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Abstract
Recently, many works have considered Private Information
Retrieval (PIR) with client-preprocessing: In this model a
client and a server jointly run a preprocessing phase, after
which client queries run in time sublinear in the database size.
However, the preprocessing phase is expensive—proportional
to λ ·N, where λ is the security parameter (e.g., λ = 128).

In this paper we propose SinglePass, the first PIR protocol
that is concretely optimal with respect to client-preprocessing,
requiring exactly a single linear pass over the database. Our
approach yields a preprocessing speedup ranging from 45×
to 100× and a query speedup of up to 20× when compared
to previous state-of-the-art schemes (e.g., Checklist, USENIX
SECURITY 2021), making preprocessing PIR more attractive
for a myriad of use cases that are “session-based”.

In addition to practical preprocessing, SinglePass features
constant-time updates (additions/edits). Previously, the best
known approach for handling updates in client-preprocessing
PIR had complexity O(logN), while also adding a logN factor
to the bandwidth. We implement our update algorithm and
show concrete speedups of about 20× over previous state-of-
the-art updatable schemes (e.g., Checklist).

1 Introduction

Private Information Retrieval (PIR), as defined by Chor et
al. [8] is a protocol between a client and a server where the
server holds a public database DB of N bits and the client
holds an index i ∈ {0, . . . ,N−1}. The goal of the protocol is
for the client to learn DB[i] without revealing any information
about i to the server. PIR has found many applications, such as
in private contact tracing, oblivious ad serving, private movie
streaming, among others [3, 4, 15, 17, 21]. A PIR protocol is
non-trivial if its bandwidth is sublinear in N. For large N, it
is desirable to also have o(N) server computation. This was
shown to be impossible by Beimel et al. [5] for a single query,
posing a significant limitation for practical adoption.

Sublinear PIR through preprocessing. Due to the above

limitation, Beimel et al. [5] defined a server-preprocessing
PIR scheme, where the server runs a query-independent and
client-independent preprocessing in the beginning of the pro-
tocol, after which it is possible to achieve o(N) amortized
server computation per query. However, all known protocols
in this model are of theoretical nature due to large hidden
constants (e.g., [5, 24]) or the use of trusted setup [7, 19].

In search for more practical schemes with sublinear server
time, Corrigan-Gibbs and Kogan [9] recently introduced a
slight modification of the above server-preprocessing PIR
model: Here, the client and server jointly run a preprocessing
phase, after which the client’s queries run in o(N) time. Inter-
estingly, in this model the server does not store any additional
information other than the database. Instead, the additional
information used for future queries is stored client-side, al-
lowing more efficient scaling to a large number of clients. We
call this model the client-preprocessing PIR model. Client-
preprocessing PIR has definitely brought PIR closer to prac-
tice, due to particularly fast online server times. For example,
one of the fastest schemes, Checklist [21], can answer a PIR
query on 3 million entries in less than a millisecond!

At a high level, Checklist (and all prior client-preprocessing
PIR schemes [9, 21, 23, 30, 34]) works as follows (We assume
here the two-server model where the database is replicated in
two, non-colluding servers, Server 0 and Server 1.) During
the offline phase, the client picks λ ·

√
N independent random

sets S1,S2 . . . ,. Each Si is a subset of {0, . . . ,N−1} and has
size
√

N. These sets are sent to Server 0. Server 0 computes
the parities/hints p1, p2 . . . , of these sets by setting

pi =
⊕
k∈Si

DB[k] ,

where DB is the public database. The hints are then sent to
the client to be stored together with the sets Si. During the
online phase, on a query to some index x, the client finds a
preprocesssed set Si (and its corresponding parity pi) such
that Si contains x, and sends Si \{x} to Server 1.1 The server

1Since Checklist sets do not have a fast membership testing mechanism,



Table 1: SinglePass compared to Checklist for PIR on updatable databases of N w-bit elements. Q ∈ [N] is a parameter of our
scheme.

Scheme Preprocessing Time Query Time Query BW Client Storage Update Time

Checklist [21] O(λ ·N) O(
√

N) O((logN)(λ logN +w)) O(N logN +λ
√

N ·w) O(logN)
SinglePass O(N) O(Q) O(Q ·w) O(N logN +(N/Q)w) O(1)

computes the parity p of Si \ {x} and sends p to the client.
Then the client can retrieve DB[x] as p

⊕
pi. This basic outline

can be extended to provide support for unlimited queries.

Limitation of client-preprocessing PIR schemes. The in-
formal description above shows that the preprocessing phase
of existing PIR schemes requires λ

√
N ·
√

N = λ ·N database
accesses. For λ = 128, preprocessing will have to access the
entire database roughly 128 times before a single query can
be issued! (The reason λ

√
N sets are required is to ensure that

one of these subsets contains any index with overwhelming
probability.) For use cases where the database is dynamic, or
the number of queries is small, such slow preprocessing can be
hard to justify and leads to particularly slow implementations.

1.1 SinglePass

We propose SinglePass, the first client-preprocessing PIR
scheme whose preprocessing is exactly one linear pass over
the database, operating on each element exactly once— this is
asymptotically optimal [5]. Using SinglePass, the first query
requires a linear pass (namely the preprocessing) over the
database. Subsequent queries run extremely fast, for the dura-
tion of a “session”, after which we can potentially delete the
state. In this way preprocessing becomes much more econom-
ical for applications that require a small amount of queries.
In Table 1, we provide a table with the comparison between
the asymptotics of SinglePass and Checklist. In addition, our
SinglePass scheme also boasts of perfect correctness, and
client storage size independent of λ.

Constant-time updates in SinglePass. SinglePass is the first
protocol to support updates of the preprocessed client state
in constant time. Previously, client-preprocessing schemes
could only support edits and additions by using O(λ

√
N)

time per update. Ma et al. [25] and Kogan et al. [21] stud-
ied different techniques to overcome this challenge, however
both approaches incurred non-constant overhead per update.
For example, [21] first maps the PIR scheme to keyword
PIR and then uses a “waterfall technique” from hierarchical
ORAM [14] to support edits and additions in O(logN) amor-
tized time per operation, at the cost of an additional logN
overhead in query bandwidth. Our new construction’s tech-
nique allows us to naturally defineEdit and Add algorithms
for our preprocessed client state that run in O(1) time. This

they instead keep a hashmap which maps indices to sets, which is processed
offline, for faster queries. This incurs O(N logN) client storage.

means that our scheme can not only improve PIR in the static
“session-based” setting, but also greatly reduce server and
client time for updates in the case where clients keep the pre-
processed state in storage and wish to update it sporadically.

Evaluation. We implement SinglePass and show that it per-
forms very well in comparison to previous schemes. In spe-
cific, we achieve preprocessing speeds ranging from 45-100x
compared to all previous schemes, as well as a 10x speed
up in query times when using comparable storage to other
schemes, for the tests we benchmarked. Our scheme also pro-
vides, empirically, a speed up of approximately 20x in update
time.

