
Fast RS-IOP Multivariate Polynomial Commitments and Verifiable Secret Sharing

Zongyang Zhang∗† Weihan Li∗† Yanpei Guo∗ Kexin Shi∗

Sherman S. M. Chow‡ Ximeng Liu§ Jin Dong¶

Abstract
Supporting proofs of evaluations, polynomial commitment
schemes (PCS) are crucial in secure distributed systems.
Schemes based on fast Reed–Solomon interactive oracle
proofs (RS-IOP) of proximity have recently emerged, offering
transparent setup, plausible post-quantum security, efficient
operations, and, notably, sublinear proof size and verification.
Manifesting a new paradigm, PCS with one-to-many proof
can enhance the performance of (asynchronous) verifiable
secret sharing ((A)VSS), a cornerstone in distributed com-
puting, for proving multiple evaluations to multiple verifiers.
Current RS-IOP-based multivariate PCS, including Hyper-
Plonk (Eurocrypt ’23) and Virgo (S&P ’20), however, only
offer quasi-linear prover complexity in the polynomial size.

We propose PolyFRIM, a fast RS-IOP-based multivariate
PCS with optimal linear prover complexity, 5-25× faster than
prior arts while ensuring competent proof size and verification.
Heeding the challenging absence of FFT circuits for multi-
variate evaluation, PolyFRIM surpasses Zhang et al.’s (Usenix
Sec. ’22) one-to-many univariate PCS, accelerating proving
by 4-7× and verification by 2-4× with 25% shorter proof.
Leveraging PolyFRIM, we propose an AVSS scheme FRISS
with a better efficiency tradeoff than prior arts from multivari-
ate PCS, including Bingo (Crypto ’23) and Haven (FC ’21).

1 Introduction

A polynomial commitment scheme (PCS) enables a prover to
commit to a polynomial f defined over a field F with degree
bound d and variable number µ. When given a point xxx ∈ Fµ,
∗Beihang Univ. Supported by National Key R&D Program of China

(2022YFB2702702), National Natural Science Foundation of China (6237
2020, 72031001, 62102422), Beijing Natural Science Foundation (L222050),
& Fundamental Research Funds for the Central Univ. (YWF-23-L-1032). The
first three authors contribute equally. Experiments are led by Yanpei Guo.

†Corresponding authors. Work done while Weihan Li is at CUHK.
‡The Chinese University of Hong Kong. Supported by GRF 14210621.

CUHK authors are grateful for the reviewers’ feedback and for entrusting us
with final revisions, and hold sole responsibility for any editorial errors.

§Fuzhou Univ. ¶Beijing Academy of Blockchain and Edge Computing.

the prover can convince a verifier via an evaluation proof that
the committed polynomial f satisfies f (xxx) = y for a public
y ∈ F. A PCS is succinct if the size of the proof/transcript
is sublinear in the polynomial size dµ and is efficient if ver-
ification time is sublinear in dµ. Succinct and efficient PCS
is integral in recent zero-knowledge succinct non-interactive
argument of knowledge (zk-SNARKs) [16,20,29] via integrat-
ing PCS with polynomial interactive oracle proofs (IOPs) [8].

A pioneer PCS of Kate–Zaverucha–Goldberg [24] (KZG-
PCS) and its multivariate extension [28] feature constant com-
munication and verifier complexity. However, their security
relies on a trusted setup to generate a structured reference
string, which poses challenges in deployment for blockchain
or other distributed applications. Bulletproofs [11] only needs
a transparent setup. Contrarily, it entails a linear number of
exponentiations for both the prover and verifier. PCSs [25,32]
from fast Reed–Solomon (RS) IOP of proximity (FRI) [5]
stand out among succinct and efficient ones [12, 27] for their
efficient execution and plausible post-quantum security, gain-
ing popularity in zk-rollup1 and post-quantum signatures [9].

Adapting the first PCS from FRI [32] (FRI-PC henceforth),
tailored for univariate polynomials, to multivariate PCS poses
challenges without additive homomorphism [26]. Hyper-
Plonk [16, §B] (only work for d = 2) and Virgo [37] represent
the latest FRI-based multivariate PCSs. Their prover complex-
ity is O(µ ·dµ logd), in contrast to O(dµ) FRI-PC (for µ = 1).
In Virgo, the prover needs to invoke the Goldwasser–Kalai–
Rothblum (GKR) protocol [21] for fast Fourier transforma-
tion (FFT) with a statement size of O(µ ·dµ logd), incurring a
prover complexity quasi-linear to the polynomial size dµ. Hy-
perPlonk is simpler without needing the GKR composition.

