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Abstract
Content Delivery Networks (CDNs) provide high availability,
speed up content delivery, and safeguard against DDoS attacks
for their hosting websites. To achieve the aforementioned ob-
jectives, CDN designs several back-to-origin strategies
that proactively pre-pull resources and modify HTTP requests
and responses. However, our research reveals that these
back-to-origin strategies prioritize performance over secu-
rity, which can lead to excessive consumption of the website’s
bandwidth.

We have proposed a new class of amplification attacks
called Back-to-Origin Amplification (BtOAmp) Attacks.
These attacks allow malicious attackers to exploit the
back-to-origin strategies, triggering the CDN to greed-
ily demand more-than-necessary resources from websites,
which finally blows the websites. We evaluated the feasibility
and real-world impacts of BtOAmp attacks on fourteen popular
CDNs. With real-world threat evaluation, our attack threatens
all mainstream websites hosted on CDNs. We responsibly dis-
closed the details of our attack to the affected CDN vendors
and proposed possible mitigation solutions.

1 Introduction
Content Delivery Networks (CDNs) play a pivotal role as in-
termediaries between global clients and website origins. The
CDN’s primary function is resource caching, a mechanism
employed judiciously to optimize content delivery. CDN de-
ploys millions of servers on the Internet backbone to offer
services to global websites, working as a critical Internet in-
frastructure with massive computational, cache, and network
resources [1]. Based on the available resources, to seek faster
content delivery, CDN designs its back-to-origin strate-
gies to arbitrarily and greedily demand more than necessary
resources from the website origin (origin server) [2–4].

In this paper, we systematically examine back-to-origin
strategies and present a novel class of amplification attacks
called Back-to-Origin Amplification (BtOAmp) attacks,
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which allow attackers to exploit the vulnerabilities of CDN’s
back-to-origin strategies to launch an amplification attack
against origin servers. We further classify the attacks into the
following four kinds:
Image Optimization Attack. We exploit the CDN im-
age optimization feature to launch a maximum 39039-factor
amplification attack. It allows an attacker to abuse cropping
images to one-pixel images, which can be used to launch
an amplification attack against the origin server. We further
analyzed the image optimization process and discovered that
combining compression and cropping can further increase the
amplification factor.
Request Modification Attack. We abuse CDN’s
back-to-origin configuration ability to amplify requests to
the website origins, with a maximum amplification factor of
93077. CDN’s back-to-origin strategies encompass the
ability to manipulate HTTP headers and URLs. In our study,
we analyzed fourteen CDNs and found that eleven of them al-
low the addition of large HTTP headers and the modification
of a thin URL (e.g., "/a") into a much fatter URL (e.g., "/a" *
1024). Attackers can exploit it to exhaust the origin server’s
bandwidth. Even worse, attackers can cascade two or more
CDNs together, leveraging multiple CDNs to achieve a better
amplification factor.
Method Conversion Attack. We exploit CDN’s request
method conversion behavior to reach a maximum 53352-
factor amplification attack. Through experiments, we discov-
ered that CDNs convert HEAD requests into GET requests.
This behavior allows attackers to launch an amplification at-
tack against the origin server by exploiting HEAD-to-GET
conversions. Specifically, the attacker sends HEAD requests,
triggering the CDN to convert them into GET requests. Con-
sequently, CDN requests all the complete resources from
the origin server while returning only HTTP headers to the
attacker.
Connection Decoupling Attack. As CDN maintains
connections with the origin servers even after the client force-
fully terminates the TCP connection [5], we exploit this be-
havior to launch an amplification attack with a 104862 factor.



In our research, we came across a few CDNs that terminate
the CDN-origin connections when there is a disruption in
the client-CDN connections. However, upon further analy-
sis, we found that attackers can use Transfer-Encoding:
chunked to force CDN to sustain CDN-origin connections,
even after the attacker cuts off the client-CDN connections.
Contributions. We make the following contributions in this
paper.

• A Novel Attack. We have proposed a new class of HTTP am-
plification attacks, Back-to-Origin Amplification (BtOAmp)
attacks. These attacks exploit the CDN back-to-origin
strategies, consuming the victim’s incoming and outgoing
bandwidth. It leads to network unavailability as well as
economic losses.

• Real-world Evaluations. We examine the BtOAmp attacks
on 14 popular CDN vendors and evaluate the feasibility
and severity of BtOAmp vulnerabilities. We find all exam-
ined CDNs are vulnerable to the BtOAmp attacks, and the
amplification factor is up to 104862 times in some cases.

• Mitigation and Responsible Disclosure. We present ap-
proaches to mitigate the proposed attacks and responsibly
report vulnerabilities to CDN vendors. Notably, five CDN
vendors acknowledged the vulnerabilities and took our mit-
igation solutions to fix them.

Roadmap. We organize the rest of this paper as fol-
lows. Section 2 provides the background of CDN and
back-to-origin strategies. In Section 3 we describe the
details of the BtOAmp attacks and explore the amplification
factors. We also evaluate the feasibility of the BtOAmp at-
tacks in Section 4. We discuss mitigation solutions and our
responsible disclosure in Section 5. Section 6 elaborates on
the related works, including CDN security, and amplification
attacks. We conclude in Section 7.

2 Background
2.1 CDN Overview
CDN is a network of server clusters distributed globally,
which has become an essential component of the Internet
infrastructure. It not only enhances the performance of cus-
tomer websites but also provides security features such as
DDoS protection mechanisms [6]. As shown in Figure 1,
CDN acts as a man-in-the-middle between clients and origin
servers to decouple traditional client-origin connections into
two segments: the client-CDN and the CDN-origin connec-
tions.

When a user requests a resource, CDN will attempt to re-
spond from its cache [7]. If the cache is missing, it forwards
the request to the origin server to obtain the desired resource
and caches the response for subsequent requests. This mecha-
nism efficiently reduces user access latency while relieving
the load pressure on the origin server. Besides, CDNs dynam-
ically select edge nodes by load balancing [8, 9]. In a word,

Client-CDN Connection CDN-Origin Connection

Client CDN Origin Server

Figure 1: Multiple segments of connectivity in a CDN envi-
ronment.

CDNs can not only reduce user access delay, but CDNs also
serve as an effective DDoS defense for the origin server. To
further improve cache hit rates, reduce user access latency,
and cater to various user demands, CDNs continuously opti-
mize their back-to-origin strategies.

2.2 Back-to-Origin Strategy
CDN back-to-origin strategies refer to the methods and
rules employed by the CDN when it receives requests from
clients and interacts with the origin server to retrieve the re-
quired source. The primary objective of the back-to-origin
strategies is to increase the hit rate of CDN cache, effec-
tively alleviate the load on the origin server, reduce network
latency, and ultimately enhance the overall user browsing
experience. Back-to-origin strategies are critical to CDN
services. However, there are no related RFCs or commonly ac-
cepted industry standards. Consequently, back-to-origin
strategies are implementation-dependent and may vary across
different CDN vendors. When CDN vendors prioritize per-
formance over security, threats may arise. To our knowledge,
no research has systematically analyzed these strategies of
various CDNs. In this study, we present the first differen-
tial testing of these strategies employed by 14 popular CDN
vendors, and we identify five strategies that prioritize perfor-
mance over security, as shown in Table 1. Additionally, to
ensure compatibility with websites of various types, three out
of these five strategies can be configured during the CDN
service registration process.