On linear client storage. Just like Checklist, SinglePass suf-
fers from linear client storage. However, because there is no
dependency on λ, SinglePass’s client storage is only worse
than the client storage of previous schemes [9, 21–23, 30]
for N greater than one billion elements (This is for a word
size of 1024 bytes.) In practice, databases with a size on the
order of a million elements encompass a large array of PIR
use cases, including private blocklists [21], metadata-hiding
communication [2, 3], private movie streaming [15], private
wikipedia [27], among others. This is the size of databases
we focus on mainly in this work.

SinglePass working example. Below, we go through a short
example of a preprocessing and query step of our scheme
with visuals for intuition. Throughout the paper, we use

α
$← S

to indicate α being sampled uniformly at random from the set
S. For natural N, we use [[[N]]] to denote the set {0, . . . ,N−1}
and PN to denote the set of all permutations of [[[N]]].

Let now N = 16 and Q = 4, where Q is a tunable parame-
ter for the set size. Again, we work with two, non-colluding
servers both storing DB. First, we organize DB as Q arrays of
N/Q = m elements. Let DBi be the array DB[i ·m : (i+1) ·m].

We first describe how preprocessing works in SinglePass:
Server 0 first samples a permutation pi for each DBi, i ∈ [[[Q]]],
where each pi is a permutation of [[[m]]]. Then, for each j ∈ [[[m]]],
Server 0 computes h j =

⊕
i∈[[[Q]]] DBi[pi( j)] and sends it to the

client (along with the seed used to generate the permutations).
After the offline phase, the client state can be pictured as

in Figure 1(a).
This picture shows what elements are contained in each hint

given the permutations sampled by Server 0 were p0, . . . , p3.
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(a) Initial state.
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(b) Chosen elements.
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(c) Swaps.
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(d) Final state.

Figure 1: Figures to aid our working example.

For example, DB3[2] is contained in h1 because p3(1) = 2.
Now, let us examine how we use this state to perform queries.
Consider a query to x = (1,2). First, we find position ind in
p1 such that p1(ind) = 2. In this case, ind = 3. Notice that
the hint h3 contains DB[x] = DB1[2]. After we find ind, we
send the column that ind belongs to to Server 1, replacing
p1(2) with a random element from [[[N/Q]]]. We also sample
a random position ri ∈ [[[N/Q]]] for each pi and send the array
of [pi(ri) : i ∈ [[[Q]]]] to Server 0. We name the arrays sent to
Server 1 and Server 0 as Squery and Srefresh, respectively. The
servers respond with Ab which is an array with all elements
requested by the client (where the indices requested are of the
form (i, j), where i is the position of the number if the array,
and j is the number itself. This can be pictured in Figure 1(b).

The red circles represent pi(ri) for i ∈ [[[Q]]] and the blue
squares represent pi(ind) for i ∈ [[[Q]]]. The client then builds
Squery and Srefresh.

Squery : 3 �A2→ r 2 1

Srefresh : 2 0 1 1

Squery will be sent to Server 1 as the elements needed to
retrieve DB[x] using its hint (along with an additional random
element) and Srefresh is sent to Server 0 in order for the client
to be able to ’refresh’ the client state back to a set of uniform
permutations from Server 1’s perspective. The client sends
Squery and Srefresh to Server 1 and Server 0, respectively, and
gets back A1 and A0.

A1 : DB0[3] DB1[r] DB2[2] DB3[1]

A0 : DB0[2] DB1[0] DB2[1] DB3[1]

The client has now enough information to both:

1. Recover DB1[2] by simply taking the exclusive or of h3
with every element in A1 except DB[r].

2. Refresh the state by performing swaps between the ele-
ments sent to Server 0 and the elements sent to Server 1
for each permutation.

The purpose of (1) is clear, to retrieve the element of interest.
The purpose of (2) is to reset the client state before the next
query. For our example, the swapping depicted in Figure 1(c).

Since we have the value for each element on the permuta-
tion we wish to swap, we can update the hints accordingly by
using exclusive or operations. Intuitively, these swaps make
it so that each permutation is now completely unknown to
the server again. If we can show that the first query is secure,
and that after the swaps, each permutation is completely un-
known to Server 1, then we can use induction to show that this
scheme is secure for any number of queries. Looking ahead,
we model and formally prove the statement on the swaps in
Lemma 3.1. After the query, our new refreshed state can be
seen in Figure 1(d).

Notice that no swap happened in p1. This is simply because
we don’t show any information about p1 to Server 1. After
resetting its state, the client is ready to perform a new query.

We stress here also that although Server 0 sees the pre-
processing, it only sees uniform random elements after that
(since each ri is picked independently from each other and
from the query itself). Then, Server 0 also learns nothing
from any sequence of queries. We formalize this intuition
after introducing our full scheme.

2 PIR Preliminaries and Definitions

SinglePass works in the two-server model, where a database
of N bits is replicated in two servers and at least one server



behaves honestly. SinglePass privacy holds for any adversary
controlling either server and any number of clients, but does
not capture an adversary controlling both servers. This can be
realized in practice by having the servers be run by different
parties. We now give the definition of client-preprocessing
PIR (We use a slightly modified definition from the initial
works on offline/online PIR [9, 21].)

Definition 2.1 (Client-Preprocessing PIR [21]). A multi-
query, 2-server client-preprocessing PIR scheme Π is a tuple
of four polynomial-time algorithms:

• Hint(DB ∈ {0,1}N·w)→ (ck,h):

A randomized algorithm that on input a database DB ∈
({0,1}w)N outputs client keys ck and a client hint h.

• Query(ck,x)→ (ck′,q0,q1):

A randomized algorithm that on input ck and index x ∈
[[[N]]] outputs updated client keys ck′ and queries q0,q1.

• Answer(DB,qb)→ (Ab) :

A deterministic algorithm that on input DB a query qb
outputs an answer Ab.

• Reconstruct(ck,h,A0,A1)→ (h′,y) :

A deterministic algorithm that on input ck, h and answers
Ab outputs an updated hint h′ and database value y.

Using the above algorithms we can build a PIR protocol
as follows. When a new client connects, Server 0 runs the
Hint algorithm, and outputs the client keys and hint, which are
returned to the client. After this, the client can use the client
keys and query index x to output two queries, q0 and q1, each
directed to Server 0 and Server 1 respectively. Notice that
the client at this stage also updates its keys (in our context,
the permutations). Each Server returns an answer Ab, which
are then used by the client along with the hints to reconstruct
DB[x], and update the hints for the next query.
Correctness. Correctness will model the fact that under a
correct execution, the client should always retrieve the correct
word {DB[xi]}i∈t for any sequence of t queries x1, . . .xt it
desires to make. Correctness only needs to hold for honest
servers, as opposed to privacy for which we will consider
malicious servers. We given the formal definition below.

