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Abstract
Obtaining the authorization of users (i.e., data owners) prior
to data collection has become commonplace for online service
providers (i.e., data processors), in light of the stringent data
regulations around the world. However, it remains a challenge
to uphold the principle of purpose limitation, which mandates
that collected data should only be processed for the purpose
that the data owner has originally authorized. In this work,
we advocate algorithm specificity, as a means to enforce the
purpose limitation principle. We propose ALGOSPEC, which
obscures data to restrict its usability solely to an authorized
algorithm or algorithm group. ALGOSPEC exploits the nature
of polynomial approximation that given the input data and
the highest order, any algorithm can be approximated with a
unique polynomial. It converts the original authorized algo-
rithm (or a part of it) into a polynomial and then creates a list
of alternatives to the original data. To assess the efficacy and
efficiency of ALGOSPEC, we apply it to the entropy method
and Naive Bayes classification under datasets of different
magnitudes from 102 to 106. ALGOSPEC significantly out-
performs cryptographic solutions such as fully homomorphic
encryption (FHE) in efficiency. On accuracy, it achieves a
negligible Mean Squared Error (MSE) of 0.289 in the entropy
method against computation over plaintext data, and identi-
cal accuracy (92.11%) and similar F1 score (87.67%) in the
Naive Bayes classification.

1 Introduction

In recent years, there has been a notable increase in the strin-
gency of data regulations worldwide, such as European Union
General Data Protection Regulation (GDPR) [11] and Califor-
nia Consumer Privacy Act (CCPA) [8]. This proactive stance
on user data regulation is a response to the growing concerns
surrounding user data privacy and security. As a direct conse-
quence, most online service providers (i.e., data controllers
or data processors1) are mandated to obtain explicit consent

1Both are referred to as data processors without causing ambiguity.

from users (i.e., data owners) before initiating data collection.
This approach ensures a heightened degree of transparency
and accountability during data collection. For instance, Meta
now requests explicit user consent before using their personal
data for targeted advertising or content personalization [15].
Similarly, Amazon seeks permission from users to collect and
store their browsing and purchase history for personalized
recommendations [6]. All these shifts underscore the global
commitment to safeguarding user privacy and granting data
owners control over their personal data.

Despite the commendable strides made in ensuring trans-
parency of data collection, the implementation of another
crucial data regulation principle, i.e., the purpose limitation
principle [13], continues to present challenges. This principle
is another cornerstone in data protection, which stipulates that
collected data must be utilized exclusively for the purpose that
the data owner has originally authorized. This is particularly
significant in the context of online data processing, which is
the backbone of contemporary online services. Two typical
scenarios are listed below.

Scenario #1. An online service provider collects user data
through its mobile or web client, with its intended purpose dis-
closed in the associated privacy policy document. The client-
side data processing is relatively transparent as it is more
or less auditable (e.g., by reverse engineering the client-side
software). A noticeable shift occurs once the data reaches the
backend, where the data processing becomes nontransparent
from the users. This places the users in an unfair position, as
they lose visibility and control over how their data is handled.

Scenario #2. A financier collects personal data from indi-
viduals who apply for a loan. As part of its evaluation pro-
cess, it engages a third-party credit assessment agency, e.g.,
Equifax, to assess the credit of the applicants. While the fi-
nancier can certainly be transparent about its data collection
and sharing practices, it still enforces its trust in the credit
assessor onto the applicants.

Some existing techniques, such as FHE [32, 51, 54] and
differential privacy (DP) [30, 34, 49], can be adapted for pur-
pose limitation. They may fall short in some specific contexts



though. FHE is effective at safeguarding the original data, but
cannot prevent the data processor from performing unautho-
rized algorithms on the encrypted data. In certain situations
when the processor possesses the encryption key (e.g., in
Scenario #1), it is feasible for them to reveal the results of
unauthorized algorithms. On the other hand, DP enhances
privacy by adding perturbations to the original data, but the
perturbations may inadvertently compromise the accuracy of
the intended algorithms.
Our work. In this work, we propose a novel approach named
ALGOSPEC (standing for algorithm specificity), which ob-
fuscates the data exclusively for the intended algorithm. AL-
GOSPEC targets to achieve two goals, i.e., algorithm speci-
ficity (Goal #1) and confidentiality of the original data (Goal
#2). First, only the intended algorithm can lead to correct
results, and no meaningful results can be obtained by unau-
thorized algorithms. Second, it is infeasible for an adversary
operating in polynomial time to recover the original data from
the obfuscated version.

The core technique to construct ALGOSPEC is to fit the
entire or the core of the intended algorithm using polyno-
mial approximation, leveraging its inherent feature that given
the input data and the highest order, any algorithm can be
accurately approximated using a distinctive polynomial rep-
resentation (Goal #1). ALGOSPEC determines the highest
order n based on the discrete logarithm problem, and then
the coefficients and the constant term of the polynomial are
uniquely determined. The polynomial is combined with the
original data to obtain the obscured list M that can hide n and
the original data (Goal #2) by blurring the non-constant and
constant terms of the polynomial through predefined patterns.

We conduct comprehensive theoretical and empirical stud-
ies on ALGOSPEC to investigate its security, accuracy, and
scalability. We prove that n is confidential, M is indistinguish-
able and finally the original data d is unrecoverable using
code-based game-playing with the discrete logarithm prob-
lem and the decisional Diffie-Hellman problem. Based on
that, the two desired goals of ALGOSPEC can be reduced to
the indistinguishability of the original data against the chosen-
plaintext attack.

We then experimentally benchmark ALGOSPEC against
two typical data protection approaches, i.e., FHE and DP, on
two widely-used algorithms in sensitive statistical analysis,
i.e., the entropy method and Naive Bayes classification. The
results show that ALGOSPEC significantly outperforms FHE
in terms of efficiency, with nearly 13 times faster on the en-
tropy method and 4 times faster on Naive Bayes classification.
For the accuracy evaluation, we set a baseline by perform-
ing direct computation on the original data. ALGOSPEC can
achieve an MSE of 0.289 compared with the baseline on en-
tropy method, and identical test accuracy and similar F1 to the
baseline on Naive Bayes classification. These findings high-
light ALGOSPEC’s effectiveness in preserving data privacy
without compromising the data analysis. To further evaluate

the scalability, we assess it with large-scale datasets with sizes
up to 106. Its performance remains stable even as the dataset
size increases, demonstrating that it is a practical and reliable
data protection approach for real-world applications.
Contributions. Our main contributions can be summarized
as follows.

• Purpose limitation beyond legal regulation. We em-
phasize the pressing necessity of practical mechanisms
that go beyond mere legal manners to ensure purpose lim-
itation, thereby safeguarding individuals’ privacy rights
and mitigating data misuse or abuse. For data owners, it
is imperative that they possess genuine control over how
their data is to be used. For data processors, they can
retain verifiable evidence to demonstrate that the data is
processed exclusively for the stated purposes.

• A practical solution for purpose limitation. We pro-
pose ALGOSPEC, a novel, efficient, and accurate method
specifically designed for purpose limitation. It leverages
polynomial approximation to fit the intended algorithm
into a polynomial, and the original data then can be se-
cured with polynomial-specific computation patterns.

• A comprehensive study and evaluation. We conduct a
theoretical study on ALGOSPEC to formally prove its se-
curity against polynomial time attacks. We also conduct
comprehensive experiments to study its performance, in
terms of accuracy, efficiency, and scalability, demonstrat-
ing its practical applicability.

2 Problem Formulation

2.1 System settings
We define three participants in our problem settings, i.e., the
user as the data owner, the data processor, and the third party,
representing most of real-world scenarios in online services.
The data processor collects user data, and determines and dis-
closes the purpose of processing user data. It seeks to demon-
strate to the user that their original data has been used only for
the disclosed purpose. The data processor may involve a third
party to perform (part of) the data processing. The data has
to be obfuscated to accommodate only the disclosed purpose,
before it is outsourced to the third party. We further elaborate
and generalize these two scenarios as illustrated in Figure 1.

Scenario #1. In this scenario (Figure 1.(a)), the data pro-
cessor consists of the client and the server. Data collection is
performed by the client, where the intended purpose disclosed,
e.g., through the associated privacy policy document. As the
client runs on the user device, client-side data processing is
transparent and auditable. In contrast, the server-side pro-
cessing is nontransparent to the user, once the collected data
reaches server side. Since the client and server both belong to
the data processor, the algorithm is known to the client.
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Figure 1: Two typical application scenarios of ALGOSPEC.
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Figure 2: A comparison between the work models of ALGO-
SPEC and FHE/DP-based approaches.

Scenario #2. In this scenario (Figure 1.(b)), the data pro-
cessor collects the original data and involves a third party for
data processing. Recalling the financier and credit assessor
example, the third party (i.e., credit assessor) owns more data
than the individual data processor, e.g., the transaction history
of a single user among multiple financiers.
Work model of ALGOSPEC. To position ALGOSPEC, we
show the difference between its work model and FHE/DP-
based approaches in Figure 2, explaining how it achieves the
algorithm specificity. It combines the original data with au-
thorized algorithms during the obfuscation. This ensures that
the original data can be efficiently computed and analyzed
exclusively under the umbrella of authorized algorithms. In

contrast, FHE/DP-based approaches focus solely on modi-
fying the original data, such that the resulting data can be
processed under any algorithm.

