
MD-ML: Super Fast Privacy-Preserving Machine Learning
for Malicious Security with a Dishonest Majority

Boshi Yuan1, Shixuan Yang1, Yongxiang Zhang1, Ning Ding1,2,*, Dawu Gu1,2,*, and Shi-Feng Sun1,2

1Shanghai Jiao Tong University, China
2Shanghai Jiao Tong University (Wuxi) Blockchain Advanced Research Center

{nemoyuan2008,yangshixuan,zhang-yx7,dingning,dwgu,shifeng.sun}@sjtu.edu.cn

Abstract
Privacy-preserving machine learning (PPML) enables the
training and inference of models on private data, addressing
security concerns in machine learning. PPML based on se-
cure multi-party computation (MPC) has garnered significant
attention from both the academic and industrial communi-
ties. Nevertheless, only a few PPML works provide malicious
security with a dishonest majority. The state of the art by
Damgård et al. (SP’19) fails to meet the demand for large
models in practice, due to insufficient efficiency. In this work,
we propose MD-ML, a framework for Maliciously secure
Dishonest majority PPML, with a focus on boosting online
efficiency.

MD-ML works for n parties, tolerating corruption of up
to n−1 parties. We construct our novel protocols for PPML,
including truncation, dot product, matrix multiplication, and
comparison. The online communication of our dot product
protocol is one single element per party, independent of in-
put length. In addition, the online cost of our multiply-then-
truncate protocol is identical to multiplication, which means
truncation incurs no additional online cost. These features
are achieved for the first time in the literature concerning
maliciously secure dishonest majority PPML.

Benchmarking of MD-ML is conducted for SVM and NN
including LeNet, AlexNet, and ResNet-18. For NN inference,
compared to the state of the art (Damgård et al., SP’19), we
are about 3.4–11.0× (LAN) and 9.7–157.7× (WAN) faster in
online execution time.

1 Introduction

Machine learning (ML) is increasingly being applied in a
wide variety of application domains. For instance, Neural net-
works (NN) have been extensively used in applications such
as image and speech recognition, natural language process-
ing, and financial forecasting. Although being a powerful tool
that has been used to revolutionize various fields, ML is a
∗Corresponding authors.

data-driven approach, requiring a significant amount of data
to train the models. This inevitably raises privacy concerns
with regard to the data being used. The vast amount of per-
sonal data required for ML training creates opportunities for
misuse and mishandling of sensitive information. As such,
privacy-preserving techniques should be employed to ensure
the privacy of the data being used. Besides model training, an-
other dilemma of ML applications exists in inference services,
where a company that owns a model provides ML inference
services to customers. The company does not want to give
out the model directly while the customers consider their data
as private information and do not want to reveal it to others.
Towards this, secure multi-party computation (MPC) is used
to realize privacy-preserving machine learning (PPML) [40],
addressing the dilemma of privacy concerns in ML.

MPC [20, 53] allows a set of mutually distrusting parties
P1, . . . ,Pn to jointly compute a function y = f (x1, . . . ,xn),
where Pi holds its private input xi. On a high level, MPC
has the following security properties: (1) privacy—no set of t
corrupted parties can learn more information than the output
of the computation, and (2) correctness—no set of t corrupted
parties can cause incorrect output.

The security of MPC can be formulated by requiring that
execution of the protocol can be simulated and proven to be
equivalent to the execution by a trusted third party [4, 36].
The assumed capabilities of an adversary can then be used
to classify the level of security. Two of the most important
security metrics are: (1) whether the adversary is assumed to
be semi-honest or malicious, and (2) the number of parties
the adversary is assumed to corrupt, more concretely, honest
majority if the adversary can only corrupt less than 50% of
the parties, and dishonest majority if it can corrupt 50% or
more of the parties. With respect to the first security met-
ric, a semi-honest adversary is assumed to honestly follow
the protocol but tries to learn secret values (by analyzing the
transcript of messages that it received and its internal state),
whereas a malicious adversary is allowed to perform arbi-
trarily during the execution (e.g., sending incorrect values).
Malicious security (i.e., security against a malicious adver-



sary) is more desired, providing stronger security guarantees,
With respect to the second metric, dishonest majority is more
desired as it enables two-party computation, and provides
stronger collusion-resistance guarantees in multi-party com-
putation.

Semi-honest PPML protocols have been successful in sev-
eral previous works [6, 7, 27, 30, 39, 45, 49, 50, 52] in which
efficiency has been significantly improved since the initial
work [40]. Maliciously secure honest majority PPML pro-
tocols have also been developed with some success [51],
some achieving fairness [6, 46] or guaranteed output delivery
(GOD) [12, 28] in this security model.

Nevertheless, in real-world scenarios, the parties can be
malicious or even collude to break the privacy of the data and
the correctness of the results. In such cases, considering semi-
honest or maliciously secure honest majority models does not
perfectly satisfy the security requirements. The promotion
of maliciously secure dishonest majority security model will
significantly enhance the deployability of PPML.

Despite the success and efficiency achieved in semi-honest
and malicious honest majority PPML, only a few works have
explored PPML protocols considering the strong maliciously
secure dishonest majority security model. Damgård et al. [15]
pioneered this field by designing new cryptographic primitives
and demonstrating their applications in decision trees and
support vector machines (SVM) inference.

However as shown by Dalskov et al. [11], there is still a
huge performance gap between protocols in the maliciously
secure dishonest majority model and other weaker models,
with the former being 1–3 orders of magnitude slower. For
instance, [11] shows that the maliciously secure dishonest
majority protocol in [15] is 277 times slower than the honest
majority in MobileNet V1 1.0_224 inference, due to high
communication costs. This limits the applications to larger
ML models such as convolutional neural networks (CNNs).

It is worth noting that although Dalskov et al. [11] also
consider malicious security with a dishonest majority, the
underlying protocols remain the same with [15]. The quan-
tization technique they consider is out of the scope of this
paper. To the best of our knowledge, no follow-up work has
improved the efficiency of PPML in this security model.
This work—We propose MD-ML, a framework providing
fast, Maliciously secure, Dishonest majority ppML. We fo-
cus on minimizing online communication costs and boosting
online efficiency.

1.1 Our Contributions
We summarize our contributions below. For ease of reference,
the term “SPDZ2k +” is adopted to denote the state of the art
by Damgård et al. [15], since their protocols are based on the
SPDZ2k protocol [9].
Efficient Protocols for PPML. We extend the circuit-
dependent preprocessing technique of TurboSpeedz [3] to

Table 1: Comparison of theoretical online communica-
tion cost with SPDZ2k + [15]

Online comm. of Ours SPDZ2k +

Multiplication 1 2

Vector dot product† 1 2m

Matrix multiplication‡ hw 2hmw
Matrix multiplication

with truncation‡
hw

in 1 round
hw(2m+1)
in 2 rounds

† Vector length is m.
‡ Sizes of matrices are h×m and m×w.

the ring Z2k , achieving the online communication of 1 ring
element per party for each multiplication gate. Moreover, we
construct our novel protocols for PPML, including (cf. Ta-
ble 1):

• Multiplication with truncation (§4.1): Truncation is
needed after each multiplication in fixed-point arithmetic
(FPA), which is crucial for applications in ML. We in-
tegrate truncation operation with multiplication without
any additional online communication cost. To the best
of our knowledge, this feature is achieved for the first
time in maliciously secure dishonest majority model.

• Vector dot product (§4.2): For vector dot product, we
achieve the online communication of only one single
element per party, independent of input vector length. To
the best of our knowledge, this feature is achieved for
the first time in maliciously secure dishonest majority
security model.

• Matrix multiplication (§4.2): For multiplication of matri-
ces with sizes h×m and m×w, online communication
cost is hw ring elements per party. This is 2m× improve-
ment over SPDZ2k + [15] which requires 2hmw elements
online communication for each party.

• Secure Comparison (§4.3): To enable computing non-
linear functions of ML models, we refine the existing
mask-and-compare technique [15, 38] in the context of
circuit-dependent preprocessing, and propose our effi-
cient secure comparison procedure.

UC-secure PPML. Our framework works for any n parties,
allowing malicious corruption of any n− 1 parties. We rig-
orously show the security of all of our protocols in the UC
framework [4], for the first time in maliciously secure dishon-
est majority PPML literature.
Implementing and Benchmarking. We implement our pro-
tocols and building blocks to show the practicality of our
constructions in PPML. We carry out extensive benchmarks



on SVMs and NNs, in particular CNN models such as ResNet-
18. The results show significant efficiency improvement of our
constructions over the state of the art. For CNN inference, we
are about 3.4–11.0× (LAN) and 9.7–157.7× (WAN) faster
in online execution time compared to SPDZ2k + [15]. The
highlights are summarized in Table 2.

Table 2: Improvement over SPDZ2k + [15] in terms of on-
line execution time and communication for ML model
inference

Model
Time

Comm.
LAN WAN

SVM 4.3–12.8× 3.4–13.6× 1.9–2.1×
LeNet 3.4–9.2× 9.7–31.7× 2.0–2.9×

AlexNet 8.0–11.0× 93.3–157.7× 9.8–23.8×
Resnet-18† 25.8 s 362.9 s 4.15 GB

† ResNet-18 inference are not carried out for SPDZ2k +,
we instead provide performance of our MD-ML frame-
work here.

1.2 Technical Overview

Throughout the paper, our protocols are divided into an input-
independent preprocessing phase and an online phase, similar
to many other works [9, 14]. We use the circuit-dependent
preprocessing technique to improve efficiency. The main idea
is to introduce some extra random values (in addition to mul-
tiplication triples [2]) in the preprocessing phase. Then the
opening of some values, which would have to be done round-
by-round in the online phase, can be moved to and batched in
one round in the preprocessing phase.

We start from the TurboSpeedz [3] protocol, which intro-
duces circuit-dependent preprocessing over a finite field F.
We extend the circuit-dependent preprocessing technique to
the ring Z2k . The motivation is that (1) when implementing on
modern CPUs, computations over the ring Z2k runs faster [15],
and (2) protocols PPML-specific operations (e.g., truncation,
comparison) are easier to design and implement over the ring
Z2k .

Then we design our novel protocols for PPML. While Tur-
boSpeedz [3] is restricted to only arithmetic circuits (i.e., only
considers addition and multiplication of integers), we show
that by using circuit-dependent preprocessing technique the
online efficiency of PPML can be significantly improved.