A PCS with one-to-many proofs [31] allows a prover
to open distinct evaluations of a single committed polyno-
mial, where each evaluation corresponds to a unique verifier
with a lower prover complexity than repeating single proof.
Zhang et al. (ZXH+22) [36] propose a framework for one-to-
many proof of transparent univariate polynomials, including

1e.g., github.com/0xPolygonZero/plonky2, ia.cr/2021/582

https://github.com/0xPolygonZero/plonky2/blob/main/plonky2/plonky2.pdf
https://ia.cr/2021/582

a polynomial interactive oracle proof and a (univariate) poly-
nomial commitment. Zhang et al. instantiate this framework
using Virgo, obtaining a one-to-many PCS with a prover com-
plexity of O(n logn), as well as a verifier and communication
complexity of O(log2 n), for n = O(dµ) produced proofs.

A natural application of one-to-many proofs is verifiable se-
cret sharing (VSS) [31, 36] with low dealer complexity. VSS
allows a dealer to distribute secret shares to parties so that
enough honest parties could either recover the secret when the
dealer is honest or identify a cheating dealer. Asynchronous
VSS (AVSS) [4] operates without timing assumptions, and
its resilience [1, 2] is integral for a wide array of applica-
tions, including Byzantine agreement [13], distributed key
generation [19, 33], and proactive secret sharing [23, 35].

AVSS from PCS [1–3, 34] enjoys strong security guaran-
tees (e.g., termination [18]) and low communication com-
plexity. They roughly fall into univariate or multivariate ap-
proaches [18]. The former [34] typically adapts an encrypt-
then-disperse [18] strategy to remedy any fault due to message
delay or malice. Encryption limits plaintext visibility, causing
communication redundancy for sending multiple ciphertexts,
and efficiency overhead for proving the well-formedness [18].
Utilizing multivariate (precisely, bivariate) PCS to build
AVSS [2, 3] can achieve secret recovery and correction al-
most for free. A typical framework [3] involves the dealer
distributing shares f (xi,Y) of polynomial f (X ,Y) to party
Pi. Pi then delivers f (xi,y j) to Pj, where i, j ∈ {1,2, . . . ,n}.
Upon receiving sufficient f (xi,y j), Pj computes f (X ,y j) and
sends f (xk,y j) to Pk, helping it to recover or correct its share
f (xk,Y). One-to-many proofs fit in nicely: a dealer proves n2

different evaluations of a bivariate polynomial to n2 verifiers.
Each f (xi,y j) is given to a “combined” party of Pi and Pj.

AVSS schemes from bivariate PCS [2,3] typically use PCS
directly, leading to O(n3) dealer complexity for proving n2

point evaluations on an O(n)-degree polynomial, each with
O(n) complexity. A recent work Bingo [1] reduces the dealer
complexity by overloading every party with partial proof gen-
eration. The availability of one-to-many multivariate PCSs
provides a potential route to lower dealer complexity. While
univariate PCSs with one-to-many proofs [31,36] exist, multi-
variate one-to-many proofs remain unknown. Virgo-PCS [37]
(used by ZXH+22 [36]) originally supports multivariate poly-
nomials, but it is employed in a framework solely for univari-
ate PCS, leading to only univariate one-to-many proof.

Amidst ample advantages, we tackle two open problems for
advancing FRI-based multivariate polynomial commitments:
1. Can we build an FRI-based multivariate PCS with optimal

linear proving, further with non-trivial one-to-many proof?
2. How far can we push the frontier of AVSS with the ad-

vancements in multivariate polynomial commitment?

1.1 Our Contribution
We solve these questions and bring the contributions below.

• PolyFRIM: Polynomial Commitment Scheme from Fast
Reed–Solomon Interactive Oracle Proofs of Proximity in
the Multivariate Setting with Linear Prover Complexity.
Proving a µ-variate d-degree polynomial at least requires its
evaluation, taking O(dµ). We propose PolyFRIM with such
optimal prover complexity. Its verifier and communication
take O(µ2 log2 d), living up to others [16, 37] in Table 1.
• One-to-Many PolyFRIM. Our new PCS design supports
multivariate one-to-many proof, surpassing ZXH+22 [36] in
functionality. For O(n2) proofs on any O(n)-degree bivariate
polynomial, the prover time is O(n2 logn), which is optimal.2

Per-verifier computation and communication costs stay at
O(log2 n) as the non-amortized case. Details are in Table 2.
• FRISS: FRI AVSS from PolyFRIM. FRISS, our new AVSS
enabled by PolyFRIM (cf. [3]), exhibits a dealer complexity
of O(n2 logn) for party number n, the same as Bingo [1].
eAVSS [3] and HAVEN-1/2 [2] take O(n3). See Table 3.3

• Implementation and Evaluation. In terms of performance,
we fully implement our schemes4, which set new benchmarks.
Our experiments show thatPolyFRIM has 5-25× faster prover
time than other transparent PCSs [11, 16, 37], with at most
<30% (resp., <10%) worse verifier time (resp., proof size)
compared with FRI-based PCSs. As there have been no one-
to-many bivariate PCSs before, we only compare the perfor-
mance of univariate one-to-many PCSs [36]. Ours reduces
the prover time by 4-7× and improves the verifier time and
proof size by 2-4× and 25%, respectively. For AVSS, FRISS
has a 4-400× advantage for dealers on the cost of PCSs over
existing schemes such as eAVSS [3] and HAVEN [2], and a
10× faster party computation than Bingo [1].