Specifically, CDNs provide image optimization strategies
that return images in different qualities and sizes based on
client requirements. These strategies ensure the best bal-
ance of image loading speed and quality across various de-
vices [10]. Additionally, CDNs offer Header Modification
and URL Rewriting strategies that permit customers to modify
back-to-origin requests and responses to meet specific needs.
These strategies help to achieve more precise resource control.
Moreover, to improve the CDN cache hit ratio, some CDNs
will convert the HEAD requests to GET requests to retrieve
more resources from the origin server [11]. Finally, some
CDNs provide connection decoupling strategies in which
CDNs may maintain the CDN-origin connection even af-
ter the client-CDN connection closes, allowing the CDN to
continue caching requested resources. The first three strate-
gies improve CDN performance, making it more flexible and
adaptable to various user needs. The latter two strategies aim



Table 1: Back-to-Origin strategies.

Alibaba Azure Baidu Bunny Cachefly CDNetworks ChinaNetCenter Cloudflare CloudFront Edgio Fastly G-core Qiniu UPYun

Image Optimization† " " " " " " " " " " " "

Header Modification† " " " " " " " " " " " "

URL Rewriting† " " " " " " " " " " " "

Method Conversion‡ " " " " " " " "

Decouple Connection‡ " " " " " " " " " "

† These strategies are configurable.
‡ These strategies are the default strategies.

to increase the cache hit rate, optimizing response time when
users subsequently access the same resources.

3 Back-to-Origin Amplification Attacks
To seek service performance and availability, CDNs com-
monly design and implement back-to-origin strategies to
retrieve significantly more resources from the origin server
than the client requests. However, we find that these strate-
gies result in significant disparities in traffic between the
client-CDN side and the CDN-origin side, which leads to an
amplification attack.

In this section, we will introduce the threat model of the
BtOAmp attack. We will then explain how to bypass the CDN
cache and exploit these strategies to launch a BtOAmp attack.
Finally, we will evaluate our techniques on fourteen leading
CDN vendors to demonstrate the feasibility of amplification
attacks based on different back-to-origin strategies.

We selected these fourteen CDN vendors based on CDN
market share statistics [12] and from a Google search. Ad-
ditionally, these fourteen CDN vendors are often studied in
previous works as well [13–15]. We found that over 36.5%
of websites on the Tranco Top 10,000 list [16] are hosted on
these fourteen vendors. As the famous CDN vendors are all
affected by the BtOAmp attacks, we believe our attacks are
also applicable to other CDN vendors.

3.1 Threat Model
When a CDN applies the performance-over-security strate-
gies to demand more than necessary resources from the origin
server, we present that it leads to the BtOAmp attack. In this
study, we assume that attackers possess two limited abili-
ties. First, attackers can send malicious but legal requests
to the CDN using a Cloud VPS worldwide or any hacked
vantage point. Second, attackers can register accounts with
CDN vendors, alter the CDN-offered configuration related
to back-to-origin strategies, and host the victim website
as the origin of the CDN service. Specifically, most CDN
vendors currently offer free or free-trial services to poten-
tial website customers (including attackers) without robust
authentication requirements [17,18], possibly due to competi-
tive reasons. It makes anonymous assaults feasible at a low
cost or even free.

Within this context, grounded in differential testing princi-
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Figure 2: BtOAmp attack against CDN hosted websites.

ples, we systematically examine back-to-origin strategies
and related configurations, aiming to uncover inconsistencies
between the client-CDN side and the CDN-origin side. By
leveraging these discrepancies, we delve into how attackers
can craft legal requests to trigger CDN behaviors that demand
more-than-necessary resources from the origin server (the
victim website). Specifically, we investigate these inconsis-
tencies at both the transport and application layers, assessing
their amplification effects at the network layer. This analysis
reveals that such legal but malicious requests may exhaust the
origin server’s limited bandwidth, leading to a BtOAmp attack
on the origin server, as demonstrated in Figure 2.

With comprehensive case analysis, we identify and catego-
rize the BtOAmp attack into four types according to the spe-
cific back-to-origin strategies: Image Optimization at-
tack, Request Modification attack, Method Conversion
attack, and Connection Decoupling attack, and the de-
tailed attacking procedures are explained in the following
subsections. Above all, we find that these fourteen CDN ven-
dors all are vulnerable to the BtOAmp attack, and the details
are summarized in Table 2.

3.2 Bypassing CDN Cache
To send successive attack requests to the victim, the presence
of a CDN cache may prevent forwarding of attack requests to
the victim. When attacking a website, the victim may return
a cachable HTTP response. It is necessary to detour the CDN
cache mechanism to ensure that attacking requests reach the
victim rather than hitting the CDN cache.

After exploring the CDN forwarding strategies and working
mechanism exhaustively, we conclude several approaches to
bypass the CDN cache mechanism and confirm them in the
14 CDN vendors, as listed in Table 3.

CDN vendors cache resources based on HTTP-related pa-
rameters such as file extensions, URL paths, or HTTP Header.
Attackers can exploit these rules to bypass CDN caching.
Besides, we also found that some CDN providers forward



Table 2: CDN vendors vulnerable to the BtOAmp attacks.

Alibaba Azure Baidu Bunny Cachefly† CDNetworks‡ ChinaNetCenter Cloudflare CloudFront Edgio Fastly G-core Qiniu UPYun

Image Optimization " " " " " " " " " " " "

Request Modification∗ " " " " " " " " " " " "

Method Conversion " " " " " " " "

Connection Decoupling " " " " " " " " " "

† Cachefly only provides image optimization services to enterprise customers.
‡ CDNetworks also only provides image optimization services to enterprise customers. However, we validated the feasibility of the image optimization attack with test samples from the official

websites.
∗ Request Modification attack needs to register CDN account.

Table 3: Techniques to bypass CDN cache mechanism.

Alibaba Azure Baidu Bunny Cachefly CDNetworks ChinaNetCenter Cloudflare CloudFront Edgio Fastly G-core Qiniu UPYun

Dynamic Resouces " " " " " " " " " " " "

Random URL† " " " " " " " " " " " " " "

Query Parameters " " " " " " " " " " " " " "

HTTP POST/PUT† " " " " " " " " " " " " " "

WebSocket handshake " " " " " " " " " "

Cookie Header " " " " " " " "

Authorization Header " " " " " " " " " "

† Random URLs and HTTP POST/PUT techniques can only apply to the request modification attack, and the other techniques can apply to all attacks.

requests with a Cookie or Authorization header to the victim
and do not cache their responses.

3.3 Image Optimization Attack
In this section, we introduce a new class of amplification
attacks called Image Optimization attacks. By exploiting
the CDN image optimization features, attackers can create a
substantial bandwidth disparity between the optimized client-
side image delivery and the actual resource demanded from
the origin server. This novel amplification attack targets the
inherent functionalities within CDNs designed to enhance
client-side image loading speeds, turning these optimizations
into vectors for bandwidth exhaustion at the origin server.

3.3.1 Attack Surface

Primer on CDN image optimization. The image optimiza-
tion feature of CDN is a service that processes and accel-
erates images at CDN nodes, improving client-side image
loading speed and quality while saving bandwidth and costs.
It offloads the website’s burden to prepare an image with
different resolutions to meet the needs of various clients with
different screen sizes. Among these, image compression and
image cropping are two common image optimization tech-
niques [10, 19].