To extend circuit-dependent preprocessing to the ring Z2k ,
notice that TurboSpeedz [3] uses the SPDZ-sharing [13, 14]
as the underlying secret-sharing scheme. It turns out that
replacing it with the SPDZ2k -sharing suffices. We further
introduce some optimizations to reduce online computation

and storage. We also analyze the security of the protocols to
prove them UC-secure.

Then, to construct our novel protocols for PPML, note that
for every secret value [x], the parties obtain a secret-shared
value [λx] from the circuit-dependent preprocessing phase,
and open ∆x = λx + x in the online phase.

• For truncation, we integrate the truncation operation into
multiplication. We observe that the [λ]-values can be
used both in the opening of ∆-values and in the truncation
pairs. We make the online cost of multiplication-then-
truncation operations identical to that of multiplications.

• For vector dot product, instead of executing the multi-
plication procedure for each underlying element multi-
plications, we sample only one random [λ]-value for the
result, and require communicating only one ring element,
regardless of vector length.

• For comparison of secret values, we adopt the mask-
and-compare approach [15, 38]. By circuit-dependent
preprocessing, we push the opening of the masked value
to the preprocessing phase to reduce communication
rounds.

In order to establish the UC-security of our protocols, we inte-
grate all of the aforementioned procedures into a preprocess-
ing protocol ΠPrepPPML and an online protocol ΠOnlinePPML.
By defining the corresponding functionalities as FPrepPPML

and FOnlinePPML, we proceed to conduct the security proofs.
Finally, it is worth noting that several recent works [18,

45] also uses circuit-dependent preprocessing. In particular,
ABY2.0 [45] also achieves constant online communication
for dot product. We briefly discuss these works and compare
them with our constructions in §3.3.

1.3 Other Related Work
MPC-based PPML. SecureML by Mohassel et al. [40] is
the first to consider MPC-based PPML. The protocol makes
use of the ABY framework [16] and is capable of training
and inference on small NNs. ABY3 by Mohassel et al. [39]
considers the 3-party case for both semi-honest and mali-
cious security. ASTRA by Chaudhari et al. [6] improves this
by proposing faster online protocols for malicious security.
BLAZE by Patra et al. [46] proposes maliciously secure pro-
tocols that support inference of neural networks with fairness
security. SWIFT by Koti et al. [28] achieves GOD security for
both 3PC and 4PC PPML, and Tetrad [30] further improves
efficiency for 4PC with the same security. Falcon by Wagh
et al. [51] shows the feasibility of training large CNNs in
malicious security settings. CryptGPU by Tan et al. [49] and
Piranha by Watson et al. [52] implements MPC-based PPML
on GPU, further enhancing efficiency. Dalskov et al. [11] stud-
ies secure evaluation of quantized neural networks (QNN).
Keller et al. [26] extends the MP-SPDZ framework [23] to



implement faster secure deep learning training. For a more
comprehensive survey of PPML, we refer the readers to [41].
The SPDZ-line of work. A major pillar in maliciously se-
cure dishonest majority MPC is the SPDZ-line of work. The
SPDZ protocol by Damgård et al. [13,14] introduces an inno-
vative secret-sharing scheme based on message authentication
codes (MACs) and a series of protocols to enable MPC over
a finite field F. MASCOT by Keller et al. [24] improves the
offline phase of SPDZ by replacing the expensive homomor-
phic encryption and zero-knowledge proofs with oblivious
transfer. Overdrive by Keller et al. [25] further improves the
efficiency of the offline phase by using global zero-knowledge
proofs and BGV encryption. Concurrently with Overdrive,
the SPDZ2k protocol by Cramer et al. [9] overcomes the hur-
dle of only being able to do maliciously secure dishonest
majority MPC over a finite field. Overdrive2k by Orsini et
al. [44] extends Overdrive to the ring Z2k by introducing a
special packing technique for BGV encryption. Escudero et
al. [19] achieve a lower amortized communication complex-
ity for MPC over Z2k by exploiting Galois rings. For a more
comprehensive survey of the SPDZ-line of work, we refer the
readers to [43].

1.4 Organization of This Paper

In §2 we introduce notations, state the security model used in
the paper, and give background on the SPDZ2k secret-sharing
scheme. In §3 we give our protocols for arithmetic circuits
over the ring Z2k . In §4 we give efficient building blocks
for PPML including multiplication with truncation, vector
dot product, and comparison. We show how to build SVMs
and NNs in §5. We benchmark our MD-ML framework and
compare it with the state of the art in §6, and conclude in §7.
Appendices. Appendix A contains the functionalities. Ap-
pendix B contains the procedures. Appendix C contains the
protocols.

2 Preliminaries

2.1 Notation

For an integer L, we denote by ZL the set of integers

{0,1, . . . ,L−1}, and use λ
$←−ZL to denote that λ is uniformly

random in ZL. For a vector x⃗, denote by x⃗[i] the i-th element
of x⃗. The dot product of x⃗ and y⃗ is denoted by x⃗ · y⃗. For a k-bit
integer λ, we explicitly use (λ0, . . . ,λk−1) to denote the bit
decomposition of λ where λ0 is the least significant bit. This
notation is employed to differentiate the individual bits of λ

from other subscripts. Denote by (x < y) the comparison re-
sult of x and y, i.e., (x < y) = 1 if x < y, (x < y) = 0 otherwise.
Table 3 summarizes the notation we use in this paper.

Table 3: Notation used throughout this paper
P1,P2, . . . ,Pn Parties performing secure computation

ZL The set of integers {0,1, . . . ,L−1}
λ

$←− ZL λ is uniformly random in ZL

x⃗ · y⃗ Dot product of vectors x⃗ and y⃗

x⃗[i] The i-th element of vector x⃗

(λ0, . . . ,λk−1) the bit decomposition of λ

(x < y) Comparison result of x < y

[x] SPDZ2k arithmetic share of x (§2.3)

[x]2 SPDZ2k binary share of x ∈ Z2 (§2.3)

k,s Concrete parameters for SPDZ2k (§2.3)

2.2 Security Model
Our protocols work with n parties, and we consider security
against a malicious, static adversary corrupting up to n− 1
parties. In this context, “malicious” denotes that the corrupted
parties may deviate arbitrarily from the protocol (e.g., send in-
correct values), and “static” denotes that corruption may only
take place before protocol starts and remains fixed throughout
protocol execution.

We prove our security statements in the universal composi-
tion (UC) framework of Canetti [4], where security is argued
by the indistinguishability of an ideal world, modeled by a
functionality (denoted by F with some subscript), and the
real world, instantiated by a protocol (denoted by Π with
some subscript). Protocols can invoke procedures (denoted
by π with some subscript), which are like protocols but not
intended to instantiate a functionality. Instead they are used
as subroutines inside other protocols that instantiates some
functionality.

2.3 The SPDZ2k Secret-sharing Scheme
We briefly recall the SPDZ2k secret-sharing scheme [9] in this
section, which enables n parties to compute over the ring Z2k

for any k (e.g., k = 64 for arithmetic circuits and k = 1 [15]
for boolean circuits). The main idea is that the parties carry
out computations over the ring Z2k+s , where σ = s− logs is
the statistical security parameter, but security and correctness
is only guaranteed modulo 2k.
Definition of SPDZ2k secret-sharing scheme [·]2k . Assume
each party Pi (for i = 1,2, . . . ,n) holds a uniformly random

additive share αi $←− Z2s of a secret global MAC key α =

∑
n
i=1 αi mod 2k+s. An element x ∈ Z2k is [·]2k -shared if each

party holds xi ∈Z2k+s and mi
x ∈Z2k+s , where x = ∑

n
i=1 xi mod

2k is the element being shared, and mx = ∑
n
i=1 mi

x mod 2k+s is
the MAC, such that mx = (∑n

i=1 xi) ·α mod 2k+s. We denote
[x]2k =

(
(x1, . . . ,xn),(m1

x , . . . ,m
n
x)
)
. We abbreviate [x]2k as [x]

when 2k is a large integer (e.g., k = 64) and the context is



clear.
Linear combination of [·]-sharing. The linear combina-
tion of secret-shared values can be locally computed by
the parties. For instance, given secret-shared values [x] =(
(x1, . . . ,xn),(m1

x , . . . ,m
n
x)
)
, [y] =

(
(y1, . . . ,yn),(m1

y , . . . ,m
n
y)
)

and public constants a,b,c, the linear combination [z] = a[x]+
b[y]+ c can be computed as [z] =

(
(z1, . . . ,zn),(m1

z , . . . ,m
n
z )
)

where Pi locally computes zi =

{
ax1 +by1 + c, if i = 1
axi +byi, if i ̸= 1

and

mi
z = ami

x +bmi
y + cαi for i = 1, . . . ,n.

Opening [·]-shared values and checking the MAC. To open
[x] so that all parties learn x in the clear, each party Pi use
a random shared value [r] to mask the upper s bits of x, get-
ting [x̃] = [x] + 2k[r]. Denote Pi’s share and MAC share on
[x̃] by x̃i and mi

x̃. Each party Pi broadcasts its own x̃i (but not
mi

x̃) and, upon receiving the values from other parties, com-
putes x = ∑

n
i=1 x̃i mod 2k. To ensure correctness, the MAC mx̃

should be checked, but can be deferred and batched with other
opened values. Procedure πMACCheck of [9] takes as input a
set of opened values and verifies the MACs of all the val-
ues, with failure probability negligible in s. For completeness,
πMACCheck is provided in Appendix B.1.

3 Efficient Protocols for Arithmetic Circuits

In this section, we provide our protocols for computing arith-
metic circuits (i.e., additions and multiplications) over the
ring Z2k . We extend the circuit-dependent preprocessing tech-
nique of TurboSpeedz [3] to MPC over the ring Z2k . In §3.1
we provide a concise overview of the TurboSpeedz protocol.
In §3.2 we propose our modifications and optimizations, then
formally present our protocols and state the security theorems.
It is worth noting that several recent works [18, 45] also uses
circuit-dependent preprocessing. Thus, in §3.3 we discuss the
techniques of ABY2.0, and explain why these techniques fails
in the security model we concern.

3.1 An Overview of TurboSpeedz
The TurboSpeedz protocol [3] uses the SPDZ-sharing (de-
noted by ⟨·⟩) as its underlying secret-sharing scheme. The
SPDZ-sharing is the same as the SPDZ2k -sharing (§2.3, de-
noted by [·]), except that the secret data, the MAC key, and
the sharings are from a finite field F, instead of the ring Z2k+s .