2.2 Goals and Threat Model
ALGOSPEC is designed to align with the purpose limita-
tion principle, which is commonly incorporated by major
data regulations around the world, such as GDPR (Article
5, Chapter 2; Article 18, Chapter 3) [12], CCPA (1798.110;
1798.121) [8], The Privacy Act (Content 3, Chapter 6) [14]. In
particular, we define two main security goals of ALGOSPEC
below.

Goal #1. Algorithm specificity. This is to ensure that only
executing the authorized algorithms can obtain correct results.

Goal #2. One-way obfuscation. This is to ensure the poly-
nomial time adversary (PTA) cannot recover the original data.

Consistent with the setup of other related studies [17, 27],
we assume the PTA as the attacker. The server of data pro-
cessor in Scenario #1 or the third party in Scenario #2 is
an honest-but-curious attacker, which attempts to recover the
original data or perform unauthorized algorithms on the ob-
tained obfuscated data. The attacker has both authorized and
unauthorized algorithms.

3 Approach

In this section, we delve into the internals of ALGOSPEC.
Figure 3 illustrates its general workflow, and the detailed



Table 1: Key notations used in this paper

Notations Descriptions

D original dataset
D(s)

f value of D at sth row, f th column
d unspecified value in dataset
Fx authorized algorithm
F polynomial approximation of Fx
n highest order of F
Fn malicious algorithms
M obscured list
N the number of elements in M
A calculation rule
d exponent adjustment factor
λ coefficient adjustment factor
γ the number of distances
Γ distance list
r result by ALGOSPEC
R result by applying Fx on D
G cyclic group
<G> cyclic group generated by G

G cyclic group generator
g random generator
P possibility

Authorized algorithm (Fx)

Pre-defined parameters of
AlgoSpec (𝛾, n, 𝜆, 𝒹, A)

Data Owner Data Processor Third Party

Original Data (𝔻)

F = poly_approx(n, Fx)
② Polynomial Approximation

M = Gen(F, 𝔻, d, 𝜆, 𝛾)
③ List M Construction

Calculation Rule (A)
④ Calculation Rule Generation

r = Compute(M, A)
⑤ Final Result Calculation

① Data Collection
Purpose Limitation 

Principle

Figure 3: Overall workflow of ALGOSPEC.

algorithm is presented in Appendix A.1. Table 2 provides a
step-by-step procedure of using ALGOSPEC. In the remaining
of this section, we explain the key techniques of ALGOSPEC.
To facilitate understanding, Table 1 lists key notations used.

3.1 Polynomial Approximation
A polynomial consists of variables (also known as indeter-
minates) and coefficients, combined using addition, multipli-
cation, and non-negative integer exponents [38]. In its most
general form, a polynomial can be expressed as Eq. 1.

P(x) = αnxn +αn−1xn−1 + ...+α2x2 +α1x+β, (1)

where x is the variable, αixis are the non-constant terms, αis
are coefficients, β is the constant term, and the non-negative
integer n represents the highest order of x in the polynomial,
which is called the degree of the polynomial.

Polynomial approximation has been proposed to represent
a complex function with a polynomial using the target dataset

Table 2: Step-by-step Procedure of ALGOSPEC (Scenario #2)

Setup (Data Owner)
• Data owner authorizes data processor to collect data with the desired

purpose disclosed.

Setup (Data Processor)
• Data processor obtains authorization for data collection, and dis-

closes the desired algorithm Fx to be applied to the collected data.
• Data processor collects original data from data owner.
• Data processor determines n of the polynomial.
• Data processor converts Fx to polynomial F by polynomial approx-

imation.
• Data processor acquires several components from ALGOSPEC, in-

cluding d (exponent adjustment factor), λ (coefficient adjustment
factor), γ (the number of distances), pairs (the pairs selected follow-
ing distances), and times (times that pairs are used).

Setup (Third Party)
• Third party sets up execution environment.

Processing
• ALGOSPEC generates obscured list M using D, F , d, λ, γ.
• When M is generated, calculation rule A is generated automatically.
• Data processor sends M and A to third party.
• Third party computes the result r through M and A.
• Third party sends r to data processor.

[31]. It is based on the foundation established by Mhaskar et
al. [41] that the fitted polynomial can be used as an alternative
to the original algorithm to obtain almost identical results
on the given dataset. This ensures that ALGOSPEC sacrifices
minimal precision loss during the obfuscation.

ALGOSPEC adopts polynomial fitting [48], a typical ma-
chine learning technique, for the approximation. It defines
the range of original data and proceeds to uniformly select
a specific number of data points within this range. These se-
lected data points are then processed using the authorized
algorithm, producing corresponding output values. The input-
output pairs are then used for a polynomial fitting with Mean
Squared Error as the loss function, given a specific degree
n (determination of n is discussed soon). This is essentially a
machine learning process, and it ends up with a polynomial
with its uniquely determined coefficients and the constant
term. ALGOSPEC works on the entire algorithm in general,
but data processors can select core components of the algo-
rithm to approximate. For example, some simple operations
like normalization and addition can be excluded during the
approximation to retain efficiency without losing accuracy.

The algorithm specificity (Goal #1) of ALGOSPEC stems
from the uniqueness of the polynomial with respect to the
degrees used for polynomial approximation. Funaro et al. [31]
prove that, given an algorithm, the approximation with dif-
ferent degrees leads to different coefficients and the constant
term. Once a polynomial has been derived to represent the
authorized algorithm based on the given degree n, computing
this polynomial will only yield the same result as applying



the authorized algorithm to the original data.
Determining and hiding n. Revealing n could enable the
attacker to fit a polynomial of the authorized algorithm, poten-
tially allowing them to recover the original data from the final
result (i.e., r in Figure 3) by solving a high-order equation.
In Section 5.3, we present an analysis on the complexity of
this attack. By default, ALGOSPEC still keeps n confidential.
It leverages the decisional Diffie-Hellman problem (DDH)
to generate n (detailed in Section A.2), and constructs the
obscured list M to hide it (detailed soon in Section 3.2).

3.2 Obscured List Construction

Based on the polynomial derived, ALGOSPEC proceeds to
create an obscured list M, designed to conceal n. The idea is
to break down the calculation of the polynomial into a large
number (≫ n) of basic units. This involves dealing separately
with the non-constant terms (Section 3.2.1), i.e., αixi in Eq. 1,
and the constant term (Section 3.2.2), i.e., β, capitalizing on
the polynomial’s inherent properties.

3.2.1 Processing of non-constant terms αixi

ALGOSPEC transforms those non-constant terms into a list M′,
which contains 2n elements denoted as m spanning from m1
to m2n. The intuition behind this is to split the sensitive value
into segments, such that the value can be revealed only when
merging all segments. To this end, ALGOSPEC introduces
two essential factors for each term αixi, i.e., a coefficient
adjustment factor λi, and an exponent adjustment factor di,
which adjust the coefficient and the exponent, respectively.
They compose two vectors of size n, which are denoted as λ

and d. Below we explain how each m in M′ is constructed.
For m1 in M′, ALGOSPEC sets m1← αn

λn
xn−dn , meaning that

the first non-constant term depends on λn and dn. Specifically,
we divide the coefficient αn by the corresponding adjustment
factor λn, and subtract the order n of x from the value of the
corresponding position dn in the exponent adjustment vector.
For m2 in M′, we set m2 ← λnxdn with the same λn and dn as
what have been used in constructing m1. By doing so, the first
non-constant term of the polynomial αnxn can be obtained
by simply multiplying m1 with m2. We therefore organize
m1 and m2 as a pair (m1, m2). This process is repeated for
the remaining mi, till the last pair (m2n−1, m2n) where we set
m2n−1 ← α1

λ1
x1−d1 and m2n ← λ1xd1 . Consequently, we have

the list M′ containing 2n ms, i.e., n pairs.
After constructing the list M′, ALGOSPEC obtains the way

of calculating the result of the polynomial without the constant
term β. By computing m1×m2 + ...+m2n−1×m2n, the result
being equal to the calculation of αnxn +αn−1xn−1 + ...+α1x
can be derived, i.e.,

m1×m2 + ...+m2n−1×m2n = αnxn + ...+α1x. (2)

The two vectors λ and d mainly serve to construct the
two factors of a term, while also introducing randomness
into the distribution of mis. An extremely large or small λ

may lead to precision loss in calculations, so we constrain
λi ∈ (0, 1) following Gaussian distribution in ALGOSPEC’s
implementation. We also set di ∈ [1, 9] ∩ Z, ensuring effi-
cient computation of m2i. They are adjustable in the actual
deployment of ALGOSPEC.

Next, ALGOSPEC provides the way of processing the con-
stant term β, to obtain the completed obscured list M.