Definition 2.2 (Correctness). A multi-query 2-server client-
preprocessing PIR Π = (Hint, Query, Answer, Reconstruct)
is correct if, for any λ,w,N,T ∈ N, every DB ∈ ({0,1}w)N

and every x0, . . . ,xT−1 ∈ [[[N]]]T , the honest execution of the
following game always outputs “1”:

• Compute (h,ck)← Hint(DB).

• For t = 0, . . . ,T −1, compute:

– (ck,q0,q1)← Query(ck,xt).

PrivGame0

(Privacy for Server 0)

• b $←{0,1}.

• (ck,_)← Hint(DB).

• st← A(1λ,ck).

• For t = {0, . . . ,T −1}:

– (st,x0,x1)← A(st).

– (ck,q0,_) ←
Query(ck,xb).

– st← A(st,q0).

• b′← A(st).

• Output b = b′.

PrivGame1

(Privacy for Server 1)

• b $←{0,1}.

• (ck,_)← Hint(DB).

• st← A(1λ).

• For t = {0, . . . ,T −1}:

– (st,x0,x1) = A(st).

– (ck,_,q1) ←
Query(ck,xb).

– st← A(st,q1).

• b′← A(st).

• Output b = b′.

Figure 2: Privacy games for PIR.

– For b ∈ {0,1}, Ab← Answer(qb).

– (h,yt)← Reconstruct(ck,h,A0,A1).

• If ∀t ∈ [[[T ]]], yt = DB[xt ], output “1”, else output “0”.

Privacy. Recall that Server 0 sees runs the preprocessing and
sees q0, for each queried index x. Also, Server 1 sees only
q1, for each query x, and does not run the preprocessing. Our
privacy game models that under this behavior, no information
is leaked to either server about x, even for a sequence of
adaptively-chosed queries. Note that our assumption of no
collusion allows us to prove that the information received
by each server individually is independent from the issued
queries issued—but there are no guarantees the joint view.
We formalize this intuition in the definition below.

Definition 2.3 (Privacy). A multi-query 2-server client-
preprocessing PIR Π = (Hint, Query, Answer, Reconstruct)
is private if, for security parameter λ, for all polynomially
bounded N(λ),T (λ) ∈ N, for any efficient stateful algorithm
A , for σ = {0,1}

Pr
[
PrivGameσ

A ,λ,N,T → 1
]
≤ 1/2+neg(λ),

where PrivGame0 and PrivGame1 are defined in Figure 2.

We reiterate that the definitions in this subsection are only
slightly modified from the initial works on Offline/Online PIR
[9, 21]. The modification is mainly with respect to including
the word size w as part of the PIR definition. This helps us



better quantify the schemes’ efficiency. The privacy of the
scheme is computational, and the correctness is not.

A pseudorandom function can be used to produce a large
number of pseudorandom outputs from a single truly random
seed. In our construction, PRFs will be important for concrete
efficiency, however, unlike previous schemes, they will not
be necessary to argue security.

Sampling permutations. Our new PIR scheme relies heavily
on permutations. Specifically, these permutations will be over
“small” domains of at most a couple million elements. 2 Sam-
pling pseudorandom permutations over small domains (for
an adversary that can query the whole permutation) is a well-
studied problem with a long line of work [18,26,28,29,31,32].
To date, we do not have representations of small domain per-
mutations that are fast empirically and also succinct (like
we have AES for larger domains). Therefore, in SinglePass
we sample random permutations using the Fisher-Yates shuf-
fle, also known as the Fisher-Yates-Durstenfeld-Knuth shuf-
fle [10, 11, 20], which outputs an unbiased permutation over
[[[N]]] in O(N) time, but requires storing the whole permutation
explicitly after generating it to evaluate the permutation in
sublinear time. We define this permutation in the following
lemma.

Lemma 2.1 (Fisher-Yates Shuffle [10, 11, 20]). For any posi-
tive integer N, there exists an algorithm Permute(N) that can
output a permutation of the set [[[N]]] sampled uniformly from
the set of all permutations of [[[N]]], PN , in O(N) time.

We can naturally define a computational version of the
Fisher-Yates shuffle by using a PRG and a random seed to
sample all the randomness used in the protocol—this is what
we use in SinglePass. Using a seeded PRG allows us to
concisely represent the permutation, but does not allow for
point queries to the permutation in o(N) time. Looking ahead,
for our PIR scheme, we store the whole permutation at the
client, since this storage turns out to be small in practice—
however we still use the seed of the PRG to communicate the
permutation to the server efficiently, i.e., without sending the
whole permutation to the server.

3 Show and Shuffle Experiment

Before we present the SinglePass protocol in detail, we ab-
stract a key concept necessary for SinglePass to work, through
an experiment called Show and Shuffle—see Figure 3. The
Show and Shuffle experiment captures the single-query secu-
rity of SinglePass.

The experiment first samples L permutations (P1, . . . ,PL)
over [[[K]]] uniformly. Then the adversary outputs a tuple
(ℓ,k) ∈ [[[L]]]× [[[K]]]. The experiment then defines j = P−1

ℓ (k),

2With “small”, we refer to a domain of size on the order of 220 as opposed
to the AES permutation which has a domain size of 2128.

Show and Shuffle

Public Parameters: L,K ∈ N.

Experiment:

1. Sample (P1, . . . ,PL)
$← (PK)

L.

2. Adversary A outputs x = (ℓ,k) ∈ [[[L]]]× [[[K]]].

3. Find j such that Pℓ( j) = k.

4. Set v = (v1, . . . ,vL) such that for each i ∈ [L]:

• vi = Pi( j) if i ̸= ℓ.

• vi
$← [[[K]]] if i = ℓ.

5. Let b $←{0,1}.

6. If b = 0 : Output R0 = (F1, . . . ,FL)
$← (PK)

L.

7. Else:

• For each i ∈ [[[L]]], i ̸= ℓ, sample ri
$← [[[K]]], and

let P′i = Pi except swapping Pi( j) and Pi(ri).

• Let P′ℓ = Pℓ, output R1 = (P′1, . . . ,P
′
L).

8. A(ℓ,k,v,Rb)→ b′ ∈ {0,1}.

9. Outputs 1 iff b′ = b.

Figure 3: Show and Shuffle experiment.

and outputs (v1, . . . ,vL) where vi = Pi( j) if i ̸= ℓ and v j is
chosen uniformly from [[[K]]].

Next the experiment flips a bit b, and either outputs a
swapped version of (P1, . . . ,PL) or freshly sampled permu-
tations (F1, . . . ,FL) dependent on b. To swap Pi into P′i , the
experiment samples a uniform ri from [[[K]]] and swaps the out-
puts of Pi( j) and Pi(ri). We do not perform a swap for Pℓ.
Show and Shuffle models exactly one query of SinglePass,
and will help us show that after each query, the resulting
client hint is uniform. Looking ahead, to prove the security
of SinglePass, we will apply the following Show and Shuffle
Indistinguishability lemma (Lemma 3.1) T times.