The protocol is divided into a circuit-dependent preprocess-
ing phase and an online phase. Denote by x,y,z, etc. the wires
in the circuit. The parties are assumed to have the following
circuit-dependent preprocessing material: for every wire z in
the circuit, the parties have a shared value ⟨λz⟩. If z is not
the output of an addition gate, then λz is a uniformly random
value. If z is the output of an addition gate with input wires
x,y, then λz is defined (recursively) as λz = λx +λy. In addi-
tion, for each multiplication gate parties are assumed to have

a shared multiplication triple (⟨a⟩ ,⟨b⟩ ,⟨c⟩) and values δx,δy,
where c = ab, δx = a−λx, δy = b−λy.

Then, in the online phase, for a secret value x on wire
x1, parties are assumed to hold ⟨x⟩ and are required to learn
∆x = x+λx in the clear. For an addition gate with input (x,y),
it is clear that the parties can compute ⟨z⟩ = ⟨x⟩+ ⟨y⟩ and
∆z = ∆x +∆y locally. For a multiplication gate with input x,y,
to get the result ⟨z⟩, the parties can compute the output as
⟨z⟩= (∆x +δx)(∆y+δy)− (∆y+δy)⟨a⟩− (∆x +δx)⟨b⟩+ ⟨c⟩.
This is correct since ∆x+δx = (x+λx)+(a−λx) = x+a, and
similarly ∆y +δy = y+b, hence for the right-hand-side of ⟨z⟩
we have: (∆x +δx)(∆y +δy)− (∆y +δy)a− (∆x +δx)b+ c =
(x+ a)(y+ b)− (y+ b)a− (x+ a)b+ ab = xy = z. Finally,
to retain the knowledge of ∆-values, parties compute ⟨∆z⟩=
⟨z⟩+ ⟨λz⟩ and open it to get ∆z.

3.2 Our Protocols
For our protocols, to enable computation over the ring Z2k , we
find that changing the underlying secret-sharing scheme from
SPDZ-sharing (⟨·⟩) to SPDZ2k -sharing ([·]) suffices. However,
the security of the protocols needs to be re-analyzed, as will
be done later in this section.

Further optimizations can be introduced. In the afore-
mentioned procedure, for a multiplication gate with output
wire z, parties have to compute [z], followed by computing
[∆z] = [z] + [λz] and opening ∆z. Patra et al. have noted in
ABY2.0 [45] that it is unnecessary for the parties to compute
and store the value [z]. Instead, only [∆z] is needed. This also
holds for addition gates, where parties only need to compute
∆z = ∆x +∆y locally, without computing and storing [z]. We
adopt this optimization and save 2 ring elements of storage in
the online phase per wire per party.

We note that it is imperative for the parties to retain the
knowledge of the [λ]-values corresponding to each wire dur-
ing the preprocessing phase. Subsequently, during the online
phase, for each gate the parties must compute and open the
∆-values associated with the output wire of that gate, based
on the ∆-values of the input wires. This requirement holds
true for all of the protocols proposed in §3 and §4.

For the preprocessing protocol, we rely on the SPDZ2k pre-
processing functionality FPrep [9] for generating randomness.
FPrep has three commands: Triple for generating a multipli-
cation triple, Rand for generating a random shared element
for all the parties, and Input for generating a random shared
element [r], where r is known by exactly one party in the clear.
The formal definition of FPrep is given in Appendix A.1.

We are now ready to present the arithmetic-circuit pre-
processing protocol ΠPrepArith. The goal of ΠPrepArith is to
generate the following material for the circuit: (1) a shared
[λ]-value for each wire, (2) a shared multiplication triple for
each multiplication gate, and (3) two public δ-values for each

1Note that we do not distinguish between the wire and its value, like the
SPDZ-line of work [9, 14, 24].



multiplication gate. The above features are captured by the
functionality FPrepArith, which is described in Appendix A.2
due to space constraints. The protocol ΠPrepArith is presented
below.

Protocol 1: ΠPrepArith

The parties proceed in topological order of the circuit.
Input: For each input wire x of party Pi, parties call
FPrep.Input to get ([λx],λx) where λx is known to Pi
in the clear, and all parties hold the sharing [λx].
Add: For an addition gate with input wires x, y and
output wire z, all the parties locally compute [λz] =
[λx]+ [λy].
Multiply: For a multiplication gate with input wires
x,y and output wire z, parties do the following:

1. Call FPrep.Triple to get a multiplication triple
([a], [b], [c]).

2. Locally compute [δx] = [a]− [λx] and [δy] = [b]−
[λy].

3. Call FPrep.Rand to get [λz], where λz
$←− Z2k .

Now the parties have [a], [b], [c], [λz], [δx], [δy] for a
multiplication gate.
Output: Parties open the shared [δ]-values for ev-
ery multiplication gate to get them in the clear, then
run πMACCheck to check the MACs on values that are
opened. If πMACCheck aborts then the parties abort.
Otherwise the protocol completes without failure.

The goal of the online protocol ΠOnlineArith is to let parties
interactively obtain the ∆-values for each wire in topologi-
cal order, and obtain the final output on their secret inputs,
using the preprocessed material obtained in ΠPrepArith. We
capture these features in functionality FOnlineArith, which is
described in Appendix A.2 due to space constraints. The
protocol ΠOnlineArith is presented below.

Protocol 2: ΠOnlineArith

Initialize: Parties call FPrepArith with the circuit to get
the δ-values, the shared [λ]-values, and the multipli-
cation triples for each gate.
Then, parties proceed in topological order.
Input: For Pi to share its input value x, Pi computes
and broadcasts ∆x = x+λx, then all parties store ∆x.
Add: For an addition gate with input wires x,y and
output wire z, parties locally compute ∆z = ∆x +∆y.
Multiply: For a multiplication gate with input wires
x,y and output wire z, all parties do the following:

1. Locally compute [∆z] = (∆x + δx)(∆y + δy)−
(∆y +δy)[a]− (∆x +δx)[b]+ [c]+ [λz].

2. Open ∆z to get ∆z in the clear.

Output: To output the value on wire x, all the parties
do the following:

1. Locally compute [x] = ∆x− [λx] and open x in
the clear.

2. Run πMACCheck on all the values that have been
opened so far. If πMACCheck aborts then parties
abort. Otherwise the output x is correct.

Now we state the security of our protocols. The proofs of
the following theorems are given in the full version.

Theorem 1. The protocol ΠPrepArith securely implements the
functionality FPrepArith against a static, malicious adversary
corrupting up to n−1 parties in the FPrep-hybrid model.

Theorem 2. The protocol ΠOnlineArith securely implements the
functionality FOnlineArith against a static, malicious adversary
corrupting up to n−1 parties in the FPrepArith-hybrid model.

3.3 Comparison with Other Works
3.3.1 Comparison with ABY2.0

ABY2.0 by Patra et al. [45] also uses the circuit-dependent
preprocessing technique to evaluate arithmetic circuits in
semi-honest two-party computation. It is the state-of-the-
art mixed-circuit framework in this security model. ABY2.0
achieves less communication in the preprocessing phase and
the protocols are more concise. Nevertheless, the techniques
of ABY2.0 cannot be directly applied to maliciously secure
dishonest majority MPC, as demonstrated below.

ABY2.0 works similar as us: for a multiplication gate with
input wires x,y and output wire z, the parties are assumed to
have the sharings of circuit-dependently preprocessed values
λx,λy,λz. The definition of these λ-values are the same as
ours. However, instead of letting the parties have a multipli-
cation triple (a,b,c) (which are independent of the λ-values),
ABY2.0 let the parties hold a sharing of λxy, where λxy = λxλy
(i.e., (λx,λy,λxy) forms a multiplication triple). This is done
by having the parties execute a semi-honest triple generation
protocol on inputs λx,λy.

This does not work for maliciously secure dishonest ma-
jority MPC, even if the underlying secret-sharing scheme
of ABY2.0 is replaced by the SPDZ2k -sharing. The triple
generation protocol in malicious setting [9] cannot take two
determined values (λx, λy in the above case) and output their
product, since it involves a random linear combination step
that randomizes the input values to ensure privacy in the
presence of a malicious adversary.2 Hence, the techniques of
ABY2.0 cannot be directly applied to our protocols.

2Although the product of two determined values can be computed using
a random triple, this incurs high communication cost and round complexity.



3.3.2 Discussions on flexible corruption

In another line of work, Goyal et al. [21] uncover the benefits
of allowing flexible corruption wherein the corruption thresh-
old is t = n(1− ε) for a constant 0 < ε < 1/2, as opposed to
the conventional dishonest majority threshold of t = n−1 (n
is the number of parties). Unlike most MPC protocols (includ-
ing this work) where global communication grows linearly
with n, the (amortized) global communication in [21] remains
bounded by a constant, regardless of the growth of n. Sub-
sequently, Escudero et al. [18] reduce this constant for the
online phase by using the circuit-dependent preprocessing
technique.

It is natural to explore the applicability of these techniques
to our protocols for improved performance. However, the
aforementioned works rely on packed Shamir secret-sharing,
which is currently limited to arithmetic circuits over a moder-
ately large finite field. Adapting these techniques for PPML
necessitates either (1) extending packed Shamir secret-sharing
to the ring Z2k , or (2) devising ML operations (truncation,
comparison, etc.) for packed Shamir secret-sharing over a
finite field F. Several works have been dedicated to both av-
enues. Regarding (1), Abspoel et al. [1] and Cramer et al. [10]
propose techniques to transform Shamir secret-sharing to Z2k .
As for (2), Liu et al. [37] propose new truncation and compar-
ison protocols for Shamir secret-sharing over F. Nevertheless,
these works primarily consider non-packed Shamir secret-
sharing, leaving uncertainty regarding the compatibility and
concrete efficiency of these techniques for packed Shamir-
secret sharing. This issue is left as an open problem.

4 Building Blocks for Machine Learning

In this section, we further exploit the circuit-dependent pre-
processing technique, and develop our novel building blocks
for privacy-preserving machine learning. These include multi-
plication with truncation (§4.1), vector dot product (§4.2), and
secure comparison (§4.3). We show that all of these building
blocks benefit from circuit-dependent preprocessing, resulting
in less online communication cost. In §4.4 we analyze the
security and discuss the reactiveness of our constructions.