Image compression is one of the CDN image optimiza-
tion features, aiming to help clients save bandwidth and costs
while improving image loading speed. The fundamental prin-
ciple of image compression is to reduce the file size of images
with image format conversion or image quality adjustment
thus improving the efficiency of image transmission [20].

Image cropping functionality is another CDN image op-
timization feature, aiding websites in adapting to various

client-side screens and devices. The principle behind image
cropping involves adjusting the image’s sizes to accommo-
date different screens and devices [21]. The dimensions of
an image, determined by its width and height, play a pivotal
role in determining the overall file size. Larger image sizes
result in larger file sizes and crisper display quality, while
smaller image sizes reduce file size but may lead to a less
clear display.

In summary, CDN’s image optimization features assist
websites in better managing and displaying images, thereby
improving user experiences and website performance.

Attack Principle. The core of the Image Optimization at-
tack lies in its ability to exploit the CDN’s image optimization
functionalities, specifically image compression, and cropping,
to exert undue pressure on the origin server’s bandwidth.
By inducing the CDN to bypass its caching mechanisms for
image optimization requests, attackers force the retrieval of
lossless, high-resolution images from the origin server. Mean-
while, the CDN’s subsequent compression and delivery of
these images helps to reduce client-side (also attacker-side)
bandwidth consumption, resulting in amplification attacks.
This discrepancy is further exacerbated when attackers manip-
ulate image cropping features, compelling the CDN to fetch
and process large images only to minimal sizes for delivery, as
shown in Figure 3. Such strategies not only inflate the band-
width demand on the origin server but also underscore the
vulnerabilities inherent in CDN image optimization services.

The Image Optimization attack demonstrates a clever
abuse of CDN’s intended optimization functionalities, high-
lighting the need for enhanced security awareness and mea-
sures to reduce potential vulnerabilities within these optimiza-
tion processes.
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GET /test.png?
imageProcess HTTP/1.1 GET /test.png HTTP/1.1
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Original Image
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Figure 3: Concept of Image Optimization attack. Step 1:
Exploiting CDN edge servers to request original images; Step
2: CDN optimizes images to reduce image size.

3.3.2 Amplification Factor

Image optimization attacks, including image compression and
image cropping attacks, are evaluated for their amplification
factors through two distinct experiments.
Common Experimental Setup. Both experiments were con-
ducted with an Nginx web server deployed as the origin server
across various CDNs. The traffic on both client-CDN and
CDN-origin connections was captured using the tcpdump
[22]. This setup serves as the foundation to assess the im-
pact of image characteristics: the first experiment focused
on image formats, while the second concentrated on image
resolutions.
The Setup of the First Experiment. For the initial experi-
ment, images in four common formats (PNG, JPG, BMP, and
TIFF) were placed on the Nginx server. We sent requests
requiring the CDN to fetch and compress these images into
WebP format, evaluating the effect of image format on the
amplification factor.
Results of the First Experiment. As shown in Table 4, the
maximum amplification factor achieved through image com-
pression attacks was 1011. An interesting behavior was ob-
served with Cloudflare’s handling of TIFF and BMP formats,
where it would return a 415 Unsupported Media Type re-
sponse but still fetch the original image, presenting an oppor-
tunity for a more potent amplification attack.

Table 4: The amplification factor varies with the format of the
image in the Image Optimization attack.

PNG JPG BMP TIFF

Alibaba† 111 80 126 N/A
Bunny† 136 98 N/A N/A
ChinaNetCenter† 130 94 156 N/A
Cloudflare† 319 230 1011 1011
CloudFront‡ 23 17 N/A 26
Edgio‡ 23 17 N/A 26
Fastly† 1.7 1.2 N/A N/A
G-core† 139 100 N/A N/A
Qiniu‡ 30 21 25 34
UPYun† 139 101 166 149

† These CDNs support lossy compression.
‡ These CDNs support lossless compression.

The Setup of the Second Experiment. The second experi-
ment focused on image resolution. Images of various reso-

lutions, from 720p to 4320p, were evaluated. Requests were
crafted to require the CDN to crop these high-resolution im-
ages into one pixel, aiming to discern the resolution’s impact
on amplification.
Results of the Second Experiment. As shown in Figure 4,
the amplification factor tended to correlate with the image
resolution. However, Alibaba and Edgio were noted to sup-
port image optimization only up to a 4096x4096 resolution,
directly delivering back the original image for resolutions
above this threshold. Additionally, certain CDNs like Al-
ibaba, Qiniu, UPYun, and ChinaNetCenter, when receiving
requests with invalid optimization parameters, would issue a
400 Bad Request response yet still forward the request to
fetch the image, thereby still enabling an BtOAmp attack.
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Figure 4: How the amplification factor changes with the reso-
lution of images.

3.4 Request Modification Attack
In this section, we will delve into the Request Modification
Attack. This attack leverages CDN infrastructure, which al-
lows for the amplification of attacks by adding HTTP headers
and modifying URLs to requests. In contrast to traditional
DDoS attacks that rely on massive bots [23–25], this attack is
stealthier and harder for CDN to defend against because the
crafted requests are legal and are initiated from itself.

3.4.1 Attack Surface

Primer on CDN Modification HTTP Header Behaviors.
Chen et al. [17] found that CDNs typically add default headers
such as Via and X-Forwarded-For headers when forwarding
requests and exploit these automatically added headers to
launch amplification attacks against CDNs. However, we
found that CDN-offered configurations allow website cus-
tomers (also the attacker) to add a large number of huge HTTP
Headers and rewrite a thin URL (e.g., "/a") into a much fatter
URL (e.g., "/a" * 1024) in forwarding requests. Therefore, we
present a new class of amplification attacks that attackers can
exploit to launch amplification attacks against origin servers.



Table 5: The amplification factor in Request Modification attack.

Alibaba Azure Baidu Bunny CDNetworks ChinaNetCenter Cloudflare CloudFront Edgio Fastly G-core UPYun

Header Name Size 256B 128B 128B ≥1MB 64B 64B 128B 128B ≥100KB 255B 255B 40B
Header Value Size 256B 640B 1000B ≥1MB 63B 64B 512B 768B ≥100KB ≥10KB 512B 400B
Number of Headers 49 99 20 ≥10 ≥1300 ≥800 270 10 15 ≥13 49 20
URL Size ≥50KB 512B 1000B ≥50KB 1KB ≥1KB 8KB 256B 10KB N/A N/A 400B
Host Header Size ≥512B 128B 64B ≥64B 64B ≥54B N/A N/A ≥128B 255B 2048B ≥128B
Amplification Factor 348 367 109 93077 768 481 846 43 5352 590 188 42

