
PATCHCURE: Improving Certifiable Robustness, Model Utility, and Computation
Efficiency of Adversarial Patch Defenses

Chong Xiang1, Tong Wu1, Sihui Dai1, Jonathan Petit2, Suman Jana3, Prateek Mittal1
1Princeton University, 2Qualcomm Technologies, Inc., 3Columbia University

Abstract

State-of-the-art defenses against adversarial patch attacks can
now achieve strong certifiable robustness with a marginal
drop in model utility. However, this impressive performance
typically comes at the cost of 10-100× more inference-time
computation compared to undefended models – the research
community has witnessed an intense three-way trade-off be-
tween certifiable robustness, model utility, and computation
efficiency. In this paper, we propose a defense framework
named PATCHCURE to approach this trade-off problem.
PATCHCURE provides sufficient “knobs” for tuning defense
performance and allows us to build a family of defenses:
the most robust PATCHCURE instance can match the per-
formance of any existing state-of-the-art defense (without
efficiency considerations); the most efficient PATCHCURE
instance has similar inference efficiency as undefended mod-
els. Notably, PATCHCURE achieves state-of-the-art robust-
ness and utility performance across all different efficiency
levels, e.g., 16-23% absolute clean accuracy and certified ro-
bust accuracy advantages over prior defenses when requiring
computation efficiency to be close to undefended models.
The family of PATCHCURE defenses enables us to flexibly
choose appropriate defenses to satisfy given computation
and/or utility constraints in practice.1

1 Introduction

The adversarial patch attack [4] against computer vision mod-
els overlays a malicious pixel patch onto an image to induce
incorrect model predictions. Notably, this attack can be real-
ized in the physical world by printing and attaching the patch
to real-world objects: images/photos captured from that phys-
ical scene would become malicious. The physically realizable
nature of patch attacks raises significant concerns in security
and safety-critical applications like autonomous vehicles [14],

1Our source code is available at https://github.com/
inspire-group/PatchCURE.

face authentication [49], security surveillance [62], and thus,
motivates the design of defense mechanisms.

Among all the efforts in mitigating adversarial patch at-
tacks, research on certifiably robust defenses stands out with
remarkable progress [7, 8, 25, 26, 44, 54, 55]. These defenses
aim to provide provable/certifiable robustness guarantees that
hold for any attack strategy within a given threat model, in-
cluding attackers with full knowledge of the defense algo-
rithms and model details. The property of certifiable robust-
ness provides a pathway toward ending the arms race between
attackers and defenders. Notably, the state-of-the-art certifi-
ably robust defenses [55] now can achieve high certifiable
robustness while only marginally affecting the model utility
(e.g., 1% accuracy drop on ImageNet [12]).

However, the impressive robustness and utility perfor-
mance comes at the cost of overwhelming computation over-
heads. Many defenses [7, 26, 44, 55] require 10-100× more
inference-time computation compared to undefended models,
and this makes them computationally prohibitive for real-
world deployment. On the other hand, there exist efficient
defenses [34, 54, 67] with small computation overheads, but
they all suffer from a significant drop in certifiable robust-
ness and model utility (e.g., 30+% absolute drop from the
state-of-the-art). The research community has witnessed an
intense three-way trade-off between certifiable robustness,
model utility, and computation efficiency [59].

Unfortunately, there is no existing method to systemati-
cally study this three-way trade-off problem. State-of-the-art
(inefficient) defenses, e.g., PatchCleanser [55], do not have
a design point to achieve similar computation efficiency as
undefended models. Efficient defenses, e.g., PatchGuard [54],
lack approaches to trade part of their efficiency for better util-
ity and robustness performance. In this paper, we make a first
attempt to address these challenges: we propose a defense
framework named PATCHCURE to consolidate Certifiable
Robustness, Model Utility, and Computation Efficiency.

Contributions. The main contribution of PATCHCURE
is identifying a key factor of the three-way trade-off prob-
lem: the model receptive field, i.e., the image region each

https://github.com/inspire-group/PatchCURE
https://github.com/inspire-group/PatchCURE

…

• Receptive field size

• Model capacity

• Model utility

• Certifiable robustness

• Computation efficiency

Fewer SRF layers and

more LRF layers:

(Reduced to a pure LRF defense)

(Reduced to a pure SRF defense)

II. PatchCURE

 for trade-off

SRF (small receptive

field) layer

LRF (large receptive

field) layer

Single model

feedforward

Multiple model

feedforward

Legend

Secure

operation

layer

“Stop”

Input

Image

SRF

Sub-model
(single call)

Feature Map
Secure Operation

with LRF Sub-model
(multiple calls)

I. PatchCURE

 inference

Robust

Prediction

(only partially

corrupted)

Figure 1: PATCHCURE overview. I. PATCHCURE inference (Section 3.2): Given an input image, we first call an SRF (small
receptive field) sub-model once to extract an intermediate feature map. The use of SRF ensures that only part of the features is
corrupted. Next, we leverage secure operation, which typically involves multiple calls to an LRF (large receptive field) sub-model,
for final predictions. II. PATCHCURE for the trade-off problem (Section 3.5). We can adjust the combination of SRF and
LRF layers to balance the three-way trade-off. As we use fewer SRF layers and more LRF layers, the defense model (with a fixed
number of total layers) normally has larger receptive fields, larger model capacity, better model utility, and higher certifiable
robustness, but poorer computation efficiency.

extracted feature is looking at. We observe that most existing
defenses can be categorized as either small receptive field
(SRF) defenses or large receptive field (LRF) defenses. SRF
defenses [7, 25, 44, 54] use a model with SRF for feature ex-
traction so that there is only a limited number of corrupted
features that marginally interfere with the prediction. In con-
trast, LRF defenses [32,55] aim to directly mask out the entire
patch from the input images and then use a high-performance
model with LRF for final predictions. Interestingly, SRF tech-
niques criticize LRF defenses for excessive computation over-
heads (LRF techniques require multiple model predictions
on different masked images) while LRF techniques criticize
SRF defenses for poor model utility (SRF limits the informa-
tion received by each feature and hurts model capacity). In
PATCHCURE, we propose a unified generalization of SRF
and LRF techniques.

PATCHCURE: a framework that unifies SRF and
LRF techniques. We provide an overview of PATCHCURE
in Figure 1 (see the figure caption for more details). A
PATCHCURE defense has three modules: an SRF sub-model,
an LRF sub-model, and a secure operation “layer" (an abstract
layer representing a robust prediction algorithm/procedure,
e.g., the double-masking procedure from PatchCleanser [55]).
To make a prediction on an input image (upper left of the
figure), PATCHCURE first uses the SRF sub-model to ex-
tract intermediate features and then leverages the secure op-
eration layer, together with multiple calls to the LRF sub-
model, for a final robust prediction. To balance the three-way

trade-off (right of the figure), PATCHCURE adjusts the por-
tion/combination of SRF and LRF layers within the end-to-
end defense model.

State-of-the-art efficient defense instances. Using our
PATCHCURE framework, we can build state-of-the-art effi-
cient defenses (with similar inference speed as undefended
models). In doing so, we first design a ViT-SRF architec-
ture (a ViT [13] variant with SRF) to instantiate the SRF
sub-model. Next, to minimize computation overheads, we
instantiate a lightweight LRF sub-model, which is composed
of a linear feature aggregation followed by a classification
head. Finally, we use the double-masking algorithm [55] as
the secure operation. In Figure 2, we demonstrate that the
most efficient instances of PATCHCURE (top stars) have sim-
ilar inference speed as undefended ViT (cross), while signifi-
cantly outperforming prior efficient defenses (top triangles)
in terms of certifiable robustness (more than 18% absolute im-
provement). Moreover, these efficient defense instances even
outperform all but one existing inefficient defense (bottom
squares/triangles).2

A systematic way to balance the three-way trade-off.
Furthermore, we demonstrate that the PATCHCURE frame-
work provides sufficient knobs to balance the three-way
trade-off. We systematically explore different defense pa-
rameters and plot a family of PATCHCURE defenses in
Figure 2. As shown in the figure, PATCHCURE instances

2For simplicity, we did not plot the model utility performance in Figure 2;
we will demonstrate PATCHCURE’s superiority in model utility in Section 4.

0 10 20 30 40 50 60
Certified robust accuracy (%)

0
20
40
60
80

100
120
140
160
180
200

Th
ro

ug
hp

ut
 (s

−1
)

PatchCURE (ours)
PatchCleanser/PatchCURE
DRS+ViT

PatchGuard
BagCert
DRS

CBN
ViT

Figure 2: Certified robust accuracy and inference through-
put (img/s) for different defenses on ImageNet-1k [12]: (i)
our PATCHCURE instances with different settings; (ii) Patch-
Cleanser [55] – also a special instance of PATCHCURE; (iii)
DRS+ViT, including Smoothed ViT [44], ECViT [7], and
ViP [26]; (iv) PatchGuard [54]; (v) BagCert [34]; (vi) De-
Randomized Smoothing (DRS) [25]; (vii) Clipped BagNet
(CBN) [67]; (viii) undefended ViT [13]. Certified robustness
considers one 2%-pixel square patch anywhere on the image.

(stars) can easily bridge the robustness gap between the
most efficient PATCHCURE (top stars) and the state-of-the-
art PatchCleanser [55] (pentagon; also a special instance of
PATCHCURE as discussed in Section 3). Moreover, we note
that PATCHCURE also achieves the best robustness perfor-
mance (and utility performance) across all different efficiency
levels. With PATCHCURE, we can flexibly build the optimal
defense that satisfies certain computation efficiency or model
utility requirements.

We summarize our contributions as follows.

1. We propose a PATCHCURE defense framework that uni-
fies disparate SRF and LRF techniques for approaching
the three-way trade-off problem.

2. We designed a ViT-SRF architecture to instantiate effi-
cient PATCHCURE defenses and achieve 18+% absolute
robustness improvements from prior efficient defenses.

3. We experimentally demonstrate that PATCHCURE pro-
vides sufficient knobs to balance robustness, utility, and
efficiency, and also achieves state-of-the-art robustness
and utility performance across different efficiency levels.

2 Preliminaries

In this section, we formulate the research problem, discuss
the important concept of model receptive fields, and present
an overview of existing SRF and LRF defense techniques.

2.1 Problem Formulation
In this subsection, we detail image classification models, ad-
versarial patch attacks, certifiable robustness, and three per-
formance dimensions studied in the trade-off problem.

Image classification models. In this paper, we study image
classification models. We let X ⊂ [0,1]H×W×C denote the
input image space: H,W,C correspond to the height, width,
and number of channels of the image; [0,1] is the range of
normalized pixel values. We next denote the label space as
Y = {0,1, · · · ,N−1}, where N is the total number of classes.
Finally, we denote an image classification model as M : X →
Y , which maps an input image x ∈ X to its prediction label
y ∈ Y .

We further use F ∈ RH ′×W ′×C′ to denote the space of the
intermediate feature map. We will overload the notation M as
(1) a feature extractor that maps an input image to intermedi-
ate features M0 : X → F , or (2) a classifier that makes pre-
dictions based on the intermediate feature map M1 : F → Y .

Adversarial patch attack. The adversarial patch attack [4]
is a type of test-time evasion attack. Given a model M, an
image x, and its correct label y, the attacker aims to generate an
adversarial image x′ ∈A(x)⊂X satisfying certain constraints
A to induce incorrect predictions M(x′) ̸= y. The patch attack
constraint A allows the attacker to introduce arbitrary pixel
patterns within one restricted image region (i.e., the patch
region); the patch region can be at any location chosen by the
attacker. This constraint threat model is widely used in prior
certifiably robust defenses [7, 25, 26, 34, 44, 54, 55, 67].

