, thereby reducing the success rate
of membership inference attacks [60].

5 Our Approach: dp-promise

In this section, we first introduce the motivation and propose
a framework that ensures approximate DP in DMs. Then
we describe the details of each component of dp-promise.
Finally, we conduct a rigorous theoretical analysis for privacy
guarantees of dp-promise.

5.1 Method Overview

The motivation of this work is mainly based on the ob-
servation that existing differentially private diffusion mod-
els [11, 17, 37] inject wasteful noise. That is, training DMs
with DP-SGD injects DP noise on top of DM noise, which
would result in duplicate noise injection and then dam-
age the model utility. To address this problem, we pro-
pose Differentially Private Diffusion Probabilistic Models
for Image Synthesis (dp-promise), which utilize DM noise
when implementing DP. Figure 2 depicts the framework of
dp-promise.

To take advantage of DM noise, we split the traditional
DM training (recovering raw images by removing predicted
noise) into two phases - Phase I non-private training (achiev-
ing DP by normal DM noise) and Phase II private training
(achieving DP by DP-SGD). In Phase I, we follow the normal
DM training during time-steps [S,T ]. Recall Equation (4) in
Section 3.1, the noisy images are produced by injecting scaled
Gaussian noise, which could be treated as the Gaussian mech-
anism for achieving GDP. Then, based on the post-processing
property, all following DM training operations in Phase I



are DP immediately. Proposition 2 gives a formal proof to
connect the DM noise and DP guarantee. Following Phase
I training, in Phase II, we apply DP-SGD to DM training
during time-steps [1,S−1] using DP-SGD to ensure DP guar-
antees directly. Overall, dp-promise ensures DP in the two
phases while avoiding injecting DP noise during Phase I to
save the privacy budget. Hence, dp-promise could provide
better model utility without compromising the DP guarantee.
Algorithm 1 describes the complete process of dp-promise.

Proposition 2. Equation (4) satisfies 2
√

dαt/(1−αt)-GDP.

Proof. Let x̂xx := xxx+N (000,((1−αt)/αt)III) be the procedure of
generating noisy data in Equation (4). For any two data points
xxx and xxx′ ∈ Rd , we can derive that maxxxx,xxx′ ∥xxx−xxx′∥2 = 2

√
d.

Therefore, the sensitivity of the process is bounded by 2
√

d.
Following the Theorem 1, we can derive that the procedure
of generating noisy data satisfies 2

√
dαt/(1−αt)-GDP.

Next, we give an example to show how dp-promise achieves
DP on an image dataset. In this paper, we consider processing
within the domain of images. Let Dpriv = {xxxi ∈ Rd}n

i=1 repre-
sent a private dataset, where we define the number of channels,
height, and width of an image as channel, height and width,
respectively. Consequently, d = channel×height×width rep-
resents the dimensions of an image. Following the configura-
tion detailed in [22], we employ a linear transformation for
each pixel in the image, converting integer values within the
range of {0,1, . . . ,255} to the interval [−1,1].

Remark 1. In practice, given a time-step t ∈ {1,2, . . . ,T},
{α1,α2, . . . ,αT} is a pre-defined decreasing sequence such
that α1 is close to 1 and αT is close to 0. (e.g., with param-
eters like T = 1,000, {β1,β2, . . . ,βT} is selected from 10−4

to 2×10−2 linearly). Considering a high-dimensional image
domain (e.g., a color image with 32× 32 resolution and 3
channels, resulting in d = 3,072). Following Proposition 2,
we can achieve significant DP guarantees when t→ T and
γt → 0 (e.g., with parameters following above, resulting in
αt = 0.0004 when t = 900). In contrast, when t→ 0, γt → ∞,
there is almost no privacy guarantee.

In line with the analysis in Remark 1, it is evident that
substantial DP guarantees are already established at the large
time-steps.

5.2 Method Details
In this section, we give a detailed description of the two phases
of dp-promise, then introduce several techniques applied in
dp-promise for privacy and utility enhancement.

Two-phase training in dp-promise. We split the whole DMs
training process (from time-steps 1 to T ) at a given time-step
S∈ {1,2, . . . ,T}. Since the key in the DMs training is to learn
and remove the injected noise to generate the original image
from a group of noisy images with different amounts of noise

Algorithm 1: dp-promise framework.

Input: private dataset Dpriv = {xxxi ∈ Rd}n
i=1, diffusion

steps T , time-step boundary S, learning rate η1
and η2, batch size m1 and m2, number of
iterations N1 and N2, clipping constant C,
neural network zzzθ, DP-SGD noise scale σ,
number of samples for noise augmentation K.

// Phase I: training non-privately during time-step
[S,T ]

1 for number of iterations N1 do
2 I ∼ PoissonSamplem1/n({1,2, . . . ,n})
3 for i ∈ I do
4 ti ∼U({S,S+1, . . . ,T}),zzzi ∼N (000,III)
5 li← ||zzzi−zzzθ(

√
αtxxxi +

√
1−αtzzzi, ti)||22

6 θ← θ−η1 · 1
|I | ∑i∈I ∇θli

// Phase II: training privately during time-step
[1,S−1]

7 for number of iterations N2 do
8 I ∼ PoissonSamplem2/n({1,2, . . . ,n})
9 for i ∈ I do

10 for k = 1,2, . . . ,K do
11 tik ∼U({1,2, . . . ,S−1}),zzzik ∼N (000,III)
12 lik← ||zzzik−zzzθ(

√
αtxxxi +

√
1−αtzzzik, tik)||22

// Aggregate and clip gradient
13 ḡggi← clipC(

1
K ∇θ ∑

K
k=1 lik)

// Add Gaussian noise to gradient
14 θ← θ−η2 · 1

|I | (∑i∈I ḡggi +Cσ ·ξξξ),ξξξ∼N (000,III)

Output: trained parameters θ and output privacy
budget by Theorem 2.

injected, we define Phase I as time-step [S,T ] and Phase II as
time-step [1,S−1].