Lemma 3.1 (Show and Shuffle Perfect Indistinguishability).
For the Show and Shuffle game defined in Figure 3, denoted
as SaS, for any adversary A , for any L,K ∈ N:

Pr
[
SaSA ,L,K → 1

]
= 1/2.



Proof. It is

Pr[SaSA ,L,K → 1]

=
1
2
(
Pr[SaSA ,L,K → 1 |b = 1]+Pr[SaSA ,L,K → 1 |b = 0]

)
=

1
2
(Pr[A(ℓ,k,v,R1)→ 1 |b = 1]

+Pr[A(ℓ,k,v,R0)→ 0 |b = 0])

=
1
2
(Pr[A(ℓ,k,v,R1)→ 1 |b = 1]

+ (1−Pr[A(ℓ,k,v,R0)→ 1 |b = 0]))

=
1
2
+

1
2
(Pr[A(ℓ,k,v,R1)→ 1 |b = 1]

−Pr[A(ℓ,k,v,R0)→ 1 |b = 0]).

To finish the proof it is enough to show that

Pr[A(ℓ,k,v,R1)→ 1 |b = 1] = Pr[A(ℓ,k,v,R0)→ 1 |b = 0] .

Note that in the above expression, the only difference in
the adversary’s view is Rb. Therefore it is enough to show
that the distributions of R0 and R1 are the same. Throughout,
we implicitly condition on the other inputs the adversary has
access to which are invariant in both schemes: ℓ,k,v.

Now, for any p1, . . . , pL, where each pi is a permutation of
[K], by construction of our experiment, it follows that

Pr[(F1, . . . ,FL) = (p1, . . . , pL)] = (1/K!)L .

Then, it is enough to show that the same holds for set R1.
Formally, we have to show that for any p1, . . . , pL, where each
pi is a permutation of [K] it is

Pr[(P′1, . . . ,P
′
L) = (p1, . . . , pL)] = (1/K!)L.

First, notice the important fact that each P′z for z ̸= ℓ is only
dependent on P′ℓ and no other permutation. More formally, by
construction, we have that

Pr[P′z = pz|{P′i = pi}i ̸=z] = Pr[P′z = pz |P′ℓ = pℓ]. (1)

This gives us that for each P′z,P
′
y,z,y ̸= ℓ, P′z and P′y are

conditionally independent given P′ℓ. Now, going back to our
initial equation, we can decompose it as follows:

Pr[(P′1, . . . ,P
′
L) = (p1, . . . , pL)] = Pr[(P′1, . . . ,P

′
ℓ−1,P

′
ℓ+1, . . . ,PL)

= (p1, . . . , pℓ−1, pℓ+1, . . . , pL)|P′ℓ = pℓ] ·Pr[P′ℓ = pℓ]

= Pr[P′ℓ = pℓ] · ∏
z∈[L],z ̸=ℓ

Pr[P′z = pz |P′ℓ = pℓ] ,

where the first equality follows from a simple chain rule
and the second equality follows because the set {P′z}z ̸=ℓ is
conditionally independent given P′ℓ, from Equation (1).

Notice that the only element that affects P′z out of P′ℓ is
j = P′−1

ℓ (k), so we can condition only on j rather than the

whole permutation. Now, for each z ∈ [L],z ̸= ℓ, pick any
permutation of [K], pz = [q1, . . . ,qK ]. We need to calculate
Pr[P′z = pz | j]. We consider two cases.

For the first case, when q j = vz we have

Pr[P′z = pz | j,q j = vz]Pr[q j = vz] =
Pr[Pz = pz | j,q j = vz]

K
=

1
K!

.

The first equality holds since Pr[q j = vz] = Pr[rz = j] =
1/K. The second equalily holds because since rz = j we did
not perform any swaps and the rest of Pz (other than Pz( j)
which is fixed) is uniformly distributed by definition.

For the second case, when qs = vz for some s ̸= j we have:

Pr[P′z = pz | j,qs = vz,P′z( j) = q j]Pr[qs = vz,P′z( j) = q j]

= Pr[P′z = pz | j,qs = vz,P′z( j) = q j]

·Pr[P′z( j) = q j|qs = vz]Pr[qs = vz]

=
1
K

Pr[P′z = [q1, . . . ,qK ] | j,qs = vz,P′z( j) = q j]

·Pr[P′z( j) = x|qs = vz]

=
1
K

Pr[Pz = [q′1, . . . ,q
′
K ]| j,qs = vz,Pz(s) = q′s]

·Pr[Pz(s) = q′s|s ̸= j]

=
1
K

(
1

K−1

)
Pr[Pz = [q′1, . . . ,q

′
K ]| j,qz = vz,Pz(s) = q′s]

=
1
K

(
1

K−1

)(
1

(K−2)!

)
=

1
K!

,

where Lines 1 and 2 hold by just opening up the condition-
ing and Lines 2 and 3 hold because Pr[qs = vz] = Pr[rz = s] =
1/K. Lines 3 and 4 hold by construction, if we redefine q′i = qi
for every i ̸= s and i ̸= j, and let q′s = q j and q′j = qs (we are
just inverting the swap on P′). Lines 4 and 5 hold because
Pz(s) cannot equal vz conditioned on s ̸= j, but is uniform
among the rest of the elements. Finally, Lines 5 and 6 hold
because when we fix Pz(s) and Pz( j), the rest of the elements
are unchanged and uniform by definition of Pz. So, we have
shown that for any z ̸= ℓ, Pr[P′z = pz |P′ℓ = pℓ] = 1/K!.

Plugging this back in to the equation we found before, we
have that for any p1, . . . , pL

Pr[(P′1, . . . ,P
′
L) = (p1, . . . , pL)]

=

(
∏

z∈[L],z ̸=ℓ

Pr[P′z = pz |P′ℓ = pℓ]

)
Pr[P′ℓ = pℓ]

=

(
∏

z∈[L],z ̸=ℓ

1
K!

)
Pr[P′ℓ = pℓ]

=

(
1

K!

)L−1

Pr[P′ℓ = pℓ] =
(

1
K!

)L

.

Note that the last line just follows because P′ℓ = Pℓ was sam-
pled uniformly in the experiment. Then, tying back to the



beginning, we have

Pr[A(ℓ,k,v,R1)→ 1 |b = 1] = Pr[A(ℓ,k,v,R0)→ 1 |b = 0].

This proves our lemma. ■

4 The SinglePass Protocol

In this section, we first present the detailed algorithms of
our SinglePass protocol—see Figure 4. Then, we present our
main theorem (Theorem 4.1) and its proof. Our proof will be
using the result we proved for the Show and Shuffle game—
see Lemma 3.1.

We recall that in SinglePass, Server 0 is running Hint(DB),
the client runs Query with its index and the keys output by
the Hint algorithm and then sends q0 to Server 0 and q1 to
Server 1. Then, each server runs Answer(DB,qb), and returns
the output to the client. Finally, the client runs Reconstruct
to retrieve the answer at the queried index and update the
hints. The privacy with respect to each server is modeled and
explained in Section 2.