Formally, we use a binary pixel tensor r ∈ {0,1}H×W to
represent each restricted patch region: pixels within the region
are set to zeros, and others are ones. We next let R denote a
set of all possible patch regions r (e.g., patches at all different
image locations). Then, we can formalize the constraint as
AR (x) as {r⊙x+(1− r)⊙x′ | x,x′ ∈ X ,r ∈ R }, where ⊙
is the element-wise multiplication operator, and x′ contains
malicious pixels. When clear from the context, we drop R
and simplify AR as A .

Certifiable robustness. We study defense algorithms
whose robustness can be formally proved or certified. That
is, given an image x, its correct label y, and a patch attack
constraint AR , we aim to build a defense model M such that
we can certify that

∀x′ ∈ AR (x),M(x′) =M(x) = y (1)

In addition to the defense model M, we will also develop
a special certification procedure C : X × Y × P(AR) →
{True,False} to determine whether Equation 1 holds for
an image x, its label y, and threat model AR . Note that
the universal quantifier ∀ requires the certification proce-
dure C to account for all possible attackers within the threat
model AR , who could have full knowledge of the defense
algorithm and setup. This certification ensures that any ro-
bustness we claim will not be compromised by adaptive at-

Layer 𝟎 Layer 𝟏 Layer 𝟐

Figure 3: Illustration of model receptive field. For a convo-
lutional network with a kernel size of 3 and stride size of 1,
the blue cell in Layer 2 is affected by 3×3 cells in Layer 1
and 5×5 cells in Layer 0 (the model input).

tackers, which is a significant advantage over empirical de-
fenses [11, 18, 36, 37, 41, 52] without formal robustness guar-
antees.

Three performance dimensions. We will study the trade-
off problem between three performance dimensions. The first
is certifiable robustness, as discussed above. We will run the
certification procedure over all images of a labeled test dataset
and report certified robust accuracy as the fraction of images
for which the procedure C returns True. The second is model
utility – model accuracy on clean images without adversarial
patches, also termed as clean accuracy.The third is computa-
tion efficiency; we measure it via inference throughput – the
number of images a model can process within every second.

2.2 Receptive Fields of Vision Models

The receptive field of a vision model is the input image region
that each extracted feature is looking at, or is affected by; we
provide a visual example in Figure 3. A conventional vision
model first extracts features from different image regions
(with different focuses), and then aggregates all extracted
features and makes an informed prediction.

There has been a line of research studying the effect of
receptive field size on model performance [1, 3, 24, 30]. Nor-
mally, larger receptive fields lead to larger model capacity and
thus better model performance (as long as the model is well-
trained with enough data). For example, a convolutional net-
work like ResNet [20] usually has better performance when it
has deeper layers with larger receptive fields; the emerging
powerful Vision Transformer (ViT) [13] architecture allows
features in every layer to have a large/global receptive field of
the entire image. In this paper, we will demonstrate that the re-
ceptive field size also plays an important role in the three-way
trade-off problem for certifiably robust patch defenses.

2.3 Overview of SRF and LRF Defenses

In this subsection, we provide an overview of existing small
receptive field (SRF) and large receptive field (LRF) defense

techniques.
SRF defenses. The use of SRF was first explicitly dis-

cussed in PatchGuard [54]. Its key insight is that: using mod-
els with SRF for feature extraction can limit the number of
features that see (and hence, are affected by) the adversarial
patch. The maximum number of corrupted features p f can be
computed as

p f = ⌈(p+ r−1)/s⌉ (2)

where p is the patch size in the image space, r is the receptive
field size of the SRF model, s is the effective stride of the
model receptive field (i.e., the distance between the centers
of receptive fields of two adjacent features). The correctness
of this formula was proven in [54]. Next, an SRF defense per-
forms lightweight secure feature aggregation (e.g., clipping,
majority voting) on the partially corrupted feature map for
robust predictions. The idea of SRF has been shown effective
and adopted by many defenses [7, 25, 26, 34, 44, 67].

Strength: high efficiency. Since the secure aggregation op-
erates on the final feature map, its computation complexity
can be as low as a linear transformation layer. Therefore, the
computation of SRF defenses is dominated by the feedfor-
ward pass of the SRF model, which can be made as efficient
as standard CNN or ViT (see Section 3.3 for more details).

Weakness: poor utility. However, though the use of SRF
bounds the number of corrupted features, it also limits
the information received by each feature. As a result, the
model utility is affected. For example, the clean accuracy on
ImageNet-1k [12] reported in the original PatchGuard pa-
per [54] is only 54.6% while standard ResNet-50 [20] and
ViT-B [13] can achieve 80+% accuracy without additional
training data [19, 50].

LRF defenses. The key idea of LRF defenses is to re-
move the patch from the input image and then use a high-
performance LRF model to recover robust predictions. Its
most representative defense, PatchCleanser [55], proposed a
double-masking algorithm that applies different pixel masks
to the input image and analyzes model predictions (with LRF)
on different masked images to recover the correct predic-
tion. The intuition behind the masking defense is that: model
predictions on images with different masks usually have a
unanimous agreement on clean image (predictions are robust
to partial occlusions), but disagree when there is an adversar-
ial patch (when the patch is completely masked, the model
prediction changes to benign). We additionally provide pseu-
docode for the PatchCleanser [55] in Appendix B.

Strength: high utility&robustness. Since LRF defenses op-
erate on the input image, they are compatible with any high-
performance image classifiers (which usually have LRF). This
allows LRF defenses like PatchCleanser [55] to maintain a
very high model utility (e.g., 1% drops on ImageNet-1k from
vanilla ResNet and ViT) while achieving state-of-the-art cer-
tifiable robustness.

Weakness: low computation efficiency. The downside of
image-space operations of LRF defenses is that it normally

Table 1: Comparison for the SRF defense, the LRF defense,
and PATCHCURE

Technique Secure Operation Loc. Utility&Robustness Efficiency

SRF (e.g., [54]) Final (feature) layer Poor/Fair Good
LRF (e.g., [55]) Input (image) layer Good Poor

PATCHCURE (ours) Flexible Tunable Tunable

requires performing model feedforward multiple times on
different masked images. As a result, LRF defenses can easily
incur 10+ times more computation compared to undefended
models, making it impractical for real-world deployment.

In summary, SRF and LRF techniques are widely viewed
as two distinct approaches to building defenses with different
strengths and weaknesses [59]. In the next section, we will
discuss how PATCHCURE unifies these disparate SRF and
LRF techniques to approach the three-way trade-off problem.

3 PATCHCURE Framework

In this section, we discuss our PATCHCURE design. We
start with our defense insights and the full PATCHCURE
algorithm. We then elaborate on approaches for building SRF
models, discuss robustness certification, and conclude with
PATCHCURE’s instantiation strategy.

3.1 PATCHCURE Insights

Section 2.3 demonstrated a tension between certifiable ro-
bustness, model utility, and computation efficiency: existing
defenses with SRF or LRF techniques struggle to perform
well in all three dimensions. In Table 1, we summarize and
compare different properties of SRF and LRF techniques.
This table helps us identify a key factor of the three-way
trade-off problem, which inspires our PATCHCURE design.

Key factors in the trade-off problem. From Table 1, we
find that different receptive field sizes lead to different secure
operation locations (i.e., where the defense logic is applied
to) and eventually different defense properties. SRF defenses
(e.g., PatchGuard [54]) can operate on the final feature layer.
This design only requires SRF defenses to perform one ex-
pensive model feedforward; that is, their secure operation can
reuse the extracted feature map to achieve high computation
efficiency. However, the use of SRF hurts model utility and
robustness. On the other hand, LRF defenses (e.g., Patch-
Cleanser [55]) operate on the input image. This makes them
compatible with high-performance LRF models to achieve
high model utility (and robustness). However, image-space
defenses suffer from low efficiency because they need to per-
form multiple expensive end-to-end model feedforward passes
on different modified images (e.g., masked images).

PATCHCURE as a unified defense. To benefit from the
strengths of SRF and LRF defenses, we propose a unified

PATCHCURE defense that leverages both SRF and LRF tech-
niques (bottom row of Table 1). Recall our defense overview
in Figure 1. A PATCHCURE defense has three modules: an
SRF sub-model, an LRF sub-model, and a secure operation
layer/procedure that leverages the LRF sub-model. At the
inference time, we call the SRF sub-model once to extract
intermediate features and then activate the secure operation
with multiple calls to the LRF sub-models to remove cor-
rupted features for a robust final prediction. Notably, the SRF
component allows us to reuse the extracted intermediate fea-
ture map to save computation. In the meanwhile, the use of
SRF also ensures that only a limited number of features are
corrupted, so we can still use secure operation techniques like
double-masking algorithm [55] to remove corrupted features
for certifiable robustness (note that all intermediate features
are likely to be corrupted without the use of SRF [54]). Fur-
thermore, the use of LRF makes the end-to-end model have
large receptive fields so that we can retain high model utility.

3.2 PATCHCURE Algorithm

In this subsection, we discuss details of PATCHCURE algo-
rithm, which includes model construction, i.e., how to build
SRF and LRF sub-models, model inference, and robustness
certification procedures. We provide their pseudocode in Al-
gorithm 1.

Model construction (Lines 1-6). We build SRF and LRF
sub-models based on existing state-of-the-art models, which
we call base models. First, we select an off-the-shelf base
model architecture Mb (e.g., ViT [13]) and pick its kth back-
bone layer (e.g., the second self-attention layer in ViT) as
the splitting layer. Second, we split the model at this layer
into two sub-models using the SPLIT(·) procedure. We have
M0,M1 = SPLIT(Mb,k) s.t. M(x) =M1(M0(x)); M0 con-
tains layers with indices from 0 to k − 1 while M1 has
the remaining layers. Third, we keep the second sub-model
M1 unchanged as the LRF sub-model Mlrf =M1 (note that
vanilla models normally have LRF for high utility) and con-
vert the first sub-model M0 into an SRF sub-model Msrf =
TOSRF(M0,rf) with a receptive field size of rf. We will
discuss the details of TOSRF(·) in Section 3.3 – how to
build attention-based (e.g., ViT) and convolution-based (e.g.,
ResNet) SRF models with high computation efficiency. Fi-
nally, we conceptually insert a secure operation “layer" be-
tween the SRF sub-model and the LRF sub-model (recall
Figure 1). The secure operation layer represents a robust pre-
diction algorithm/procedure SO(·); its design choices include
the double-masking algorithm proposed in PatchCleanser [55]
and the Minority Reports algorithm [32]. We will focus on
the double-masking algorithm in this paper since it is the
state-of-the-art certifiably robust algorithm to recover cor-
rect predictions. We provide details of the double-masking
algorithm in Appendix B. We also discuss alternative secure
operation choices in Section 5.