1.2 Technical Overview
Contribution-I: PolyFRIM from HyperPlonk. Succinctly,
the core of HyperPlonk [16, §B] is that a µ-variate multilinear
polynomial f̃ (X1,X2, . . . ,Xµ) evaluated on (x1,x2, . . . ,xµ) is
the inner product between the coefficient vector of f̃ and the
tensor product (1,x1)⊗·· ·⊗ (1,xµ). HyperPlonk primarily
involves committing µ univariate polynomials { f̂i}i∈[0,µ−1]
and running the FRI low-degree test [5] for µ times to check
whether f̂i have respective upper degree bounds 2µ−i.

Motivated by the demand for multivariate polynomial com-
mitments in AVSS, we generalize HyperPlonk to cover mul-
tivariate polynomials by our dedicated transformation. This
stems from the observation that a µ-variable polynomial
f̃ (X1, . . . ,Xµ) with variable degree d evaluated on (x1, . . . ,xµ)
is equivalent to a multilinear polynomial g̃(X1, . . . ,Xµ logd)

2The prover needs to compute O(n) univariate polynomials after deter-
mining the first variable with n values, taking O(n2) in total. Then, the FFT
for evaluating these O(n) polynomials takes O(n) ·O(n logn) = O(n2 logn).

3Our paper only instantiates one-to-many PolyFRIM with eAVSS. Future
work includes using our (univariate and multivariate one-to-many) schemes
to improve other AVSS schemes such as hbACSS and HAVEN.

4github.com/gyp2847399255/PolyFRIM

https://github.com/gyp2847399255/PolyFRIM

Table 1: Computation and communication complexities of µ-variate degree-d or degree-2 polynomial commitments

Scheme Trustless Setup Assumption Commit Prover Verifier Communication
PST13 [28] no q-SDH O(dµ)GB O(dµ)GB O(µ)GB O(µ)GB
DARK [12] yes/no Strong RSA O(dµ)GU O(µdµ logd)GU O(µ logd)GU O(µ logd)GU
Bulletproofs [11] yes DLog O(dµ)GP O(dµ)GP O(dµ)GP O(µ logd)GP

Virgo [37] yes O(µdµ logd)F+O(dµ)H O(µdµ logd)F O(µ2 log2 d)H O(µ2 log2 d)H
HyperPlonk [16, §B] yes O(µ2µ log2)F+O(2µ)H O(µ2µ log2)F O(µ2 log2 2)H O(µ2 log2 2)H
PolyFRIM yes O(µdµ logd)F+O(dµ)H O(dµ)H+O(dµ)F O(µ2 log2 d)H O(µ2 log2 d)H

Gi, i ∈ {B,U,P}, denotes a group with a Bilinear map, of Unknown order, or of known Prime order; F is a field with a large
multiplicative coset. H denotes a hash function. All these represent the size or operation time depending on the context.

Table 2: One-to-many proofs for n2 evaluations of degree-n
Univariate or Bivariate polynomial

Scheme Trustless PCS Prover Verifier/Commun.
AMT [31] no Uni. O(n2 logn) O(logn)
ZXH+22 [36] no Uni. O(n2 logn) O(1)
ZXH+22 [36] yes Uni. O(n2 logn) O(log2 n)
Naïve [16, 37] yes Bi. O(n3 logn) O(log2 n)
PolyFRIM yes Bi. O(n2 logn) O(log2 n)

evaluated on (x20

1 , . . . ,x2logd−1
1 , . . . ,x20

µ , . . . ,x2logd−1
µ). Such a

transformation features an O(dµ) prover, but verifier and com-
munication complexities are both O(µ3 log3 d) for verifying µ
independent proof, worse than univariate FRI-PC [32] when
µ reduces to 1. Ideally, a multivariate PCS scheme should
maintain the same complexity as its univariate counterpart.

Conceivably, batch-FRI [6] over a random linear combi-
nation of the µ polynomials could reduce verifier and com-
munication complexities to O(µ2 log2 d). However, while
each independent proof can be tailored to a small domain,
the above direct aggregation requires a single domain of an
enlarged size of O(dµ) to accommodate the evaluations of all
polynomials { f̂i}i∈[0,µ−1]. The prover now takes O(µdµ logd).