The back-to-origin strategies empower websites (also
the attacker as a malicious CDN customer) with the capa-
bility to incorporate bespoke HTTP headers into forward-
ing requests, thereby catering to specific requirements and
affording a higher degree of precision in resource manage-
ment. When employing CDN to forward client requests, this
CDN-provided request modification feature helps websites
add various HTTP header fields, such as customized autho-
rization tokens, access controls, and security tokens [26]. As
a result, websites can exert a heightened and finely-tuned
degree of control over the generated responses. Essentially,
this flexibility empowers attackers to finely tune and personal-
ize interactions with the origin server, optimizing the overall
content delivery process for improved performance and func-
tionality. However, it is essential to note that CDNs have
lenient restrictions on the size and number of HTTP head-
ers when adding them to forwarding requests, as shown in
Table 5. As a result, attackers could take advantage of this
vulnerability by leveraging CDNs to send requests with large
HTTP headers, exhausting the origin server’s bandwidth.
Primer on CDN Manipulation of URL Behaviors. It is com-
mon for a website to change its resource path on the server,
while it requires the website to synchronize all the related
URLs in the web pages. To avoid this annoying work, CDNs
offer support for URL rewriting when forwarding client re-
quests [27]. It is worth noting that this rewriting does not
impact the CDN’s internal routing or cache key. Nevertheless,
it is crucial to acknowledge that CDNs tend to impose rela-
tively permissive limitations on the length of modified URLs,
as shown in Table 5. An attacker can abuse these strategies
to make CDNs send requests carrying large URLs, leading to
amplification attacks.
Primer on Cascadable CDN Platforms. Chen et al. [17]
presented that two or more CDN platforms can be cascaded
to make a request forwarding chain, and this cascadable CDN
trick has been applied in RangeAmp Attack [28] to increase
the damage of the attack. A necessary condition for cascading
two or more CDN platforms in a chain is that the front-level
CDN must forward the request to the next-level CDN, and
the next-level CDN treats it as a benign request and continues
forwarding it.

Whether the next-level CDN accepts the forwarded re-
quests depends on the Host header. If the front-level CDN
platform can modify the Host header in the forwarded re-
quests to match the domain name registered for service on the

Attacker CDN Origin Server

POST /a HTTP/1.1

POST /aa...a HTTP/1.1
big name:big value
big name:big value

...
big name:big value

Large TrafficSmall Traffic

CDN Add HTTP Header
And Rewrite URL

Figure 5: Concept of Request Modification attack. Step 1:
Send numerous POST requests to CDN; Step 2: Exploiting
CDN to make POST requests to "fat" POST requests and
forward them to the origin server.

next-level CDN platform, then the requests can be processed
and forwarded by the next-level CDN platform. Our mea-
surements show that thirteen out of fourteen CDN vendors
can be cascaded at any level of the CDN chain, as shown in
Table 6. However, Cloudflare does not support modifying the
Host header as the origin domain name. We can only cascade
Cloudflare as the last level in a CDN chain.
Attack Principle. With our extensive measurements, CDN
back-to-origin strategies support the addition of HTTP
headers and URL modifications within forwarding requests
(Table 1). Hence, we present that attackers can exploit the
CDN-provided request modification capability to launch the
Request Modification attack. As shown in Figure 5, an
attacker sends POST requests to the CDN first, then triggers
the CDN to append numerous large HTTP headers and modify
the URL into a fat URL, creating abnormally large requests
that lead to amplification attacks.

Besides, we propose a variant of the Request
Modification attack called the Cascade Request
Modification attack. This attack exploits the cascading
nature of CDNs to amplify the damage of the Request
Modification attack. It allows attackers to exploit the
cascaded CDNs. Each CDN contributes to the enlargement
of requests by adding extensive HTTP headers, increasing
the request size at each stage. We will delve into a detailed
assessment of the cascadable CDN trick and real-world
evaluation of the Cascade Request Modification attack
in Section 4.

3.4.2 Amplification Factor

The size of the HTTP headers and URL emerges as a piv-
otal technical factor influencing the amplification factor of



Table 6: Modifiability of "Host" header field on CDNs.

Alibaba Azure Baidu Bunny Cachefly CDNetworks ChinaNetCenter Cloudflare CloudFront Edgio Fastly G-core Qiniu UPYun

Request Domain " " " " " " " " " " " " " "

Origin Domain " " " " " " " N/A (Free Plan) " " " " " "

Any Domain " " " " " " N/A (Free Plan) " " " " "

the attack. To thoroughly assess its impact, we devised the
following experiment.
Experiment Setup. Based on the above measurements of the
various CDN back-to-origin strategies, we configured the
strategies to append the maximum HTTP header and modify
the raw URL to its maximum permitted length in forwarding
requests. Subsequently, we sent separate POST requests to
each CDN, which triggered the CDN to transfer them into
large-sized ones. We captured and analyzed all the requests
on both the clients and origin servers to determine the ampli-
fication factors.
Experiment Result. The most noteworthy experiment result
is that twelve CDN vendors are affected by the Request
Modification attack, as shown in Table 5. Remarkably,
CDNs such as Alibaba, Bunny, and Edgio, which permit the
addition of substantial, large-sized HTTP headers, exhibited
higher amplification factors.

3.5 Method Conversion Attack
Through comprehensive analysis across client-CDN and
CDN-origin connections, we’ve identified a nuanced behav-
ior among CDNs concerning the support and conversion of
HEAD requests. Specifically, our investigation into fourteen
CDNs revealed that seven exhibit a vulnerability that could
be exploited to amplify bandwidth against the origin servers
they host.

3.5.1 Attack Surface

Primer on HTTP HEAD Request. The HEAD request aims
to only retrieve metadata or header information about a spe-
cific web resource [29]. Unlike GET requests, HEAD requests
are designed to exclusively retrieve information about the web
resource without fetching the actual content. The HEAD re-
quest empowers the client to acquire essential information
concerning the web resource, encompassing attributes like
content length, content type, response status code, and so on,
without downloading the complete resource.

The distinctive characteristics of HEAD requests make
them exceedingly advantageous for performance optimiza-
tion, bandwidth management, and cache control [30]. By
exclusively obtaining header information and not download-
ing the whole content, HEAD requests efficiently reduce
unnecessary network traffic, improve operational efficiency,
and support caching mechanisms, thereby alleviating server
and network burdens.

Method Conversion Behavior. While most CDN vendors
assert support for HEAD requests to save traffic, a prevalent
operational practice involves converting these HEAD requests
into GET requests. This conversion aims to prefetch content,
improve cache hit rates [11], and minimize response times for
subsequent requests. Despite the prevalence of this behavior,
there has not been a comprehensive study of its security.

In this experimental setup, we initially configure the origin
server to support HEAD requests. Subsequently, we send
HEAD requests to the CDNs and capture CDN-origin requests
at the origin server using tcpdump to explore the CDN’s
back-to-origin strategy of HEAD requests. As shown in
Table 7, experiment results have revealed that CDNs support
HEAD requests in the client-CDN connection but exclusively
use GET requests in the CDN-origin connection, even when
the origin server supports HEAD requests.

Table 7: Behavior of CDNs forwarding HEAD requests.

HTTP Method
client-CDN Connection CDN-origin Connection

Alibaba HEAD GET
Azure HEAD HEAD
Baidu HEAD HEAD
Bunny HEAD GET
Cachefly HEAD GET
CDNetworks HEAD GET
ChinaNetCenter HEAD GET
Cloudflare HEAD GET
CloudFront HEAD HEAD
Edgio HEAD HEAD
Fastly HEAD GET
G-core HEAD GET
Qiniu HEAD HEAD
UPYun HEAD HEAD

Attack Principle. Through the above experiments, we have
identified two distinct back-to-origin strategies CDNs em-
ploy to handle HEAD requests. In one scenario, upon receiv-
ing HEAD requests from clients, the CDN directly forwards
them to the origin server. In the alternative scenario, the CDN
converts HEAD requests into GET requests, fetches more
than the required target resources from the origin server, and
caches them in the CDN global cache.