Algorithm 1 PATCHCURE algorithm

Require: Base model Mb, splitting layer index k, SRF size
rf, secure operation algorithm SO(·) and its certification
procedure SO-CERT(·), secure operation parameters M ,
patch threat model AR

1: procedure PCURE-CONSTRUCT(Mb,k,rf)
2: M0,M1← SPLIT(Mb,k) ▷ Split model at kth layer
3: Msrf← TOSRF(M0,rf) ▷ Convert M0 to SRF
4: Mlrf←M1 ▷ Keep M1 as LRF
5: return Msrf,Mlrf
6: end procedure

7: procedure PCURE-INFER(x,Msrf,Mlrf,M)
8: f←Msrf(x) ▷ Extract SRF features
9: ŷ← SO(f,Mlrf,M) ▷ Secure operation on f

10: return ŷ
11: end procedure

12: procedure PCURE-CERTIFY(x,y,Msrf,Mlrf,M ,AR)
13: f←Msrf(x) ▷ Extract SRF features
14: A f

R ←MAP(Msrf,AR) ▷ To feature-space adversary

15: c← SO-CERT(f,Mlrf,M ,A f
R ,y) ▷ Certification

16: return c
17: end procedure

Model inference (Lines 7-11). Once we build the SRF
and LRF sub-models and decide on the secure operation algo-
rithm, the inference is straightforward. Given an input image
x, we first use the SRF model Msrf(x) to extract features
f =Msrf(x). Next, we activate the secure operation SO(·) on
the feature tensor for the final prediction: ŷ = SO(f,Mlrf,M).
The procedure SO(·) takes as inputs a feature/image tensor f,
an LRF model Mlrf, and any parameters M of the secure op-
eration algorithm, and outputs robust prediction labels ŷ ∈ Y .

Robustness certification (Lines 12-17). Given a clean
image x, we first extract features using the SRF model
f =Msrf(x). Next, we map the image-space adversary to the
feature-space adversary: the procedure MAP(·) uses Equa-
tion 2 to calculate the number of corrupted features p f based
on the adversarial patch size p in the input image, convert each
image-space patch region r to feature-space corruption region
r f accordingly, and then generate the feature-space adversary
threat model A f

R for further robustness analysis. Finally, we
call the robustness certification procedure of the secure opera-
tion algorithm on the feature tensor (with the feature-space
threat model): ŷ = SO-CERT(f,Mlrf,M ,A f

R ,y). The certifi-
cation procedure SO-CERT(·) takes as inputs a feature/image
tensor f, the LRF model Mlrf, the secure operation parame-
ters M used for the model inference, the feature-space threat
model A f

R , and the ground-truth label y ∈ Y , and outputs a
boolean variable b ∈ {True,False} indicating if the certifi-

Global Attention: attention across all 9 visual tokens

Local Attention: attention within each sub-group of

3 visual tokens, but no inter-group attention

Layer N

Layer N-1

Layer N

Layer N-1

Figure 4: Local attention: each square is a visual token.

cation succeeds, i.e., ŷ =Mlrf(f′) = y,∀f′ ∈ A f
R (f). We will

state and prove the correctness of our certification procedure
PCURE-CERTIFY(·) in Section 3.4.

3.3 Building SRF Models

In this subsection, we discuss the details of the TOSRF(·)
procedure – how to build SRF models upon off-the-shelf
LRF architectures. Since we take computation efficiency as a
major performance metric in this paper, we aim to build SRF
models with similar computation efficiency as vanilla LRF
models. We will discuss approaches for both attention-based
(e.g., ViT [13]) and convolution-based (e.g., ResNet [20])
architectures.

ViT-SRF – a ViT [13] variant. To build an attention-based
SRF model, we design a ViT variant named ViT-SRF. A
vanilla ViT [13] model leverages global attention across all
visual tokens to fine-tune visual features in each attention
layer: the top of Figure 4 illustrates a global attention exam-
ple where the attention operates across all 9 visual tokens.
The global attention makes each ViT feature have a large
(global) receptive field. As a result, even if the attacker only
corrupts one token, all tokens might be maliciously affected
and corrupted. To enforce SRF and avoid complete feature
corruption, we propose to use local attention over a subset
of visual tokens. At the bottom of Figure 4, we provide an
example where the attention operation is applied locally to
sub-groups of visual tokens (each sub-group has 3 tokens).
With this local attention operation, one corrupted token can
only affect tokens within the sub-group instead of all tokens.

Computation efficiency. The ViT-SRF model can achieve
similar computation efficiency as the vanilla ViT model. First,
the number of attention operations can be reduced by our
local attention operation. For example, the global attention
example in Figure 4 requires

(3·3
2

)
= 36 attention pairs where

the local attention only requires 3 ·
(3

2

)
= 9. On the other hand,

the local attention requires additional operations like reor-

ganizing tensor memory layout and adding/removing [CLS]
tokens. We will show that our implementation of ViT-SRF has
a similar overall inference speed as vanilla ViT in Section 4.

BagNet [3] – a ResNet [20] variant. To build convolution-
based SRF models, we leverage an off-the-shelf SRF archi-
tecture named BagNet [3]. BagNet is based on the ResNet-50
architecture [20]; it achieves SRF by reducing the kernel sizes
and strides of certain convolution and max-pooling layers to
ones. BagNet was originally proposed for interpretable ma-
chine learning and later adopted as a building block for patch
defenses (e.g., PatchGuard [54], BagCert [34]).

Computation efficiency. Small kernel sizes and strides in-
crease the size of the feature map as well as the overall com-
putation costs. As a result, BagNet requires more computation
than ResNet-50: we find that BagNet can be 1.5× slower than
ResNet in our empirical evaluation (Section 4). Nevertheless,
we still categorize BagNet as a computationally efficient SRF
model, since other convolution-based SRF models usually
incur more than 10× computation overheads.

Notes: other inefficient SRF models. We note that there
exist other inefficient SRF architectures [7, 25, 26, 44]. For
example, a popular SRF strategy is to use an ensemble of
vanilla classifiers: each classifier makes a prediction on a
cropped small image region; the final prediction is gener-
ated via majority voting. This strategy was first proposed in
De-randomized Smoothing [25] for ResNet, which incurs a
200+× slowdown. Later, this ensemble idea was adapted for
ViT [13] in Smoothed ViT [44], ECViT [7], and ViP [26] with
different tricks to improve computation efficiency; however,
these SRF models still require more than 10× more compu-
tation than vanilla ViT. In contrast, our ViT-SRF has similar
computation efficiency as vanilla ViT and BagNet only incurs
a 1.5× slowdown (Table 2 in Section 4).

3.4 Robustness Certification
In this subsection, we discuss the robustness certifica-
tion algorithm (PCURE-CERTIFY(·) in Algorithm 1). We
first discuss the correctness of two sub-procedures used
in PCURE-CERTIFY(·), i.e., MAP(·) and SO-CERT(·), and
then formally state and prove the correctness of our certifica-
tion algorithm in Theorem 1.

Sub-procedure MAP(·). Recall that MAP(·) uses Equa-
tion 2 (from Section 2.3) to calculate the maximum number of
corrupted features and convert an image-space threat model
AR to a feature-space threat model A f

R . A correctly imple-
mented MAP(·) procedure provides the following proposition.

Proposition 1 (Correctness of MAP(·)). Given a correctly
implemented MAP(·), an image-space threat model AR , an
SRF sub-model Msrf, an input image x, and the converted
feature-space threat model A f

R = MAP(Msrf,AR), we have:
for any adversarial image x′ ∈ AR (x), its corresponding ad-
versarial feature map f′ =Msrf(x′) is covered by the feature-

space threat model A f
R . Formally, we have ∀x′ ∈ AR (x), f′ =

Msrf(x′) : f′ ∈ A f
R (f), f =Msrf(x).

Sub-procedure SO-CERT(·). A correctly implemented
SO-CERT(·) ensures that the following proposition is true.

Proposition 2 (Correctness of SO-CERT(·)). Given a cor-
rectly implemented SO-CERT(·), an input tensor f, the model
Mlrf, the secure operation parameter M , the threat model A f

R ,

and the ground-truth label y, if SO-CERT(f,Mlrf,M ,A f
R ,y)

returns True, we have certifiable robustness. Formally,
we have SO-CERT(f,Mlrf,M ,A f

R ,y) = True =⇒ ∀f′ ∈
A f

R (f) : SO(f′,Mlrf,M) = y.

Certification procedure PCURE-CERTIFY(·). With the
two propositions discussed above, we can state and prove the
correctness of the certification procedure below.

Theorem 1. Given a clean image x, its ground-truth
label y, the PATCHCURE defense setting Msrf,Mlrf,M ,
the image-space patch threat model AR , and correctly
implemented MAP(·) and SO-CERT(·) procedures
(Propositions 1 and 2), if the certification procedure
PCURE-CERTIFY(·) returns True, we have certifiable
robustness for this clean image. Formally, we have
PCURE-CERTIFY(x,y,Msrf,Mlrf,M ,AR) = True =⇒
∀x′ ∈ AR (x) : PCURE-INFER(x′,Msrf,Mlrf,M) = y

Proof. The correctness of two sub-procedures MAP(·) and
SO-CERT(·) gives us two useful propositions. Proposition 1
demonstrates that ∀x′ ∈ AR (x), f′ = Msrf(x′), we have f′ ∈
A f

R (f); Proposition 2 demonstrates that ∀f′ ∈ A f
R (f), we

have SO(f′, ·) = y, as long as SO-CERT(·) returns True.
Combining two propositions together, we can derive that,
∀x′ ∈ AR (x), f′ =Msrf(x′) we have SO(f′, ·) = y, as long as
SO-CERT(·) returns True.

According to Lines 12-17 of Algorithm 1,
PCURE-CERTIFY(·) returns True iff SO-CERT(·)
returns True. Moreover, Lines 7-11 show that
PATCHCURE-INFER(x′, ·) = SO(f′, ·). Therefore, we
have proved that ∀x′ ∈ AR (x),PCURE-INFER(x′, ·) = y, as
long as PCURE-CERTIFY(·) returns True.

Remark 1: certifiable robustness evaluation. In our eval-
uation (Section 4), we will apply the PCURE-CERTIFY(·)
procedure to labeled datasets and report certified ro-
bust accuracy as the fraction of test images for which
PCURE-CERTIFY(·) returns True. This certified robust ac-
curacy is our robustness evaluation metric.

Remark 2: adaptive attacks vs. certifiable robustness.
Theorem 1 ensures that the certified robust accuracy discussed
above covers all possible attackers within a given threat model,
i.e., ∀x′ ∈ AR (x). The threat model AR can capture an adap-
tive attacker who has full knowledge of the defense and uses
a patch of a certain shape and size at all possible locations

and with all possible patch content. Therefore, we can view
certified robust accuracy as a lower bound of model accuracy
against any (adaptive) attack within the threat model AR . For
example, if we consider an attacker who can use a 2%-pixel
square patch with any patch content at any image location,
a certified robust accuracy of 61.6% means that no adaptive
attacker using the same patch shape and size can reduce the
model accuracy below 61.6% (guaranteed by Theorem 1).
With this theoretical guarantee, our evaluation focuses on
certified robustness instead of empirical robustness against
concrete adaptive attack algorithms.

Remark 3: certification and inference procedures. We
note that our certification procedure PCURE-CERTIFY(·)
requires ground-truth labels to check the correctness of the
model prediction for robustness evaluation. In contrast, our
inference procedure PCURE-INFER(·) does not require a
ground-truth label and thus can be deployed in the wild. The
certifiable robustness evaluated on a labeled dataset (using
the certification procedure) provides a robustness estimation
for the model (inference procedure) deployed in the wild.

3.5 PATCHCURE Instantiation

In this subsection, we discuss how to instantiate PATCHCURE
with different parameter settings to approach the three-way
trade-off problem.