In Phase I, the main purpose is to leverage the injected
DM noise to achieve DP. In the implementation, we first use
Poisson sub-sampling to construct a mini-batch with prob-
ability m1/n, where m1 is the batch size of Phase I (step 2
of Algorithm 1). Then, we follow the normal DM training
process to learn the noise injection distribution (steps 3 to 6
of Algorithm 1, please refer to Section 3 for details).

In Phase II, since the amount of DM-injected noise is not
enough to achieve DP, we further apply DP-SGD [1] to guar-
antee DP. Formally, we use Poisson sub-sampling to construct
a mini-batch with probability m2/n, where m2 is the batch
size of Phase II. For xxxi ∼ D, ti ∼ U({1,2, . . . ,S− 1}), and
zzzi ∼N (000,III), the parameters θ are updated as follows

θ← θ−η2 ·
1
|I |

(
∑
i∈I

clipC(∇θli)+Cσ ·ξξξ

)
, (12)

where ξξξ ∼ N (000,III), η2 is learning rate in Phase II, and σ



is DP-SGD noise scale. The clipping function is defined as
clipC(ggg) = ggg/max{1,∥ggg∥2/C}, where the clipping constant
C (> 0) controls the magnitude of the gradient norm.

Dockhorn et al. [11] state that injecting extra noise into gra-
dients leads to an increase in the variance of the gradient norm,
resulting in a notable information loss after clipping gradients.
Inspired by this point, we utilize the average per-instance
loss computed over K times. That is, for each data point xxxi,
we calculate the loss as l̃i = 1

K ∑
K
k=1 lik, where lik = ∥zzzik −

zzzθ(
√

αtxxxi +
√

1−αtzzzik, tik)∥2
2, tik ∼U({1,2, . . . ,S−1}), and

zzzik ∼ N (000,III). In practice, we calculate the gradient gggik =
∇θlik at each iteration and then use the average to estimate
per-instance gradients as ∇θli = 1

K ∑
K
k=1 gggik.

Privacy amplification by sub-sampling. During the training
of differentially private DL models, sub-sampling is a com-
mon technique to enhance the DP guarantees [3, 31, 55, 65].
Specifically, sub-sampling involves applying the randomized
mechanism to select a subset rather than the entire set. Since
some instances are excluded from the chosen subset, sub-
sampling prevents the privacy leakage of sensitive information
associated with these excluded instances. dp-promise utilizes
Poisson sub-sampling to select the mini-batch for Phase I and
Phase II. Following the description in [55], we denote a sub-
sampling procedure with a probability p as PoissonSamplep,
and the definition is

Definition 5 (Poisson sub-sampling). Let S denote a set.
PoissonSamplep selects a subset from S. For each ele-
ment in S, the selection is determined by an independent
Bernoulli trial with probability 0 < p < 1.

By utilizing Poisson sub-sampling to construct the mini-batch
at each training step, we can get privacy amplification through
sub-sampling, reducing the overall privacy budget in two
phases. We provide a detailed analysis of how sub-sampling
amplifies privacy in Lemma 3, Section 5.3.

Pre-training on public data. Pre-training is a widely used
strategy to improve the performance of DP generative mod-
els [17, 19, 57]. Intuitively, we assume that the public dataset
used in pre-training does not contain any sensitive infor-
mation. Thus, training on the public dataset does not in-
cur privacy costs. Let Dpub represent a publicly available
dataset. We denote the pre-training integrated process as
M = MDpriv ◦MDpub , where we first pre-train on Dpub and
then fine-tune on Dpriv. The privacy guarantee of M is deter-
mined by the privacy guarantee of MDpriv . In dp-promise, the
consumed privacy budgets are directly related to the number
of training iterations since each iteration will consume an
amount of privacy budget (i.e., more training iterations in-
cur a higher privacy budget). Hence, we employ pre-training
to accelerate the training process and reduce the number of
training iterations. Additionally, even in the presence of a
noticeable distribution shift between the public and private
datasets, the experiments have demonstrated that pre-training

Algorithm 2: Sampler.
Input: sampling step T ′, variance hyper-parameter ρ,

trained neural network zzzθ, target label y (for
conditional generation).

1 x̂(τT ′ ) ∼N (000,III)
2 for τt = τT ′ ,τT ′−1 . . . ,τ1 do
3 ξξξ∼N (000,III) if t > 1 else ξξξ = 0
4 if unconditional generation then

5 x̂xx(τt−1) =
√

ατt−1

x̂xx(τt )−
√

1−ατt zzzθ(x̂xx(τt ),τt )√
ατt

+√
1−ατt−1 − Σ̂2

τt ·zzzθ(x̂xx(τt ),τt)+ Σ̂τtξξξ

6 else if conditional generation then

7 x̂xx(τt−1) =
√

ατt−1

x̂xx(τt )−
√

1−ατt ẑzzθ(x̂xx(τt ),τt ,y)√
ατt

+√
1−ατt−1 − Σ̂2

τt · ẑzzθ(x̂xx(τt ),τt ,y)+ Σ̂τtξξξ

Output: synthetic sample x̂xx(τ0).

remains effective. In practice, the time-step, as an input to
the network, is encoded in an embedding layer with learnable
parameters. Training the entire network with DP-SGD would
introduce unnecessary noise into these parameters. Therefore,
we freeze these layers before the fine-tuning process to reduce
information loss.

Sampling. dp-promise leverages DDIM sampler [48] to ac-
celerate the sampling process in the DM training. Given a
sample step T ′, we linearly choose a subset {τ1,τ2, . . . ,τT ′}
from the complete time-steps set. In unconditional generation,
we start with a random noisy data point x̂xxτT ′ ∼ N (000,III) and
iteratively generate synthetic data from τT ′−1 to τ0 by Equa-
tion (7). In conditional generation, we employ classifier-free
guidance [23] in the sampling process of DMs.