As shown in Figure 6, the method conversion strategy re-
sults in the CDN retrieving the target resource more than
necessary from the origin server and caching it while solely
returning HTTP headers to the client. Consequently, it cre-
ates an asymmetry in bandwidth consumption between CDN-
origin and client-CDN connections, offering attackers an ap-



proach to exhaust the origin server’s bandwidth. Upon a
HEAD request of a specific resource, the CDN converts it to
a GET request and then caches the response for the following
HEAD or GET requests of the same resources. However,
attackers can use the cache bypass techniques to make each
HEAD request not hit the cache and be forwarded to the origin
server, thus exhausting the origin server’s bandwidth, even
when the same resource is requested many times.

Attacker CDN Origin Server

HEAD /test.js HTTP/1.1 GET /test.js HTTP/1.1

200 response
HTTP Header and Body

200 response
Only HTTP Header

Large TrafficSmall Traffic

Figure 6: Concept of Method Conversion attack. Exploit-
ing CDN edge servers to convert HEAD requests into GET
requests, requesting resources from the origin server but re-
sponding with only HTTP headers.

3.5.2 Amplification Factor

We experimented to explore the practicality and amplification
factor of the Method Conversion attack. This experiment
aims to determine which CDNs are vulnerable and the result-
ing amplification factor.
Experiment Setup. We conduct our experiments under con-
trolled conditions. We send a series of HEAD requests to
CDNs to gather information regarding target resources on the
origin server. For these experiments, we deployed a website
on each CDN and placed target resources of varying sizes on
the website origin server.

To determine the impact of the targeted resource size on the
amplification factor, we systematically sent HEAD requests
to the CDNs for targeted resources ranging from 1MB to
25MB, incrementing by 1MB. We used tcpdump to capture
traffic on both the client-CDN and CDN-origin connections
and calculate the amplification factor.
Experiment Result. As shown in Figure 7, the amplification
factor is proportional to the size of the target resource for each
CDN except Fastly. For every CDN, we summarize in Table 8
the amplification factor for a targeted resource of different
sizes, i.e., 1MB, 10MB, and 25MB.

The Method Conversion attack can result in an amplifi-
cation factor of hundreds of thousands by simply requesting
a 10MB resource, which is a common occurrence on the in-
ternet. However, Fastly appears to be less affected by this
attack. Upon further investigation, we discovered that al-
though Fastly converts HEAD requests to GET requests, it
immediately closes the CDN-origin connection after receiv-
ing the response header. This unique behavior prevents the
amplification factor from increasing with the variations in the
size of the target resource, which can act as a mitigation for
the attack.
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Figure 7: How does the Method Conversion attack amplifica-
tion factor change with the size of a target resource file.

Table 8: Amplification factors with different target resource
sizes of Method Conversion attacks.

Amplification Factor
1MB 10MB 25MB

Alibaba 1340 13059 33952
Bunny 1212 11808 30702
Cachefly 1738 16940 44044
CDNetworks 1744 16995 44115
ChinaNetCenter 1784 17418 45212
Cloudflare 1170 11385 29698
Fastly 469 469 469
G-core 2106 20520 53352

3.6 Connection Decoupling Attack

It is well-known that CDN, working as a man-in-the-middle,
decouples the traditional client-origin connection into two dis-
tinct connections: the client-CDN connection and the CDN-
origin connection. When the client cuts off the client-CDN
connection, no RFCs or industry standards define whether
the specific CDN-origin connection should be kept open. In
other words, this decoupling connection strategy remains
implementation-specific, and some CDNs still maintain CDN-
origin connections. Consequently, attackers can exploit this
strategy to launch an amplification attack, exhausting the
origin server’s limited bandwidth.

The Connection Decoupling attack leverages the inde-
pendence of client-CDN and CDN-origin connections. At-
tackers leverage CDN edge servers to download target re-
sources from the origin server and prevent CDN from re-
sponding to these resources, thus consuming the bandwidth
resources of the origin server.



3.6.1 Attack Surface

Traditional CDN decoupling attack is unusable. CDNs
introduce a division in HTTP communication, delineating it
into two discrete segments: the client-CDN connection and
the CDN-origin connection. This strategy yields a variety of
advantages, notably enhancing the performance and reliability
of CDNs. Decoupling these connections and absorbing a
substantial influx of flood traffic are common strategies for
effectively countering DoS attacks. However, this strategy
can give rise to security challenges stemming from potential
inconsistencies in TCP states and the asymmetry in bandwidth
between client-CDN and CDN-origin connections.

Triukose et al. [31] introduced a new type of DoS attack
targeted at CDN-hosted website servers. In this attack, the
attacker sends multiple requests directly to various ingress
nodes, all requesting the same large file hosted on the website.
These requests include a randomly generated query string
attached to the URL to bypass the CDN cache. Subsequently,
the attacker cuts off all client-CDN connections while the
CDN continues to sustain CDN-origin connections, which
operate at a significantly higher bandwidth. This results in a
bandwidth exhaustion DoS attack against the website. How-
ever, during our experiments, we unearthed a noteworthy ob-
servation: certain CDNs automatically terminate CDN-origin
connections once the Client-origin connection is severed, as
shown in Table 9. This mitigation measure renders the tradi-
tional CDN decoupling attack outlined in [31] ineffective.

Table 9: Whether CDNs keep CDN-origin connection while
an attacker cuts off client-CDN connection.

CDN-origin Connection
Content-Length Transfer-Encoding

Alibaba Close Keep
Azure Close Keep
Baidu Close Keep
Bunny Keep Keep
Cachefly Keep Keep
CDNetworks Close Keep
ChinaNetCenter Keep Keep
Cloudflare Close Keep
CloudFront Close Close
Edgio Close Close
Fastly Close Close
G-core Keep Keep
Qiniu Close Close
UPYun Keep Keep

Reviving the attack with Transfer-Encoding: Chunked.
Transfer-Encoding: Chunked constitutes a data transmis-
sion technique within the HTTP protocol, wherein data is
segmented into small chunks and transmitted sequentially to
the client [32]. The principal advantage of this transmission
technique lies in its capacity to generate and deliver data
in real-time during the transmission process without wait-

ing for the entire content to be ready [33]. This technique
fosters not only flexibility but also substantial performance
enhancements. For example, in online video conferencing,
where real-time communication is vital, the ability to transmit
and render data as it becomes available significantly reduces
latency [34].

As shown in Table 9, it’s important to note that certain
CDNs automatically close CDN-origin connections when
client-CDN connections are severed. However, we found that
using Transfer-Encoding: Chunked can force the CDN to
sustain CDN-origin connections even after the termination of
client-CDN connections. It gives the attacker a new attack
vector that revives the CDN decoupling attack. Attackers
could still launch an amplification attack that exhausts the
origin server’s bandwidth.

Attacker CDN Origin Server

GET /test.js HTTP/1.1 GET /test.js HTTP/1.1

200 ResponseNo Response/Partial Response

Large TrafficNo Traffic/Small Traffic

CDN Keep TCP ConnectionAttacker Cut Off TCP Connection

Figure 8: Concept of Connection Decoupling attack. Step
1: The attacker sends requests to CDN nodes; Step 2: The
attacker closes the TCP connection and prevents the CDN
from responding.