For the scheme, we assume that the client implicitly keeps
track of x, ind, and {ri}i∈[[[Q]]] in between Query and Recon-
struct. The following theorem states our main result.

Theorem 4.1 (Single Pass Client-Preprocessing PIR). The
scheme in Figure 4 is a client-preprocessing Private Infor-
mation Retrieval scheme as defined in Definition 2.1, with
parameters N,Q,w ∈N, where Q|N, where N is the database
size, Q is the query size, and w is the word size, satisifes Cor-
rectness and Privacy according to Definitions 2.2 and 2.3
respectively, and has the following complexities:

• Hint(qh,DB) runs in O(N ·w) time and outputs a hint of
size (N/Q) ·w bits.

• Query(ck,x) runs in O(Q) time.

• Answer(DB,qb) runs in O(Q ·w) time.

• Reconstruct(ck,h,A0,A1) runs in O(Q ·w) time.

• The client stores state of O(N logN +(N/Q) ·w) bits.

• The server stores only DB.

We prove Theorem 4.1 in the Appendix A. The crux of
our proof is the Show and Shuffle experiment (Figure 3). We
define a sequence of hybrids between our experiment and an
idealized experiment, and can show each pair of this sequence
to be indistinguishable by using Lemma 3.1.

5 SinglePass Evaluation

In this section, we present the evaluation of SinglePass. Sin-
glePass is implemented in about 300 lines of Go code and

SinglePass

Public Parameters: Let Q,N ∈ N such that Q|N. Let
m ∈N= N/Q. Let DB be an array of N elements of size
w. For i ∈ [[[Q]]], let DBi = DB[i ·m : (i+1)m].

Hint(DB):

1. For i ∈ [[[Q]]], pi
$← Permute(N/Q).

2. Compute hints h0, . . . ,hm−1, where for j ∈ [[[m]]]:

h j =
Q−1⊕
i=0

DBi [pi( j)] .

3. Output h = {h j} j∈[[[m]]], ck = {pi}i∈[[[Q]]].

Query(ck,x = (i∗, j∗) ∈ [[[Q]]]× [[[m]]]):

1. Parse x = (i∗, j∗). Find ind ∈ [[[m]]] s.t. pi∗(ind) = j∗.

2. Let S = [p j(ind) : j ∈ [[[Q]]]]. Set S[i∗] = r∗ $← [[[m]]].

3. Sample r0, . . . ,rQ−1 independently and uniformly
from [[[N/Q]]].

4. Let Srefresh = [pi(ri) : i ∈ [[[Q]]]].

5. For i ∈ [[[Q]]], i ̸= i∗, swap pi(ind) and pi(ri).

6. Output ck, q0 = Srefresh, q1 = Squery.

Answer(DB,qb):

1. Return Ab = [DBi[qb[i]] : i ∈ [[[Q]]]] .

Reconstruct(ck,h,A0,A1):

1. Let DB[x] = DBi∗ [ j∗] =
(⊕

i∈[[[Q]]],i̸=i∗ A1[i]
)
⊕hind .

2. For each i ∈ [[[Q]]], i ̸= i∗, update:

hind = hind⊕A0[i]⊕A1[i] .

hri = hri ⊕A0[i]⊕A1[i] .

3. Output DB[x],ck,h.

Figure 4: SinglePass algorithms.

150 lines of C code, as an extension to the existing PIR frame-



Figure 5: Comparison of end-to-end time for varying number
of queries over a database of one million 512-byte elements
(log scale).

work from Checklist [21]. Our code can be found in [1]. We
compare SinglePass against Checklist [21], TreePIR [23] and
MIR [30], three novel state-of-the-art client preprocessing PIR
schemes, for a variety of parameters. Benchmarks are all run
on an AWS EC2 instance of size t2.2xlarge, on a single thread.
We recall that previous works have dependency on the security
parameter for preprocessing and client storage.3

Here, along with the state-of-the-art client-preprocessing
schemes, we also include comparisons against the state-of-
the-art two-server PIR scheme with no preprocessing from
[6, 12, 16], which we will denote as DPF.

The choice of parameters picked throughout the section
reflect a sample use case of a private encyclopedia service,
where a user would browse a private encyclopedia website,
access a couple of articles privately, and afterwards leave
and delete the local state. In this scenario, fast preprocessing
is crucial so that the user does not have to wait too long to
access the website. In our evaluations we include two sets of
benchmarks.

First, we measure end-to-end time of SinglePass compared
to end-to-end time of Checklist, TreePIR, MIR and DPF for a
database of one million 512-byte elements. This is shown in
Figure 5. (The line of TreePIR is hidden underneath the line
for Checklist.) From various database sizes and entry sizes
we found for encyclopedias online (up to two million entries
of size 512 to 2048 bytes) we arbitrarily picked this one
to be representative. We however note that the trend seen in
Figure 5 holds across any set of parameters. This is because of
the asymptotic improvement of a factor of λ in preprocessing
time. Results show that whereas other schemes start beating
DPF after 50+ queries, the total end-to-end time of SinglePass
is already better even when performing two queries.

3In fact, because of this, as aforementioned in Section 1, even for a
databases of 1 billion 1024 byte elements, our scheme concretely achieves
less client storage than some of these scalable schemes, despite its worst
asymptotics, for the same Q [23, 30, 34].

Second, in Figure 6, we provide a more fine-grained com-
parison of preprocessing time, per-query time, and bandwidth
between SinglePass, Checklist,TreePIR and MIR, through the
whole range of parameters mentioned above (We do not in-
clude DPF since it does not have preprocessing.) The pa-
rameter choices reflect our envisioned use case of a private
encyclopedia service. For these tests, we normalize the tests
by client storage. By this, we mean that we run the tests for
MIR,TreePIR and Checklist, and subsequently run SinglePass
picking the smallest Q such that our client storage does not
exceed the storage of the previous schemes—therefore we
can benchmark the performance of the schemes when given
similar client resources. In this scenario we observe that Sin-
glePass provides very favorable trade-offs in preprocessing
time and query time, at a modest bandwidth cost with respect
to MIR and Checklist. In Appendix B, we also include tests
normalized by query time. In those tests, all schemes have
very similar query times, and the other metrics vary. We dis-
cuss this further in Appendix B.

6 Extending SinglePass to Dynamic Databases

In this section we study how to slightly modify SinglePass
to support updates in the database. In particular we wish to
support edits, additions and deletions. Recall that SinglePass’s
hint consists only of a single (partitioned) permutation of
the database. Therefore we can direclty update the hint data
structure in O(1) time, without any other additional overhead.
Below, we give some intuition of how our updates work, and
subsequently provide formal algorithms.