PATCHCURE parameters. There are four major param-
eters for the PATCHCURE defense. The first is the splitting
layer index k used in model splitting SPLIT(·). As we choose
a larger k, we will split the model at a deeper layer, which
could improve inference efficiency but could also make the
LRF sub-model too shallow to achieve high utility for the
end-to-end defense model. The second parameter is the base
model architecture Mb used to construct SRF and LRF mod-
els. Different architectures usually have different properties.
For example, ViT is shown more robust to occlusion [19],
which can be viewed as a non-adversarial pixel patch. The
third parameter is the receptive field size rf, larger receptive
fields can improve model utility but might hurt the certifiable
robustness [54]. The fourth parameter is the parameter(s) of
the secure operation layer; it controls the properties of the
secure operation algorithm.

Next, we focus on the model splitting parameter k, which
is the unique parameter introduced by our PATCHCURE
framework, and discuss three different choices of k for
PATCHCURE instantiation. Recall that k ∈ {0,1, · · · ,L},
where L is the number of all model backbone layers (exclud-
ing feature aggregation and classification layers), specifies the
layer where we split the model and insert the secure operation.

Case 1: Optimizing for computation efficiency. (k = L).
First, we aim to build efficient defense instances by setting
k to its largest value L. In this case, we convert the entire
model backbone into an SRF model and instantiate the LRF
model as a combination of global average pooling plus a

linear classification head. The computation overhead of the
LRF model is much smaller than the SRF model (e.g., 500×
difference). Even dozens of LRF calls generated from the
secure operation layer will not have a significant impact on
the model inference efficiency.

Remark. In this case, we can consider PATCHCURE re-
duced to a pure SRF defense like PatchGuard [54]. Never-
theless, we note that PATCHCURE’s flexibility of combining
different modules naturally leads to the new idea of applying
an LRF-based secure operation, e.g., double-masking [55], to
an SRF-based feature map. In Figure 2, we have seen the bene-
fits of this new combination: we build efficient PATCHCURE
instances that outperform all but one existing (inefficient)
defense in terms of robustness.

Case 2: Optimizing for model utility and robustness (k=
0). In the second case, we set k = 0 and reduce PATCHCURE
to a pure LRF defense like PatchCleanser [55]. PATCHCURE
with k = 0 can match the utility and robustness of any existing
defense, at the cost of relatively large computation overheads.

Case 3: Interpolation between efficient defenses with
high-robustness defenses (0 < k < L). Our final case study
aims to leverage PATCHCURE to systematically adjust model
performance in terms of robustness, utility, and efficiency.
Recall that we can build state-of-the-art efficient defenses
using k = L and state-of-the-art defenses (without efficiency
considerations) using k = 0. Now we want to further build
defenses whose robustness-utility performance can fill the
gap between efficient PATCHCURE (top stars in Figure 2)
and the state-of-the-art PatchCleanser [55] (the pentagon in
Figure 2; a special PATCHCURE instance with k = 0). We
note that this task used to be hard: existing LRF defenses
like PatchCleanser [55] do not have a design point that has
similar inference efficiency as undefended models; existing
efficient SRF defenses like PatchGuard [54] cannot sacrifice
part of their efficiency in trade for better utility and robustness.
However, with our PATCHCURE design, we can easily reach
different performance points by varying k between 0 and L,
as demonstrated in Figure 2 in Section 1 and more analyses
in Section 4. This flexibility of tuning defense performance is
useful in practice when we want to find the optimal defense
instances given utility and efficiency constraints.

4 Evaluation

In this section, we present our evaluation results. We will
demonstrate that PATCHCURE (1) guides us to build efficient
defenses that outperform all but one prior (mostly inefficient)
defense, and (2) allows us to flexibly adjust the robustness,
utility, and efficiency of defense models.

4.1 Setup
Dataset. We focus on the ImageNet-1k dataset [12]. It con-
tains 1.3M training images and 50k validation images from

1000 classes. ImageNet-1k is a challenging dataset that wit-
nesses an intense three-way trade-off between robustness,
utility, and efficiency [59]. It was also widely used for evalua-
tion in prior works [7, 25, 26, 34, 44, 54, 67] and thus enables
an easy and fair comparison between different defenses. We
consider an image resolution of 224×224 for a fair inference
efficiency comparison. We also include additional evaluation
results for CIFAR-10 [23] in Section 4.3, and CIFAR-100 [23]
and SVHN [38] in our technical report [61].

Model architectures. We consider ViT-B [13] and ResNet-
50 [20] as our non-robust base models, and build ViT-SRF
and BagNet as their SRF variants.

ViT-B and ViT-SRF. ViT-B [13] has 12 attention layers; we
split between different attention layers, i.e., we select k ∈
{0,1, · · · ,12}. Moreover, we consider the ViT-B architecture
with an input image size of 224× 224: each visual token
accounts for 16×16 image pixels, and there are 14×14 visual
tokens in total. We consider local attention with a sub-group
of 2×2, 14×1, and 14×2 visual tokens, which correspond
to a receptive field size of 32×32, 224×16, 224×32 pixels,
respectively. We name a ViT-SRF instance that uses local
attention over m×n visual tokens as ViT{m}x{n}. We name
a PATCHCURE instance that splits at kth layer and instantiates
SRF model with ViT{m}x{n} as PCURE-ViT{m}x{n}-k{k}.
For example, PCURE-ViT14x1-k9 stands for a PATCHCURE
instance that splits the vanilla ViT-B at the 9th attention layer
and uses ViT-SRF with 14x1 local attention.

ResNet-50 and BagNet. ResNet-50 [20] has 50 layers in
total, and we consider k ∈ {0,1, · · · ,50}. Moreover, we con-
sider BagNet with different receptive field sizes of 17×17,
33× 33, and 45× 45 pixels. We name a PATCHCURE in-
stance that uses BagNet with a receptive field size of m×m
and splits at the kth layer as PCURE-BagNet{m}-k{k}. For
example, PCURE-BagNet33-k50 stands for a PATCHCURE
instance that splits the vanilla ResNet-50 at the 50th layer and
uses BagNet33 as the SRF sub-model.

Model training. We note that PATCHCURE models with-
out the secure operation layer are standard feedforward net-
works. Therefore, we can leverage off-the-shelf training tech-
niques and recipes to train our PATCHCURE models. For
ViT-based models (ViT or ViT-SRF), we take the pretrained
weight from MAE [19] and follow the recipe of MAE fine-
tuning to tune a model for the classification task on ImageNet-
1k. For ResNet-based models (ResNet or BagNet), we follow
Schedule B of the ResNet-strikes-back paper [50] and train
the model from scratch. We note that both ViT-based and
ResNet-based models only use ImageNet-1k without addi-
tional data for fair comparison. During the training, we add
random masks to the feature map of the kth model backbone
layer; this mimics the masking operation used in our LRF
secure operation layer (e.g., double-masking [55]). After we
train our PATCHCURE models, we add the secure operation
layer back for robust inference.

Attack threat model. Our main evaluation results focus

Table 2: Performance of undefended models

Models Accuracy (%) Throughput
clean robust (img/s)

ViT-B [13, 19] 83.7 0 191.7
ResNet-50 [20] 80.1 0 295.5
BagNet-33 [3] 73.0 0 192.2
ViT14x2 79.4 0 195.2
ViT14x1 77.4 0 190.4
ViT2x2 72.7 0 166.7

on one square patch that takes up to 2% of the image pixels
and can be placed anywhere on the image, i.e., a 32×32 patch
anywhere on the 224×224 image. This is a popular evaluation
setting used in most existing works [7,25,26,34,44,54,67]. We
will additionally analyze model performance for large patches
(up to 70% of the image pixels) in Section 4.3. As discussed in
Section 3.4 (Remark 2), our robustness certification procedure
has accounted for any adaptive attack strategy within the
constraint AR defined in Section 2.1. Therefore, we only
need to specify the threat model AR (but not concrete attack
algorithms) for robustness evaluation.

Evaluation metrics. We focus on the three-way trade-off
problem between certifiable robustness, model utility, and
computation efficiency; therefore, we have three major evalu-
ation metrics. For certifiable robustness, we report certified
robust accuracy, defined as the fraction of test images that
the certification procedure (PCURE-CERTIFY(·) of Algo-
rithm 1) returns True. This is a lower bound of model ac-
curacy against any adaptive attack within the given threat
model (recall Remark 2 in Section 3.4). For model utility, we
report clean accuracy, which is the standard model accuracy
on clean test images without adversarial patches. For com-
putation efficiency, we report empirical inference throughput
on clean images, which is defined as the number of images a
model can make predictions within every second (including
data loading and model feedforward). We use a batch size of
4 for the throughput evaluation – we find large batch sizes
do not significantly affect throughput in our experiment set-
ting (Appendix A). We also report latency, estimated FLOPs,
and memory footprint of different defense models in Ap-
pendix A. We conduct our experiments using PyTorch [40] on
one NVIDIA RTX A4000 GPU. We also discuss the implica-
tion of different hardware settings and application scenarios
in Section 5.

Comparison with prior defenses. We compare our re-
sults with all prior certifiably robust defenses that can
recover correct predictions (without abstention) and are
scalable to the ImageNet-1k dataset: Clipped BagNet
(CBN) [67], De-Randomized Smoothing (DRS) [25], Patch-
Guard [54], BagCert [34], PatchCleanser [55], Smoothed ViT
(S-ViT) [44], ECViT [7], and ViP [26]. We note that S-ViT,

Table 3: Performance of different defenses against one 2%-
pixel patch anywhere on the ImageNet images (parentheses
contain the relative performance compared to state-of-the-art
PatchCleanser [55])

Defenses† Accuracy (%) Throughput
clean robust (img/s)

PCURE-ViT14x2-k12 78.3 (0.95) 44.2 (0.72) 189.9 (90.4)
PCURE-ViT14x1-k12 76.3 (0.92) 47.1 (0.77) 182.0 (86.7)
PCURE-ViT2x2-k12 71.3 (0.86) 46.8 (0.77) 158.1 (75.3)
PCURE-BagNet17-k50 65.4 (0.79) 42.2 (0.69) 115.1 (54.8)
PCURE-BagNet33-k50 70.8 (0.85) 44.1 (0.72) 136.8 (65.1)
PCURE-BagNet45-k50 72.4 (0.88) 34.8 (0.57) 132.5 (63.1)

PCURE-ViT14x2-k11 78.3 (0.95) 45.8 (0.75) 109.0 (51.9)
PCURE-ViT14x2-k10 79.8 (0.97) 46.0 (0.75) 77.2 (36.8)
PCURE-ViT14x2-k9 80.0 (0.97) 46.2 (0.75) 58.4 (27.8)
PCURE-ViT14x2-k6 81.8 (0.99) 47.4 (0.78) 34.4 (16.4)
PCURE-ViT14x2-k3 82.1 (0.99) 47.8 (0.78) 23.9 (11.4)

PCURE-ViT14x2-k0 82.2 (1.00) 47.8 (0.78) 19.7 (9.4)
PCURE-ViT14x1-k0 82.5 (1.00) 53.7 (0.88) 8.3 (4.0)
PCURE-ViT2x2-k0 82.6 (1.00) 61.6 (1.00) 2.0 (1.0)

PatchCleanser [55] (robust)§ 82.5 (1.00) 61.1 (1.00) 2.1 (1.0)
PatchCleanser [55] (efficient) 82.0 (0.99) 55.1 (0.90) 12.5 (5.9)
ECViT [7] 78.6 (0.95) 41.7 (68.2) 2.25 (1.1)
ViP [26] (robust) 75.8 (0.92) 40.4 (66.1) 0.8 (0.4)
ViP [26] (efficient) 75.3 (0.91) 38.3 (0.63) 7.7 (3.7)
S-ViT [44] (robust) 73.2 (0.89) 38.2 (0.63) 0.8 (0.4)
S-ViT [44] (efficient) 67.3 (0.82) 33.0 (0.54) 20.5 (9.7)
PatchGuard [54] 54.6 (0.66) 26.0 (0.43) 177.4 (84.5)
BagCert [34] 45.3 (0.55) 22.7 (0.37) 181.4 (86.4)
DRS [25] 44.4 (0.54) 14.0 (0.23) 1.5 (0.7)
CBN [67] 49.5 (0.60) 7.1 (0.11) 181.5 (86.4)
† For each prior defense without multiple instances, we report its most robust

and most efficient instances, denoted with “(robust)” and “(efficient)".
§ The PatchCleanser numbers in its original paper are slightly higher because

they use additional ImageNet-21k [12] data for pretraining.