3.2.2 Processing of constant term β

ALGOSPEC decomposes β into another list B which has the
same pair-wise format as M′. B is of size N−2n (N≫ 2n and
N is an even number), such that the obscured list M of size
N can be assembled by concatenating B with M′. We denote
the elements in B from m2n+1 to mN . Similar to M′, when we
design B, we guarantee that computing m2n+1×m2n+2 + ...+
mN−1×mN achieves the result being equal to β as Eq. 3, i.e.,

m2n+1×m2n+2 + ...+mN−1×mN = β. (3)

To ensure that the final computation result matches the de-
sired β, ALGOSPEC utilizes the last two ms to make necessary
adjustments. Thus, the initial step involves the random gener-
ation of (N−2n−2) ms in the list B. We construct the pairs
in B to be indistinguishable from those in M′, so that the ad-
versary cannot learn n from their distribution patterns defined
below.

Definition 1. (Pattern). A pattern refers to the distribution
of the distance ⌊log mi

mi+1
⌋, where i is odd and mis are the

elements in M′.

ALGOSPEC follows five steps to construct B.
Step 1: ALGOSPEC creates adequate new distances2 and

puts them into the list Γ. The number of distances in Γ is
denoted as τ. Following each distance in Γ, it builds a list Θ

containing τ pairs, i.e., (θ1, θ2),..., (θ2τ−1, θ2τ).
Step 2: ALGOSPEC finds the distance with the highest

number of occurrences from M′, and selects a random num-
ber K greater than this maximal occurrence. Then, by lever-
aging Γ, it adds new distances such that all distances end
up with an occurrence number close to K. To achieve this,
(m2n+1,m2n+2), · · · ,(mN−3,mN−2) is generated, where each
mi follows Gaussian distribution, i.e., mi ∼ N(0,θi).

Step 3: ALGOSPEC constructs mN−1 in B by selecting a
pair, such as (θi, θi+1), from Θ and makes mN−1 ∼ N(0, θi).

Step 4: For mN , ALGOSPEC needs a value to ensure that
Eq. 3 can be satisfied. Therefore, it sets mN as

mN =
β− (m2n+1×m2n+2 + ...+mN−3×mN−2)

mN−1
. (4)

2The number of new distances should not be less than ρ which is the
number of distance within n pairs, and we prove its security in Section A.2.



Step 5: ALGOSPEC shuffles all the tuples (m2n+1, m2n+2),
..., (mN−1, mN), and then reassigns the elements in all tuples
to B following the new order.

The generation of list B is a direct outcome of the progres-
sion from Step 1 to Step 5. By combining Eq. 2 and Eq. 3, we
can derive a new equation

m1×m2 + . . .+m2n−1×m2n + . . .+mN−1×mN

= αnxn + . . .+β.
(5)

During this entire process, the calculation rule A is automati-
cally formulated as follows.
Calculation rule A. The third party can compute the final
result using M and A. Specifically, they apply the calculation
rule in Eq. 6 to obtain the final result r of the authorized
algorithm. The value of r should closely resemble the actual
result R obtained when the original authorized algorithm is
executed directly, i.e., r = R+η, where η is a negligible value
signifying the margin of error.

r = m1×m2 + ...+m2n−1×m2n + ...+mN−1×mN . (6)

Here, the data processor can delegate part of the complex
calculation of M to the third party. Specifically, for those
mis where i is odd, which entail high exponent calculations,
the processor can select a relatively small ki and compute
xki

i locally, denoted as Xi. Then it can request the third party
to compute X (i−di)/ki

i to construct mi. The third party is not
able to recover the original xi in an efficient way from Xi and
(i−di)/ki, guaranteed by the discrete logarithm problem [46].

4 Case Studies

We demonstrate the application of ALGOSPEC with two
widely-used algorithms, i.e., the entropy method and the Naive
Bayes classification. We select them in our study primarily
due to the diverse mathematical operations involved in their
computation steps. Beyond primitive arithmetic operations,
they encompass operations such as logarithmic operations,
floating point operations, and probabilistic calculations. These
operations have proven challenging for existing cryptographic
algorithms designed to operate on ciphertexts [18].

4.1 Entropy Method
The entropy method (EM) is a multi-criteria decision analy-
sis commonly used in measuring value dispersion in many
practical cases [23]. The detailed operation of the EM can be
summarized by the following steps.

x
′
i j =

xi j−min(xi j)

max(x j)−min(x j)
, (7)

pi j =
x
′
i j

∑
m
i=1 x′i j

, (8)

e j =−
1

ln(n)

m

∑
i=1

pi j ln(pi j), (9)

W j =−
1− e j

∑
n
j=1(1− e j)

, (10)

where i represents the ith sample, j represents the jth feature
and m represents the number of samples.
Entropy method with ALGOSPEC. Data processor firstly
normalizes the data using Z-Score based on the Eq. 7, and
then computes p for each value using Eq. 8. Next, according
to Eq. 9, data processor applies polynomial approximation
on pi j ln(pi j) in order to generate obscured lists from M1 to
M(i× j), where i× j is the total number of items in the dataset.
The data processor then dispatches Ms to the third party and
meanwhile requests them to proceed with the remaining cal-
culations following the calculation rule A. Upon receiving
Ms and A, the third party can compute the entropy value e for
each feature based on Eq. 9. Finally, the third party computes
the weight W for each feature using Eq. 10, and then transmits
the results back to the data processor.

4.2 Naive Bayes Classification
Naive Bayes classification serves as a data mining algorithm
that is often used for binary classification tasks under su-
pervised learning [37]. The key point of using Naive Bayes
classification is to apply attribute conditional independence
assumption [52]. If a dataset has d f features, the conditional
independence assumption can be described as

p(xi|y) =
d f

∏
j=1

p(xi j|y), (11)

where i represents the ith sample and j represents the jth

feature in the dataset. In this paper, we mainly focus on the
application of Naive Bayes classification on continuous val-
ues, a common assumption of which is the continuous values
conditioned on the label follow a univariate Gaussian distri-
bution [37]. For simplicity of representation, we assume that
the data x has only one dimension, and let µk denote the mean
and σ2

k denote the Bessel corrected variance of the values in x
associated with class Ck, respectively. That is,

µk =
1
nk

∑
xi∈Ck

xi, (12)

where nk represents the number of samples of class Ck, and

σk = [
1

nk−1 ∑
xi∈Ck

(xi−µk)
2]

1
2 . (13)

Suppose there is a new sample v, so the probability density of
v given a class Ck can be computed as follows.

p(x = v|Ck) =
1√

2πσ2
k

e
− (v−µk )

2

2σ2
k . (14)



Finally, the category pred with the highest probability of
occurrence of new sample v is selected, i.e.,

pred = argmaxCk
(p(x = v|Ck)) (15)

Naive Bayes classification with ALGOSPEC. The data pro-
cessor computes µk of each feature first using Eq. 12. Then,
according to Eq. 13, (xi−µk)

2 is a part of the equation that is
viable to apply polynomial approximation. The data processor
can have M(i× j) with the same number as the items in training
data and then multiple Ms will be sent to the third party.

When receiving the Ms, the third party computes σk for
each feature. Then, they calculate the probability of occur-
rence of each sample under each given category Ck. The third
party calculates the probability of occurrence of each sample
under different categories by using Eq. 11 and 14, and then
sends all computation results to data processor, because data
processor needs to estimate the accuracy of the classification.

When the data processor receives the results of p(x =
xi|Ck), they can find the category with the maximum probabil-
ity of occurrence for each sample, and compare it with its true
label. If the accuracy and F1 are satisfactory, the third party
can proceed to perform the prediction for new data samples.

Assume the new data sample is v. Similarly, the data pro-
cessor constructs Ms to represent (v− µk)

2 of each feature
and sends them to the third party again. Once the third party
receives the Ms, p(x = v|Ck) can be calculated by σk and
sent back. Finally, the data processor finds the category with
the highest probability of occurrence of new sample v using
Eq. 15.

5 Security Analysis

To establish the security (Goal #2) of ALGOSPEC, we lever-
age a combination of code-based games [20] and decisional
Diffie-Hellman (DDH) problems [22]. In this section, we
demonstrate how ALGOSPEC maintains the security of the
original data against various potential attack scenarios.

5.1 Definitions
ALGOSPEC’s selection of n depends on the decisional Diffie-
Hellman (DDH) problem, which is a computational problem
that arises in the field of cryptography and is often used to
assess the security of protocols and systems [22].

Definition 2. (Decisional Diffie-Hellman problem). The ad-
vantage of an adversary Advddh

G,k (A) in solving the DDH prob-
lem relative to G can be defined as the difference between the
probability that Expddh−0

G,k (A) outputs true and the proba-

bility that Expddh−1
G,k (A) outputs true3, i.e.,.

3Expddh
G,k (A) is the name of a code-based game, and “ddh-0” means

c = ab in the game, while “ddh-1” means c R← Z∗p in the game.

Advddh
G,k (A) = |P(Expddh−0

G,k (A) = true)

−P(Expddh−1
G,k (A) = true)|.

(16)

In the DDH problem, a finite cyclic group G =<G> is gener-
ated by a generator G, and a random generator g R←G as well
as random integers a,b R←Z∗p are selected uniformly. The goal
for the adversary is to distinguish (g, ga, gb, gab) from (g, ga,
gb, gc), where c is chosen at random from Z∗p [22, 35]. Con-
cretely, adversary will receive g, X , Y and Z, where X = ga,
Y = gb and Z = gab or Z = gc. If the adversary believes
Z = gab, true is returned, and false otherwise.