4.1 Multiplication with Truncation

Most of the computations in machine learning involve oper-
ating over decimals. To represent decimal values, we make
use of fixed-point arithmetic (FPA). Values are represented
as signed two’s complement over the ring Z2k [40], with the
most significant bit being the sign bit, and d least significant
bits being the fractional part. Note that the computations are
still carried out in Z2k+s , but we only care about the values
of the lower k bits. In FPA representation, the number of
fractional bits doubles after each multiplication, therefore the

multiplication result needs to be divided by 2d (i.e., truncate
the last d bits) to avoid overflowing the ring Z2k .

We provide a brief overview of existing truncation tech-
niques. In ABY3 [39], the protocol involves generating shared
random values ([r′], [r]) in the preprocessing phase, where
r = r′/2d (referred to as a truncation pair). During the online
phase, parties compute and open z′+ r′, followed by local
computation of [z] = (z′+ r′)/2d − [r] to obtain the desired
result. This approach requires one round of communication
for multiplication and an additional round for truncation.

Subsequent works such as ABY2.0 [45], Swift [28], Tetrad
[30], and MPClan [29] optimize the online cost of truncation
by integrating it into the multiplication process. Instead of
opening the intermediate result after multiplication and open-
ing the final result after truncation, the intermediate result
is masked with the random [r′] from the truncation pair and
opened. This integration of the opening of masked value into
the multiplication procedure helps reduce communication
costs.

Inspired by the aforementioned techniques, we observe that
in the multiplication procedure of ΠOnlineArith, where ∆z′ =
z′+λz′ is opened, it is possible to locally truncate it to obtain
∆z = ∆z′/2d . Assuming the parties possess [λz] such that λz =
λz′/2d , it follows that z = ∆z−λz = ∆z′/2d−λz′/2d = z′/2d ,
thereby completing the truncation. The crucial point is that
([λz′ ], [λz]) not only functions as random masks in ∆z′ and ∆z,
but also serves as a truncation pair.

In order to generate the pair ([λz′ ], [λz]) in the preprocess-
ing phase, we no longer rely on FPrep.Rand as in ΠPrepArith.
Instead, we utilize the functionality FedaBits for edaBits gener-
ation [17] to obtain the (k−d)-bit value [λz] and a d-bit value
[u]. Then [λz′ ] can be locally computed as [λz′ ] = 2d · [λz]+[u].
The formal definition FedaBits is given in Appendix A.4. The
procedure πMultTrunc is described below.

Procedure 1: πMultTrunc

For a multiply-then-truncate gate with input wires x,y
and output wire z, to multiply x,y and truncate the
result by d bits:
Preprocessing phase:

1. Parties call FPrep.Triple to get ([a], [b], [c]).

2. Parties compute [δx] = [a]− [λx], [δy] = [b]− [λy]
and open δx,δy.

3. Parties call FedaBits on input (k− d) to get [λz]
and its bit decomposition {[λz,i]2}k−d−1

i=0 .

4. Parties call FedaBits on input d to get [u] and its
bit decomposition {[ui]2}d−1

i=0 .

5. Parties locally compute [λz′ ] = 2d · [λz]+ [u].

Online phase:



1. Parties locally compute [∆z′ ] = (∆x + δx)(∆y +
δy)− (∆y +δy)[a]− (∆x +δx)[b]+ [c]+ [λz′ ].

2. Parties open ∆z′ to get ∆z′ in the clear.

3. Parties locally compute ∆z = ∆z′/2d .

Online communication cost. In the online phase of proce-
dure πMultTrunc, each party is only required to broadcast a
single ring element. This communication cost is identical to
that of multiplication in ΠOnlineArith. Therefore, truncation is
essentially performed at no additional online communication
cost. To the best of our knowledge, this feature is achieved for
the first time in maliciously secure dishonest majority PPML
protocols.
Correctness. For the correctness of πMultTrunc we have the
following proposition.

Proposition 3. In the procedure πMultTrunc, if xy ≤ 2ℓ for
some ℓ < k, then with probability at least 1− 2ℓ−k it holds
that z = ⌊xy/2d⌋+ v for some v ∈ {0,1}.

Proof. We use the notations in πMultTrunc and let z′ = xy =
∆z′ − λz′ . Denote by Carryk(x,y) the k-th carry bit when
adding x and y. Since ∆z′ = (λz′ + z′) mod 2k, it holds that
∆z′ = λz′ + z′− 2ku with u = Carryk(λz′ ,z′). Also, we have
(∆z′ mod 2d) = (λz′ mod 2d) + (z′ mod 2d)− 2dv with v =
Carryd(λz′ ,z′). Since for all positive integers x it holds that
⌊x/q⌋= (x− (x mod q))/q, we can see that z satisfies

z = ∆z−λz = ⌊∆z′/2d⌋−λz =
∆z′ − (∆z′ mod 2d)

2d −λz

=
λz′ + z′−2ku− (λz′ mod 2d)− (z′ mod 2d)+2dv

2d −λz

=
λz′ − (λz′ mod 2d)

2d +
z′− (z′ mod 2d)

2d −2k−du+ v−λz

= λz + ⌊z′/2d⌋−2k−du+ v−λz = ⌊z′/2d⌋−2k−du+ v,

hence the error is −2k−du+ v. Since u = Carryk(λz′ ,z′) =
(λz′ + z′ ≥ 2k), the probability that u = 1 is the probability
that λz′ ≥ 2k−z′. Moreover, since z′ < 2ℓ and λz′ is uniformly
random in Z2k , this probability is upper bounded by 2ℓ−k.

4.2 Vector Dot Product
In this section, we show that the online communication of
vector dot product can be made independent of the vector size.
This has been achieved in either semi-honest setting [45] or
malicious setting with an honest majority [8, 39]. To the best
of our knowledge, no previous works have achieved similar
results in maliciously secure dishonest majority model.

For convenience we allow the [·] notation for vectors, i.e.,
[⃗λ] indicates that each element of the vector λ⃗ is [·]-shared.

For a dot product gate with input vectors x⃗, y⃗ of length m,
the goal of the procedure πDotProduct is to compute the output

on wire z where z = x⃗ · y⃗ = ∑
m
i=1 x⃗[i]⃗y[i]. A trivial way is to

execute m multiplications in ΠOnlineArith for each underlying
multiplication, but this results in online communication linear
in vector length m.

We now show how to make online communication inde-
pendent of vector length. Observe that in preprocessing phase
parties do not need to generate the random shares [

−→
λz [i]] for

each multiplication in the dot product. Instead, only a single
random share [λz] is needed for the final result. Then in the
online phase, parties locally compute and sum up the products
before masking with [λz] to get [∆z]. Finally, parties open ∆z
to retain knowledge on ∆z. For details, see our dot product
procedure πDotProduct below.

Procedure 2: πDotProduct

For a dot product gate with input vectors of length m
on wires x⃗, y⃗:
Preprocessing phase:

1. Parties call FPrep.Rand to get [λz] where λz
$←−

Z2k .

2. Parties call FPrep.Triple m times to get m triples,
obtaining [⃗a], [⃗b], [⃗c], where ([⃗a[i]], [⃗b[i]], [⃗c[i]]) is
an individual multiplication triple obtained in the
i-th call of FPrep.Triple.

3. Parties compute [
−→
δx ] = [⃗a]− [

−→
λx ], [

−→
δy ] = [⃗b]−

[λy] and open
−→
δx ,
−→
δy .

Online phase:

1. Parties locally compute [∆z] = ∑
m
i=1

(
(
−→
∆x[i] +

−→
δx [i])(

−→
∆y[i] +

−→
δy [i]) − (

−→
∆y[i] +

−→
δy [i])[⃗a[i]] −

(
−→
∆x[i]+

−→
δx [i])[⃗b[i]]+ [⃗c[i]]

)
+[λz].

2. Parties open ∆z to get ∆z in the clear.

Online communication cost. For length-m vector dot prod-
uct, SPDZ2k + [15] requires communication of 2m elements
for each party in the online phase, while we only require 1
single element for each party, which is independent of input
vector length m. To the best of our knowledge, this feature
is achieved for the first time in maliciously secure dishonest
majority MPC.
Matrix multiplication. Since matrix multiplication consists
of vector dot products, it benefits from our constructions. Con-
cretely, to multiply a secret h×m matrix by a secret m×w ma-
trix, SPDZ2k + [15] requires online communication of 2mhw
ring elements per party, while we require only hw ring ele-
ments, which is 2m× improvement.
Dot product and matrix multiplication with truncation.



The dot-product-then-truncate procedure πDotProductTrunc can
be constructed similarly as πMultTrunc. We describe the details
of πDotProductTrunc in Appendix B.2. In addition, matrix mul-
tiplication with truncation also benefits from πDotProductTrunc.
The property that truncation requires no additional online
communication cost still holds. Concretely, for length m vec-
tor dot product with truncation, our construction requires only
1 ring element of online communication per party in 1 round,
whereas SPDZ2k + [15] requires 2m+1 elements in 2 rounds.
For size h×m and m×w matrix multiplication followed by
truncation, our construction requires hw ring element of online
communication per party in 1 round, whereas SPDZ2k + [15]
requires hw(2m+1) elements in 2 rounds. We improve online
communicate cost by a factor of 2m+1 and save one round
of communication.

4.3 Secure Comparison

Many non-linear functions used in machine learning (e.g.,
ReLU, MaxPool) involve comparison operations. The goal
of secure comparison is to perform comparison operations
on secret-shared data, ensuring that the output remains secret-
shared as well.

We first consider comparing a secret-shared value [x] with
public value 0 to get [z] where z = (x < 0). The mask-and-
compare technique, proposed by Damgård et al. [15] and
Makri et al. [38], works as follows. In the preprocessing phase,
the parties call FedaBits to get a shared random mask [r] and
its bit decomposition {[ri]2}k−1

i=0 = ([r1]2, . . . , [rk−1]2). In the
online phase, the parties compute [c] = [x]+ [r] and open c in
the clear, then use a bit-wise comparison circuit πBitLT to com-
pare the public value c and the secret-shared bits {[ri]2}k−1

i=0 ,
obtaining [z]2 where z = (c < r) = (x+ r < r) = (x < 0). Fi-
nally, [z]2 is converted to [z] using a bit-to-arithmetic conver-
sion functionality FB2A. The procedure for standard bit-wise
comparison πBitLT is described in Appendix B.3, and the bit-
to-arithmetic conversion functionality FB2A is described in
Appendix A.4.