Attack Principle. When an attacker sends GET requests to
a CDN and cuts off the attacker-CDN connections, the CDN
forwards these requests to the origin server while still main-
taining the CDN-origin connections, leading to amplification
attacks. As shown in Figure 8, this strategy results in re-
sponses traveling only from the origin server to the CDN. It
causes the bandwidth consumption on the CDN-origin con-
nections to be significantly higher than the attacker-CDN
connections.

3.6.2 Amplification Factor

We speculate that the size of the target resource influences the
amplification factor of the Connection Decoupling attack.
We conducted experiments to explore how the size of the
target resource affects the amplification factor.
Experiment Setup. In our experiments, we deploy an Nginx
web server on each CDN. We placed target resources of
varying sizes on the origin server, ranging from 1MB to 25MB
in increments of 1MB. We then used the tcpdump tool to
capture traffic on client-CDN and CDN-origin connections
to calculate the amplification factor. For each CDN, we first
sent GET requests for different-sized target resources, then
immediately cut off TCP connections to evaluate the impact
of resource size on the amplification factor.
Experiment Result. As shown in Figure 9, the amplification
factor for each CDN is essentially proportional to the size
of the target resource. G-core is an exceptional case, as it
differs from the prevalent implementation observed in most



other CDNs. In contrast to the standard behavior, wherein
CDNs promptly close the TCP connection upon receipt of
a client-sending RST frame requesting connection closure,
G-core exhibits a distinctive implementation. This imple-
mentation entails a refusal to terminate the TCP connection
until it has successfully filled the TCP window. However, it
is worth noting that an attacker can still bypass this unique
implementation in G-core by setting up a small TCP window
to prevent CDN from responding.
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Figure 9: How does the Connection Decoupling attack ampli-
fication factor change with the size of a target resource file.

Table 10: Amplification factors with different target resource
sizes of Connection Decoupling attacks.

Amplification Factor
1MB 10MB 25MB

Alibaba 4181 41614 104029
Azure 4216 41948 104862
Baidu 4148 41286 103210
Bunny 4198 41779 104443
Cachefly 4116 40963 102403
CDNetworks 4082 40645 101609
ChinaNetCenter 4129 41284 103207
Cloudflare 4214 41946 104861
G-core 747 7469 18672
UPYun 4131 41124 102805

Table 10 summarizes the amplification factor for a target
resource of different sizes (1MB, 10MB, and 25MB). The
amplification factor is proportional to the target resource size.

4 Real-world Evaluation
When attack requests reach a website and simultaneously
demand the utilization of internal bottleneck resources, such
as CPU, memory, and logical queues, a significant influx of
requests can persistently overwhelm these resources, leading
to more severe DoS disruptions. We first evaluated the real-
world amplification factor for all vulnerable CDNs. As shown

in Figure 10, all CDNs we tested are vulnerable to at least
one specific BtOAmp attack, and the Image Optimization
attacks can attack ten CDN vendors, and it has the most
extensive attack surface.

To further demonstrate the real-world impact of BtOAmp
attacks on bandwidth amplification, we choose one different
CDN for each specific BtOAmp attack to study the bandwidth
of both the attacker and the origin server, results are shown in
Figure 11(a) and Figure 11(b).
The Setup of Real-World BtOAmp attacks. We initially set
up an HTTP service (2.5GHz/2GB/100Mbps/Nginx 1.21.3) in
Silicon Valley as the target victim. Subsequently, we launched
the BtOAmp attack in a VPS (2.5GHz/2GB/30Mbps) in Sin-
gapore. Both servers are located on the backbone network,
which greatly reduces the risk of saturating on-path network
segments with our attack traffic. To assess the impact of at-
tacks, we monitor the bandwidth consumption of both the
attacker (client) and the origin server.
Setting of Image Optimization Attack. Take Fastly as an
example, we concurrently send three image optimization re-
quests to Fastly every second, lasting 60 seconds. The resolu-
tion of the requested target image on the origin server is 4320
pixels.
Severity Analysis of Image Optimization Attack. Fig-
ure 11(a) and Figure 11(b) compare the bandwidth consump-
tion. The attacker sacrifices a bandwidth consumption not
exceeding 10Kbps, while the website’s bandwidth achieves
100 Mbps at maximum.
Setting of Request Modification Attack. Taking Edgio as
an example, we concurrently send 15 POST requests to Edgio
per second for 60 seconds. Edgio appends 15 HTTP head-
ers of 200KB each to these requests and rewrites the URL
from "/a" to "/a" ten thousand times. Moreover, we also use
CDN cascading technology to amplify the threat of Request
Modification attacks. For example, we cascaded Cloud-
Front and Bunny to evaluate the effectiveness of the Cascade
Request Modification attack. We simultaneously send 3
POST requests to CloudFront every second for 60 seconds.
CloudFront appends 10 HTTP headers, each 896B in size,
to these requests and forwards them to Bunny. In addition,
Bunny appends 10 HTTP headers of 2MB each to these re-
quests and rewrites the URL from "/a" to "/a" a hundred
thousand times.
Severity Analysis of Request Modification Attack. Fig-
ure 11(a) and Figure 11(b) demonstrate that an attacker can
launch request modification attacks to bring down a victim’s
100Mbps bandwidth with just an average 35kbps bandwidth.
In addition, an attacker can also use CDN cascading tech-
niques to launch Cascade Request Modification attacks,
only needing to consume 15kbps bandwidth to paralyze the
victim’s 100Mbps bandwidth. CDN cascading techniques
can greatly increase the threat of Request Modification
attacks.
Setting of Method Conversion Attack. Taking Cloudflare
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Figure 10: Amplification factor of the BtOAmp attacks on all CDN vendors.
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Figure 11: The bandwidth consumption of the attacker and the origin server for BtOAmp attacks.

as an example, we concurrently send 2 HEAD requests per
second to Cloudflare, lasting 60 seconds. The target resource
size on the origin server is 10MB.
Severity Analysis of Method Conversion Attack. Fig-
ure 11(a) and Figure 11(b) show that an attacker can use
below 10Kbps bandwidth to launch Method Conversion at-
tacks to exhaust the victim’s 100 Mbps bandwidth.
Setting of Decoupling Connection Attack. Taking Azure as
an example, we concurrently send 2 GET requests to Azure
every second, promptly cutting off the TCP connection upon
sending the requests, lasting 60 seconds. The target resource
size on the origin server is 10MB.
Severity Analysis of Decoupling Connection Attack. Fig-
ure 11(a) and Figure 11(b) show that an attacker can launch
Connection Decoupling attacks by cutting off the TCP
connection after the request has been sent. The attacker’s
bandwidth usage remains below 7Kbps, whereas the web-
site’s bandwidth reaches a maximum of 100 Mbps.

The above evaluations show that the BtOAmp attack ide-
ally matches the "small spark, big fire" attacking philosophy.
Worse, the stealthy nature of a BtOAmp attack can also help it
to escape DDoS detection.