For downstream tasks involving classifier training, it is nec-
essary to utilize label information as a condition to guide
the training process. Nevertheless, if original labels are di-
rectly inputted in Phase I, the label information will propa-
gate through gradients into the model due to no additional
noise added to gradients, which may pose a risk of privacy
leakage. To address this issue, we do not use input label in-
formation in Phase I but use the labels in Phase II. Since
the gradient information is perturbed by additional noise in
Phase II, we cannot directly propagate the private informa-
tion in the labels into the model. During the sampling pro-
cess, the role of labels is to guide the model to generate data
for the corresponding label. We utilize both the conditional
and unconditional prediction results with a guidance scale w
as ẑzzθ(xxx(t), t,y) = (1+w)zzzθ(xxx(t), t,y)−wzzzθ(xxx(t), t). The entire
sampling procedure is presented in Algorithm 2.



5.3 Privacy Analysis
To calculate the overall privacy budget consumption, we pro-
vide a theoretical analysis for dp-promise. In this paper, we
employ the Gaussian differential privacy (GDP) [12] as the
foundation for theoretical analysis and utilize sub-sampling
technology to amplify the DP guarantees. As a result, we
provide an approximate bound of the privacy budget under
(ε,δ)-DP for Algorithm 1.

Next, we introduce the conversion between GDP and (ε,δ)-
DP. Specifically, for any fixed probability δ, µ-GDP can be
transformed into (εδ,µ,δ)-DP, where εδ,µ is constrained by a
condition detailed in the following lemma

Lemma 1 (GDP to DP conversion [12]). A randomized mech-
anism M is µ-GDP if and only if M is (ε,δ(ε))-DP for all
ε≥ 0, where

δ(ε) = Φ(− ε

µ
+

µ
2
)− exp(ε)Φ(− ε

µ
− µ

2
). (13)

Given a randomized mechanism M , which is assem-
bled as the composition of k randomized mechanisms
Mi,Mi+1, . . . ,Mk. If each Mi satisfies GDP, it naturally fol-
lows that M also maintains GDP. Formally, we provide the
composition of GDP as follows

Lemma 2 (Composition on GDP [12]). The k-fold
composition of µi-GDP (0 ≤ i ≤ k) mechanisms satisfy√

µ2
1 + · · ·+µ2

k-GDP.

dp-promise utilizes a sub-sampling technique to strengthen
DP guarantees. Specifically, we employ Poisson sub-sampling
to select a subset from the dataset, and then we apply a pri-
vate algorithm to this selected subset. Next, we describe the
privacy amplification provided by GDP as follows

Lemma 3 (Sub-sampling on GDP [3]). Let a randomized
mechanism M satisfy µ-GDP, and M ◦PoissonSamplep
denote the privacy amplification by Poisson sub-
sampling with probability p. Suppose p is related
to N such that p

√
N → v, the N-fold composition of

M ◦PoissonSamplep asymptotically satisfies µ̂-GDP as
N→ ∞, where

µ̂ = v
√

exp(µ2)−1 = p
√

N(exp(µ2)−1). (14)

For any randomized mechanism M that satisfies µ-GDP,
we can apply PoissonSamplep to obtain a new mechanism
denoted as M ◦PoissonSamplep. Following Lemma 3, we
can derive the new mechanism that satisfies µ̂-GDP. To ensure
DP guarantees for both Phase I and Phase II, we present
Lemma 4 and Lemma 5, respectively.

Lemma 4. Given a time-step boundary S for splitting Phase
I and Phase II, a batch size m1, the size of the private dataset
n, the data dimensions d, the pre-defined diffusion noise scale

αS, and the number of iterations N1, Phase I in Algorithm 1
asymptotically satisfies µ1-GDP, where

µ1 =
m1

n

√
N1(exp(4dαS/(1−αS)−1). (15)

Proof. Let M1 denote the mechanism in Phase I such
that M1(xxx) := xxx + N (000,((1− αt)/αt)III), where t ∈ {S,S +
1, . . . ,T}. Following Proposition 2, we can derive that M1
satisfies 2

√
dαS/(1−αS)-GDP. For a private dataset D, we

denote the sequence of M1(xxxi) as M1(D) := D+N ((1−
αt)/αt)III). For any two neighboring datasets D = {xxxi}n

i=1 ∪
{xxx′} and D′ = {xxxi}n

i=1, where xxx′ /∈ D′, the sensitivity can
be bounded as maxD,D′ ∥D−D′∥ = 2

√
d. Following Theo-

rem 1, the sequence of M1(xxxi) satisfies 2
√

dαS/(1−αS)-
GDP. Moreover, we use Poisson sub-sampling to amplify
differential privacy. Following Lemma 3, given sub-sampling
probability p1 = m1/n, Phase I asymptotically satisfies
p1
√

N1(exp(4dαS/(1−αS))−1)-GDP.

In Phase I, αS is a constant related to the selection of
S. As S increases, the value of αS decreases. In particular,
αt = ∏

t
s=1(1−βs), where we set βt to linearly increase from

β1 = 10−4 to βT = 2×10−2. For different data dimensions,
as the data dimension d increases, a larger value of S is
needed to ensure practical privacy guarantees. In contrast,
for low-dimensional data, practical privacy guarantees can be
achieved without selecting larger values of S. We show the
selection for the value of S in Section 6.