ECViT, and ViP propose similar algorithms by applying DRS
to ViT, we sometimes group them into “DRS+ViT” to sim-
plify the figure legend.

4.2 Main results

In Table 2 and Table 3, we report the main evaluation re-
sults for undefended models and different defenses on the
ImageNet-1k dataset against one 2%-pixel square patch any-
where on the image. We note that many defenses have mul-
tiple defense instances; we report the performance of their
most robust and most efficient instances if efficiency greatly
affects their robustness performance. In Table 3, we addition-
ally report the relative performance compared with the most
robust prior defense, i.e., PatchCleanser [55].

PATCHCURE builds defense instances that have
similar efficiency as undefended models. First, we an-
alyze efficient defense instances. As discussed in Sec-
tion 3.5, we will set k = L. We report performance for
PCURE-ViT-14x2-k12, PCURE-ViT-14x1-k12, PCURE-ViT-
2x2-k12, PCURE-BagNet33-k50, PCURE-BagNet17-k50,

Table 4: Additional results for PatchCleanser [55] and Patch-
Guard [54] with different backbones

Defenses Accuracy (%) Throughput
clean robust (img/s)

PatchCleanser-ViT-B 82.5 (1.00) 61.1 (1.00) 2.1 (1.0)
PatchGuard-ViT14x2 76.9 (0.93) 23.1 (0.38) 193.4 (92.1)
PatchGuard-ViT14x1 75.2 (0.91) 29.9 (0.49) 188.7 (89.8)
PatchGuard-ViT2x2 69.6 (0.84) 33.0 (0.54) 164.7 (78.4)

PatchCleanser-ResNet50 78.3 (0.95) 53.1 (0.87) 10.6 (5.8)
PatchGuard-BagNet17 60.4 (0.73) 27.6 (0.45) 181.2 (86.3)
PatchGuard-BagNet33 67.2 (0.81) 24.0 (0.39) 183.4 (87.3)
PatchGuard-BagNet45 67.9 (0.82) 16.0 (0.26) 175.8 (83.7)

and PCURE-BagNet45-k50 in Table 3. For ViT-based de-
fenses, we can see that the inference throughput is similar
to that of vanilla ViT-B (Table 2). For ResNet/BagNet-based
defenses, we find that our defenses are 2× slower than ResNet-
50. Nevertheless, our BagNet-based defenses are still faster
than most prior works, and we still categorize them as effi-
cient defenses. In addition to the high inference efficiency,
PATCHCURE also achieves decent model utility and robust-
ness. For example, PCURE-ViT14x2-12 has a 78.3% clean
accuracy for the challenging 1000-class ImageNet classifi-
cation task and 44.2% certified robust accuracy against one
2%-pixel square patch anywhere on the image.

PATCHCURE provides a systematic way to balance
the three-way trade-off between robustness, utility, and
efficiency. Second, we aim to demonstrate PATCHCURE’s
flexibility to balance defense performance by adjusting the
parameters k. In Table 3 and Figure 5, we report the perfor-
mance of PCURE-ViT14x2 instantiated with different k. As
we split the model at a deeper layer (larger k), the inference
throughput greatly improves while the clean accuracy and the
certified robust accuracy gradually decrease. This is because
a deeper splitting point leads to a shallower LRF sub-model
and thus reduces the cost of the secure operation layer (which
calls the LRF sub-model multiple times). Meanwhile, a deeper
splitting point slightly decreases the model capacity and leads
to drops in clean accuracy and certified robustness accuracy.

PATCHCURE builds efficient defenses that outperform
all but one (mostly inefficient) prior defenses and can
achieve the best robustness/utility by sacrificing part of
the computation efficiency. Now, we compare PATCHCURE
with prior defenses. In addition to Table 3, we visualize
the performance of different PATCHCURE instances and
prior defenses in Figure 6.3 First, we can see that efficient
PATCHCURE instances (e.g., the first three rows in Table 3
and the red stars in Figure 6) achieve state-of-the-art utility
and robustness performance among defenses with small de-
fense overheads. For example, compared to the best efficient

3There are a large number of different PATCHCURE instances. Table 3
and Figure 6 only report two partially overlapped subsets of PATCHCURE
instances for simplicity and better visual appearance.

0 1 2 3 4 5 6 7 8 9 10 11 12
Splitting layer k

0
10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy

 (%
)

25

50

75

100

125

150

175

200

Th
ro

ug
hp

ut
 (i

m
g/

s)Clean accuracy (%)
Certified robust accuracy (%)
Throughput (img/s)

Figure 5: Effect of the splitting layer k
on ViT14x2-based PATCHCURE

0 10 20 30 40 50 60 70 80 90
Clean accuracy (%)

0

10

20

30

40

50

60

Ce
rti

fie
d

ro
bu

st
 a

cc
ur

ac
y

(%
) PatchCURE (ours)

PatchCleanser/PatchCURE
DRS+ViT
PatchGuard
BagCert
DRS
CBN
vanilla ViT-B

0

25

50

75

100

125

150

175

200
Throughput (s−1)

Figure 6: Comparison between
PATCHCURE and prior defenses

32 64 96 128 160 192
Patch size (px)

0
5

10
15
20
25
30
35
40
45
50
55
60

Ce
rti

fie
d

ro
bu

st
 a

cc
ur

ac
y

(%
)

PatchCleanser/PatchCURE (2.1 img/s)
PCURE-ViT2x2-k12 (75.3 img/s)
PCURE-ViT14x1-k12 (86.7 img/s)
PCURE-ViT14x2-k12 (90.4 img/s)
S-ViT (20.5 img/s)

Figure 7: PATCHCURE robustness
against larger patches

defense PatchGuard [54], our ViT-based defenses have 16.7-
23.7% absolute improvements in clean accuracy and 18.2-
21.1% absolute improvement in certified robust accuracy; our
BagNet-based defenses have 10.8-17.8% absolute clean accu-
racy improvements and 8.8-18.1% absolute certified robust
accuracy improvements. Moreover, we note that the robust-
ness and utility performance of our efficient defenses is also
comparable to, or even surpasses, many inefficient defenses.
For example, our ViT-based defenses (red stars in Figure 6)
outperform defenses from the DRS-ViT family [7, 26, 44]
(purple squares in Figure 6).

The only existing defense that significantly outperforms our
efficient instances is PatchCleanser [55]. However, we note
that PatchCleanser is simply a design point of PATCHCURE
with k = 0; PATCHCURE can easily reach the performance
of PatchCleanser by sacrificing part of its computation ef-
ficiency. Figure 6 demonstrates that we can build a family
of PATCHCURE instances (with different k and SRF sub-
models) that fill in the gap between PatchCleanser (purple pen-
tagon) and efficient PATCHCURE instances (red stars). More-
over, we note that the PATCHCURE instances also achieve
the best robustness and utility performance across all differ-
ent efficiency levels (denoted by different colors in Figure 6).
This PATCHCURE defense family allows us to easily find the
optimal defenses that satisfy certain utility or computation
constraints in practice.

PATCHCURE works well across different model back-
bones compared to PatchCleanser [55] and Patch-
Guard [54]. In Table 4, we report additionally results for
PatchCleanser [55] and PatchGuard [54] with the same
SRF/LRF backbones used by PATCHCURE for a targeted
comparison. For ViT-based backbones, PATCHCURE in-
stances like PCURE-ViT14x2-k12 (in Table 3) achieve signif-
icant speedup compared to PatchCleaner-ViT (in Table 4).
Efficient PATCHCURE instances PCURE-k12 in Table 3
have similarly high inference throughput compared with
PatchGuard in Table 4, but achieve a much high certified
robust accuracy. We can also see similar observations for
ResNet/BagNet backbones. These comparisons demonstrate

that PATCHCURE works well across different backbone mod-
els with different receptive field sizes.

4.3 Detailed Analyses
In this section, we provide additional analyses of our
PATCHCURE defenses. We will discuss the properties of SRF
models used in PATCHCURE, PATCHCURE performance
when facing larger patches, PATCHCURE performance on
additional datasets, and the effects of different PATCHCURE
parameters.

Our undefended SRF models have similar inference ef-
ficiency as off-the-shelf models with a small utility drop.
In Section 3.3, we discussed how to build SRF models using
off-the-shelf CNN and ViT. In Table 2, we report the per-
formance of vanilla undefended SRF models. First, we can
see that ViT-based models have similarly high computation
efficiency as vanilla ViT models. For PCURE-ViT14x2, the
inference throughput is even slightly higher than vanilla ViT.
Moreover, we note that as we use a smaller receptive field
(from 14x2 to 14x1 to 2x2 visual tokens), the clean accuracy
of ViT-SRF decreases as expected; meanwhile, the inference
throughput is also slightly affected because a smaller recep-
tive field leads to more sub-groups of visual tokens, and each
sub-group incurs additional computation costs (conversion
between to the sub-group-style token layout and the original-
style visual token layout). Second, for BagNet – the ResNet-
based SRF model – we find that both clean accuracy and
inference throughput are moderately affected. This is because
smaller convolution kernels and strides result in a larger fea-
ture map and thus more computation. This is also why we find
that the ViT-based PATCHCURE achieves better performance
than the BagNet-based PATCHCURE in Section 4.2. For the
rest of this subsection, we will focus on analyzing ViT-based
defenses.