The discrete logarithm problem (DLP) is a fundamental
mathematical problem with significant applications in scheme
security, number theory, and cryptography [40]. ALGOSPEC
leverages the inherent computational complexity of the DLP
within polynomial time to safeguard the original data during
the obfuscation process, ensuring its unrecoverability.

Definition 3. (Discrete logarithm problem). The DLP is also
called Diffie-Hellman key exchange [24]. It is usually de-
fined in the context of finite cyclic groups. In the group <G>,
given x = ga and y = gb, the DLP is to calculate gab mod p in
polynomial time (PT) [46]. Problems that can be solved in
polynomial time are generally seen as tractable, while those
that require exponential time or worse are often considered
intractable and computationally challenging [19].

The complexity of solving the DLP relies on the chosen group
and its parameters. When the group parameters are appropri-
ately chosen, solving DLP becomes computationally infeasi-
ble in PT for prime numbers p. This hardness property is the
basis for the security of many security systems.

Definition 4. (Chosen-plaintext attack). A chosen-plaintext
attack (CPA) is a type of cryptographic attack where an ad-
versary has the capability to choose and process specific
plaintexts of their choice and then observe the corresponding
processed text [9].

The goal of a CPA is to gain insights into the scheme’s se-
curity, particularly its vulnerability to various attacks. AL-
GOSPEC assumes a CPA, which represents a powerful threat
model where the adversary has significant control over the
inputs, ensuring that the adversary gains no meaningful infor-
mation about the plaintext from the obfuscated data.

Definition 5. (Indistinguishability). For an encryption
scheme to be considered indistinguishable, for any two plain-
texts m0 and m1 chosen by the attacker, P(Enc(m0) = c)−
P(Enc(m1) = c) ≤ ε holds, where m0 and m1 are two dif-
ferent plaintexts, c is the ciphertext produced by encrypting
either one of them and ε is a negligible function.

The most common type of indistinguishability is the in-
distinguishability under chosen-plaintext attack (IND-CPA),



which is widely used to evaluate the security of cryptographic
schemes [25]. IND-CPA assesses the ability of a scheme to
protect the confidentiality of plaintext messages in the pres-
ence of an active adversary [21]. It provides a strong security
guarantee for security schemes and is a critical consideration
in the design and evaluation of secure systems.

5.2 Goal #2 of ALGOSPEC

In Section 3.1, we discuss how ALGOSPEC can achieve al-
gorithm specificity (Goal #1). In this section, we establish
that the original data is unrecoverable, in alignment with Goal
#2. Two strategies can be used for the attacker to recover the
original data. One is to solve an nth-order polynomial based
on its degree n, and the other is to analyze the elements in
obscured list M and try to recover the original data. We show
that when data is obfuscated by ALGOSPEC, the attacker can-
not effectively recover the original data either way. We list
the Theorems to achieve Goal #2 as follows.

Theorem 1. (Confidentiality of n). Under a CPA, n is not
recoverable either from M or the initialization step.

The proof of Theorem 1 lies in proving that n is confidential
at initialization and unrecoverable from M. The former is
ensured with generating n based on DDH (Definition 2), and
for the latter, ALGOSPEC uses a large number (i.e., N) of
mi to hide n. We present the detailed proof based on game
playing in Appendix A.2.

Theorem 2. (Indistinguishability of M). Given M1 and M2
that are generated from different degrees n1 and n2, respec-
tively, M1 and M2 are indistinguishable when given a large
N (N≫ n1,n2).

Theorem 1 demonstrates that M reveals no information
for the adversary to infer n. We utilize this to establish the
validity of Theorem 2. Our proof is based on two sub-games
of generating M, one using the real n and the other using
another degree that is randomly generated. We prove that the
difference of the probabilities that the attacker successfully
differentiates M in this two sub-games is a negligible function.
The detailed proof is listed in Appendix A.3.

Main Theorem. (Unrecoverability of d). Under a CPA, the
original data d is not recoverable by analyzing M or solving
the polynomial by obtaining the degree n.

The main theorem is also proved using code-based game
playing. We define a challenge representing the obscured list
M that is known by the attacker, and construct a game which
asks the attacker to guess whether this challenge represents M
or a randomly generated list. The constructed game comprises
four sub-games under IND-CPA, and each pair of adjacent sub-
games are initialized with difference in only one setting. We
generate the challenge C in the first sub-game using the real d,

Table 3: Datasets used in this paper.

Name Size Precision Apply Expanded

WH 149 3-digit EM
WH ep1 103 3-digit EM ✓
WH ep2 104 3-digit EM ✓
WH ep3 105 3-digit EM ✓
WH ep4 106 3-digit EM ✓

breast cancer 569 6-digit NB
heart disease 1,025 single-prec. NB
hypertension 26,058 single-prec. NB

hypertension ep 104,232 single-prec. NB ✓

WH: 2021 world happiness report

and generate another challenge C′ in the last sub-game using
a randomly generated d′. By demonstrating that consecutive
sub-games satisfy |P (Gi(A) = 1)−P (Gi+1(A) = 1)| ≤
ε, (i ∈ [0,2]), the first and last sub-games also satisfy
|P (G0(A) = 1)−P (G3(A) = 1)| ≤ ε. The detailed proof
is presented in Appendix A.4.

5.3 Discussion on n’s Confidentiality
We have proved that d is unrecoverable when n is sufficiently
large through code-based game-playing. However, even when
n is not exceptionally large, the protection for d can still be
ensured. The only way for the adversary to get d is to solve
the high-order polynomial as discussed in Section 3.1. When
the highest order of the polynomial is greater than 4, solving
such a high-order polynomial is an NP-hard problem [44].
Importantly, the adversary must solve high-order polynomials
for all ns they selected, which means they face a plethora of
NP-hard problems. Therefore, a relatively small n is suffi-
cient in practical use. We empirically find that an n greater
than 500 can lead to a precise approximation of complicated
algorithms.

6 Evaluation

To evaluate the performance of ALGOSPEC, we apply it to the
entropy method and Naive Bayes classification. We conduct
benchmarking and scalability analysis, to provide a compre-
hensive assessment of its capabilities.

6.1 Experimental Settings
Datasets. We mainly use the breast cancer [1], heart dis-
ease [2], 2021 world happiness report [5], and hyperten-
sion [10] datasets to assess the efficacy of ALGOSPEC. To
provide a thorough evaluation of our methodology across var-
ied dataset sizes, we expand our initial dataset. This allows
us to analyze data magnitudes spanning from 102 to 106. The
details of the datasets used in our evaluation is presented in
Table 3.
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Figure 4: Accuracy and MSE of each method on entropy method through different scales of datasets from 103 to 106.

Running environment. Our evaluation is conducted on a
workstation of Ubuntu 22.04.3 LTS x86_64 as the operating
system, and AMD Ryzen Threadripper PRO 5965WX with
x86_64 architecture, 48 cores, and 3.800GHz CPU.
Settings. To evaluate the performance of ALGOSPEC side-
by-side, we compare it to the baseline, FHE, and DP, where
their settings are presented as follows.

Baseline. The baseline is calculated using the authorized
algorithm directly, without encryption or preprocessing.

FHE. FHE is a widely-used privacy protection method
and has a similar threat model to ALGOSPEC. Despite its
limitations in fully addressing the purpose limitation issue,
it holds relevance in Scenario #2 (Figure 1.(b)), where the
third party can apply any algorithm on the cipher, but has
no decryption key to see the computation results. Therefore,
FHE is applied to compare with ALGOSPEC.

We choose the currently dominant Python homomorphic
encryption library, pi-HEaaN [7], as the main framework, and
use Taylor expansion for the non-linear part of an algorithm.
To eliminate the computational noise through FHE, we set
the scale factor as 1

9 due to its best performance.
DP. DP is another widely-used privacy-preserving method.

It is known for the efficiency due to the lightweight additive
noise strategy. Therefore, we select it to benchmark the effi-
ciency of ALGOSPEC. When using DP, we employ two noise
mechanisms, i.e., the Laplace mechanism and the Gaussian
mechanism. For Laplace mechanism, we set both εd p and
sensitivity to 1.0; for Gaussian mechanism, we set εd p, δd p,
and sensitivity all to 1.0.

Secure function evaluation (SFE). SFE [33] allows two
parties to jointly conduct computation. Thus, we also ex-
plore applying SFE for algorithm specificity. We apply two
widely-used libraries, namely the garbled-circuit [4] and
TenSEAL [3], to the entropy method and the Naive Bayes

classification. However, the former fails to split the raw data
into two Yao’s circuits, as it necessitates the design of intricate
circuits to represent logarithmic operations as well as proba-
bilistic calculations. The latter runs into the out-of-memory
exception due to the computational complexity. Thus, the
results on SFE are not reported in this paper.