Edits/Deletions. To edit the value of index x = (i, j) ∈ [[[Q]]]×
[[[N/Q]]], we compute k = p−1

i ( j) and this indicates which hint
contains x, hk. Then, given the original preprocessed value
at index x, denoted DB[x]old , and the new value at x, denoted
DB[x]new, the client can updates the hint by simply setting
hk = hk⊕DB[x]old ⊕DB[x]new, after computing k. Since all
these steps take constant time, editing takes constant time. We
also define a deletion to be an edit where DB[x]new equals 0
(or a special delete value).

Additions. We can support additions in the end of the array
in two steps. We first sample a new permutation pQ, and then
let k = p−1

Q (N). We let hk = DB[N]. Note that we only have
to sample the permutation once for every N/Q additions, and
sampling the permutation takes O(N/Q) time. Every subse-
quent addition takes O(1) time, since we just compute the
exclusive or of this element and the appropriate hint (which
we find by checking the inverse), giving us constant amor-
tized time for addition. This can be deamortized by sampling
a constant part of the permutation at each step.

The attentive reader will notice that the addition operation
introduces a new permutation, and therefore a new element
being sent on each query which may be out of bounds for the
current database. The server can just choose to ignore indices
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Figure 6: Comparison of benchmarking over preprocessing time, query time, bandwidth and client storageover increasingly sized
static databases (x-axis) for different element sizes (on a log scale).



out of bounds. Furthermore, every N/Q additions increase
the bandwidth by an additive factor of 2w, by increasing our
value of Q to be Q+1. After N additions, this means that our
new bandwidth will be 2Q rather than our initially selected Q.
After N additions, one can re-run the preprocessing step to
again tune Q to a desired value while maintaining a constant
update cost (since this is performed only every N updates).
This step can also be de-amortized by running a constant
amount of steps at each update. We give the full pseudocode
for Edit and Add in Figure 7.

Previous work on dynamic PIR. Previous works in pre-
processing PIR do not handle updates naturally in constant
time. At a high level, this is because their preprocessing step
involves sampling around λ

√
N independent subsets of [[[N]]].

Updates then require checking each subset. To address this,
previous works such as Checklist [21] and TreePIR [23] bor-
rowed techniques from hierarchical ORAM [13] that sup-
port amortized O(logN) time updates by incurring overheads
in both query time and client storage (this approach is also
known as a waterfall update approach). The transformation
from a static preprocessing PIR scheme into an updatable
one in this manner requires two steps, a transformation from
standard PIR to keyword PIR with indices as the keys [8] and
a blackbox application of this waterfall preprocessing data
structure approach to this keyword PIR. We cannot apply the
waterfall approach directly to standard PIR since it involves
storing a logarithmic number of databases of exponentially-
increasing size , and as such we need a way to maintain the
original indices.4 Each of these steps adds some bandwidth
overhead, communication, client and server time. Other ap-
proaches have been studied [25] but also incur significant
overheads in comparison to the static preprocessing scheme.

Evaluation for dynamic databases. We implement the up-
date algorithms for SinglePass in an additional 200 lines of
Go code and 50 lines of C code. We run a complete test suite in
Figure 8, with the same parameters as we picked in Section 5.
All other dymamic schemes that we use in our comparison
use the waterfall update approach as we discussed before.
Unlike in Section 5, we do not include the DPF scheme in
our benchmarks, since these use cases assume the client will
run the preprocessing only once, or at least not very often.
This could reflect a mobile app for the private encyclopedia
service envisioned in Section 5, where it is fine to use some
permanent storage. In this scenario, minimizing update times
is crucial so as to impose as small as a burden as possible on
the servers.

In Figure 8, we show the update time for a batch of 500
updates. Notice that while Checklist’s update time scales log-
arithmically with the database size, the update time for Sin-
glePass remains basically the same across all database sizes.
Preprocessing time, query time and query bandwidth, fol-
low mostly the same patterns identified in Section 5, with an

4The full approach is discussed in detail in the Checklist paper [21].

Edit(ck,h, i,DB[i]old ,DB[i]new):

1. Compute i0, i1 such that i = (⌈N/Q⌉)i0 + i1.

2. Let k = p−1
i0 (i1).

3. Let hk = hk⊕DB[i]old⊕DB[i]new.

Add(ck,h,w):

1. Let j = N mod (N/Q).

2. If j = 0 :

(a) Sample pQ = Permute([[[N/Q]]]).

(b) Let Q = Q+1.

3. Let k = p−1
Q−1( j).

4. Let hk = hk⊕w.

5. Let N = N +1.

Figure 7: Update Operations for SinglePass.

improvement in the comparative bandwidth for SinglePass,
because of the overhead incurred when mapping Checklist to
its updatable version. For databases of up to 1 million ele-
ments, we notice that SinglePass has bandwidth which is at
most 1.5× Checklist’s bandwidth, while maintaining a query
time reduction of roughly 20× on average across all experi-
ments and a preprocessing time speed-up of up to 100×. As
in Section 5, we pick Q for SinglePass accordingly, in order
to benchmark both SinglePass and Checklist using compa-
rable client storage. We include tests that fix query time in
Appendix B.

In Table 2, we also provide a benchmark of SinglePass
and Checklist for the blocklist application studied in Checklist,
with the parameters picked in the original Checklist paper:
a database of 3 million 32-byte elements that is updated in
batches of 500. Our scheme achieves over 100× speed-up
in preprocessing, over 47× speed-up in query time, an ap-
proximate 2× saving in bandwidth and a 19× faster update
time. The saving stems primarily from not requiring a depen-
dency on the security parameter for the preprocessing and
storage. Because our client storage for using the same set
size as Checklist is much smaller, we can tune Q such as to
use about the same storage. For the scenario benchmarked in
Table 2, this amounts to a set size of Q = 10. This is how the



λ saving in client storage and preprocessing can translate into
improved query time. The update time discrepancy of about
20× is due to the O(logN) additional overhead. 5
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A Proof of Main Theorem

In this section, we prove Theorem 4.1

Proof. Complexities: For Hint, by Lemma 2.1, we can sam-
ple the permutations needed in O(N) time, and then use ran-
dom access to compute the hints in O(N ·w) time. Query to
x = (i∗, j∗) has to find the index ind such that pi∗(ind) = j∗.
Notice that given the expanded format of each permutation
and its inverse, this can be done in O(1) time, by simply tak-
ing p−1

i∗ ( j∗).6 After, we just have to index pi(ind) for i ∈ [[[Q]]]
which takes O(Q) time, and send that to the server (with a
symmetric number of operations to generate the refresh hint).

6We can store the inverse along with the permutation with constant over-
head. In practice, for some scenarios, it might be beneficial to not store
the inverse in order to save space. In those cases, the client time would be
O(Q+N/Q). This is the only place where the inverse is used for that static
scheme. For the updatable scheme, we require the inverse to get O(1) update
operations.