Different PATCHCURE instances exhibit different ro-
bustness against larger patches. In Section 4.2, we report
certified robust accuracy for one 2%-pixel square patch any-
where on the ImageNet image, because this is a popular evalu-

Table 5: Performance of ViT-based defenses on CIFAR-10
(one 2%-pixel patch on the resized 224×224 images)

Dataset Accuracy (%) Throughput
clean robust (img/s)

PCURE-ViT14x2-k12 95.3 67.6 190.0
PCURE-ViT14x2-k6 96.8 70.3 44.4
PCURE-ViT2x2-k3 97.8 80.5 5.0

ViT-B [13] 98.1 0 188.3
PatchCleanser [55]/PCURE 98.0 86.5 3.8
S-ViT [44] 90.8 67.6 0.7
ECViT [7] 93.5 76.4 2.3

ation setup for benchmark comparison [7,25,26,34,44,54,67].
In Figure 7, we report the certified robust accuracy of differ-
ent PATCHCURE instances for different patch sizes (up to
192×192 on the 224×224 image). As shown in Figure 7, the
certified robust accuracy decreases as the patch size increases.
Notably, different defense instances have different sensitiv-
ity to larger patches. The most efficient defense, PCURE-
ViT14x2-k12, is most sensitive to larger patches due to the
relatively large receptive field size of its SRF model (ViT14x2
has a receptive field of 224×32). In contrast, ViT2x2 has a
smaller receptive field of 32×32, and its PATCHCURE de-
fense is more robust to larger patches. Moreover, we plot
the results for PatchCleanser [55] and S-ViT [44], the two
best-performing open-source defenses. First, we note that
PatchCleanser can be viewed as a special PATCHCURE in-
stance that uses an identical mapping layer (with a receptive
field size of 1×1) as the SRF sub-model. It has the best ro-
bustness to larger patches but smaller throughput. Second, we
can also see that our efficient PATCHCURE instances beat
the robustness of S-ViT in almost all cases, at a much larger
inference throughput.

PATCHCURE performs well on other datasets like
CIFAR-10 [23]. In Section 4.2, we discuss PATCHCURE’s
promising performance on the challenging ImageNet dataset.
In this analysis, we demonstrate that our PATCHCURE also
works well for other benchmark datasets. In Table 5, we report
the performance of different ViT-based models on the CIFAR-
10 [23] dataset. As shown in the table, PATCHCURE has the
following advantages compared to other defenses: efficient
instances like PCURE-ViT14x2-k12 have significantly higher
throughput and comparable robustness and utility; robust in-
stances like PCURE-ViT-2x2-k3 match the robustness and
utility performance of state-of-the-art defenses. In our techni-
cal report [61], we include more datasets like CIFAR-100 [23]
and SVHN [38].

PATCHCURE parameter selection. As discussed in Sec-
tion 3.5, PATCHCURE has four parameters: k (splitting layer),
model architecture, SRF size, and the secure operation param-
eter. We need to understand their effect to properly select
parameters in practice. The effect of the first parameter k has

Table 6: PATCHCURE for attack detection on ImageNet
against one 2%-pixel square patch

Models Accuracy (%) Throughput
clean robust (img/s)

PCURE-ViT14x2-k12 64.7 64.7 196.8
PCURE-ViT14x1-k12 63.5 63.5 192.3
PCURE-ViT2x2-k12 59.5 59.5 166.5

ViT + MR [32, 55] 74.3 74.3 2.5
ViP [26] 74.6 74.6 2.5
ScaleCert [17] 58.5 55.4 NA†

PatchGuard++ [57] 49.8 49.8 151.1
† We did not evaluate ScaleCert [17] due to the lack of

open-source implementation.

been already discussed in Figure 5 and Section 4.2: it is the
most important knob in PATCHCURE to balance the three-
way trade-off. In practice, we can set k to the largest value that
meets the computation efficiency requirement. The effects
of the model architecture and receptive field size have been
implicitly discussed in our earlier experiments. For model
architecture, Table 2 demonstrates that ViT has an advantage
over ResNet in their SRF model’s utility and efficiency; this
advantage is also reflected in the defense performance of ViT
and ResNet-based defenses (Table 3). We attribute this differ-
ence to the recent findings that ViT is more robust to input
masking [19]. The effect of different receptive field sizes is
also demonstrated in Table 3 and Figure 7. Table 3 shows that
ViT-SRF with a larger receptive field has higher clean accu-
racy and slightly better inference efficiency. However, larger
receptive fields make the defenses more vulnerable to larger
patches (Figure 7). Therefore, we need to carefully choose
the defense parameters based on the application scenarios. In
practice, we can choose the smallest receptive field size that
meets the model utility requirement to get optimal robustness.
The effect of the secure operation parameter depends on the
chosen secure operation algorithm; we provide a quantitative
analysis in our technical report [61].

5 Discussion

In this section, we discuss PATCHCURE’s compatibility with
different secure operation algorithms, different model sizes,
application scenarios, limitations, and future work directions.

Compatibility with different secure operation algo-
rithms. We propose PATCHCURE as a general defense frame-
work with three modules: the SRF model, the LRF model, and
the secure operation. In Section 4, we extensively analyze dif-
ferent design choices of SRF and LRF models. Nevertheless,
we keep secure operation the same as double-masking [55]
because it is the state-of-the-art secure operation algorithm

Table 7: PATCHCURE with ViT-Base and ViT-Large

Defense Clean Certified Throughput Memory (MB)

ViT-B-14x2-k12 78.3 44.2 189.9 362.0
ViT-B-14x2-k9 80.0 46.2 58.4 515.6
ViT-L-14x2-k24 80.3 47.7 58.0 1203.2

for prediction recovery. In this discussion, we aim to show-
case PATCHCURE’s compatibility with a different secure
operation algorithm, namely the Minority Reports (MR) de-
fense [32]. MR is an LRF defense that aims to detect an
ongoing patch attack: given an input image, MR either re-
turns a robust prediction label or issues an attack alert.4 In
Table 6, we report the performance of PATCHCURE with
MR-style secure operation and compare it with other attack-
detection-based defenses. The table demonstrates that our
efficient PATCHCURE instances achieve decent robustness
and utility performance with high inference speed.

PATCHCURE with different model sizes. In Section 4,
we demonstrate that PATCHCURE can flexibly tune the
model performance without significantly altering the model
architecture and size. We note that PATCHCURE technique is
also compatible with (and orthogonal to) strategies like using
models with different sizes. In Table 7, we report an example
using PATCHCURE with ViT-Base and ViT-Large. We can
see that PCURE-ViT-B-14x2-k9 can match the robustness,
utility, and throughput of PCURE-ViT-L-14x2-k24 (ViT-L
has 24 attention layers in total), but with smaller memory con-
sumption. This also demonstrates the benefits of introducing
PATCHCURE’s knobs. In practice, developers can combine
PATCHCURE with orthogonal techniques like model com-
pression and pruning.

PATCHCURE application scenarios. In this paper,
we focus on the general problem of adversarial patch at-
tacks/defenses, which can be applied to many different appli-
cations like autonomous driving [14], face authentication [49],
surveillance [62], and cashierless self-checkout [21], which
have different hardware settings and also different levels of
sensitivity to latency. Our evaluation setting in Section 4
is more suited for cloud deployments since we use A4000,
a common workstation GPU, for experiments. We demon-
strate that PATCHCURE can have a similar inference speed as
vanilla models under the same hardware setting (191.7 img/s
for ViT-B vs. 189.9 img/s for PCURE-ViT14x2-k12). This
implies that, in time-sensitive applications, PATCHCURE can
meet the throughput/latency requirement as the vanilla model
does. An interesting direction of future works is to concretely
implement PATCHCURE with other model compression tech-
niques for embedded edge devices.

Limitations and future directions. The certifiable robust-

4We note that this attack-detection-based defense has a weaker no-
tion than prediction-recovery-based defense like PATCHCURE and Patch-
Cleanser [55].

ness of PATCHCURE relies on its secure operation layer.
As a result, PATCHCURE instances will inherit limitations
from the secure operation algorithm. For example, if we use
the Minority Reports algorithm [32], we can only achieve
robustness for attack detection. If we use the double-masking
algorithm [55], our defense requires additional patch informa-
tion such as an estimation of patch size and shape. How to
relax these assumptions is an important future work direction.
Nevertheless, we note that PATCHCURE provides a system-
atic way to build defense instances with different properties.
The compatibility of the framework implies its potential for
future improvements: given any progress in the design of SRF
models, LRF models, or secure operations, we can leverage
these advancements to build stronger PATCHCURE defense
instances. Moreover, another interesting direction is to incor-
porate PATCHCURE, a test-time defense, with training-time
certified defenses [16, 35] to further improve robustness.

6 Related Work

Adversarial Patch Attacks. Brown et al. [4] introduced the
first adversarial patch attack; they demonstrated that an at-
tacker can use a physically printed adversarial patch to in-
duce targeted misclassification. The physical realizability
of patch attacks has drawn great attention from the ma-
chine learning security community. In a concurrent work,
Karmon et al. [22] explored a similar concept called the
Localized and Visible Adversarial Noise (LaVAN) attack,
which focuses on the digital-domain patch attack. Many more
patch attacks have been proposed for different attack scenar-
ios [6, 28, 29, 45, 46, 53, 62, 65]. In this paper, we focus on
attacks against image classification models.

Adversarial Patch Defenses. To defend against adversar-
ial patch attacks, both empirically robust and certifiably robust
defenses have been proposed. Empirical defenses [9, 18, 27,
36, 37, 41, 42, 48, 52, 63] are usually based on heuristics and
lack formal robustness guarantees; in contrast, certifiably ro-
bust defenses [7, 8, 25, 26, 32, 34, 44, 54, 55, 67] can claim
robustness in a provable manner. Chiang et al. [8] proposed
the first certifiably robust defense for patch attacks via Interval
Bound Propagation (IBP) [16,35]. This defense is too compu-
tationally intense to scale to the ImageNet dataset, so we did
not include it in Section 4 for comparison. Zhang et al. [67]
proposed Clipped BagNet (CBN) that clips BagNet [3] fea-
tures for certifiable robustness. Levine et al. [25] proposed
De-Randomized Smoothing (DRS) that performs majority
voting on model predictions on different small cropped im-
ages. We note that DRS was further improved by Smoothed
ViT [44], ECViT [7], and ViP [26] using the Vision Trans-
former (ViT) [13] architecture. Xiang et al. [54] proposed
PatchGuard shortly after DRS as a general defense frame-
work that uses a model with small receptive fields (SRF) for
feature extraction and performs secure feature aggregation
for robust predictions. The idea of SRF is widely used in

many defenses [7, 17, 25, 26, 34, 44]. Our PATCHCURE also
leverages the SRF idea to improve computation efficiency.
After PatchGuard, Metzen et al. [34] proposed BagCert, in
which they modified vanilla BagNet [3] for robust predictions.
Xiang et al. [55] later proposed PatchCleanser with a double-
masking algorithm that reliably removes the patch from the
input image. In contrast to other works, PatchCleanser does
not rely on SRF models and achieves state-of-the-art certifi-
able robustness while maintaining high model utility (e.g., 1%
drops from undefended models). In a concurrent work of this
paper, PatchCleanser is further improved with a new model
training technique [43]. However, we note that PatchCleanser
requires expensive model predictions on multiple masked im-
ages and incurs a large computation overhead. In this paper,
we propose PATCHCURE to approach the three-way trade-
off between robustness, utility, and efficiency. Moreover, we
note that our general PATCHCURE design subsumes Patch-
Cleanser by setting k = 0.

In addition to the defenses discussed above, there are other
certifiably robust defenses for attack detection [17, 32, 57].
These defenses alert and abstain from making predictions
when they detect an ongoing attack, which achieves a weaker
robustness property compared to defenses that can recover
correct predictions without any abstention. In Section 5,
we demonstrated PATCHCURE’s compatibility with one
of the LRF-based attack-detection algorithms, Minority Re-
ports [32]. Finally, there is another line of certifiably robust
defenses that study harder vision tasks such as object detec-
tion [56, 60] and semantic segmentation [66]. We refer the
readers to a survey paper [59] for more discussions on certi-
fied patch defenses.

Other Adversarial Example Attacks and Defenses.
There are many existing paper studies adversarial example
attacks defenses for different threat models [2,5,10,15,31,33,
39, 47, 51, 58, 64]. We focus on the adversarial patch attacks
because they can be realized in the physical world and impose
a threat to the cyber-physical world.