5 Discussion

5.1 Mitigations
In general, the presence of vulnerabilities is partly due to
market competition. CDN vendors naturally aspire to offer
more features and maximize compatibility with websites of
varying configurations. However, CDNs serve as the back-
bone of the Internet. Therefore, if there are weaknesses in
CDN implementations, they could potentially be exploited,
jeopardizing the security of websites and causing a severe
threat to the Internet.
Limit parameters in the Back-to-Origin strategies. Cur-
rently, all the CDN vendors we tested that support image
optimization do not impose any restrictions on parameters.
We recommend that CDNs set image cropping parameters to
common resolutions in their default configurations, with users
having the option to customize as needed. The CDN should
cache the original image to reduce the workload on the ori-
gin server. Additionally, it is advisable to impose limitations
on HTTP header size, HTTP header quantity, and URL size
when implementing strategies for adding HTTP headers and
rewriting URLs.



Follow RFC standards for request forwarding. We recom-
mend that CDNs by default directly forward HEAD requests
rather than automatically converting them into GET requests.
If websites want to improve cache hit rates and speed up con-
tent loading, they can configure the CDN to forward HEAD
requests as GET requests.
Synchronize client-CDN and CDN-origin connections. We
recommend that CDNs wait several seconds after the client-
CDN connection breaks, allowing the client to reconnect. If
the client fails to reconnect, CDN should timely terminate the
CDN-origin connection.
Enforce CDN to validate origin ownership. Currently, all
fourteen CDNs we tested do not validate the ownership of
customer-hosted origin, which allows attackers to register a
CDN service and configure targeted websites as the origin [35,
36]. We recommend that CDN providers implement origin
ownership validation to prevent abuse, which can narrow the
scope of threats only on websites hosted on CDNs.

It’s worth noting that both Alibaba and G-core have im-
plemented our proposed solution to mitigate the Image
Optimization attack. They did this by caching the orig-
inal image on edge servers, which prevents the Image
Optimization attack.

5.2 Ethic Consideration
During our study, we aimed to balance real-world severity
evaluations with minimizing risks that could impact CDN ven-
dors. We were concerned that higher bandwidth exhaustion
during our tests could impair the CDN’s network performance
and harm other hosted websites. As a result, we took great
care to avoid any ethical issues during our experiments.

Firstly, we strategically selected attacker positions with
minimal latency to CDN nodes, ensuring our attacks are
initiated within the backbone network. This configuration
significantly reduced the risk of our attack traffic saturating
on-path network segments. Secondly, our attacks targeted
our own websites, keeping traffic below the CDN’s capacity
to avoid service disruption. Thirdly, we limited attack band-
width to 100Mbps to prevent network overload and protect
other CDN services. Fourthly, We only sent three requests to
validate the feasibility of Cachefly’s Image Optimization
attack and that there would be no impact on the website’s
service. These approaches ensure our research minimizes
harm while enhancing CDN security.

5.3 Responsible Disclosure
We contacted all 14 CDN vendors to report all vulnerabil-
ities found in our study. We provided them with detailed
reports and mitigation solutions to eliminate the detected
threats. Most vendors confirmed the vulnerabilities promptly
and claimed to fix them as soon as possible. Some vendors
have fixed the vulnerabilities, including Alibaba, G-core, and
UPYun. The responses from CDN vendors are summarized
below:

Alibaba evaluated the problem as a medium-risk vulnerability.
They stated that they view it as indeed a problem for the CDN
industry, and they would internally assess how to defend
against it. They thanked us for our report and provided a
reward of ≈$200.
G-core expressed their gratitude for our report and confirmed
the vulnerability of their CDN. Subsequently, they have in-
formed us that they have fixed the vulnerabilities.
UPYun thanked us for the report and discussed with us the
details of the attack and its potential consequences. They have
fixed the vulnerabilities.
Qiniu thanks for this research discovery and acknowledged
the issues found in the paper. They would internally assess
how to defend against it.
ChinaNetCenter expressed appreciation for our study and
informed us that they are investigating to validate the attack
scenarios and explore the effectiveness of mitigation already
available.
Cachefly thanked us for our work and acknowledged the
potential for abuse of these vulnerabilities but said that their
denial of service protection mechanism blocks abusive traffic.
CloudFront acknowledged our report and stated that these
behaviors align with the CDN’s design to facilitate such ac-
tions.
Cloudflare thanked us for the report and is evaluating these
vulnerabilities. However, they have provided no further re-
sponse to date.
Azure and Baidu expressed gratitude for the report and ac-
knowledged that the attacks resulted from misconfiguration.
Fastly acknowledged our report, but provided no further com-
ment to date.

So far, we have disclosed the vulnerability reports to Bunny,
CDNetworks, and Edgio, but we have not received any re-
sponse. We are actively seeking further communication with
them.

5.4 Anonymity and Cost

One may argue that launching these attacks in the real world
is unlikely due to associated costs and the risk of exposing
the attacker’s identity. However, CDN vendors, presumably
for competitive reasons, provide much convenience for their
prospective customers (and thus for attackers). Table 11
shows the registration information required to begin using the
free or free-trial services of the CDN vendors in our study.
Seven out of fourteen CDN vendors require only a valid email
address. Azure, Cachefly, and CloudFront require valid credit
cards (could be gift cards or stolen). ChinaNetCenter, Qiniu,
and UPYun require a valid phone number (could be anony-
mous). Alibaba requires users to verify their identity through
a valid bank card, which takes an attacker more effort to keep
anonymous.



Table 11: CDN registration requirements, cost, and origin
verification.

Register Requirements Price Origin Verification

Alibaba C1, C2, C4 Free trial No Verification
Azure C1, C3 Free trial No Verification
Baidu C1 Free service No Verification
Bunny C1 Free trial No Verification
Cachefly C1, C3 Free service No Verification
CDNetworks C1 Free trial No Verification
ChinaNetCenter C1, C2 Free trial No Verification
Cloudflare C1 Free service Domain Blacklist
CloudFront C1, C3 Free trial No Verification
Edgio C1 Free trial No Verification
Fastly C1 Free service No Verification
G-core C1 Free service No Verification
Qiniu C1, C2 Free service No Verification
UPYun C1, C2 Free service No Verification

† C1 means an Email address is required to register an account.
‡ C2 means a Phone number is required to register an account.
∥ C3 means a Credit card is required to register an account.
∗ C4 means a Bank card is required to register an account.

5.5 Severity Assessment
A severe and widespread practical influence. According
to our experimental results, the Image Optimization,
Request Modification, Method Conversion, and
Connection Decoupling are nearly proportional to the
size of the target resources, leading to the consumption of
the origin server’s outgoing bandwidth. Meanwhile, request
modification attacks can exhaust the origin server’s incoming
bandwidth. As detailed in Section 3, the CDNs we tested
enjoy global popularity and a high market share. These
CDNs host 36.5% of the websites on the Tranco Top 10,000
list. Therefore, many well-known websites are vulnerable to
our BtOAmp attack.
A low-cost and efficient DDoS attack. Unlike other DDoS
attacks that need to control a large scale of botnets [37], the
attacker only needs an ordinary laptop to launch the BtOAmp
attacks. As the CDN nodes are dispersed globally and form
a naturally distributed botnet [38, 39], it allows attackers to
easily congest the target network and possibly cause a denial
of service in seconds for a low cost.
A significant monetary loss to the victims. Most CDNs
charge their website customers by traffic consumption, in-
cluding Alibaba, Azure, Bunny, Baidu, Cloudflare, Cloud-
Front, G-core [40–43]. Attackers can exploit back-to-origin
strategies to launch a BtOAmp attack against CDN-powered
websites, causing a very high CDN service fee and bandwidth
fee to the website [44].
A security challenge to anti-DDoS. Traditional DDoS at-
tacks consume bandwidth and primarily target the victim’s
incoming bandwidth. BtOAmp attacks can exhaust both the
victim’s incoming and outgoing bandwidth. Further, abusing
the CDN to launch amplification attacks certainly will pose

security challenges for detecting DDoS attacks [45, 46].