Lemma 5. Given a DP-SGD noise scale σ, a batch size m2,
the size of the private dataset n, and the number of iterations
N2, Phase II in Algorithm 1 satisfies µ2-GDP, where

µ2 =
m2

n

√
N2(exp(1/σ2)−1). (16)

Proof. Let M2 denote the mechanism in Phase II (based on
Equation (12)) such that M2(D)= g(D)+Cσ ·N (000,III), where
g(D) = ∑i∈I clipC(∇θli). For two neighboring datasets D =
{xxxi}n

i=1∪{xxx′} and D′ = {xxxi}n
i=1, where xxx′ /∈D′, the sensitivity

of g is

max
D,D′

∥∥g(D)−g(D′)
∥∥

2

=max
D,D′

∥∥∥∥∥ n

∑
i=1

clipC(∇θli)+ clipC(∇θl′)−
n

∑
i=1

clipC(∇θli)

∥∥∥∥∥
2

=max
D,D′

∥∥clipC(∇θl′)
∥∥

2 =C,

where ∇θl′ is the gradient with respect to xxx′. Following The-
orem 1, M2 satisfies 1/σ-GDP. Subsequently, we use Pois-
son sub-sampling to amplify differential privacy. Following
Lemma 3, given sub-sampling probability p2 = m2/n, Phase
II asymptotically satisfies p2

√
N2(exp(1/σ2)−1)-GDP.



In Phase II, the noise scale σ controls the magnitude of
the injected noise (with more noise injected providing greater
privacy guarantees for the DMs). The clipping constant C
controls the sensitivity of gradients. Changing the clipping
constant will not affect the privacy guarantees when other
parameters remain unchanged. This is because adjusting the
clipping constant simultaneously affects both the overall noise
added in Phase II and the sensitivity of gradients, thereby
maintaining the final privacy guarantee unchanged.

Following the composition property on GDP (Lemma 2),
we compose the overall privacy budget consumption of the
two phases, as detailed in Lemma 4 and Lemma 5, respec-
tively. Additionally, we employ the conversion to convert
the privacy budget from GDP to (ε,δ)-DP for comparative
analysis. Next, we provide the formal privacy guarantees for
dp-promise as follows

Theorem 2 (Differential privacy for dp-promise). Algorithm 1
asymptotically satisfies (ε,δ(ε))-DP, it holds that

δ(ε) = Φ(− ε

µ
+

µ
2
)− exp(ε)Φ(− ε

µ
− µ

2
), (17)

µ =
√

µ2
1 +µ2

2, (18)

where µ1 is defined in Equation (15) and µ2 is defined in
Equation (16).

Proof. Algorithm 1 contains two phases. Following com-
position on GDP via Lemma 2, we can derive that Algo-

rithm 1 asymptotically satisfies
√

µ2
1 +µ2

2-GDP. Then, fol-
lowing Lemma 1, we can obtain the final privacy budget
(ε,δ(ε)).

According to the condition provided in Theorem 2, in prac-
tice, we can also calculate a privacy budget εδ by a given δ.
Note that the results we obtained from the theoretical analysis
are approximate compositions based on the Central Limit The-
orems (CLT) of f -DP [12]. Nevertheless, Dong et al [12] and
Bu et al. [3] demonstrate that the approximation derived from
CLT is close to the exact composition results in their experi-
ments. Furthermore, two commonly used DP-ML frameworks,
i.e., TensorFlow Privacy1 and Opacus [61], both support the
implementation of the GDP accountant, which is based on
the approximate results from CLT [3, 12]. Additionally, Dong
et al. [12] emphasized that the exact computation of privacy
guarantees under compositions is computationally hard, thus
tractable approximations are important. Eventually, we utilize
the differentially private DMs to generate synthetic data. The
following corollary of Theorem 2 presents the DP guarantees
for synthetic data generated by dp-promise.

Corollary 1. Given a private dataset Dpriv and a fixed prob-
ability δ, let G represent the diffusion model, such that the

1https://github.com/tensorflow/privacy

neural network zzzθ trained by Algorithm 1. Let X = G(R)
represent the diffusion model map a noise set R ∈ R to a
synthetic dataset X ∈ X , where R and X are noise space and
data space, respectively. For any R ∈ R , there is εδ > 0 such
that the synthetic dataset asymptotically satisfies (εδ,δ)-DP.

Proof. The noise set R is independent of the private dataset
Dpriv. Following the Theorem 2, the privacy in parameters of
the neural network is asymptotically bounded by (εδ,δ)-DP.
Additionally, there is no data-dependent parameter in the sam-
pling procedure of DMs. According to the post-processing
property of DP, the synthetic dataset generated by G asymp-
totically satisfies (εδ,δ)-DP.

6 Experimental Evaluation

In this section, we evaluate dp-promise to demonstrate the per-
formance in generating differentially private data. To show the
effectiveness of dp-promise, we compare dp-promise against
the state-of-the-art differentially private generative models on
image data.

6.1 Experiment Setup

Datasets. Our experiments are conducted on four well-
known image datasets for comprehensive evaluation, i.e.,
MNIST [30], Fashion-MNIST [58], CelebA [35], and CIFAR-
10 [29]. Specifically, MNIST [30] and Fashion-MNIST [58]
are two widely used datasets in the field of differentially pri-
vate image synthesis. Both MNIST and Fashion-MNIST con-
tain a total of 70,000 grayscale images, each with a resolution
of 28 × 28 pixels, comprising handwritten digits and fashion
products with 10 distinct object classes, respectively. MNIST
and Fashion-MNIST are divided into two parts: 60,000 im-
ages for training and 10,000 images for testing. In the ex-
periments, 60,000 training images are utilized in the training
procedure. Furthermore, we also investigate two more com-
plex and high-dimensional datasets, namely CelebA [35] and
CIFAR-10 [29]. CelebA contains 202,599 color images with a
resolution of 64× 64 pixels, and CIFAR-10 comprises 60,000
color images, each with a resolution of 32 × 32 pixels.