6.2 Benchmarking
We benchmark the performance of ALGOSPEC on entropy
method and Naive Bayes classification against baseline, FHE,
DP with Laplace mechanism, and DP with Gaussian mecha-
nism. The scale of the dataset we use is controlled at 104 on
entropy method and 103 on Naive Bayes classification.
Entropy method. To compare ALGOSPEC’s accuracy against
others on the entropy method, we first compute the output of
the 2021 World Happiness Report ep2, producing the Happi-
ness Index as the accuracy indicator. The results are illustrated
in Figure 4.(b). Notably, ALGOSPEC (■) significantly outper-
forms DP with Laplace or Gaussian mechanism (▲, ▼), and
is closer to the baseline (•) than FHE (×××), as reflected by
the distances from the baseline. To quantify the distance, we
utilize the Mean Squared Error (MSE) as an evaluation met-
ric, as illustrated in the four figures at the bottom of Figure 4.
Overall, ALGOSPEC excels on the entropy method in terms
of accuracy. Unsurprisingly, both DP mechanisms exhibit
relatively high MSE, exceeding 100, as the noise added under-
mines the accuracy of the algorithm. The MSE of FHE is also
much higher than ALGOSPEC, because the intermediate noise
produced by FHE during computation can significantly affect
the classification task, specifically the process of operating
the argmax function [36].

Next, we evaluate the efficiency of ALGOSPEC. For all
methods, we gauge the total computation time, which encom-
passes the duration from data retrieval to the completion of



Table 4: Efficiency of different scale datasets from 103 to 106 on entropy method.

104 103 105 106

PT ET TT PT ET TT PT ET TT PT ET TT

Baseline 0.000 0.235 0.235 0.000 0.028 0.028 0.000 2.168 2.168 0.000 20.793 20.793
DP (L) 1.007 0.218 1.225 0.097 0.025 0.122 10.194 2.136 12.330 101.904 21.684 123.588
DP (G) 1.030 0.219 1.249 0.128 0.023 0.151 10.137 2.141 12.278 104.117 21.016 125.133
FHE 0.134 487.663 487.797 0.015 5.717 5.732 - - - - - -
ALGOSPEC 36.378 1.069 37.447 3.601 0.109 3.710 365.054 10.409 376.463 3675.673 102.339 3778.012

PT: Processing Time ET: Execution Time TT: Total Time

Table 5: Test accuracy and test F1 of different scale datasets from 102 to 105 on Naive Bayes classification.

Heart Disease (103) Breast Cancer (102) Hypertension (104) Hypertension ep (105)

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Baseline 0.844 0.851 0.921 0.886 0.834 0.854 0.832 0.850
DP (L) 0.698 0.705 0.904 0.853 0.747 0.780 0.751 0.782
DP (G) 0.790 0.786 0.895 0.838 0.791 0.818 0.799 0.824
FHE 0.473 0.460 0.465 0.371 0.543 0.594 0.513 0.540
ALGOSPEC 0.824 0.833 0.921 0.877 0.812 0.829 0.818 0.832

result computation. Given the involvement of a data proces-
sor and a third party in our setup, we further break down the
total time into processing time and execution time. Process-
ing time signifies the time the data processor takes on data
manipulation. DP’s processing time includes the duration of
adding noise. FHE’s processing is the data encryption and
key generation. ALGOSPEC ’s processing encompasses poly-
nomial approximation and obscured list construction. On the
other hand, execution time corresponds to the duration the
third party dedicates to carrying out calculations for the fi-
nal results. The first segment (benchmark) of Table 4 offers
insights into the time taken by different methods during the
execution of the entropy method, enabling a comprehensive
assessment of efficiency. The baseline method requires no
data processing, and hence, there is no processing time as-
sociated with it. Regarding the processing time, ALGOSPEC
requires slightly more time due to its preprocessing of both
the original data and the intended algorithm. Concerning exe-
cution time, our approach falls between DP and FHE but is
significantly faster than FHE, completing the task about 487
times shorter. Similarly for the total time, our method also
significantly outperforms FHE (nearly 13 times faster).
Naive Bayes classification. We use the heart disease dataset
to evaluate the performance of ALGOSPEC on Naive Bayes
classification. We take test accuracy and test F1 scores as
performance indicators for the evaluation. The first segment
(benchmark) of Table 5 illustrates the performance of each
method. By using the baseline as the reference, and compar-
ing the accuracy and F1 of DP, FHE, and our method, we
observe that ALGOSPEC exhibits the closest accuracy and
F1 to the baseline, with both metrics decreasing by less than
0.02. DP, regardless of the noise mechanism used, lags be-
hind ALGOSPEC in terms of both accuracy and F1. FHE

performs the poorest, displaying the lowest test accuracy and
F1. To illustrate the performance comparison, we use the re-
ceiver operating characteristic (ROC) curves and calculate
the area under the ROC curve (AUC). Figure 5.(a) presents
these curves and AUC values for each method. The red line
represents the ROC curve for ALGOSPEC, which boasts the
closest AUC to the baseline at 0.8272. It is evident that the
AUC of our method encompasses those of the other methods,
establishing our method as the top performer on accuracy.

Moving on to the efficiency evaluation, we continue to
divide the total time into processing time and execution time.
Regarding efficiency comparison, which is illustrated in the
lead-in segment (benchmark) of Table 6, our results align
with those from the entropy method. Although ALGOSPEC
requires slightly longer processing time, its execution and
total time are significantly superior, nearly 7 times and 4
times faster than FHE, respectively.

ALGOSPEC demonstrates superior performance in terms
of accuracy, as evaluated on both the entropy method and
Naive Bayes classification, surpassing other mainstream
privacy-preserving approaches. For efficiency, ALGOSPEC
is between FHE and DP, but given that neither DP nor FHE
can maintain a consistent accuracy rate, we believe that it
is worthwhile to sacrifice a certain amount of efficiency
for a stable and high accuracy of our method.

6.3 Scalability

To explore whether ALGOSPEC performs effectively across
datasets of various scales, we assess its scalability by utilizing
datasets ranging from 102 to 106.



Table 6: Efficiency of different scale datasets from 102 to 105 on Naive Bayes classification.

Heart Disease (103) Breast Cancer (102) Hypertension (104) Hypertension ep (105)

PT ET TT PT ET TT PT ET TT PT ET TT

Baseline 0.000 0.513 0.513 0.000 0.467 0.467 0.000 2.735 2.735 0.000 9.088 9.088
DP (L) 0.082 0.575 0.657 0.104 0.544 0.648 2.034 2.362 4.396 7.750 8.016 15.766
DP (G) 0.059 0.576 0.635 0.077 0.545 0.622 1.421 2.316 3.737 5.448 7.446 12.894
FHE 0.040 9.980 10.020 0.269 3.097 3.366 0.243 196.428 196.672 0.909 788.161 789.070
ALGOSPEC 1.432 1.520 2.952 2.011 1.645 3.656 35.915 41.415 77.330 143.045 175.288 318.333

PT: Processing Time ET: Execution Time TT: Total Time
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Figure 5: ROC curve and AUC of each method on Naive Bayes classification through different scales of datasets from 102 to 105.

Entropy method. We use datasets ranging from 103 to 106

for the entropy method. Figure 4 displays the computation of
the happiness index by each method and the Mean Squared
Error (MSE) between each method’s results and the baseline
for datasets of different sizes. Table 4 provides an overview
of the efficiency of each method on datasets of varying scales.
Notably, as the dataset size exceeds 104, FHE encounters com-
putational challenges due to the complexity of its intermediate
generated noise. In contrast, ALGOSPEC exhibits exceptional
scalability, making it capable of handling large-scale datasets.
Naive Bayes classification. We choose the scale of datasets
from 102 to 105 on Naive Bayes classification. Table 5 shows
the test accuracy and test F1, while Figure 5 illustrates the
ROC curve and AUC of each method on different scales of
datasets. We also compare each method’s time efficiency
across various dataset scales, as shown in Table 6.

ALGOSPEC is highly scalable since it can operate on
datasets of different sizes ranging from 102 to 106, which
is ideal for our settings of the threat model.

7 Discussions

In this section, we present a discussion on ALGOSPEC’s gen-
eralization for simple and complex algorithms, as well as the
challenges of deploying ALGOSPEC in practice.
Generalization. Given the target application scenarios of
ALGOSPEC, the algorithms are typically not simplistic. AL-
GOSPEC could also apply an alleviation for simple algorithms,
by covering the simple algorithm with random calculation
at an invalid input range. Taking y = x2 as an example, after

determining the range of the input (Section 3.1), it keeps the
segment of y = x2 within this range. For the remaining, it gen-
erates a random complex calculation and combines it with the
kept segment. This solution allows ALGOSPEC to keep a high
degree of n for simple algorithms. For complex algorithms
such as neural networks, AlgoSpec faces challenges during
the iterative backpropagation. It requires model parameters
from previous iterations to approximate new polynomials for
the current iteration, meaning that its approximation has to
be parameterized. We take the extension of ALGOSPEC for
parameterized algorithms as future work.
Deployment. When deploying ALGOSPEC in real-world sce-
narios, it entails the client (in Scenario #1) and the data pro-
cessor (in Scenario #2) to own a certain level of computa-
tional capabilities for the polynomial approximation and the
obscured list construction. The obscured list generated by
ALGOSPEC enlarges the original data into an N dimension
vector, causing increased storage and network communication
costs from O(1) to O(N).