Answer only reads the array of size Q and accesses each el-
ement indexed by the array. Assuming random access costs
constant time, this also runs in O(Q) time. Finally, Recon-
struct does O(Q) operations to update the hint parities of the
elements used (from the above complexities, only O(Q) el-
ements are sent/received on each query. The client storage
is the hint it receives from Hint (and whatever refresh op-
erations done on it, which don’t increase its size) plus the
expanded client keys (N indices of [[[N]]], therefore, N logN
space). Alternatively, the client can store only the seed used
for the permutations and expand them at query time, but by
Lemma 2.1 this would then require Query to run in O(N)
time.

Correctness: Follows by construction (we reiterate correct-
ness is modeled for honest servers only).

Note that after a correct preprocessing, Server 0 sends back
to the client (ck,h) = ({pi}i∈Q,{h j} j∈⌊N/Q⌋ where each pi
is a pseudorandom permutation of [1,⌊N/Q⌋] and each h j =⊕

i∈Q DB[pi( j)].
Then, for a query to x=(i∗, j∗), first define ind to be the ele-

ment of [[[N/Q]]] such that pi∗(ind) = j∗. If Server 1 responds to
q1 honestly, then it is clear to see that the client’s output for the
query is

(⊕
i∈Q,i̸=i∗ DBi[pi(ind)]

)
⊕ hind = DBi∗ [pi∗(ind)] =

DBi∗ [ j∗] = DB[x].
For a subsequent query, what is left to show is that for every

following query, for every j ∈ [[[N/Q]]], h j =
⊕

i∈[[[Q]]] DBi[pi( j)]
after the swaps. Notice that for each swap between pi(k) and
pi(v), we let hk = hk⊕DBi[pi(k)]⊕DBi[pi(v)] therefore ef-
fectively removing the old element in this hint’s position from
the xor and adding the new one (this happens symmetrically
on hv). Then, at the beginning of the next query, each hint h j
is still equal to

⊕
i∈[[[Q]]] DBi[pi( j)]. Then, by our argument for

the first query, correctness holds as well (and holds for any
T ).

Privacy: We consider the privacy of each server separately
according to the games defined in Figure 2.

Server 0: To show privacy for Server 0 for any λ ∈ N and
any N(λ),T (λ), for any PPT adversary A(λ),

Pr
[
PrivGame0

A ,λ,N,T → 1
]
≤ 1/2+neg(λ).

Note that in PrivGame0, which models the view of Server
0, Server 0 has access to both the client keys, and then for
each query t ∈ T , it gets access to the corresponding q0 for
that query, which we will denote here as qt

0.
Notice that as long as each pi is bijection from [[[N/Q]]] to

[[[N/Q]]], then each pi(ri) is uniform and independent of the
query being made, since by definition each ri is uniform and
independent of the query being made. Since for every step,
the new swapped pi is still a bijection, then this holds for
any timestep t. So each q0 is a set of elements in [[[N/Q]]]
independent of the query being made. Then, since each step
q0 is independent of the query being made, it follows that for
any pair x0,x1, even conditioned on seeing the preprocessing,

an adversary acting as Server 0 cannot distinguish between
b = 0 and b = 1 on the PrivGame0 experiment. If we use
pseudorandomness output by a PRG with security parameter
λ rather than true randomness to sample each ri, we incure
a negligible probability of distinguishing, directly from the
PRG security definition. Finally, we get that,

Pr
[
PrivGame0

A ,λ,N,T → 1
]
≤ 1/2+neg(λ).

Server 1: To show privacy for Server 1 for any λ ∈ N and
any N(λ),T (λ), for any PPT adversary A(λ),

Pr
[
PrivGame1

A ,λ,N,T → 1
]
≤ 1/2+neg(λ).

Notice that here, the adversary acting as Server 1 does not
get access to the preprocessing (since it is run by Server 0),
but it does see q1 for every timestep t ∈ T .

Here, we use Theorem A.1. Note that Experiment 1 in
Theorem A.1 is exactly equivalent to our PIR query at each
timestep. Then, by Theorem A.1, we can replace each q1
shown to Server 1 by uniform random elements of [[[N/Q]]].
This implies that for any x0,x1 picked by the adversary as
inputs from PrivGame1, the outputs at each timestep will
be identically distributed and indistinguishable when using
true randomness. Then, we can replace the randomness used
by pseudorandomness sampled through a PRG with security
parameter λ (which is what we do in our scheme), and it fol-
lows by the PRG security that this would be computationally
indisinguishable from before. Then, it follows that:

Pr
[
PrivGame1

A ,λ,N,T → 1
]
≤ 1/2+neg(λ).

■

A.1 Server 1 Indistinguishability

Theorem A.1 (Query indistinguishability ). For any adaptive
adversary A , Experiment 0 and Experiment 1, as defined in
Figure 9, are perfectly indistinguishable.

Proof. We prove this through a series of hybrid experiments.
Note that at each step t, the adversary can pick inputs and
then see the outputs for that step before deciding its inputs
for the next step. We start from H0, in which at each step,
rather than simply sampling uniformly as in Experiment 0,
the experiment samples Q independent permutations of [[[N/Q]]]
uniformly. and behaves by using the adversary inputs to index
these permutations. Since they permutations are uniformly
and independently sampled, these are indistinguishable. We
expand on this below.



Experiment 0

Public Parameters: N,Q ∈ N, assume Q|N.

Experiment:

1. For t ∈ {0, . . .T −1} :

(a) Adversary outputs xt = (it , jt) ∈
([[[Q]]]× [[[N/Q]]]).

(b) Output (yt
1, . . . ,y

t
Q)

$← [[[N/Q]]]Q.

Experiment 1

Public Parameters: N,Q ∈ N, assume Q|N.

Experiment:

1. Sample P1
1 , . . .P

1
Q

$←
(
PN/Q

)Q.

2. For t ∈ {0, . . . ,T −1} :

(a) Adversary outputs xt = (it , jt) ∈
([[[Q]]]× [[[N/Q]]]).

(b) Find ind s.t. Pt
it (ind) = jt .

(c) Output S = (vt
1, . . . ,v

t
Q) where:

• vt
i = Pt

i (ind) if i ̸= it .

• vt
i

$← [[[N/Q]]] if i = it .

(d) Let {ri}i∈Q
$← [[[N]]]Q.

(e) For i ∈ Q, let Pt+1
i = Pt

i except we swap the
values of Pt

i (ri) and Pt
i (ind) for i ̸= it .

Figure 9: Experiments

Experiment H0

Public Parameters: N,Q ∈ N, assume Q|N.

Experiment:

1. For t ∈ {0, . . .T −1} :

(a) Sample (Pt
1, . . . ,P

t
Q)

$← (PN)
Q.

(b) Adversary outputs xt = (it , jt) ∈
([[[Q]]]× [[[N/Q]]]).

(c) Find ind such that Pt
it (ind) = jt .

(d) Output (vt
1, . . . ,v

t
Q) where:

▶

Experiment H0 (cont)

• vt
i = Pt

i (ind) if i ̸= it .