Baselines. Our proposed method, dp-promise, is compared
with various baseline models, including DP-SGD DM,
DP-MERF [18], DPDM [11], DP-MEPF [19], and DP-
Diffusion [17]. Note that DPGEN [8] is excluded from the
comparison due to an incorrect privacy analysis [11]. PATE-
based methods (e.g., G-PATE [36]) rely on data-dependent
privacy, thereby making the PATE-based methods incompara-
ble to dp-promise.

• DP-SGD DM: This is a naive method where DP-SGD
is directly applied to fine-tuning a pre-trained DM. For
DP-SGD DM, we first pre-train DMs using public data
and then fine-tune the DMs with private data. Note that

https://github.com/tensorflow/privacy


DP-MERF [18]

DPDM (FID) [11]

DP-MEPF [19]

DP-SGD DM

dp-promise (this work)

Origin

Figure 3: The synthetic data generated by DP-MERF, DPDM, DP-MEPF, DP-SGD DM, and dp-promise under ε = 10 and
δ = 10−5 on MNIST and Fashion-MNIST. The original data is presented in the last row.

we maintain the model architecture and parameters as
close to dp-promise as possible.

• DP-MERF [18] & DP-MEPF [19]: We executed the
official code provided by the authors of DP-MERF2 and
DP-MEPF3 to obtain the results. For DP-MEPF, we con-
sider both features φ1 and φ2 within DP-MEPF. Note
that DP-MEPF utilizes public data.

• DPDM [11]: We executed the official code4 provided
by the authors. Note that the original DPDM conducted
experiments without public data pre-training and had
two distinct settings - DPDM (FID) and DPDM (Acc),
which focus on sample quality and downstream utility,
respectively. For fair comparisons of experiments with
public data pre-training, we made necessary modifica-
tions, such as parameters based on the official code to
adapt pre-training settings, denoted as DPDM (Pub).

• DP-Diffusion [17]: Due to no publicly available code
of DP-Diffusion [17] and no experimental results on
MNIST, Fashion-MNIST, and CelebA datasets, we man-
ually reproduced DP-Diffusion following all provided
information from [17] and reported the results on the
high-dimensional CelebA dataset and the more challeng-
ing CIFAR-10 dataset.

Evaluation metrics. To demonstrate the performance of dp-

2https://github.com/ParkLabML/DP-MERF
3https://github.com/ParkLabML/DP-MEPF
4https://github.com/nv-tlabs/DPDM

promise in differentially private synthetic image generation,
we conduct a comprehensive analysis using both sample qual-
ity and downstream utility. To compare sample quality with
other approaches, we present quantitative results that include
the Fréchet Inception Distance (FID) [20] and Inception Score
(IS) [45]. These two metrics are commonly used to evaluate
the quality and diversity of images generated by the genera-
tive model. Informally, FID is computed based on the distance
between the feature distributions extracted from generated
images and real images, and the Inception Score is calcu-
lated as the exponential mean of the probability distribution
extracted from generated images. To measure the utility of
synthetic data in downstream tasks, following existing stud-
ies [5, 11, 18, 24], we utilize a range of classifiers, including
multi-layer perceptron (MLP), convolutional neural network
(CNN), and eleven additional scikit-learn [28] classifiers (e.g.,
logistic regression, decision tree, etc.). In particular, we train
each classifier on synthetic data and then evaluate the trained
classifiers on real data to measure the performance in down-
stream tasks using classification accuracy. We report the ac-
curacy of MLP, CNN, and the average accuracy of the other
eleven scikit-learn classifiers.

6.2 Implementation

Model architectures and implementation. In the exper-
iments, we use the PyTorch framework [43]. Specifically,
we employ the Opacus framework [61] to implement the
DP-SGD algorithm. Then, we build neural networks us-

https://github.com/ParkLabML/DP-MERF
https://github.com/ParkLabML/DP-MEPF
https://github.com/nv-tlabs/DPDM


Table 2: This table displays the downstream utility and sample quality of synthesized data generated by DP-MERF, DP-MEPF,
DPDM, DP-SGD DM, and dp-promise under different privacy budgets ε and δ = 10−5. The metrics include MLP classifier
accuracy (MLP%), CNN classifier accuracy (CNN%), the average of 11 scikit-learn classifiers accuracy (Avg%), and FID.

MNIST Dpub
ε = ∞ (Non-private) ε = 10 ε = 1 ε = 0.2

MLP CNN Avg FID↓ MLP CNN Avg FID↓ MLP CNN Avg FID↓ MLP CNN Avg FID↓

DP-MERF [18] ✗ 80.4 83.5 70.5 104.4 80.0 83.5 68.6 105.6 80.0 82.3 66.3 110.9 76.2 79.0 58.2 133.3
DPDM (FID) [11] ✗ 95.7 98.6 85.7 2.0 94.5 97.8 85.4 4.4 87.7 92.7 77.8 22.4 66.4 71.2 54.1 60.8
DPDM (Acc) [11] ✗ 96.6 98.9 86.4 1.9 95.2 98.0 85.8 5.9 91.5 95.1 82.1 34.1 78.0 84.6 71.6 101.9

DP-MEPF [19] ✓ 87.6 94.3 77.9 167.2 87.8 94.3 77.5 167.0 87.2 93.7 75.3 166.3 76.5 85.7 58.3 180.2
DP-SGD DM ✓ 96.4 98.6 86.2 1.7 94.5 97.6 85.1 3.0 90.8 94.1 75.5 8.6 56.8 65.3 42.8 28.3
DPDM (Pub) ✓ 96.5 98.8 86.4 1.9 95.3 97.8 85.6 3.9 92.3 95.6 82.2 9.0 81.3 86.2 73.3 26.5

dp-promise (this work) ✓ 96.4 98.7 86.1 1.6 95.9 98.2 85.6 2.3 93.6 95.8 83.0 6.6 84.8 87.6 72.3 23.1