7 Conclusion

In this paper, we proposed PATCHCURE as a general defense
framework to build certifiably robust defenses against adver-
sarial patch attacks. PATCHCURE is the first to explicitly
approach the three-way trade-off problem between certifi-
able robustness, model utility, and computation efficiency. We
demonstrated that PATCHCURE enables us to build state-
of-the-art efficient defense instances, and provides sufficient
knobs to adjust the defense performance across the three di-
mensions. We note that PATCHCURE is a general defense
framework compatible with any SRF and LRF model architec-
tures as well as secure operation algorithms – advancements
in SRF/LRF model architectures and secure operations will
also lead to stronger PATCHCURE defense instances.

Acknowledgements

We are grateful to the anonymous shepherd and reviewers
at USENIX Security 2024 for their valuable feedback. This
work was supported in part by the National Science Foun-
dation under grant CNS-2131938 and the Princeton SEAS
Innovation Grant.

References

[1] Andre Araujo, Wade Norris, and Jack Sim. Computing
receptive fields of convolutional neural networks. Distill,
2019.

[2] Battista Biggio, Igino Corona, Davide Maiorca, Blaine
Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion attacks against machine learn-
ing at test time. In ECML PKDD. Springer, 2013.

[3] Wieland Brendel and Matthias Bethge. Approximating
CNNs with bag-of-local-features models works surpris-
ingly well on ImageNet. In ICLR, 2019.

[4] Tom B. Brown, Dandelion Mané, Aurko Roy, Martín
Abadi, and Justin Gilmer. Adversarial patch. In NeurIPS
Workshops, 2017.

[5] Nicholas Carlini and David A. Wagner. Towards evalu-
ating the robustness of neural networks. In S&P, 2017.

[6] Zhaoyu Chen, Bo Li, Shuang Wu, Jianghe Xu, Shouhong
Ding, and Wenqiang Zhang. Shape matters: deformable
patch attack. In ECCV, 2022.

[7] Zhaoyu Chen, Bo Li, Jianghe Xu, Shuang Wu, Shouhong
Ding, and Wenqiang Zhang. Towards practical certifi-
able patch defense with vision transformer. In CVPR,
2022.

[8] Ping-Yeh Chiang, Renkun Ni, Ahmed Abdelkader, Chen
Zhu, Christoph Studor, and Tom Goldstein. Certified
defenses for adversarial patches. In ICLR, 2020.

[9] Edward Chou, Florian Tramer, and Giancarlo Pellegrino.
Sentinet: Detecting localized universal attacks against
deep learning systems. In S&P Workshops), 2020.

[10] Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter.
Certified adversarial robustness via randomized smooth-
ing. In ICML, 2019.

[11] Christian Cosgrove, Adam Kortylewski, Chenglin Yang,
and Alan L. Yuille. Robustness out of the box: Composi-
tional representations naturally defend against black-box
patch attacks. arXiv preprint arXiv:2012.00558, 2020.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. ImageNet: A large-scale hierarchical
image database. In CVPR, 2009.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In ICLR,
2021.

[14] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes,
Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Ta-
dayoshi Kohno, and Dawn Song. Robust physical-world
attacks on deep learning visual classification. In CVPR,
2018.

[15] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. In ICLR, 2015.

[16] Sven Gowal, Krishnamurthy Dvijotham, Robert Stan-
forth, Rudy Bunel, Chongli Qin, Jonathan Uesato, Relja
Arandjelovic, Timothy Arthur Mann, and Pushmeet
Kohli. Scalable verified training for provably robust
image classification. In ICCV, 2019.

[17] Husheng Han, Kaidi Xu, Xing Hu, Xiaobing Chen, Ling
Liang, Zidong Du, Qi Guo, Yanzhi Wang, and Yunji
Chen. ScaleCert: Scalable certified defense against
adversarial patches with sparse superficial layers. In
NeurIPS, 2021.

[18] Jamie Hayes. On visible adversarial perturbations &
digital watermarking. In CVPR Workshops, 2018.

[19] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In CVPR, 2022.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[21] Omer Hofman, Amit Giloni, Yarin Hayun, Ikuya
Morikawa, Toshiya Shimizu, Yuval Elovici, and Asaf
Shabtai. X-detect: Explainable adversarial patch de-
tection for object detectors in retail. arXiv preprint
arXiv:2306.08422, 2023.

[22] Danny Karmon, Daniel Zoran, and Yoav Goldberg. La-
VAN: Localized and visible adversarial noise. In ICML,
2018.

[23] Alex Krizhevsky. Learning multiple layers of features
from tiny images. https://www.cs.toronto.edu/
~kriz/learning-features-2009-TR.pdf, 2009.

[24] Hung Le and Ali Borji. What are the receptive,
effective receptive, and projective fields of neurons
in convolutional neural networks? arXiv preprint
arXiv:1705.07049, 2017.

[25] Alexander Levine and Soheil Feizi. (De)randomized
smoothing for certifiable defense against patch attacks.
In NeurIPS, 2020.

[26] Junbo Li, Huan Zhang, and Cihang Xie. Vip: Unified
certified detection and recovery for patch attack with
vision transformers. In ECCV, 2022.

[27] Jiang Liu, Alexander Levine, Chun Pong Lau, Rama
Chellappa, and Soheil Feizi. Segment and complete:
Defending object detectors against adversarial patch
attacks with robust patch detection. In CVPR, 2022.

[28] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Yiran
Chen, and Hai Li. DPATCH: an adversarial patch attack
on object detectors. In AAAI Workshops, 2019.

[29] Giulio Lovisotto, Nicole Finnie, Mauricio Munoz,
Chaithanya Kumar Mummadi, and Jan Hendrik Metzen.
Give me your attention: Dot-product attention consid-
ered harmful for adversarial patch robustness. In CVPR,
2022.

[30] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S.
Zemel. Understanding the effective receptive field in
deep convolutional neural networks. In NeurIPS, 2016.

[31] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In
ICLR, 2018.

[32] Michael McCoyd, Won Park, Steven Chen, Neil Shah,
Ryan Roggenkemper, Minjune Hwang, Jason Xinyu Liu,
and David A. Wagner. Minority reports defense: Defend-
ing against adversarial patches. In ACNS Workshops,
2020.

[33] Dongyu Meng and Hao Chen. Magnet: A two-pronged
defense against adversarial examples. In CCS, 2017.

[34] Jan Hendrik Metzen and Maksym Yatsura. Efficient cer-
tified defenses against patch attacks on image classifiers.
In ICLR, 2021.

[35] Matthew Mirman, Timon Gehr, and Martin T. Vechev.
Differentiable abstract interpretation for provably robust
neural networks. In ICML, 2018.

[36] Norman Mu and David Wagner. Defending against
adversarial patches with robust self-attention. In ICML
Workshops, 2021.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[37] Muzammal Naseer, Salman Khan, and Fatih Porikli. Lo-
cal gradients smoothing: Defense against localized ad-
versarial attacks. In WACV, 2019.

[38] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. In
NeurIPS Workshops, 2011.

[39] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha,
Matt Fredrikson, Z. Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial
settings. In EuroS&P, 2016.

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Köpf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.

[41] Sukrut Rao, David Stutz, and Bernt Schiele. Adversarial
training against location-optimized adversarial patches.
In ECCV Workshops, 2020.

[42] Aniruddha Saha, Akshayvarun Subramanya, Koninika
Patil, and Hamed Pirsiavash. Role of spatial context in
adversarial robustness for object detection. In CVPR
Workshops, 2020.

[43] Aniruddha Saha, Shuhua Yu, Arash Norouzzadeh, Wan-
Yi Lin, and Chaithanya Kumar Mummadi. Revisiting
image classifier training for improved certified robust
defense against adversarial patches. TMLR, 2023.

[44] Hadi Salman, Saachi Jain, Eric Wong, and Aleksander
Madry. Certified patch robustness via smoothed vision
transformers. In CVPR, 2022.

[45] Vikash Sehwag, Chawin Sitawarin, Arjun Nitin Bhagoji,
Arsalan Mosenia, Mung Chiang, and Prateek Mittal. Not
all pixels are born equal: An analysis of evasion attacks
under locality constraints. In CCS, 2018.

[46] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and
Ben Y Zhao. A real-time defense against website fin-
gerprinting attacks. In AISec@CCS, 2021.

[47] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. In
ICLR, 2014.

[48] Bilel Tarchoun, Anouar Ben Khalifa, Mohamed Ali
Mahjoub, Nael Abu-Ghazaleh, and Ihsen Alouani. Jedi:
Entropy-based localization and removal of adversarial
patches. In CVPR, 2023.

[49] Xingxing Wei, Ying Guo, and Jie Yu. Adversarial
sticker: A stealthy attack method in the physical world.
TPAMI, 2022.

[50] Ross Wightman, Hugo Touvron, and Hervé Jégou.
Resnet strikes back: An improved training procedure in
timm. In NeurIPS Workshops, 2021.

[51] Eric Wong and J. Zico Kolter. Provable defenses against
adversarial examples via the convex outer adversarial
polytope. In ICML, 2018.

[52] Tong Wu, Liang Tong, and Yevgeniy Vorobeychik. De-
fending against physically realizable attacks on image
classification. In ICLR, 2020.

[53] Zuxuan Wu, Ser-Nam Lim, Larry S. Davis, and Tom
Goldstein. Making an invisibility cloak: Real world
adversarial attacks on object detectors. In ECCV, 2020.

[54] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and
Prateek Mittal. Patchguard: A provably robust defense
against adversarial patches via small receptive fields and
masking. In USENIX Security, 2021.

[55] Chong Xiang, Saeed Mahloujifar, and Prateek Mittal.
Patchcleanser: Certifiably robust defense against adver-
sarial patches for any image classifier. In USENIX Secu-
rity, 2022.

[56] Chong Xiang and Prateek Mittal. DetectorGuard: Prov-
ably securing object detectors against localized patch
hiding attacks. In CCS, 2021.

[57] Chong Xiang and Prateek Mittal. Patchguard++: Ef-
ficient provable attack detection against adversarial
patches. In ICLR Workshop, 2021.

[58] Chong Xiang, Charles R Qi, and Bo Li. Generating 3d
adversarial point clouds. In CVPR, 2019.

[59] Chong Xiang, Chawin Sitawarin, Tong Wu, and Pra-
teek Mittal. Short: Certifiably robust perception against
adversarial patch attacks: A survey. In VehicleSec, 2023.

[60] Chong Xiang, Alexander Valtchanov, Saeed Mahloujifar,
and Prateek Mittal. Objectseeker: Certifiably robust
object detection against patch hiding attacks via patch-
agnostic masking. In S&P, 2023.

[61] Chong Xiang, Tong Wu, Sihui Dai, Jonathan Petit,
Suman Jana, and Prateek Mittal. Patchcure: Improving
certifiable robustness, model utility, and computation
efficiency of adversarial patch defenses. arXiv preprint
arXiv:2310.13076, 2023.

[62] Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Meng-
shu Sun, Hongge Chen, Pin-Yu Chen, Yanzhi Wang, and
Xue Lin. Adversarial t-shirt! evading person detectors
in a physical world. In ECCV, 2020.