5.6 Limitations

There may be some limitations in this study. Our methodology
for identifying vulnerabilities cannot guarantee the detection
of all possible issues due to the complexity of the HTTP proto-
col and CDNs. We conducted tests on only 14 CDN vendors,
but we believe that other CDN vendors may have similar
vulnerabilities. Moreover, as CDNs continue to evolve, new
vulnerabilities may emerge that were not previously detected.

6 Related Work

6.1 CDN Security

According to reports [47], nearly one-fifth of Internet traffic is
transmitted through CDNs. Therefore, CDN infrastructure is
the cornerstone of the Internet, and the security of CDNs has
been extensively researched [48]. Due to the DDoS protection
provided by CDNs [49, 50], the search for vulnerabilities in
CDN architectures or implementations and attacks on CDN-
hosted origin servers have been a hot topic in the field of
network security.

Previous research has found various vulnerable implemen-
tations among CDN vendors. For example, Chen et al. [17]
discovered inconsistency of HTTP request handling policies
among CDN vendors, where attackers can chain CDN nodes
into a loop, causing the malicious request to be processed
repeatedly and reducing CDN’s availability. Guo et al. [51]
identified new architectural weaknesses in CDN infrastructure.
Attackers could exploit CDNs to launch pulse attack waves on
their hosted origin servers, disrupting their availability. Due
to the conflicting nature of CDNs as intermediaries and the
end-to-end encryption of HTTPS, previous researchers have
explored TLS key management issues on CDN platforms,
such as private key sharing and inefficient revocation [52, 53].
Furthermore, attackers can exploit disparities in the interpreta-
tion of HTTP header fields between CDNs and origin servers,
thereby enabling the misuse of CDN caching mechanisms
to initiate cache poisoning attacks [7], cache-poisoned-DoS
attacks [54], and web cache deception attacks [55]. Further-
more, CDNs’ high reputation and invisibility can be exploited
to escape internet censorship, such as domain fronting [56],
domain borrowing [57], and domain shadowing [36] that
compete with the constantly-evolving censorship systems.

In summary, compared to previous CDN security work,
considering the widespread use of CDNs for DDoS attack
defense, we have identified implementation vulnerabilities in
back-to-origin strategies of CDNs, proposed a new class
of amplification attacks, and conducted real-world security as-
sessments of fourteen popular CDNs. This research provides
a valuable supplement to existing CDN security research.



6.2 Amplification Attacks
Amplification attacks constitute a well-established area of
research within the realm of cybersecurity. The UDP proto-
col has been extensively researched for amplification attacks.
Sieklik et al. [58] conducted a further analysis of amplifica-
tion attacks based on DNSSEC, resulting in amplification
factors of up to 44 times. Anagnostopoulos et al. [59] stud-
ied TFTP amplification attacks with amplification factors of
60 times. Booth et al. [60] revealed that UDP amplification
attacks, recruiting UDP servers on the internet as reflectors,
can achieve amplification factors up to 556 times. The TCP
protocol can also be abused to launch an amplification attack.
Kuhrer et al. [61] proposed that amplification attacks can be
launched using the three-way handshake mechanism of the
TCP protocol, and application-layer protocols based on the
TCP protocol, e.g., FTP, Telnet, and SSH, are vulnerable to
these attacks. Unfortunately, even the HTTP protocol has
been abused. Li et al. [28] exposed that amplification attacks
leveraging the HTTP Range Request mechanism can achieve
amplification factors as high as 43000 times. Guo et al. [62]
found that the compressed headers can be amplified when
HTTP/2 downgrades to HTTP/1, which causes an amplifi-
cation attack. Triukose et al. [31] proposed an attack that
exhausts the origin server bandwidth by quickly disconnect-
ing the client-CDN connection. We evaluated this attack and
found that most CDNs mitigate it. However, our decoupled
CDN connection attack can bypass this defense to attack the
website powered by CDN.

In conclusion, our research reveals that leveraging
back-to-origin strategies can launch a novel class of am-
plification attacks against websites hosted on CDNs. More
significantly, when the website is hosted by CDN, although
the CDN can defend against previously studied amplification
attacks, our attacks can penetrate CDN DDoS protection and
launch amplification attacks against the CDN-hidden web-
sites.

7 Conclusion
The CDN has undeniably become an indispensable part of
the internet landscape, providing several benefits, such as
acting as a shield against DDoS attacks for websites hosted
on CDN platforms. However, it is crucial to acknowledge
that CDN infrastructure, particularly its back-to-origin
strategies, can also be exploited, undermining the very DDoS
protection it is supposed to provide.

We have presented a novel class of amplification attacks
and their real-world evaluation of fourteen CDN vendors.
This research reveals the flawed trade-off that CDN vendors
made between performance and security. Experiment re-
sults show that attackers can exploit CDN back-to-origin
strategies to successfully launch an amplification DoS attack
against website servers. We envision our work being able to
urge CDNs to raise their security standards and inspire more

researchers to explore CDN-related security.
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Table 12: Techniques to launch Image Optimization attack

image compression image cropping combination

Alibaba ?image_process=format,webp ?image_process=crop,center,w_1,h_1 ?image_process=crop,center,w_1,h_1/format,webp
Bunny ?quality=1 ?crop=1,1
Cachefly ?format(webp) ?width:1xheight:1
CDNetworks ?f=webp ?crop=p_1,w_1,h_1 ?f=webp&crop=p_1,w_1,h_1
ChinaNetCenter ?&output=webp ?&w=1&h=1 ?&w=1&h=1&output=webp
Cloudflare /cdn-cgi/image/format=webp /cdn-cgi/image/width=1
CloudFront ?format=webp ?width=1&hight=1 ?format=webp&width=1&hight=1
Edgio ?auto=webp,smallest ?width=1&height=1 ?width=1&height=1&fit=crop&format=webp
Fastly ?format=webp ?crop=1,1 ?crop=1.1&format=webp
G-core ?fmt=webp ?crop=1,1
Qiniu ?imageMogr2/format/webp ?imageMogr2/crop/1x1 ?imageMogr2/crop/1x1/format/webp
UPYun !/format/webp !/fwfh/1x1 !/fwfh/1x1/format/webp

A Appendix
A.1 Details of Image Optimization Attack
To elaborate on how to launch an Image Optimization at-
tack, we summarize the parameters for launching an image
optimization attack in 12. Taking Fastly as an example, for
example, utilizing the parameter "?format=webp" can trigger
the CDN to compress the image into webp format. For exam-
ple, the parameter "?crop=1,1" can trigger the CDN to crop
the requested image to one pixel. Moreover, attackers can use
the parameter "?crop=1.1&format=webp" to exploit the CDN
to compress the image into webp format and crop it to one
pixel.
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