Now we develop our LTZ (less-than-zero) procedure πLTZ

in the context of circuit-dependent preprocessing. Parties have
input [λx],∆x where ∆x = λx + x and wish to obtain [λz],∆z
where z = (x < 0) and ∆z = λz + z.

To apply the mask-and-compare technique, the parties must
open the value [c] = [x]+[r] = ∆x− [λx]+[r]. Let δx = r−λx,
observe that [δx] = [r]− [λx] can be computed and opened in
the preprocessing phase. Consequently, c = ∆x +(r−λx) =
∆x + δx can be computed locally in the online phase. This
approach effectively shifts the opening of the masked value
to the preprocessing phase. Furthermore, if there are multiple
LTZ gates in the circuit, then the opening of these values can
be batched in a single round, saving communication rounds.
For details, see the LTZ procedure πLTZ described below.
On the use of the additional random mask [r]. Unlike the
multiplication-then-truncation procedure in §4.1, where [λ]-

values are utilized as truncation pairs, we do not reuse [λx]
for the mask-and-compare approach. The reason for this is
that the bit-wise comparison procedure πBitLT requires the
knowledge of shared bit decomposition of the random mask.
However, since the value [λx] is determined prior to the prepro-
cessing phase of πLTZ, obtaining the shared bit decomposition
of λx requires an expensive protocol [5]. Hence, we resort to
generating an additional random mask [r] using the relatively
cheap FedaBits.

Procedure 3: πLTZ

For an LTZ gate with input wire x, to get the compari-
son result z = (x < 0) on wire z:
Preprocessing phase:

1. Parties call FedaBits on input k to get [r] and its bit
decomposition {[ri]2}k−1

i=0 = ([r1]2, . . . , [rk−1]2).

2. Parties compute [δx] = [r]− [λx], then open δx.

3. Parties call FPrep.Rand to get [λz] where λz
$←−

Z2k .

Online phase:

1. Parties call πBitLT(∆x +δx,{[ri]2}k−1
i=0 ) to get [z]2.

2. Parties call FB2A on input [z]2 to get [z].

3. Parties locally compute [∆z] = [λz]+ [z].

4. Parties open ∆z to get ∆z in the clear.

Further optimization for the preprocessing phase. If pro-
cedure πLTZ is to be executed right after procedure πMultTrunc,
which is often the case in neural networks (e.g., ReLU func-
tion after matrix multiplication), then the preprocessing phase
can be further optimized. Note that the bit decomposition
([λx,0]2, . . . , [λx,k−1]2) is already known in the preprocess-
ing phase of πMultTrunc, hence it can serve as the random
mask in the mask-and-compare approach, and [r] is no longer
needed. In the online phase, the paries replace the first
step with πBitLT(∆x,{[λx,i]2}k−1

i=0 ). Correctness holds since
(x < 0) = (∆x− λx < 0) = (∆x < λx). As a result, the call
to FedaBits and the opening of δx is no longer needed.
Comparison of two secret values. To compare two secret
values on wires x,y and obtain secret (x < y) on wire z, the
parties can simply invoke πLTZ on input (x− y).
Online communication cost. The online phase involves an
opening of a (s+ k)-bit ring element, an opening of a (s+1)-
bit ring element (in FB2A), and an invocation of πBitLT on
length-k inputs, which has 2k−2 AND gates in logk rounds.
Hence online communication cost for each party is 2(2k−
2)(s+1)+(s+1)+(s+ k) = 4ks+5k−2s−3 bits.



4.4 The Full Protocol
To formally state and prove the security of the procedures
proposed above, we integrate them into a preprocessing proto-
col ΠPrepPPML and an online protocol ΠOnlinePPML. They are
put in Appendix C due to space constraints, and we briefly
describe them below.

The preprocessing protocol ΠPrepPPML consists all of the
components of ΠPrepArith, in addition to the preprocessing
phases of procedures πMultTrunc, πDotProduct, and πLTZ. Simi-
larly, the online protocol ΠOnlinePPML, consists all of the com-
ponents of ΠOnlineArith, along with the online phases of proce-
dures πMultTrunc, πDotProduct, and πLTZ.

We define the corresponding functionalities FPrepPPML and
FOnlinePPML, they are described in Appendix A.3.

Now we state the security of our protocols. The proofs of
the following theorems are given in the full version.

Theorem 4. The protocol ΠPrepPPML securely implements the
functionality FPrepPPML against a static, malicious adversary
corrupting up to n−1 parties in the (FPrep,FedaBits)-hybrid
model.

Theorem 5. The protocol ΠOnlinePPML securely implements
the functionality FOnlinePPML against a static, malicious adver-
sary corrupting up to n−1 parties in the (FPrepPPML,FB2A)-
hybrid model.

On the reactiveness of our protocols. Our constructions
make use of circuit-dependent preprocessing, hence parties
cannot modify circuit structure during the online phase. Nev-
ertheless, our functionalities and protocols are reactive, in
the sense that input gates and output gates are allowed in the
midst of the circuit. Parties can learn partial outputs from the
output gates before providing new inputs (which may depend
on the outputs) to the input gate.

5 Applications to Machine Learning

In this section, we show how to apply privacy-preserving
techniques to two types of popular ML models: SVMs and
NNs, on top of our constructions in §3 and §4.

5.1 Support Vector Machines
SVMs are widely used for classification purposes. They can
serve as binary classifiers or be extended to handle multiple
categories. Concretely an SVM is a function f : Rn → Zq
defined as

f (⃗x) = argmax
i∈{1,...,q}

(W[i] · x⃗+ b⃗[i])

where n is the dimension of the feature space and q is the
number of categories. The input is x⃗ ∈ Rn. The matrix W ∈
Rq×n and the vector b⃗∈Rn are the parameters. Note that W[i]
denotes the i-th row of W.

To implement SVM inference, notice that it consists of only
matrix multiplication and comparison operations, which can
be efficiently implemented using the corresponding proce-
dures πDotProduct and πLTZ in §4.

5.2 Neural Networks

We mainly focus on the inference of convolutional neural
networks (CNN), which consists of fully connected layers,
convolution layers, batch normalization layers, pooling layers,
and activation functions. We assume familiarity with these
concepts and refer the readers to a standard deep learning
textbook (e.g. [42]) for details.
Linear layers. Fully connected layers, convolution layers,
and batch normalization layers are linear layers, hence can be
implemented using vector dot product.
Pooling layers. We consider two common kinds of pooling
layers: max pooling and average pooling. Average pooling
can be implemented using the addition and multiplication
procedure, and max pooling needs comparison operations,
which are accomplished by procedure πLTZ.
Activation functions. We mainly consider the ReLU func-

tion ReLU(x) =

{
x, if x > 0
0, otherwise

. For LeNet [34] we replace

the legacy tanh function with ReLU since this enables faster
training [32] and is easier to compute. To compute ReLU, no-
tice that ReLU(x) = (x > 0) ·x = (1− (x < 0)) ·x, parties can
invoke πLTZ on input x followed by multiplying (1− (x < 0))
by x to obtain the result.

6 Evaluations

6.1 Experiment Setup

We implement our protocols in C++.3 To compare with the
state of the art SPDZ2k + [15], we implement the evaluations
for SPDZ2k + in the MP-SPDZ framework [23]. Although
both SPDZ2k + and MD-ML support multi-party computation,
we mainly focus on 2PC scenario in the evaluations.
Execution environment. All of the experiments in this paper
are performed on two cloud servers running Ubuntu 22.04
LTS. Both servers are equipped with 16 vCPUs and 32 GB of
RAM. We consider two different network settings, LAN and
WAN. The network parameters are simulated using the Linux
tc command. The bandwidth between the parties are 10 Gbps
(LAN) and 100 Mbps (WAN), respectively. The round-trip
time (rtt) are 0.1ms (LAN) and 100ms (WAN), respectively.
Concrete parameters. Parameters s = k = 64 are used for
the SPDZ2k secret-sharing scheme [9] in the evaluations of
both MD-ML and SPDZ2k + [15]. For fixed point arithmetic
in MD-ML, we use d = 20 for the number of fractional bits.

3Available at https://github.com/NemoYuan2008/MD-ML.

https://github.com/NemoYuan2008/MD-ML


Datasets and ML models. The datasets used are MNIST [35],
CIFAR-10 [31], Tiny ImageNet [33], and ImageNet [47]. The
ML models used are SVM, LeNet [34], AlexNet [32], and
ResNet-18 [22].
Metrics. We measure the total communication including all
the messages sent by the paries (including TCP/IP headers,
etc.). We measure the end-to-end execution time including
the time of computation and network communication. The
improvement factor of MD-ML over SPDZ2k + is included in
the tables.

6.2 Microbenchmarks on the Building Blocks
6.2.1 Benchmarks of the online phase

We benchmark the online phase of the following building
blocks for both MD-ML and SPDZ2k +:

• Dot product of vector length 65536 (Table 4).

• Secure comparison (LTZ) of a batch of 65536 secret
values (Table 4).

• Matrix multiplication of different sizes (Table 5).

• Tensor 2D convolution of different sizes (Table 6).

The execution time and communication costs of the online
phase are measured and listed in the tables. Note that trun-
cation operations are included in the benchmarks of multi-
plication, since they are needed in the application of PPML.
The time and communication cost for the input phase is also
included in the statistics.

The experimental results demonstrate the significant su-
periority of our efficient vector dot product and truncation
protocols. Concretely, for linear operations (including convo-
lution), we are 4.0–20.0× faster in LAN, 6.0–73.5× faster in
WAN, and 1.7–8.8×more communication-efficient compared
to SPDZ2k +.

6.2.2 Benchmarks of the preprocessing phase

We benchmark the preprocessing phase of the following build-
ing blocks for both MD-ML and SPDZ2k + (Table 7):

• Dot product of vector length 65536.

• Multiplication with truncation of a batch of 1024 values.

• Secure comparison (LTZ) of a batch of 1024 values.

These correspond to the procedures πDotProduct, πMultTrunc,
and πLTZ from §4. Truncation and comparison operations are
evaluated in a batch of 1024, aligning with the batch size
of 1024 used in the edaBits generation implemented in the
MP-SPDZ framework [23].

As shown by Table 7, the preprocessing cost of πMultTrunc

and πLTZ are nearly the same as SPDZ2k +, while the prepro-
cessing cost of our vector dot product procedure is slightly

higher than SPDZ2k +. The reason is that parties need to gen-
erate the [λ]-values and open the δ-values in addition to the
multiplication triples. This increase is very minimal compared
to the significant efficiency enhancement of the online phase.