Fashion-MNIST Dpub
ε = ∞ (Non-private) ε = 10 ε = 1 ε = 0.2

MLP CNN Avg FID↓ MLP CNN Avg FID↓ MLP CNN Avg FID↓ MLP CNN Avg FID↓

DP-MERF [18] ✗ 73.8 63.4 63.2 103.3 72.6 70.0 60.6 100.7 75.1 64.0 58.7 96.5 70.6 69.0 52.4 149.8
DPDM (FID) [11] ✗ 84.8 87.3 74.1 8.0 82.6 85.3 72.1 17.9 74.4 77.1 66.7 45.1 55.3 55.5 45.6 76.7
DPDM (Acc) [11] ✗ 86.4 87.7 73.3 7.0 83.1 85.4 72.6 18.1 76.1 78.6 68.8 50.3 69.2 72.7 65.5 126.5

DP-MEPF [19] ✓ 74.9 79.4 69.7 86.7 74.0 78.7 66.0 89.1 74.5 76.7 63.2 102.3 71.0 69.7 47.1 167.5
DP-SGD DM ✓ 85.8 87.6 73.8 5.7 82.3 84.6 71.1 6.4 65.7 69.7 53.9 16.5 44.2 50.8 41.7 38.4
DPDM (Pub) ✓ 86.5 87.9 73.9 5.2 82.0 85.0 71.2 10.4 76.5 80.2 69.8 20.9 70.4 73.8 68.3 40.2

dp-promise (this work) ✓ 85.7 87.4 73.5 4.8 83.4 85.5 73.1 6.3 78.4 81.6 69.2 13.6 67.8 68.5 62.4 34.8

ing a U-Net architecture, which is based on the improved
DDPM [40] repository5, and we train the network using
Adam [27] optimizer. In dp-promise, we set diffusion steps to
T = 1,000 and linearly assign values from 10−4 to 2×10−2

for {β1,β2, . . . ,βT}. Similar to recent works [2, 11, 17], we
use a large batch size and small clipping constant during the
private training procedure to enhance the sample quality. We
show the values of all the hyper-parameters in the "Training"
paragraph. Following existing work [11,49], we use the expo-
nential moving average (EMA) of neural network parameters,
which is a common practice in traditional DMs.

Training. For MNIST, we initiate pre-training of DMs with
1.6M parameters using Fashion-MNIST as the public dataset.
The network contains 32 base channels, channel multipliers
(1,2,2), and attention resolution 7. We pre-train this network
with a learning rate of 2×10−4 and 50 epochs at batch size
128. In the experiments on Fashion-MNIST, we pre-train DMs
with 6.5M parameters on CIFAR-10. In this case, we trans-
formed each image into grayscale and resized the images into
28 × 28 pixels, matching the size of Fashion-MNIST. The
network has 64 base channels, channel multipliers (1,2,2),
and attention resolution 7 in the neural network. Pre-training
is performed with a learning rate of 2× 10−4 and 1,000
epochs at batch size 128. Subsequently, we fine-tune these
pre-trained models on MNIST and Fashion-MNIST using dp-
promise. The fine-tuning process involves time-step bound-
ary S = 900, learning rate η1 = 3× 10−4,η2 = 6× 10−4,
batch size m1 = 32,m2 = 4,096, and the number of iterations
N1 = 3 ·n/m1,N2 = 50 ·n/m2. We apply noise augmentation
with K = 32 and a clipping constant of C = 10−2. For the

5https://github.com/openai/improved-diffusion

selection of S, due to the high-dimensional data we need to
handle, it is necessary to choose a large S to ensure that Phase
I does not consume an excessive amount of privacy budget. In
the sampling procedure, we consider conditional generation
with sampling parameters T ′ = 200, ρ = 1, and w = 0.

For CelebA and CIFAR-10 on 32× 32 resolution, we
initiate the pre-training of DMs with 35M parameters on
ImageNet [9] as the public dataset, where each image is
resized into 32× 32 resolution, matching the dimensions
of CelebA and CIFAR-10. The network includes 128 base
channels, channel multipliers (1,2,2,2), and attention reso-
lution 16. Pre-training is performed with a learning rate of
2×10−4 and 50 epochs at batch size 128. For CelebA, we fine-
tune the network using dp-promise with a time-step bound-
ary S = 925, learning rate η1 = 3× 10−4,η2 = 3× 10−4,
batch size m1 = 32,m2 = 4,096, the number of iterations
N1 = 2 ·n/m1,N2 = 50 ·n/m2, noise augmentation K = 4, and
clipping constant C = 10−2. For CIFAR-10, we apply param-
eters including learning rate η1 = 3× 10−4,η2 = 3× 10−4,
batch size m1 = 32,m2 = 4,096, the number of iterations
N1 = 3 ·n/m1,N2 = 50 ·n/m2, noise augmentation K = 4, and
clipping constant C = 10−2. In the sampling procedure, we
consider unconditional generation with sampling parameters
T ′ = 200, ρ = 1, and w = 0.

Evaluation. For evaluation of sample quality, we use the
code and Inception network at tensorflow_gan repository6

to compute FID and Inception Score. We use 60,000 synthetic
images and then compute the Inception Score and FID with
the origin training dataset. For the evaluation of downstream
quality, we build the MLP and CNN classifiers based on the

6https://github.com/tensorflow/gan

https://github.com/openai/improved-diffusion
https://github.com/tensorflow/gan
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Figure 4: Privacy-utility trade-off comparison of DP-MERF, DP-MEPF, and dp-promise under various privacy budgets ε with
fixed δ = 10−5 on MNIST (the first row) and Fashion-MNIST (the second row).