Table 8: Throughput results (img/s) with different batch sizes

Batch size 1 4 8 32

ViT-B 113.4 190.6 189.3 199.9
ViT14x2 111.5 192.9 193.8 203.9
PCURE-ViT14x2-k12 110.7 186.3 188.9 200.9
PatchCleanser 2.0 2.1 2.1 2.1
S-ViT 0.6 0.8 0.8 0.8

[63] Ke Xu, Yao Xiao, Zhaoheng Zheng, Kaijie Cai, and Ram
Nevatia. Patchzero: Defending against adversarial patch
attacks by detecting and zeroing the patch. In WACV,
2023.

[64] Weilin Xu, David Evans, and Yanjun Qi. Feature squeez-
ing: Detecting adversarial examples in deep neural net-
works. In NDSS, 2018.

[65] Chenglin Yang, Adam Kortylewski, Cihang Xie, Yinzhi
Cao, and Alan Yuille. Patchattack: A black-box texture-
based attack with reinforcement learning. In ECCV,
2020.

[66] Maksym Yatsura, Kaspar Sakmann, N Grace Hua,
Matthias Hein, and Jan Hendrik Metzen. Certified de-
fences against adversarial patch attacks on semantic
segmentation. In ICLR, 2023.

[67] Zhanyuan Zhang, Benson Yuan, Michael McCoyd, and
David Wagner. Clipped bagnet: Defending against
sticker attacks with clipped bag-of-features. In Deep
Learning and Security Workshop (DLS), 2020.

A Additional Efficiency Experiments

Throughput with different batch sizes. In Section 4, we use
a batch size of 4 for throughput evaluation. In Table 8, we
report additional throughput results with different batch sizes.
We can see that the throughput does not significantly change
with a larger batch in our experiment setting.

FLOP and memory analyses. In Table 9, we augment
our evaluation results (discussed in Table 2 and Table 3) and
include latency, FLOP counts, and GPU memory consump-
tion. We use a batch size of one for per-image inference
latency. We estimate FLOPs using the fvcore libarary.5 For
GPU memory, we report the average of the maximum allo-
cated GPU memory for each data batch. First, we can see that
throughput and latency are (inversely) correlated since we use
one GPU for both two experiments. Second, the FLOP count
loosely correlates to the inference throughput: models with a

5https://github.com/facebookresearch/fvcore/blob/main/
docs/flop_count.md

Table 9: Performance for different models and defenses

Models Accuracy (%) Throughput Latency FLOP Memory
clean robust (img/s) (ms) (×109) (MB)

ViT-B [13] 83.7 0 191.7 7.5 17.6 360.6
ResNet-50 [20] 80.1 0 295.5 11.8 4.1 254.8
BagNet-33 [3] 73.0 0 192.2 11.0 16.4 320.2
ViT14x2 79.4 0 195.2 9.2 17.6 362.0
ViT14x1 77.4 0 190.4 8.2 18.1 362.4
ViT2x2 72.7 0 166.7 8.8 21.1 368.1

PCURE-ViT14x2-k12 78.3 44.2 189.9 10.3 17.6 362.0
PCURE-ViT14x1-k12 76.3 47.1 182.0 9.8 18.1 362.4
PCURE-ViT2x2-k12 71.3 46.8 158.1 9.7 21.1 368.2
PCURE-BagNet17-k4 65.4 42.2 115.1 14.5 17.1 723.2
PCURE-BagNet33-k4 70.8 44.1 136.8 13.1 17.5 517.4
PCURE-BagNet45-k4 72.4 34.8 132.5 14.8 17.2 465.9

PCURE-ViT14x2-k11 78.3 45.8 109.0 13.8 27.4 513.9
PCURE-ViT14x2-k10 79.8 46.0 77.2 16.5 38.6 511.7
PCURE-ViT14x2-k9 80.0 46.2 58.4 21.1 48.8 515.6
PCURE-ViT14x2-k6 81.8 47.4 34.4 32.4 76.3 517.9
PCURE-ViT14x2-k3 82.1 47.8 23.9 44.1 101.8 515.8

PCURE-ViT14x2-k0 82.2 47.8 19.7 54.3 92.0 515.8
PCURE-ViT14x1-k0 82.5 53.7 8.3 117.2 217.5 764.9
PCURE-ViT2x2-k0 82.6 61.6 2.0 433.3 1084.0 2181.6

PatchCleanser [55] 82.5 61.1 2.1 460.6 1205.0 2302.8
PatchCleanser [55] 82.0 55.1 12.5 82.7 216.0 646.9
ECViT [7] 78.6 41.7 2.25 1593.9 920.8 344.5
ViP [26] (robust) 75.8 40.4 0.8 1637.2 3938.4 363.7
ViP [26] (efficient) 75.3 38.3 7.7 174.2 404.4 363.7
S-ViT [44] (robust) 73.2 38.2 0.8 1577.1 920.8 344.5
S-ViT [44] (efficient) 67.3 33.0 20.5 177.3 63.3 342.5
PatchGuard [54] 54.6 26.0 162.9 11.5 17.5 311.8
BagCert [34] 45.3 22.7 164.2 11.6 17.5 310.8
DRS [25] 44.4 14.0 1.5 2476.8 920.9 258.6
CBN [67] 49.5 7.1 166.3 11.6 17.5 311.8

smaller FLOP count usually have higher inference through-
put. However, theoretically, it is possible that an algorithm
that has fewer FLOPs but requires sequential execution can
have a much larger latency than a parallelizable algorithm
with more FLOPs when running on a GPU. Third, we can
see a weaker connection between GPU memory consump-
tion and inference throughput because memory consumption
heavily depends on the implementation: for example, making
inferences on masked images one by one consumes less mem-
ory than batched masked images. We can see that PCURE-
ViT14x2-k12 and PCURE-ViT14x2-k11 have significantly
different memory footprints because we used an optimized
PATCHCURE implementation for pure SRF defenses; ECViT,
ViP, and S-ViT have a low inference speed but similar memory
consumption as vanilla ViT due to their special implementa-
tion.

B PatchCleanser and Double-masking

In this section, we discuss PatchCleanser [55] and its double-
masking algorithm, which can be used as our secure opera-
tion SO(·) in Algorithm 1. We generally follow the original
presentation of the PatchCleanser paper [55], with small mod-
ifications to keep its notations consistent with this paper.

R -covering mask set. The most important parameter of
the double-masking algorithm is an R -covering mask set.
We copied the definition of R -covering from the original

https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md
https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md

paper [55]. The mask m ∈M has a similar definition as the
patch region set r discussed in Section 2.1: it is a binary tensor
with the same shape as the input image H×W ; elements that
correspond to the mask region take the value of zeros and
otherwise ones.

Definition 1 (R -covering). A mask set M is R -covering if,
for any patch in the patch region set R , at least one mask
from the mask set M can cover the entire patch, i.e.,

∀ r ∈ R , ∃m ∈M s.t. m[i, j]≤ r[i, j], ∀(i, j)

Mask set generation. The PatchCleanser [55] discussed
a systematic way to generate a mask set M and adjust the
mask set size |M |. For simplicity, we only discuss the proce-
dure using a 1-D “image” example. To generate a mask set,
PatchCleanser moves a mask over the input image. Formally,
let us consider using a mask of width m over an image of
size n. The first mask is placed at the image coordinate of
0 and thus covers indices from 0 to m− 1. Next, the mask
is moved with a stride of s across different image locations
{0,s,2s, · · · ,⌊ n−m

s ⌋s}. Finally, the last mask is placed at the
index of n−m in case the mask at ⌊ n−m

s ⌋s cannot cover the
last m pixels. PatchCleanser then define a mask set Mm,s,n as:

Mm,s,n = {m ∈ {0,1}n |m[u] = 0,u ∈ [i, i+m);
m[u] = 1,u ̸∈ [i, i+m); i ∈ I}

I = {0,s,2s, · · · ,⌊n−m
s
⌋s}

⋃
{n−m} (3)

The mask set size can be computed as:

|Mm,s,n|= |I |= ⌈
n−m

s
⌉+1 (4)

To adjust the mask set size, PatchCleanser proposed to change
the mask stride s. To ensure the R -covering property, Patch-
Cleanser proved that the mask size needs to be at least
m = p+ s−1 to cover patches no larger than the size of p. In
our PATCHCURE implementation, we set s = 1 by default.
We analyze the effect of stride s in our technical report [61].

Inference procedure. We present the inference procedure
of the double-masking algorithm SO(·) in Algorithm 2. Com-
pared to the original double-masking algorithm (Algorithm
1 of [55]), we generalize its input image x as input image or
intermediate feature map f and replace its vanilla model as
our LRF model Mlrf.

Certification procedure. We present the certification pro-
cedure CERT-SO(·) in Algorithm 3. Compared to the original
double-masking algorithm (Algorithm 2 of [55]), we general-
ize its input image x as input image or intermediate feature
map f, replace its vanilla model as our LRF model Mlrf, and
consider the feature-space threat model A f

R .

Algorithm 2 Inference procedure of double-masking [55]

Input: Image or intermediate feature map f, LRF model Mlrf,
R -covering mask set M

Output: Robust prediction ȳ
1: procedure SO(f,Mlrf,M)
2: ȳmaj,Pdis←MASKPRED(f,Mlrf,M)
3: if Pdis =∅ then
4: return ȳmaj ▷ Case I: agreed prediction
5: end if
6: for each (mdis, ȳdis) ∈ Pdis do ▷ Second-rnd. mask
7: ȳ′,P ′←MASKPRED(f⊙mdis,Mlrf,M)
8: if P ′ =∅ then
9: return ȳdis ▷ Case II: disagreer prediction

10: end if
11: end for
12: return ȳmaj ▷ Case III: majority prediction
13: end procedure

14: procedure MASKPRED(f,Mlrf,M)
15: P ←∅ ▷ A set for mask-prediction pairs
16: for m ∈M do ▷ Enumerate every mask m
17: ȳ←Mlrf(f⊙m) ▷ Evaluate masked prediction
18: P ← P

⋃
{(m, ȳ)} ▷ Update set P

19: end for
20: ȳmaj← argmaxy∗ |{(m, ȳ) ∈ P | ȳ = y∗}| ▷ Majority
21: Pdis←{(m, ȳ) ∈ P | ȳ ̸= ȳmaj} ▷ Disagreers
22: return ȳmaj,Pdis
23: end procedure

Algorithm 3 Certification procedure of double-masking [55]

Input: Image or intermediate feature map f, ground-truth
label y, LRF modelMlrf, mask set M , feature-space threat
model A f

R
Output: Whether f has certified robustness

1: procedure CERT-SO(f,Mlrf,M ,A f
R ,y)

2: if M is not R -covering then ▷ Insecure mask set
3: return False
4: end if
5: for every (m0,m1) ∈M ×M do
6: ȳ′←Mlrf(f⊙m0⊙m1) ▷ Two-mask pred.
7: if ȳ′ ̸= y then
8: return False ▷ Possibly vulnerable
9: end if

10: end for
11: return True ▷ Certified robustness!
12: end procedure

	Introduction
	Preliminaries
	Problem Formulation
	Receptive Fields of Vision Models
	Overview of SRF and LRF Defenses

	PatchCURE Framework
	PatchCURE Insights
	PatchCURE Algorithm
	Building SRF Models
	Robustness Certification
	PatchCURE Instantiation

	Evaluation
	Setup
	Main results
	Detailed Analyses

	Discussion
	Related Work
	Conclusion
	Additional Efficiency Experiments
	PatchCleanser and Double-masking