8 Related Work

There are several data protection methods [30, 43, 45, 53, 54]
that data processors could use to protect the original data
and attempt to meet the purpose limitation principle when
sending the data to third parties. We categorize the current
mainstream data protection methods into three groups, includ-
ing cryptography-based, noise-based, and algorithm-based.
In this section, we summarize each of them.
Cryptography-based data protection. The cryptography-
based data protection that can be used for purpose limitation
is fully homomorphic encryption (FHE). Popescu et al. [45]



propose a way of encrypting rational numbers using FHE
by decomposing the rational numbers to various polynomi-
als with the order from “0” to “−n”, which protects rational
number data in the medical field. Mukherjee et al. [43] de-
velop a multi-key FHE scheme, which is a framework that
allows different participants to use different encryption keys
following a fixed computation method, to finally generate the
results. Zhao et al. [54] give a solution to the big data privacy
problem by deploying FHE to cloud computing, which en-
ables third parties to execute relatively large-scale operations.
Although FHE has strong data protection capabilities, it can-
not achieve algorithm specificity, particularly, in Scenario #1.
Furthermore, its computational complexity is extremely high,
requiring a large number of computational units to perform
otherwise simple operations [16].

Noise-based data protection. Adding noise or perturbations
to the original data is another approach to obfuscate data. One
of the widely used noise-based methods is differential privacy
(DP), which adds noise via the Laplace mechanism or Gaus-
sian mechanism [30]. DP controls the intensity of the noise
by setting different privacy loss parameters, i.e., εd p and δd p,
as well as sensitivity. In general, the larger the values of εd p
and δd p, the less noise is added to the data and the weaker
the protection. In order to achieve satisfactory computational
results with the protection of data security, the values of sen-
sitivity, εd p, and δd p are set to 1.0. Cheu et al. [26] propose
a scalable and robust protocol with DP by randomizing a set
of user-supplied information through anonymous channels,
to hide the sensitive information of private data. Wang et
al. [50] present a DP method that improves the application
of using local differential privacy to multidimensional data
collection, so that complex computation can be performed on
high-dimensional data. DP is easy to apply, but it may lead to
sharp accuracy loss to the intended algorithm.

Algorithm Specificity. Limited research has been dedicated
to purpose limitation, resulting in a limited number of methods
capable of achieving algorithm specificity. Two recent studies
might be adapted to the purpose limitation principle these
days. Zhang et al. [53] add targeted noise to images to make
them work only for specific tasks, thus protecting them from
misuse and unauthorized online searches. Syed-Winkler et al.
[47] present a system model for enforcing purpose limitation
based on data tagging and attribute-based encryption, ensuring
access control based on the purpose of a service. However,
although these existing data protection methods can protect
the data owners’ original data to a certain extent, none of
them can really satisfy algorithm specificity under the purpose
limitation principle. Thus, to the best of our knowledge, we
are the first to discover how to achieve algorithm specificity
and provide a novel solution, ALGOSPEC, through the lens of
algorithm level.

9 Conclusion

We propose ALGOSPEC, a solution of algorithm specificity
that implements the purpose limitation principle. ALGO-
SPEC’s approach is based on the properties of polynomial
approximation and complex mathematical problems, so as
to convert the intended algorithm and the original data into
an obfuscated format. It ensures two crucial goals for the
purpose limitation principle. The original data are not recov-
erable by polynomial time attacks, and the obfuscated data
can only be computed with authorized algorithms to generate
desired results. We provide a formal proof on the security of
ALGOSPEC, and experimentally evaluate its accuracy and ef-
ficiency performance on the entropy method and Naive Bayes
Classification. Our studies demonstrate that ALGOSPEC bal-
ances computational efficiency with a high level of accuracy.
Additionally, its high scalability also enables its applicabil-
ity in a great range of scenarios and applications. We hope
our study can attract more attention to the purpose limitation
principle, going beyond the transparency principle that has
become common practice nowadays.
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Algorithm 1: Workflow of ALGOSPEC

Input: Original data D(s)
f , f ∈ [0,k], s ∈ [0, l], k ≥ 0, l ≥ 0, k, l ∈ R,

Original algorithm Fx
Output: Final result r
1: Initialize: λ, d, γ,
2: procedure construct(αs,βs,λ,d,N,D(s)

f )

3: for all D( j)
i in D(s)

f do

4: M′← construct_noncons(αs,λn,dn,D
( j)
i )

5: B← construct_cons(βs, pairs, times)
6: M( j)

i ← combine(M′,B)
7: end for
8: return {M(0)

0 , . . . , M( j)
i , . . . , M(s)

f }
9: end procedure

10: for i := 0 to k do
11: coe f s[i]← poly_approx(Fx,ns[i])
12: end for
13: αs← sep_coe f (coe f s)
14: βs← sep_cons(coe f s)
15: Ms← construct(αs,βs,λ,d,N,D(s)

f )

16: r← compute(Ms,A)
17: return r

Table 7: Code-based game-playing Expddh
G,k (A) to prove n is

indistinguishable

Game Expddh−0
G,k (A) : Game Expddh−1

G,k (A) :
Proc Initialize (k) Proc Initialize (k)

(G, p) R←G
(
1k
)

(G, p) R←G
(
1k
)

g R← G∗ g R← G∗

x R← Z∗p; X R← gx x R← Z∗p; X R← gx

y R← Z∗p; Y R← gy y R← Z∗p; Y R← gy

z R← xy mod p; Z R← gz z R← Z∗p; Z R← gz

Return (G,g,X ,Y,Z) Return (G,g,X ,Y,Z)
Proc Finalize (β′) Proc Finalize (β′)
Guess: Guess:

if

{
Z = gloggX+Y , set β′ = 1
Z ̸= gloggX+Y , set β′ = 0

if

{
Z = gloggX+Y , set β′ = 1
Z ̸= gloggX+Y , set β′ = 0

Return (β′) Return (β′)

A Appendix

A.1 Main Algorithm of ALGOSPEC

We represent the workflow of ALGOSPEC in Algorithm 1.

A.2 Proof of Theorem 1
We prove Theorem 1 by proving the correctness of Lemma 1
and Lemma 2.

Lemma 1. (n is initialized indistinguishable). Let
Expddh

G,k (A) be a code-based game-playing. Expddh−0
G,k (A)

and Expddh−1
G,k (A) are the sub-games in Expddh

G,k (A), which
is illustrated in Table 7. In Proc Initialize (k) of both sub-
games, the only difference is z R← xy mod p in Expddh−0

G,k (A)

and z R← Z∗p in Expddh−1
G,k (A). In proc Finalize (β′), the adver-

sary guesses if Z = gloggX+Y and returns β′ = 1 if the answer
is yes, otherwise β′ = 0 in the two sub-games. We have that n
is indistinguishable if

Advddh
G,k (A) = |P(Expddh−0

G,k (A) = 1)

−P(Expddh−1
G,k (A) = 1)| ≤ ε,

(17)

where ε is negligible.
Proof of Lemma 1. The degree n of the polynomial is gener-
ated based on DDH (Definition 2), which can be considered
as DLP [28, 39] (Definition 3). Let G = <G> be the finite
cyclic group; p is the prime order; k = |p| be the security
parameter; g R← G∗ be the generated element. We generate n
by x R← Z∗p, y R← Z∗p, z R← xy mod p⇒ n = gz.

To prove that n is indistinguishable, we construct a
code-based game-playing Expddh

G,k (A). Table 7 shows the
entire game consisting of game Expddh−0

G,k (A) and game

Expddh−1
G,k (A). Each sub-game contains two processes, the

initialization process Proc Initialize (k) and finalization pro-
cess Proc Finalize (β′), where β′ is a flag that can be set to 1
or 0 based on the adversary guess.

We first design Proc Initialize (k) of the two sub-games.
It generates a cyclic group G with prime order p using
group generator G. Then, it randomly selects a random gen-
erator g from G∗ and x, y from Z∗p, and sets X R← gx as

well as Y R← gy. The only difference between Expddh−0
G,k (A)

and Expddh−1
G,k (A) is illustrated by the red rectangle. In

Expddh−0
G,k (A), z is the real z R← xy mod p that we use to gen-

erate n, while in Expddh−1
G,k (A), z is randomly selected from

Z∗p. Then we set Z R← gz and return (G, g, X , Y , Z) in both sub-
games. In the Proc Finalize (β′), the adversary ends the game
by guessing whether Z = gloggX+Y . If the adversary guesses
Z = gloggX+Y , they set β′ = 1, otherwise they set β′ = 0.

In the Proc Initialization (k), there is a DLP. By giving g, X ,
Y and Z, one cannot distinguish whether z R← xy mod p or z R←
Z∗p. Thus, in both sub-games, based on the returned (G, g, X ,
Y , Z), the adversary is not able to find the relationship between
Z and X , Y , which means when given Z = gloggX+Y and Z ̸=
gloggX+Y , the adversary can only randomly select one, namely
a random guess. As a result, the advantage Advddh

G,k (A) of the
adversary to win the game Expddh

G,k (A) is negligible.

Lemma 2. (n is unrecoverable from M). Let F be a poly-
nomial with the degree n. Let M denote a list containing N

2
pairs (N≫ 2n) with almost evenly distribution, which follows
γ distances. γ is well-designed by γ = ρ+ω, where ρ is the
number of distances of n pairs and ω is the new distances
to be created (0≤ ω≤ N

4 −ρ). Let A denote the calculation
rule in ALGOSPEC. The CPA is unable to discern n of the
polynomial when provided with M.