Origin DPDM (FID) DP-MEPF dp-promise (this work)

- ε = 10 ε = 1 ε = 10 ε = 1 ε = 10 ε = 1

(a) CelebA

Origin DPDM (FID) DP-MEPF dp-promise (this work)

- ε = 10 ε = 1 ε = 10 ε = 1 ε = 10 ε = 1

(b) CIFAR-10

Figure 5: Synthetic data generated by DPDM, DP-MEPF, and dp-promise under various privacy budgets with fixed δ = 10−5 on
CelebA (left) and CIFAR-10 (right). The original images are displayed in the first column for each dataset.

DPDM repository. On MNIST and Fashion-MNIST, we ran-
domly split 60,000 synthetic samples into a 50,000 training
set and a 10,000 validation set. Then we train all classifiers
using Adam optimizer with 50 epochs, batch size 128, and a
learning rate of 3×10−4. Finally, we select the classifier that
achieves the highest accuracy on the validation set and then
test the classifier on the real data.

6.3 Experimental Results

MNIST and Fashion-MNIST. Following the previous litera-
ture on differentially private generative models [11, 18, 24],
we compare the sample quality and downstream utility for
dp-promise in comparison to existing methods. We perform
on MNIST and Fashion-MNIST, considering fixed privacy
budgets ε = {0.2,1,10,∞} with a fixed probability δ = 10−5,
where ε = ∞ represents the non-private settings. Note that
we vary privacy budgets ε from 0.2 to 10, as this range
is commonly employed in practical applications like DP-

FL [62, 63], DP-SGD [4, 46, 56], DP-DL [42], DPML [39]
and Vote-Histogram [54].

In Figure 3, we present the visualization results of synthetic
data generated by various approaches on both MNIST and
Fashion-MNIST. We can observe that dp-promise generates
high-fidelity samples under a standard privacy guarantee (e.g.,
ε = 1). The aggregated results for sample quality and down-
stream utility of synthetic data are summarized in Table 2.
Specifically, on MNIST, dp-promise outperforms all base-
lines on almost all metrics in downstream utility and sample
quality. On Fashion-MNIST, dp-promise achieves a lower
FID compared to other approaches under all privacy budgets
while achieving downstream prediction accuracy similar to
DP-MEPF and DPDM under a strong privacy guarantee (e.g.,
ε = 0.2). For DPDM with public data settings, pre-training
enables DPDM to enhance sample quality, but we find there is
no significant improvement in downstream utility. dp-promise
still outperforms DPDM with public data pre-training in most
settings. Note that CIFAR-10 and Fashion-MNIST have a
significant visual difference, making it challenging to trans-



Table 3: The sample quality of synthetic data generated by
DPDM, DP-MEPF, DP-Diffusion, and dp-promise on CelebA
and CIFAR-10 under various privacy budgets with δ = 10−5

and δ = 10−6, respectively.

CelebA Dpub
ε = 10 ε = 5 ε = 1

FID↓ IS↑ FID↓ IS↑ FID↓ IS↑

DPDM (FID) [11] ✗ 20.9 2.0 45.8 2.1 72.5 2.1
DP-MEPF [19] ✓ 18.0 2.5 18.9 2.4 19.7 2.6
DPDM (Pub) ✓ 8.6 2.5 8.8 2.4 10.4 2.4

DP-Diffusion [17] ✓ 8.5 2.4 9.5 2.6 12.2 2.6
dp-promise (this work) ✓ 6.0 2.5 6.5 2.5 9.0 2.6

CIFAR-10 Dpub
ε = 10 ε = 5 ε = 1

FID↓ IS↑ FID↓ IS↑ FID↓ IS↑

DPDM (FID) [11] ✗ 92.8 3.7 106.5 3.5 128.4 3.4
DP-MEPF [19] ✓ 32.6 7.3 38.8 6.5 43.2 6.1
DPDM (Pub) ✓ 20.9 8.4 22.7 8.3 27.6 8.2

DP-Diffusion [17] ✓ 19.8 8.2 23.5 8.1 26.5 8.5
dp-promise (this work) ✓ 17.9 8.6 18.9 8.7 21.8 9.1

Table 4: The comparison of dp-promise with/without Phase I
on MNIST and Fashion-MNIST under ε = 10 and δ = 10−5.

Methods MNIST Fashion-MNIST

MLP CNN Avg FID↓ MLP CNN Avg FID↓

without Phase I 95.7 97.8 84.4 2.5 82.2 83.5 72.7 6.8
with Phase I 95.8 98.1 84.8 2.3 82.4 84.9 72.5 6.5

fer knowledge under a large distribution shift. Nonetheless,
dp-promise achieves higher downstream classification accu-
racy under standard privacy guarantees (e.g., ε = {1,10}). In
comparison with DPDM, dp-promise simultaneously achieves
high sample quality and downstream utility across one setting,
in contrast to the distinct settings in DPDM.

To explore the privacy-utility trade-off of different methods,
we vary the privacy budget ε from 0.2 to 10 for DP-MERF,
DP-MEPF, and dp-promise, and then report the downstream
utility and sample quality on MNIST and Fashion-MNIST.
As shown in Figure 4, under the standard privacy budgets
(e.g., ε = 1,10), we observe that dp-promise consistently out-
performs all of the other approaches, and dp-promise shows
lower sample quality degradation. Moreover, under a higher
privacy budget, dp-promise achieves performance that is close
to the non-private setting, highlighting the effectiveness in
preserving both utility and privacy.

CelebA and CIFAR-10. To demonstrate the usability of
dp-promise on more complex datasets beyond MNIST and
Fashion-MNIST, we compare the sample quality of dp-
promise, DPDM (FID), DP-MEPF, DPDM (Pub), and DP-
Diffusion on CelebA and CIFAR-10 under fixed privacy bud-
gets ε = {1,5,10}. We set δ = 10−6 and δ = 10−5 for CelebA
and CIFAR-10, respectively.