6.3 Benchmarks on ML models
We implement the following evaluations for online bench-
marking:4

• SVM inference on the MNIST, CIFAR-10, and Tiny
ImageNet datasets with both MD-ML and SPDZ2k + (Ta-
ble 8).

• LeNet inference on the MNIST, CIFAR-10, and Tiny
ImageNet datasets with both MD-ML and SPDZ2k + (Ta-
ble 9).

• AlexNet inference on the CIFAR-10, Tiny ImageNet,
and ImageNet datasets with both MD-ML and SPDZ2k +
(Table 10).

• ResNet-18 inference on the CIFAR-10 dataset with MD-
ML (Table 11).

The communication and the running time of the online phase
are measured in both LAN and WAN settings.

Significant improvement of MD-ML over SPDZ2k + is ob-
served from the tables. For LeNet inference, we are 3.4–9.2×
faster in LAN, 9.7–31.7× faster in WAN, and 2.0–2.9× more
communication-efficient. For AlexNet inference, we are 8.0–
11.0× faster in LAN, 93.3–157.7× faster in WAN, and 9.8–
23.8× more communication-efficient. For ResNet-18 infer-
ence on CIFAR-10, we are capable of completing the online
phase of inference in 25.8s in LAN and 363.9s in WAN.

As the size of the neural network and dataset increases, we
observe significant enhancements in online efficiency, owing
to the utilization of our constant-communication dot product
protocol and various efficient building blocks.

6.4 Accuracy
Table 12 compares the inference accuracy on MNIST dataset
obtained by our MD-ML framework and by plaintext compu-
tation, using pre-trained SVM and LeNet models.

The primary sources of errors encountered in MD-ML
can be attributed to the following factors: (1) the utiliza-
tion of fixed-point arithmetic, (2) the introduction of errors
through probabilistic truncation, and (3) the errors arising
from comparison operations. The experimental results indi-
cate that these errors are acceptable, with our relative error
being 0.153%–0.435% compared to plaintext computation.

4In practice SVM and LeNet are not capable of classification of rela-
tively large datasets such as Tiny ImageNet. Our objective in conducting the
respective experiments is to showcase the performance of both frameworks.



Table 4: Online communication and running time of dot product and comparison

Operations† LAN Time WAN Time Communication

Ours SPDZ2k + Factor Ours SPDZ2k + Factor Ours SPDZ2k + Factor

Dot product 2.5 ms 46.8 ms 18.7× 614 ms 4050 ms 6.6× 2.01 MB 2.10 MB 1.04×
LTZ 278 ms 1271 ms 4.57× 14.0 s 21.0 s 1.5× 132 MB 118.5 MB 0.9×

†Dot product is evaluated for vectors of length 65536. LTZ is evaluated for a batch of 65536 values.

Table 5: Online communication and running time of matrix multiplication

Shape†

h,m,w

LAN Time WAN Time Communication

Ours SPDZ2k + Factor Ours SPDZ2k + Factor Ours SPDZ2k + Factor

1000, 2048, 1 35.3 ms 717 ms 20.0× 2.80 s 205.8 s 73.5× 31.4 MB 65.55 MB 2.1×
32, 32, 32 0.77 ms 9.05 ms 11.8× 0.429 s 7.84 s 18.3× 0.632 MB 1.065 MB 1.7×

† Input shape: a h×m matrix multiplied by a m×w matrix.

Table 6: Online communication and running time of 2D convolution

HW,C,M,h,s† LAN Time WAN Time Communication

Ours SPDZ2k + Factor Ours SPDZ2k + Factor Ours SPDZ2k + Factor

28×28, 1, 1, 3, 1 1 ms 7.2 ms 7.2× 401 ms 2409 ms 6.0× 24.4 KB 210.6 KB 8.6×
32×32, 3, 1, 3, 1 2.15 ms 8.6 ms 4.0× 405 ms 3013 ms 7.4× 31.9 KB 280.3 KB 8.8×

† HW stands for the input shape, C the number of channels, M the number of kernels, h×h the kernel size, s the
convolution stride.

Table 7: Preprocessing communication and running time of building blocks

Operation† LAN time WAN time Communication

Ours SPDZ2k + Factor Ours SPDZ2k + Factor Ours SPDZ2k + Factor

MultTrunc 2.191 s 2.189 s 0.999× 436.991 s 436.383 s 0.999× 162.294 MB 162.261 MB 1.0000×
LTZ 2.388 s 2.390 s 1.001× 435.234 s 434.636 s 0.999× 165.096 MB 165.079 MB 0.9999×

Dot prod. 8.065 s 6.246 s 0.775× 283.548 s 230.505 s 0.813× 1270.23 MB 1124.39 MB 0.8852×

†Dot product is evaluated for vectors of length 65536. MultTrunc and LTZ are evaluated for a batch of 1024 values.

Table 8: Online communication and running time of SVM inference on different datasets

Dataset
LAN Time WAN Time Communication

Ours SPDZ2k + Factor Ours SPDZ2k + Factor Ours SPDZ2k + Factor

MNIST 0.92 ms 4 ms 4.3× 641 ms 2208 ms 3.4× 137 KB 257.06 KB 1.9×
CIFAR-10 2.2 ms 21 ms 9.5× 681 ms 3670 ms 5.4× 518 KB 1006.79 KB 1.9×

Tiny ImageNet 47 ms 600 ms 12.8× 3321 ms 45041 ms 13.6× 37.8 MB 78.65 MB 2.1×



Table 9: Online communication and running time of LeNet inference on different datasets

Dataset
LAN Time WAN Time Communication

Ours SPDZ2k + Factor Ours SPDZ2k + Factor Ours SPDZ2k + Factor

MNIST 80 ms 274 ms 3.4× 9.82 s 95.647 s 9.7× 9.46 MB 18.99 MB 2.0×
CIFAR-10 89 ms 399 ms 4.5× 10.14 s 117.309 s 11.5× 13.1 MB 34.41 MB 2.6×

Tiny ImageNet 196 ms 1798 ms 9.2× 13.968 s 443.397 s 31.7× 65.5 MB 187.62 MB 2.9×

Table 10: Online communication and running time of AlexNet inference on different datasets

Dataset
LAN Time WAN Time Communication

Ours SPDZ2k + Factor Ours SPDZ2k + Factor Ours SPDZ2k + Factor

CIFAR-10 0.82 s 6.80 s 8.3× 34.88 s 3254.7 s 93.3× 241.51 MB 2364.82 MB 9.8×
Tiny ImageNet 2.06 s 16.40 s 8.0× 53.89 s 6774.6 s 125.7× 405.00 MB 8274.95 MB 20.4×

ImageNet 7.38 s 81.35 s 11.0× 188.92 s 29785.2 s 157.7× 1319.31 MB 31447.70 MB 23.8×

Table 11: Online Performance of ResNet-18 with MD-ML

Model and Dataset LAN WAN Comm.

ResNet-18 on CIFAR-10 25.8 s 362.9 s 4.15 GB

Table 12: Inference Accuracy on MNIST dataset

Model Plaintext MD-ML Relative Error

SVM 94.42% 94.28% 0.153%

LeNet 98.86% 98.43% 0.435%

7 Conclusion

In this work, we introduce MD-ML, a framework for ma-
liciously secure dishonest majority PPML. We have devel-
oped a series of efficient building blocks such as dot prod-
uct, multiplication with truncation, and comparison. We have
significantly improved the performance in terms of online
communication cost compared to SPDZ2k + [15]. Finally, we
demonstrate the practicality and effectiveness of our construc-
tions by implementing SVM, LeNet, AlexNet, and ResNet
with MD-ML. We believe that MD-ML will promote the real-
world applications of maliciously secure dishonest majority
MPC and PPML.

There are several potential future directions for our re-
search: (1) exploring the benefits of flexible corruption
(§3.3.2), and (2) improving the efficiency of our constructions
using orthogonal optimizations such as hardware accelera-
tion.

Acknowledgment

We would like to thank the anonymous reviewers of USENIX
Security 2024 for their valuable comments. This work was
supported in part by the National Key Research and Develop-
ment Project 2020YFA0712300, and National Natural Science
Foundation of China (Grant No. 62272294).

References

[1] Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel
Escudero, and Chen Yuan. Efficient information-
theoretic secure multiparty computation over Z/pkZ
via galois rings. In Dennis Hofheinz and Alon Rosen,
editors, Theory of Cryptography, pages 471–501, Cham,
2019. Springer International Publishing.

[2] Donald Beaver. Efficient multiparty protocols using
circuit randomization. In Joan Feigenbaum, editor, Ad-
vances in Cryptology — CRYPTO ’91, pages 420–432,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[3] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. Tur-
bospeedz: Double your online SPDZ! Improving SPDZ
using function dependent preprocessing. In Robert H.
Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti
Yung, editors, Applied Cryptography and Network Secu-
rity, pages 530–549, Cham, 2019. Springer International
Publishing.

[4] Ran Canetti. Universally composable security: A
new paradigm for cryptographic protocols. Cryptol-



ogy ePrint Archive, Paper 2000/067, 2000. https:
//eprint.iacr.org/2000/067.

[5] Octavian Catrina and Sebastiaan de Hoogh. Improved
primitives for secure multiparty integer computation. In
Juan A. Garay and Roberto De Prisco, editors, Security
and Cryptography for Networks, pages 182–199, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[6] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and
Ajith Suresh. Astra: High throughput 3pc over rings with
application to secure prediction. In Proceedings of the
2019 ACM SIGSAC Conference on Cloud Computing
Security Workshop, CCSW’19, page 81–92, New York,
NY, USA, 2019. Association for Computing Machinery.

[7] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Tri-
dent: Efficient 4pc framework for privacy preserving
machine learning. In Proceedings 2020 Network and
Distributed System Security Symposium. Internet Soci-
ety, 2020.

[8] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi,
Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast large-
scale honest-majority mpc for malicious adversaries.
In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, pages 34–64,
Cham, 2018. Springer International Publishing.

[9] Ronald Cramer, Ivan Damgård, Daniel Escudero, Pe-
ter Scholl, and Chaoping Xing. SpdZ2k : Efficient mpc
mod 2k for dishonest majority. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, pages 769–798, Cham, 2018. Springer
International Publishing.