Table 8: Code-based game-playing Expddh
G,k,Gen()(A) to prove

M is indistinguishable

Game Expddh−0
G,k,Gen()(A) : Game Expddh−1

G,k,Gen()(A) :
Proc Initialize (k,d,F) Proc Initialize (k,d,F)

(G, p) R←G
(
1k
)

(G, p) R←G
(
1k
)

g R← G∗; N R← Z≫n g R← G∗; N R← Z≫n

γ
R← Z+<n+N

4 −ρ
γ

R← Z+<n+N
4 −ρ

y R← Z∗p y R← Z∗p
n R← gxy mod p n R← Z∗p
M R← Gen(d,n,N,γ,F) M R← Gen(d,n,N,γ,F)

Return M Return M
Proc Finalize (β′) Proc Finalize (β′)
Guess: Guess:

if

{
n = gxy, set β′ = 1
n ̸= gxy, set β′ = 0

if

{
n = gxy, set β′ = 1
n ̸= gxy, set β′ = 0

Return (β′) Return (β′)

To facilitate the proof, we present a supporting claim that
formulates Lemma 2 in a mathematical way. n in the claim
represents the degree of the polynomial; N

2 are exactly the
number of pairs in M; following the construction of pattern,
we set γ (almost evenly distributed) distances in the claim with
the same ρ and ω. Subsequently, we establish the correctness
of Lemma 2 by demonstrating the validity of Claim 1.

Claim 1. Given n pairs following ρ distances and
(N

2 −n
)

pairs that are constructed to follow γ = ρ+ω distances, N
2

pairs that are evenly distributed can compose a list M, such
that despite the attacker possessing M, n remains indistin-
guishable.

Proof of Claim 1. Given N
2 pairs and γ distances (n≪ γ < N

2 ),
there must be at least one distance containing multiple pairs,
according to the pigeonhole principle. Therefore, the range
of distance in n pairs is ρ ∈ [1,n] Additionally, we introduce
λ and d to adjust the number of distances, ensuring an almost
uniform distribution within each distance. M comprises N

2
pairs distributed across γ patterns. Considering ρ ∈ [1,n] and
ω ∈ [0, N

4 −ρ], it follows that γ ∈ [1,n+ N
4 −ρ]. In practical

scenarios, where N
2 ≫ n≥ ρ, if γ≤ n meaning that γ ∈ [1,n],

the adversary needs to attempt (N
2 −γ+1) times to determine

n; if γ > n meaning that γ ∈ (n,n + N
4 − ρ], the adversary

needs to attempt (γ− 1) times. However, due to the even
distribution, the adversary remains unaware of whether γ < n
or γ > n, necessitating N

2 ( N
2 − γ+1+ γ−1) attempts, which

is impossible within PT. Consequently, even if M is disclosed,
n remains unrecoverable.

A.3 Proof of Theorem 2

Table 8 shows the code-based game playing Expddh
G,k,Gen()(A)

used in our proof. Its construction follows the intuition
that two Ms generated using different n are indistinguish-
able. Expddh−0

G,k,Gen()(A) and Expddh−1
G,k,Gen()(A) are the sub-

games. In Expddh−0
G,k,Gen()(A), n is set by n R← gxy mod p; in

Expddh−1
G,k,Gen()(A), n is set by n R← Z∗p. Both sub-games return

M with their corresponding n in Proc Initialize(k, d, F). The
adversary is not able to distinguish which M is generated from
the real n. M is indistinguishable if

Advddh
G,k,Gen()(A) = |P

(
Expddh−0

G,k,Gen()(A) = 1
)

−P
(

Expddh−1
G,k,Gen()(A) = 1

)
|≤ ε

(18)

The Proc Initialize(k,d,F) of the two sub-games is designed
to generate M. Their only difference is marked with red rect-
angles. In Expddh−0

G,k,Gen()(A), n is the real one generated by

n R← gxy mod p, whereas in Expddh−1
G,k,Gen()(A), n is generated

randomly. In the Proc Finalize(β), once the adversary has the
Ms returned by the two games, they need to determine which
M is generated by the real n. In other words, they have to
guess whether n = gxy4 or not based on the returned Ms. If
they believe n = gxy, they set β′ = 1, otherwise they set β′ = 0.
Since n is indistinguishable, the adversary has to make a ran-
dom guess here. Thus, the advantage Advddh

G,k,Gen()(A) of the
adversary to win the game is a negligible function.

A.4 Proof of Main Theorem

We utilize the IND-CPA framework (Definition 4 and 5) to
demonstrate the unrecoverability of the original data d. We de-
vise a game denoted as G(A), depicted in Table 9. G(A) com-
prises four sub-games, namely, G0(A), G1(A), G2(A), and
G3(A). There is only one distinction between every two con-
secutive sub-games, highlighted by the red rectangles, and the
green rectangles indicate the sole difference between G0(A)
and G3(A). Each sub-game comprises three processes: Proc
Initialize (k, d, F), Proc LR (d, d′), and Proc Finalize (β′).

A.4.1 Game Settings

Proc Initialize(k, d, F). In Proc Initialize (k, d, F), all four
sub-games generate the real M and return (G, γ, g, X). Proc
LR (d, d′), where LR stands for Left-Right, denoting a proce-
dure aimed at responding to queries posed by an adversary
during the game [42]. In Proc LR (d, d′), each of the four sub-
games supplies the adversary with an additional d′, referred
to as a challenge message [29], which aids in facilitating the
determination of whether d is the original data.

4gxy = gxy mod p by Lagrange’s theorem.



Table 9: Code-based game-playing G(A) to prove d is indistinguishable.

Game G0(A) Game G1(A) Game G2(A) Game G3(A)
Proc Initialize (k,d,F) Proc Initialize (k,d,F) Proc Initialize (k,d,F) Proc Initialize (k,d,F)

(G, p) R←G
(
1k
)

(G, p) R←G
(
1k
)

(G, p) R←G
(
1k
)

(G, p) R←G
(
1k
)

g R← G∗; N R← Z≫n g R← G∗; N R← Z≫n g R← G∗; N R← Z≫n g R← G∗; N R← Z≫n

γ
R← Z+<n+N

4 −ρ
γ

R← Z+<n+N
4 −ρ

γ
R← Z+<n+N

4 −ρ
γ

R← Z+<n+N
4 −ρ

x R← Z∗p; X ← gx x R← Z∗p; X ← gx x R← Z∗p; X ← gx x R← Z∗p; X ← gx

y R← Z∗p; Y ← gy y R← Z∗p; Y ← gy y R← Z∗p; Y ← gy y R← Z∗p; Y ← gy

z R← xy mod p;n R← gz z R← xy mod p;n R← gz z R← xy mod p;n R← gz z R← xy mod p;n R← gz

M R← Gen(d,n,N,γ,F) M R← Gen(d,n,N,γ,F) M R← Gen(d,n,N,γ,F) M R← Gen(d,n,N,γ,F)
Return (G,γ,g,X) Return (G,γ,g,X) Return (G,γ,g,X) Return (G,γ,g,X)
Proc LR (d,d′) Proc LR (d,d′) Proc LR (d,d′) Proc LR (d,d′)

N R← Z≫n; γ
R← Z+<n+N

4 −ρ N R← Z≫n; γ
R← Z+<n+N

4 −ρ N R← Z≫n; γ
R← Z+<n+N

4 −ρ N R← Z≫n; γ
R← Z+<n+N

4 −ρ

y R← Z∗p; C1← gy; n′← Xy w R← Z∗p; C1← gw; n′← Xw w R← Z∗p; C1← gw; n′← Xw y R← Z∗p; C1← gy; n′← Xy

C2
R← Gen(d,n′,N,γ,F) C2

R← Gen(d,n′,N,γ,F) C2
R← Gen(d′,n′,N,γ,F) C2

R← Gen(d′,n′,N,γ,F)

Proc Finalize (β′) Proc Finalize (β′) Proc Finalize (β′) Proc Finalize (β′)
Guess: Guess: Guess: Guess:

(1). if

{
C1 = Y, P (C1 = Y ) = 0.5
C1 ̸= Y, P (C1 ̸= Y ) = 0.5

(1). if

{
C1 = Y, P (C1 = Y ) = 0.5
C1 ̸= Y, P (C1 ̸= Y ) = 0.5

(1). if

{
C1 = Y, P (C1 = Y ) = 0.5
C1 ̸= Y, P (C1 ̸= Y ) = 0.5

(1). if

{
C1 = Y, P (C1 = Y ) = 0.5
C1 ̸= Y, P (C1 ̸= Y ) = 0.5

(2). if

{
C2 = M, β′ = 1
C2 ̸= M, β′ = 0

(2). if

{
C2 = M, β′ = 1
C2 ̸= M, β′ = 0

(2). if

{
C2 = M, β′ = 1
C2 ̸= M, β′ = 0

(2). if

{
C2 = M, β′ = 1
C2 ̸= M, β′ = 0

Return (β′) Return (β′) Return (β′) Return (β′)