The visualization results of these approaches on CelebA
and CIFAR-10 are presented in Figure 5. We can observe
that dp-promise is able to generate realistic samples under
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Figure 6: The influence of sampling hyper-parameters on
CelebA (left column) and CIFAR-10 (right column). Three
rows represent randomness ρ, sample step T ′, and guidance
scale w, respectively.

a standard privacy budget (e.g., ε = {1,10}). We report the
sample quality in Table 3. It is shown that dp-promise can
generate samples that are close to original images, achieving
a lower FID and higher Inception Score compared to the
baselines.

Effect of Phase I. To investigate the impact of Phase I on
sample quality and downstream utility, we conducted ablation
experiments on Phase I. For the experimental settings, we
adjusted S to 800 and retained most of the previous experi-
mental settings on MNIST and Fashion-MNIST under ε = 10
and δ = 10−5. Note that the purpose of reducing the value of
S here is to increase the ratio of Phase I over all time-steps
while increasing the privacy budget of Phase I. As shown in
Table 4, Phase I enhances the sample quality and downstream
utility. This is attributed to the network in DMs needing to
fully learn the reverse process from 1 to T . Therefore, it is
necessary to train the network from S to T . However, since
most denoising steps are in Phase II, the network cannot solely
learn the reverse process through Phase I. It still needs to learn
the denoising steps with smaller noise through Phase II while
also providing privacy guarantees.

Effect of hyper-parameters for sampling. In this exper-
iment, we investigate the impact of hyper-parameters for
sampling on the sample quality of dp-promise. We perform
on CelebA and CIFAR-10 under a fixed privacy budget of



Table 5: The FID of synthetic data generated by DPDM and
dp-promise on CelebA with a resolution of 64× 64 pixels
under ε = {1,5,10} and δ = 10−6.

Methods ε = 10 ε = 5 ε = 1

FID↓ IS↑ FID↓ IS↑ FID↓ IS↑

DPDM (Pub) 46.5 2.0 50.2 2.1 58.3 2.5
dp-promise (this work) 25.3 2.5 26.2 2.6 29.1 2.7

(a) DPDM (Pub) (b) dp-promise (this work)

Figure 7: Synthetic data generated by DPDM and dp-promise
under ε = 10 and δ = 10−6 on CelebA with a resolution of
64×64 pixels.

ε = {1,10}. For randomness ρ, we vary ρ from 0 to 1 while
keeping fixed sample step T ′ = 200 and guidance scale w = 0.
In the first row of Figure 6, we observe that stochastic sam-
pling leads to a lower FID, indicating improved sample qual-
ity. However, there is a slight decrease in the Inception Score,
suggesting a minor loss in the diversity of the sample. This in-
dicates that stochastic sampling is more robust when dealing
with an imprecise neural network in DMs. For sample step
T ′, we vary T ′ from 20 to 1,000 while keeping fixed ρ = 1
and guidance scale w = 0. In the second row of Figure 6, the
results show that increasing the sample step results in bet-
ter sample quality with more sampling time. Therefore, we
choose T ′ = 200 as the sample step to balance the sample
quality and sampling time. Note that DPDM uses a more ad-
vanced sampler and considers T ′ = 1,000 as the sample step,
consuming a significant amount of time to generate samples.
For the guidance scale, we vary w from 0 to 1 while keeping
fixed T ′ = 200 and ρ = 1. In the third row of Figure 6, we
notice that as the guidance scale increases, both FID and In-
ception Score also improve. This suggests that using a higher
guidance scale results in samples with greater diversity. These
findings help us understand how different hyper-parameters
influence the sample quality of dp-promise and enable us to
make choices to balance quality and efficiency in practice.

Higher resolution results. To explore the performance on
higher-dimensional datasets, we consider experiments on
CelebA with 64×64 resolution under ε = {1,5,10}. We ini-
tiate the pre-training of DMs with 35 million parameters on
ImageNet [9] as the public dataset, where each image is re-
sized into 64×64 resolution. The network includes 128 base
channels, channel multipliers (1,2,2,2), and attention reso-
lution 16. Pre-training is performed with a learning rate of
2×10−4 and 50 epochs at batch size 128. We fine-tune the

network with time-step boundary S = 950, learning rate η1 =
3×10−4,η2 = 3×10−4, batch size m1 = 32,m2 = 4,096 for
ε = 10, batch size m1 = 16,m2 = 4,096 for ε = {1,5}, the
number of iteration N1 = 1 ·n/m1,N2 = 15 ·n/m2, noise aug-
mentation K = 4, and clipping constant C = 10−2. In the
sampling procedure, we consider unconditional generation
with parameters T ′ = 200, ρ = 1, and w = 0. Since DPDM
with public data pre-training is closest to dp-promise in tech-
nique and performance, we conduct experiments compared to
DPDM (Pub). As shown in Table 5 and Figure 7, dp-promise
advances the performance of sample quality. Compared with
DPDM, dp-promise generates faces with more fidelity.

7 Conclusion

In this paper, we propose dp-promise, a novel framework
to train differentially private DMs. dp-promise contains a
two-phase training process that takes advantage of DMs to
reduce information loss during private training. Moreover, we
provide a rigorous theoretical analysis for dp-promise. The
experiments demonstrate a non-trivial improvement over the
existing state-of-the-art on typical benchmarks. Furthermore,
dp-promise is able to perform under various privacy budgets
and on more challenging datasets (e.g., CelebA and CIFAR-
10). In summary, this work establishes a connection between
DMs and privacy and demonstrates that DMs are a superior
choice for differentially private image synthesis.

Comparing the experimental results from higher-
dimensional datasets and lower-dimensional datasets,
dp-promise shows a performance drop on the higher-
dimensional datasets. In the future, we will work on
approaches that can provide consistent performance on both
higher- and lower-dimensional data.
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