[10] Ronald Cramer, Matthieu Rambaud, and Chaoping Xing.
Asymptotically-good arithmetic secret sharing over
Z/pℓZ with strong multiplication and its applications to
efficient mpc. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, pages 656–
686, Cham, 2021. Springer International Publishing.

[11] Anders Dalskov, Daniel Escudero, and Marcel Keller.
Secure evaluation of quantized neural networks. Pro-
ceedings on Privacy Enhancing Technologies Sympo-
sium, 2020(4):355–375, 2020.

[12] Anders Dalskov, Daniel Escudero, and Marcel Keller.
Fantastic four: Honest-Majority Four-Party secure com-
putation with malicious security. In 30th USENIX Se-
curity Symposium (USENIX Security 21), pages 2183–
2200. USENIX Association, August 2021.

[13] Ivan Damgård, Marcel Keller, Enrique Larraia, Vale-
rio Pastro, Peter Scholl, and Nigel P. Smart. Practi-
cal covertly secure mpc for dishonest majority – or:

Breaking the spdz limits. In Jason Crampton, Sushil
Jajodia, and Keith Mayes, editors, Computer Security –
ESORICS 2013, pages 1–18, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[14] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah
Zakarias. Multiparty computation from somewhat
homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, pages 643–662, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[15] Ivan Damgård, Daniel Escudero, Tore Frederiksen, Mar-
cel Keller, Peter Scholl, and Nikolaj Volgushev. New
primitives for actively-secure mpc over rings with ap-
plications to private machine learning. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1102–
1120, 2019.

[16] Daniel Demmler, Thomas Schneider, and Michael
Zohner. ABY — A framework for efficient mixed-
protocol secure two-party computation. In 22nd Annual
Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8–11,
2015. The Internet Society, 2015.

[17] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul
Rachuri, and Peter Scholl. Improved primitives for mpc
over mixed arithmetic-binary circuits. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, Advances in
Cryptology – CRYPTO 2020, pages 823–852, Cham,
2020. Springer International Publishing.

[18] Daniel Escudero, Vipul Goyal, Antigoni Polychroni-
adou, Yifan Song, and Chenkai Weng. Superpack: Dis-
honest majority mpc with constant online communi-
cation. In Carmit Hazay and Martijn Stam, editors,
Advances in Cryptology – EUROCRYPT 2023, pages
220–250, Cham, 2023. Springer Nature Switzerland.

[19] Daniel Escudero, Chaoping Xing, and Chen Yuan. More
efficient dishonest majority secure computation over Z2k

via galois rings. In Yevgeniy Dodis and Thomas Shrimp-
ton, editors, Advances in Cryptology – CRYPTO 2022,
pages 383–412, Cham, 2022. Springer Nature Switzer-
land.

[20] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game, or a completeness theorem for
protocols with honest majority. In STOC’87, pages 218–
229, 1987.

[21] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song.
Sharing transformation and dishonest majority mpc
with packed secret sharing. In Yevgeniy Dodis and
Thomas Shrimpton, editors, Advances in Cryptology –
CRYPTO 2022, pages 3–32, Cham, 2022. Springer Na-
ture Switzerland.

https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067


[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[23] Marcel Keller. Mp-spdz: A versatile framework for
multi-party computation. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’20, page 1575–1590, New York,
NY, USA, 2020. Association for Computing Machinery.

[24] Marcel Keller, Emmanuela Orsini, and Peter Scholl.
Mascot: Faster malicious arithmetic secure computa-
tion with oblivious transfer. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, page 830–842, New York,
NY, USA, 2016. Association for Computing Machinery.

[25] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Over-
drive: Making spdz great again. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology
– EUROCRYPT 2018, pages 158–189, Cham, 2018.
Springer International Publishing.

[26] Marcel Keller and Ke Sun. Secure quantized training for
deep learning. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 10912–10938.
PMLR, 17–23 Jul 2022.

[27] Brian Knott, Shobha Venkataraman, Awni Hannun,
Shubho Sengupta, Mark Ibrahim, and Laurens van der
Maaten. Crypten: Secure multi-party computation meets
machine learning. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, edi-
tors, Advances in Neural Information Processing Sys-
tems, volume 34, pages 4961–4973. Curran Associates,
Inc., 2021.

[28] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith
Suresh. SWIFT: Super-fast and robust Privacy-
Preserving machine learning. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2651–2668.
USENIX Association, August 2021.

[29] Nishat Koti, Shravani Patil, Arpita Patra, and Ajith
Suresh. MPClan: Protocol suite for privacy-conscious
computations. Journal of Cryptology, 36(3):22, 2023.

[30] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith
Suresh. Tetrad: Actively secure 4pc for secure train-
ing and inference. In Proceedings 2022 Network and
Distributed System Security Symposium. Internet Soci-
ety, 2022.

[31] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images, 2009.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural
networks. Commun. ACM, 60(6):84–90, may 2017.

[33] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015.

[34] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[35] Yann LeCun, Corinna Cortes, and Christopher J Burges.
Mnist handwritten digit database. 2010. URL
http://yann. lecun. com/exdb/mnist, 7(23):6, 2010.

[36] Yehuda Lindell. How to simulate it - a tutorial on the
simulation proof technique. Cryptology ePrint Archive,
Paper 2016/046, 2016. https://eprint.iacr.org/
2016/046.

[37] Fengrun Liu, Xiang Xie, and Yu Yu. Scalable multi-
party computation protocols for machine learning in the
honest-majority setting. To be presented at USENIX’24.

[38] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren,
and Sameer Wagh. Rabbit: Efficient comparison for
secure multi-party computation. In Nikita Borisov
and Claudia Diaz, editors, Financial Cryptography and
Data Security, pages 249–270, Berlin, Heidelberg, 2021.
Springer Berlin Heidelberg.

[39] Payman Mohassel and Peter Rindal. Aby3: A mixed
protocol framework for machine learning. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, page 35–52,
New York, NY, USA, 2018. Association for Computing
Machinery.

[40] Payman Mohassel and Yupeng Zhang. Secureml: A
system for scalable privacy-preserving machine learning.
In 2017 IEEE Symposium on Security and Privacy (SP),
pages 19–38, 2017.

[41] L. L. Ng and S. M. Chow. Sok: Cryptographic neural-
network computation. In 2023 IEEE Symposium on
Security and Privacy (SP), pages 497–514, Los Alami-
tos, CA, USA, may 2023. IEEE Computer Society.

[42] Michael Nielsen. Neural Networks and Deep Learning.
Determination press, 2015.

[43] Emmanuela Orsini. Efficient, actively secure mpc with
a dishonest majority: A survey. In Jean Claude Ba-
jard and Alev Topuzoğlu, editors, Arithmetic of Finite

https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2016/046


Fields, pages 42–71, Cham, 2021. Springer International
Publishing.

[44] Emmanuela Orsini, Nigel P. Smart, and Frederik Ver-
cauteren. Overdrive2k: Efficient secure mpc over Z2k

from somewhat homomorphic encryption. In Stanislaw
Jarecki, editor, Topics in Cryptology – CT-RSA 2020,
pages 254–283, Cham, 2020. Springer International Pub-
lishing.

[45] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hos-
sein Yalame. ABY2.0: Improved Mixed-Protocol se-
cure Two-Party computation. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2165–2182.
USENIX Association, August 2021.

[46] Arpita Patra and Ajith Suresh. BLAZE: Blazing fast
privacy-preserving machine learning. In Proceedings
2020 Network and Distributed System Security Sympo-
sium. Internet Society, 2020.

[47] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[48] SecureSCM. Security analysis. Deliverable D9.2, EU
FP7 Project Secure Supply Chain Management (Se-
cureSCM), 2009.

[49] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu.
Cryptgpu: Fast privacy-preserving machine learning on
the gpu. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1021–1038, 2021.

[50] Sameer Wagh, Divya Gupta, and Nishanth Chandran.
SecureNN: 3-Party Secure Computation for Neural Net-
work Training. Proceedings on Privacy Enhancing Tech-
nologies, 2019.

[51] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal
Kushilevitz, Prateek Mittal, and Tal Rabin. Falcon:
Honest-Majority Maliciously Secure Framework for Pri-
vate Deep Learning. Proceedings on Privacy Enhancing
Technologies, 2021.

[52] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa.
Piranha: A GPU platform for secure computation.
In 31st USENIX Security Symposium (USENIX Secu-
rity 22), pages 827–844, Boston, MA, August 2022.
USENIX Association.

[53] Andrew C. Yao. Protocols for secure computations. In
23rd Annual Symposium on Foundations of Computer
Science (sfcs 1982), pages 160–164, 1982.

A Functionalities

A.1 SPDZ2k Preprocessing Functionality
Functionality FPrep is taken from [9] and is described below.

Functionality 1: FPrep

Input: On input (Input,Pi) from all parties, sample

random r $←− Z2k and generate [r]. If Pi is corrupted,
instead let the adversary choose the sharing [r]. Then
send r to Pi, and distributes the sharing [r] to all par-
ties.
Triple: On input (Triple) from all parties, sample

two random values a,b $←− Z2k , compute c = ab mod
2k, generate [a], [b], [c], and distributes the sharings
[a], [b], [c] to all parties.
Rand: On input (Rand) from all parties, sample ran-

dom value r $←− Z2k , generate [r], and distributes the
sharing [r] to all parties.

A.2 Our Functionalities for Arithmetic Cir-
cuits

We provide formal definitions of our functionalities for arith-
metic circuits (§3) in this section.

Functionality 2: FPrepArith

Input: On input (Input,Pi, id) from the parties, where
id is a fresh, valid identifier for the input wire of Pi,

the functionality samples λx
$←−Z2k and generates [λx].

If Pi is corrupted, instead let the adversary choose [λx].
Then, the functionality stores (id, [λx]). Finally, the
functionality sends λx to Pi and distributes [λx] to all
parties.
Add: On input (Add, id1, id2, id3) from the parties, the
functionality retrieves (if present in memory) the val-
ues (id1, [λx]),(id2, [λy]) and stores (id3, [λz]) where
λz = λx +λy.
Multiply: On input (Multiply, id1, id2, id3) from the
parties, the functionality retrieves (if present in mem-
ory) the values (id1, [λx]),(id2, [λy]). The function-

ality then samples a,b,λz
$←− Z2k , computes c = ab,

generates [a], [b], [c], [λz], and distributes them to the
parties. Finally, the functionality computes δx = a−
λx,δy = b−λy and stores (id3, [λz]) and δx, δy.
Output: The functionality sends all the stored δ-
values to the adversary, then waits for a message
Abort or Proceed from the adversary: if it sends
Abort then the functionality aborts, otherwise the
functionality sends the δ-values to the parties.