• vt
i

$← [[[N/Q]]] if i = it .

Experiment 0 and Experiment H0 are indistinguishable: For
each step, we sample fresh permutations, so consider each
step independently. Now, consider the distribution of vt

i for
i ∈ Q, t ∈ T . Since our permutations are sampled uniformly,
and each Pt

i for i ̸= it is independent from Pit , every Pi(ind)
is uniformly distributed over [[[N/Q]]], for i ∈ Q, i ̸= it . Then,
it follows that for i ∈ Q, i ̸= it , vt

i is uniformly distributed.
By definition v1

it is also uniformly distributed. Then, for any
step t ∈ [[[T ]]], any i ∈ [[[Q]]], vt

i is distributed uniformly. Since the
outputs of both experiments have the same distribution at each
step, Experiment H0 and Experiment 0 are indistinguishable.

Then, consider the following hybrid:

Experiment H1

Public Parameters: N,Q ∈ N, assume Q|N.

Experiment:

1. For t ∈ {0, . . .T −2} :

(a) Sample (Pt
1, . . . ,P

t
Q)

$← (PN)
Q.

(b) Adversary outputs xt = (it , jt) ∈
([[[Q]]]× [[[N/Q]]]).

(c) Output (yt
1, . . . ,y

t
Q) where yt

i = Pt
i (x

t).

2. Sample (rT−2
1 , . . .rT−2

Q )
$← ([[[N/Q]]])Q.

3. Let PT−1
i = PT−2

i except we swap the values of
PT−2

i (rT−2
i ) and PT−2

i (xT−2) for each i ∈ [[[Q]]], i ̸=
it .

4. Adversary outputs xT−1 = (iT−1, jT−1).

5. Find ind s.t. PT
iT−1(ind) = jT−1.

6. Output (vT−1
1 , . . . ,vT−1

Q ) where:

• vT−1
i = PT−1

i (ind) if i ̸= iT−1.

• vT−1
i

$← [[[N/Q]]] if i = iT−1.

.

Notice that for the first T −1 steps of the experiment (itera-
tions 0 through T−2), it runs exactly as H0, so up to that point
they are indistinguishable. The only difference is how we sam-



ple each PT−1
i . In Experiment H0, it is sampled uniformly at

random, whereas in Experiment H1, it is sampled by taking
each PT−2

i , swapping the only element shown of PT−2
i with a

uniform random point and denoting this new permutation as
PT−1

i . Notice that, by the indistinguishability of the Show and
Shuffle experiment (Lemma 3.1), we can see that each the set
of PT−1

i in both experiments is identically distributed, since
this is exactly the experiment proven in Lemma 3.1. Then, it
follows directly that Experiment H0 and Experiment H1 are
indistinguishable.

Now, define experiment Hk as follows, k ∈ {1, . . . ,T −1}:

Experiment Hk

Public Parameters: N,Q ∈ N, assume Q|N.

Experiment:

1. For t ∈ {0, . . .T − k−1} :

(a) Sample (Pt
1, . . . ,P

t
Q)

$← (PN)
Q.

(b) Adversary outputs xt = (it , jt) ∈
([[[Q]]]× [[[N/Q]]]).

(c) Output (yt
1, . . . ,y

t
Q) where yt

i = Pt
i (x

t).

2. For t ∈ {T − k,T −1} :

(a) Sample (rt−1
1 , . . .rt−1

Q )
$← ([[[N/Q]]])Q.

(b) Let Pt
i = Pt−1

i except we swap the values of
Pt−1

i (rt−1
i ) and Pt−1

i (indt−1) for each i ∈ [[[Q]]].

(c) Adversary outputs xt = (it , jt).

(d) Find indt s.t. Pt
it (indt) = jt .

(e) Output (vt
1, . . . ,v

t
Q) where:

• vt
i = Pt

i (ind) if i ̸= it .

• vt
i

$← [[[N/Q]]] if i = it .

.

Notice that for every k, we can show that Hk is indistinguish-
able from Hk−1 by the same argument above. The only differ-
ence between Hk and Hk−1 is the k−th step, where instead of
sampling a fresh random permutation at step T − k+1, we
use a swapped version of the permutation sampled in the last
step. Since distinguishing between Hk and Hk−1 is exactly
equivalent to breaking the Show and Shuffle experiment, we
can conclude that this holds for every k ∈ {1, . . . ,T −1}.

We define HT−1 explicity below. After T − 1 hybrids
(where each Hk−1 and Hk are indistinguishable by the Show
and Shuffle lemma), we only sample a permutation once, and
swap at each step thereafter (rearranged for ease of reading):

Experiment HT−1

Public Parameters: N,Q ∈ N, assume Q|N.

Experiment:

1. Sample (P0
1 , . . . ,P

0
Q)

$← (PN)
Q.

2. Adversary outputs x1 ∈ [[[N]]].

3. For t ∈ {0, . . . ,T −1} :

(a) Adversary outputs xt = (it , jt) ∈
([[[Q]]]× [[[N/Q]]]).

(b) Find indt s.t. Pt
it (indt) = jt .

(c) Output (vt
1, . . . ,v

t
Q) where:

• vt
i = Pt

i (ind) if i ̸= it .

• vt
i

$← [[[N/Q]]] if i = it .

.

(d) Sample (rt
1, . . .r

t
Q)

$← ([[[N/Q]]])Q.

(e) Let Pt+1
i = Pt

i except we swap the values of
Pt

i (r
t
i) and Pt

i (indt) for each i ∈ [[[Q]]].

Notice that Experiment HT−1 and Experiment 1 are the
same, except for the reordering of when each P1

i is sampled
and therefore they are indistinguishable. We conclude that
Experiment 1 and Experiment 0 are perfectly indistinguish-
able. ■

B More Benchmarks

In this section, we include benchmarks for the same tests
as those already performed, however, normalizing by num-
ber of operations performed by the server online, or in other
words, the number of elements the online server has to read.
In this case, for both static and dynamic cases, we will see that
SinglePass achieves 50-100x better preprocessing time and
approximately 80x better storage across the board, with simi-
lar query time. The price we pay is that the query bandwidth
with comparison to MIR and Checklist is much increaased.
However, with query sizes hovering around 150KB-3MB, we
find that it still is not an impediment for usage, since 3MB is
the size of an average web page. We provide the charts in Fig-
ure 10 and Figure 11. As seen in Section 5, we can decrease
query bandwidth and query time by using more storage.



512-byte word databases 1024-byte word databases 2048-byte word databases

Figure 10: Comparison of benchmarking over preprocessing time, query time, bandwidth and client storageover increasingly
sized static databases (x-axis) for different element sizes (on a log scale) when fixing query time.



512-byte word databases 1024-byte word databases 2048-byte word databases

Figure 11: Comparison of benchmarking over preprocessing time, query time, bandwidth, client storage and update time over
increasing updatable databases sizes (x-axis) for different element sizes (on a log scale) for fixing query time.
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