Proc LR(d, d′). During Proc LR(d, d′), in G0(A), the y is
generated by y R← Z∗p, which is the same as the y generated in
Proc Initialize(k, d, F). Notably, generating y is an intermedi-
ate step in the derivation of n. Different y values yield distinct
z values, consequently leading to different n. In G1(A), distin-
guished from G0(A), we generate w, a value distinct from y,
by w R← Z∗p. As a result, C1 and n′ differ between G0(A) and
G1(A), following C1← gy, n′← Xy in G0(A) and C1← gw,
n′← Xw in G1(A) respectively. It is evident that in G0(A),
C1 = Y and n′ = n, whereas in G1(A), C1 ̸= Y and n′ ̸= n.
When examining G1(A) and G2(A), the sole difference lies
in C2 generated by Proc LR(d, d′). In G1(A), we utilize the
original data d as a parameter of Gen() to generate C2, i.e.,
C2

R←Gen(d,n′,N,γ,F), but in G2(A),C2 is generated by the
challenge message d′, i.e., C2

R← Gen(d′,n′,N,γ,F). There-
fore, the C2’s in G1(A) and G2(A) are different. The differ-
ence between G2(A) and G3(A) is that we replace w R← Z∗p
in G2(A) with y R← Z∗p in G3(A). In G3(A), the y in Proc
LR(d, d′) is the same as the y in Proc Initialize(k, d, F), so
C1 = Y and n′ = n. After understanding the differences be-
tween two neighboring games, we examine the distinction be-
tween G0(A) and G3(A), illustrated by the green rectangle.
The only difference noted is that in G0(A), C2 is generated by
C2

R← Gen(d,n′,N,γ,F), whereas in G3(A), C2 is generated
by C2

R← Gen(d′,n′,N,γ,F). This achieves the intended dis-
tinction in the game G(A), where whether or not the original
data is used to generate C2 becomes the sole difference. All
four sub-games in Proc LR(d, d′) return (C1,C2) before Proc
Finalize(β′).

Proc Finalize(β′). In Proc Finalize(β′), the adversary initially
checks if C1 =Y , followed by verifying if C2 =M, resembling
a conditional probability distribution. Given the returned (G,
γ, g, X) in Proc Initialize(k, d, F) for the four sub-games,
the adversary lacks the information to deduce Y . Therefore,
they cannot ascertain whether C1 = Y when provided with
y R← Zp∗ and w R← Z∗p. Consequently, in the four sub-games,
the probability that the adversary to guess C1 = Y is almost
equal to the probability that they guess C1 ̸= Y , meaning a
random guess. Subsequently, in determining whether C2 = M,
there are two scenarios. One is where the adversary assumes
C1 = Y and believes C2 = M, and the other is where they
assume C1 ̸= Y and then believe C2 = M.

A.4.2 Proof

According to the conditional probability distribution, we can
express the probability of the adversary guessing C2 = M in
the four sub-games as from Eq. 19 to Eq. 22.
Game G0(A). We start with Eq. 19.

P (G0(A) = 1) =P (C1 = Y )×P
(

Expddh−0
G,k (A) = 1

)
×P

(
Expddh−0

G,k,Gen()(A) = 1
)
+P (C1 ̸= Y )

×P
(

Expddh−1
G,k (A) = 1

)
×P

(
Expddh−0

G,k,Gen()(A) = 1
) (19)

With the premise that P (C1 = Y ) is a random guess, the prob-
ability that the adversary believes n′ = n can be considered
as the game Expddh−0

G,k (A), because if C1 = Y , n′ is equal to
n. Similarly, the adversary guessing C2 = M can be consid-
ered as Expddh−0

G,k,Gen()(A), given that M is indistinguishable



(Theorem 2) and the adversary is provided with the real d
in G0(A). The success of the adversary’s guess depends on
whether n = n′, making it a conditional probability. Thus, the
first case that the probability the adversary returns β′ = 1
can be expressed as P (C1 = Y )×P

(
Expddh−0

G,k (A) = 1
)
×

P
(

Expddh−0
G,k,Gen()(A) = 1

)
.

The second case is similar to the first one, with the
difference that the adversary considers C1 ̸= Y . With
this premise, the adversary believes n′ ̸= n, which can
be considered as the game Expddh−1

G,k (A). Thus, the sec-
ond case that the probability that adversary returns β′ = 1
can be expressed as P (C1 ̸= Y )×P

(
Expddh−1

G,k (A) = 1
)
×

P
(

Expddh−0
G,k,Gen()(A) = 1

)
. Finally incorporating the two

cases, we obtain the probability of the adversary returning
β = 1 shown as Eq. 19.
Game G1(A). The adversary’s guess that C2 = M in G1(A)
can be descirbed in Eq. 20.

P (G1(A) = 1) =P (C1 = Y )×P
(

Expddh−0
G,k (A) = 1

)
×P

(
Expddh−1

G,k,Gen()(A) = 1
)
+P (C1 ̸= Y )

×P
(

Expddh−1
G,k (A) = 1

)
×P

(
Expddh−1

G,k,Gen()(A) = 1
) (20)

The analysis of game G1(A) is similar to G0(A). The only
difference is that w is no longer the value y in Proc Intitialize(k,
d, F), leading to C1 ̸= n, which can be considered as the game
Expddh−1

G,k,Gen()(A).
Game G2(A). The probability of the adversary guessing
C2 = M in G2(A) is described in Eq. 21. The analysis closely
resembles that of game G1(A) except for the utilization of
d′ instead of d in Proc LR(d, d′). Therefore, we refrain from
reiterating the explanation.

P (G2(A) = 1) =P (C1 = Y )×P
(

Expddh−0
G,k (A) = 1

)
×P

(
Expddh−1

G,k,Gen()(A) = 1
)
+P (C1 ̸= Y )

×P
(

Expddh−1
G,k (A) = 1

)
×P

(
Expddh−1

G,k,Gen()(A) = 1
) (21)

Game G3(A). We formulate the probability of the adversary
guessing C2 = M in G3(A) as presented in Eq. 22.

P (G3(A) = 1) =P (C1 = Y )×P
(

Expddh−0
G,k (A) = 1

)
×P

(
Expddh−0

G,k,Gen()(A) = 1
)
+P (C1 ̸= Y )

×P
(

Expddh−1
G,k (A) = 1

)
×P

(
Expddh−0

G,k,Gen()(A) = 1
) (22)

In G3(A), we set y R← Z∗p again in Proc LR(d, d′) identical to
the settings in G0(A). Consequently, the task of determining
whether C2 = M can be regarded as Expddh−0

G,k (A). Following
the integration of the two cases discussed in G0(A), we have
Eq. 22.

Advantage to win G(A). As there is only one difference
between the neighboring sub-games, so we consider the two
neighboring sub-games as Expddh

G,k (A) (Section A.3). The

advantage of the adversary Advind−cpa
G,k,Gen()(A) to win each

Expddh
G,k (A) can be expressed as from Eq. 23 to Eq. 25. Specif-

ically, for G0(A) and G1(A), we have

|P (G0(A) = 1)−P (G1(A) = 1)|

=| 0.5×
[
P
(

Expddh−0
G,k (A) = 1

)
+P

(
Expddh−1

G,k (A) = 1
)]

×P
(

Expddh−0
G,k,Gen()(A) = 1

)
−0.5

×
[
P
(

Expddh−0
G,k (A) = 1

)
+P

(
Expddh−1

G,k (A) = 1
)]

×P
(

Expddh−1
G,k,Gen()(A) = 1

)
|

= |P
(

Expddh−0
G,k,Gen()(A) = 1

)
−P

(
Expddh−1

G,k,Gen()(A) = 1
)
|

= Advddh
G,k,Gen() ≤ ε

(23)
For G1(A) and G2(A), based on Eq. 20 and Eq. 21, we have

|P (G1(A) = 1)−P (G2(A) = 1)|= 0≤ ε (24)

For G2(A) and G3(A), we can derive

|P (G2(A) = 1)−P (G3(A) = 1)|

=| 0.5×
[
P
(

Expddh−0
G,k (A) = 1

)
+P

(
Expddh−1

G,k (A) = 1
)]

×P
(

Expddh−1
G,k,Gen()(A) = 1

)
−0.5×

[
P
(

Expddh−0
G,k (A) = 1

)
+P

(
Expddh−1

G,k (A) = 1
)]

×P
(

Expddh−0
G,k,Gen()(A) = 1

)
|= |P

(
Expddh−1

G,k,Gen0
(A) = 1

)
−P

(
Expddh−0

G,k,Gen()(A) = 1
)
|

= Advddh
G,k,Gen() ≤ ε

(25)
In each Expddh

G,k (A), the adversary’s advantage is a negligi-
ble function. Summarizing Eq. 23, 24, and 25 based on the
triangle inequality theorem, we can obtain Eq. 26, which is
the advantage of the adversary to win the game G(A).

Advind−cpa
G,k,Gen()(A) = |P (G0(A) = 1)−P (G3(A) = 1)|

≤ |P (G0(A) = 1)−P (G1(A) = 1)|
+ |P (G1(A) = 1)−P (G2(A) = 1)|
+ |P (G2(A) = 1)−P (G3(A) = 1)| ≤ ε

(26)

Advind−cpa
G,k,Gen()(A) is a negligible function for PTAs. Therefore,

d is unrecoverable under PTAs.
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