Functionality 3: FOnlineArith

Initialize: Receive (init,k) from all parties.
Input: On input (Input,Pi, id,x) from Pi and input
(Input,Pi) from other parties, where id is a fresh iden-
tifier, store (id,x).
Add: On input (Add, id1, id2, id3) from all the parties
(where id1 and id2 are present in memory), retrieve
(id1,x), (id2,y) and store (id3,x+ y).
Multiply: On input (Mult, id1, id2, id3) from all the
parties (where id1, id2 are present in memory), retrieve
(id1,x),(id2,y) and store (id3,xy).
Output: On input (Output, id) from all the parties
(where id is present in memory), retrieve (id,y) and
output it to the adversary. Wait for an input Proceed
or Abort from the adversary. If this is Proceed then
send y to all parties, otherwise abort.

A.3 Our Functionalities for PPML

We provide formal definitions of our functionalities for PPML
(§4) in this section.

Functionality 4: FPrepPPML

Functionality FPrepPPML has the same commands as
FPrepArith, in addition to the following:
MultTrunc: On input (MultTrunc, id1, id2, id3) from
all parties, retrieve (if present in memory) the val-

ues (id1, [λx]),(id2, [λy]). Then, sample a,b,λz
$←−Z2k ,

compute c = ab, generate [a], [b], [c], [λz], generate the
shared bit decomposition ([λz,0]2, . . . , [λz,k−1]2), gen-
erate {[λz′,i]}k−1

i=d , and distribute all of the above shar-
ings to the parties. Finally, compute δx = a−λx,δy =
b−λy, store (id3, [λz]) and δx, δy.
DotProduct: On input (DotProduct, id1, id2, id3)
from all parties (where id1, id2 are present in memory
which represent vectors of equal length m), retrieve (if
present in memory) the values (id1, [

−→
λx ]),(id2, [

−→
λy ]).

Then, sample a⃗,⃗b, $←− Zm
2k and λz

$←− Z2k , compute c⃗

such that c⃗[i] = a⃗[i]⃗b[i]. Then, generate [⃗a], [⃗b], [⃗c], [λz],
and distributes them to the parties. Finally, compute−→
δx = a⃗−

−→
λx ,
−→
δy = b⃗−

−→
λy , store (id3, [λz]) and

−→
δx ,
−→
δy .

LTZ: On input (LTZ, id1, id2) from all parties (where
id1 is present in memory), retrieve (if present in mem-

ory) the value (id1, [λx]). Then, sample r $←− Z2k , gen-
erate and distribute [r] to the parties. Then, compute

δx = r− λx and store δx. Finally, sample λz
$←− Z2k ,

generate and distribute [λz] to the parties, and store
(id2,λz).

Functionality 5: FOnlinePPML

Functionality FOnlinePPML has the same commands as
FOnlineArith, in addition to the following:
MultTrunc: On input (MultTrunc, id1, id2, id3) from
all parties (where id1, id2 are present in memory), re-
trieve (id1,x),(id2,y) and store (id3,xy/2d).
DotProduct: On input (DotProduct, id1, id2, id3)
from all parties (where id1, id2 are present in mem-
ory which represent vectors of equal length), retrieve
(id1, x⃗),(id2, y⃗) and store (id3, x⃗ · y⃗).
LTZ: On input (LTZ, id1, id2) from all parties (where
id1 is present in memory), retrieve (id1,x) and store
(id2,(x < 0)).

A.4 Functionalities for edaBits and B2A

Functionality FedaBits is taken from [17].

Functionality 6: FedaBits

On input (edaBits, ℓ) from all parties, sample uni-
formly random values (r0, . . . ,rℓ−1) ∈ Zℓ

2, compute
r = ∑

ℓ−1
i=0 2iri, generate {[ri]2}ℓ−1

i=0 and [r], then dis-
tributes the sharings to all parties.

Functionality FB2A is a standard conversion functionality.

Functionality 7: FB2A

On input (B2A, [x]2) from all parties, compute x ∈
{0,1} according to [x]2, then generate [x] and dis-
tribute the sharing [x] to all parties.

B Procedures

B.1 MAC Checking
The procedure πMACCheck is taken from [9]. It relies on a coin
tossing functionality FRand to sample public random values
for the parties.

Procedure 4: πMACCheck

Procedure πMACCheck takes as input a set of opened
values (x1,x2, . . . ,xt) and checks the correctness of
the corresponding MACs. Let x j

i ,m
j
i ,α

j
i be Pj’s share,

MAC share and MAC key share for xi.

1. Parties call FRand to sample public random

values (r1,r2, . . . ,rt)
$←− Zt

2s and compute y =

∑
t
i=1 ri · xi mod 2k+s.

2. Each Party Pj computes m j =∑
t
i=1 rim

j
i and z j =

m j−α j · y, then it commits to z j.



3. Parties open their commitments and verify that
∑

n
i= j z j = 0 (mod 2k+s). If the check fails then

parties abort.

The failure probability of πMACCheck is negligible in s, as
stated in the following theorem.

Theorem 6 ([9, Theorem 1]). Assume α is uniformly ran-
dom to the adversary, if procedure πMACCheck passes, then
the values accepted by the parties are correct, except with
probability at most 2−s+log(s+1).

B.2 Dot Product with Truncation
We describe our dot-product-then-truncate procedure below.

Procedure 5: πDotProductTrunc

For a dot-product-then-truncate gate with input vec-
tors of length m on wires x⃗, y⃗, to compute dot product
and truncate the result by d bits on output wire z:
Preprocessing phase:

1. Parties call FPrep.Triple m times to get m triples,
obtaining [⃗a], [⃗b], [⃗c], where ([⃗a[i]], [⃗b[i]], [⃗c[i]]) is
an individual multiplication triple obtained in the
i-th call of FPrep.Triple.

2. Parties compute [
−→
δx ] = [⃗a]− [

−→
λx ], [

−→
δy ] = [⃗b]−

[λy] and open
−→
δx ,
−→
δy .

3. Parties call FedaBits on input (k− d) to get [λz]
and its bit decomposition {[λz,i]2}k−d−1

i=0 .

4. Parties call FedaBits on input d to get [u] and its
bit decomposition {[ui]2}d−1

i=0 .

5. Parties locally compute [λz′ ] = 2d · [λz]+ [u].

Online phase:

1. Parties locally compute [∆z′ ] = ∑
m
i=1

(
(
−→
∆x[i] +

−→
δx [i])(

−→
∆y[i] +

−→
δy [i]) − (

−→
∆y[i] +

−→
δy [i])[⃗a[i]] −

(
−→
∆x[i]+

−→
δx [i])[⃗b[i]]+ [⃗c[i]]

)
+[λz′ ].

2. Parties open ∆z′ to get ∆z′ in the clear.

3. Parties locally compute ∆z = ∆z′/2d .

B.3 Bit-wise Comparison
The bit-wise comparison procedure πBitLT is taken from [15].
The procedure uses a circuit πCarry(x,{[yi]2}k−1

i=0 ,u) to com-
pute the carry bit of an addition between two integers x,y ∈

Z2k , when the initial carry-in bit is u ∈ {0,1}. A circuit with
2k−2 AND gates can be constructed using standard methods,
and we refer to the CarryOutCin circuit described in [48].

The πBitLT procedure is described below, we denote it as
πBitLT

(
x,{[yi]2}k

i=0
)
.

Procedure 6: πBitLT

Input: A public value x, and the shared bit decompo-
sition {[yi]2}k−1

i=0 = ([y0]2, . . . , [yk−1]2) of value y.
Output: A shared value [z]2 where z = (x < y).
The Procedure:

1. Parties set [y′i]2 = 1− [yi]2 for i = 0,1, . . . ,k−1.

2. Parties set [z]2 = 1−πCarry(x,{[y′i]2}
k−1
i=0 ,1).

C Protocols

We describe our full preprocessing protocol ΠPrepPPML and
online protocol ΠOnlinePPML for PPML (§4) below.

Protocol 3: ΠPrepPPML

The parties proceed in topological order.
Input: Same as in ΠPrepArith.
Add: Same as in ΠPrepArith.
Multiply: Same as in ΠPrepArith.
MultTrunc: Parties execute the preprocessing phase
of πMultTrunc, the opening of the δ-values can be de-
ferred and batched in the Output phase.
DotProduct: Parties execute the preprocessing phase
of πDotProduct, the opening of the δ-values can be de-
ferred and batched in the Output phase.
LTZ: Parties execute the preprocessing phase of
πLTZ, the opening of the δ-values can be deferred and
batched in the Output phase.
Output: Same as in ΠPrepArith.

Protocol 4: ΠOnlinePPML

Initialize: Parties call FPrepPPML with the circuit to
get the δ-values, the shared [λ]-values, and the multi-
plication triples for each gate.
Then, parties proceed in topological order.
Input: Same as in ΠOnlineArith.
Add: Same as in ΠOnlineArith.
Multiply: Same as in ΠOnlineArith.
MultTrunc: Parties execute the online phase of
πMultTrunc.
DotProduct: Parties execute the online phase of
πDotProduct.
LTZ: Parties execute the online phase of πLTZ.
Output: Same as in ΠOnlineArith.


	Introduction
	Our Contributions
	Technical Overview
	Other Related Work
	Organization of This Paper

	Preliminaries
	Notation
	Security Model
	The SPDZ2k Secret-sharing Scheme

	Efficient Protocols for Arithmetic Circuits
	An Overview of TurboSpeedz
	Our Protocols
	Comparison with Other Works
	Comparison with ABY2.0
	Discussions on flexible corruption


	Building Blocks for Machine Learning
	Multiplication with Truncation
	Vector Dot Product
	Secure Comparison
	The Full Protocol

	Applications to Machine Learning
	Support Vector Machines
	Neural Networks

	Evaluations
	Experiment Setup
	Microbenchmarks on the Building Blocks
	Benchmarks of the online phase
	Benchmarks of the preprocessing phase

	Benchmarks on ML models
	Accuracy

	Conclusion
	Functionalities
	SPDZ2k Preprocessing Functionality
	Our Functionalities for Arithmetic Circuits
	Our Functionalities for PPML
	Functionalities for edaBits and B2A

	Procedures
	MAC Checking
	Dot Product with Truncation
	Bit-wise Comparison

	Protocols