We propose a rolling batch approach to resolve the above
complexity tension. It enables more efficient low-degree tests
for { f̂i}i∈[0,µ−1]. The first round of FRI transforms f̂0 into

polynomial f̂ (1)0 with a degree-bound of 2µ−1, which is also
the (upper) bound for the degree of f̂1. Generalizing our obser-
vation above, we can invoke FRI over f̂ ′1, a random linear com-
bination of f̂ (1)0 and f̂1 (versus independent invocations for

f̂ (1)0 and f̂1). Similarly, we can combine every f̂ ′(i)i with f̂i+1,
effectively aggregating µ independent FRIs into one, yielding
O(dµ) prover and O(µ2 log2 d) verifier/communication.

Contribution-II: One-to-many PolyFRIM. Simplistically,
producing n2 proofs for degree-n f (X ,Y) takes n2 times the
overhead. Merging proofs for many evaluations can be chal-
lenging. Checking the evaluation proof for bivariate f (X ,Y)
on point (xi,y j) takes 2 logn = 2 · t rounds. In the k-th round
(k < logn), the prover and verifier handle a multilinear poly-

Table 3: Existing n-party AVSS from multivariate PCS

Scheme PCS Dealer Party Commun.
eAVSS [3] q-SDH O(n3) O(n) O(n2)

HAVEN-1 [2] q-SDH O(n3) O(n) O(n2)

Bingo [1] q-SDH O(n2 logn) O(n2) O(n2)

HAVEN-2 [2] DLog O(n3) O(n2) O(n2 logn)
FRISS Ours O(n2 logn) O(n log2 n) O(n2 log2 n)

nomial g̃k(x20

i , . . . ,x2k−1

i ,Xk, . . . ,Xt ,Y1, . . . ,Yt) determined by
f (X ,Y). They then transform g̃k into another multilinear poly-
nomial g̃k+1(x20

i , . . . ,x2k−1

i ,x2k

i ,Xk+1, . . . ,Xt ,Y1, . . . ,Yt). The
procedure for k > logn is similar and omitted. As every veri-
fier has a unique evaluation pair {(xi,y j)}i, j∈[n], repeating the
proof for n2 evaluations seems necessary.

Methodically, we reduce the prover complexity by mak-
ing evaluation pairs “repeatable” and reusing procedures in
proofs even for different verifiers. First, we swap the or-
der of the evaluation vector for each variable. Precisely, we
see every f (xi,y j) as the evaluation of a multilinear polyno-
mial g̃(X1, . . . ,Xt ,Y1, . . . ,Yt) on (x2t−1

i , . . . ,x20

i ,y2t−1
j , . . . ,y0

j)

instead of on (x20

i , . . . ,x2t−1
i ,y20

j , . . . ,y
2t−1
j). Such a transfor-

mation yields equivalence. Second, we set x1, . . . ,xn as the
n-th roots of unity w1, . . . ,wn, respectively, i.e., for every
i ∈ [n], wn

i = 1, and similarly for y1, . . . ,yn.
Completing the whole evaluation proof can be done by con-

structing a binary tree of depth 2t as above. In the i-th round,
the prover and verifiers would handle 2i multilinear polyno-
mials, each of size O(n2 ·2−i+1). The total prover complexity
is reduced to ∑i∈[2t] O(2i) ·O(n2 ·2−i+1) = O(n2 logn).
Contribution-III: FRISS from PolyFRIM. Synthesizing our
new AVSS scheme FRISS from our one-to-many PolyFRIM
is a non-trivial endeavor (i.e., our FRISS is not derived from
merely black-box calling PolyFRIM) even given existing
frameworks like eAVSS [3] (instantiated with KZG [24]).

Meshing PolyFRIM into AVSS is hindered by the absence
of PCS homomorphism. In a typical AVSS scheme, after the
dealer sends a univariate polynomial f (xi,Y) to Pi, Pi would
send f (xi,y j) and corresponding evaluation proof πi, j to Pj.
Some honest party Pk may fail to receive valid f (xk,Y) to

carry out secret reconstruction. To resolve this issue, after
receiving sufficient evaluations and proofs, Pj would compute
f (X ,y j) and send { f (xk,y j),πk, j} to Pk to help it construct
the valid f (xk,Y). Note that for such Pk, Pj has to construct
πk, j using {πi, j}i̸=k. The homomorphism of KZG allows such
adaption of proofs for evaluation at new points, given valid
proofs for d evaluations of a d-degree univariate polynomial.

Currently, all FRI-based PCSs only use hash functions and
lack homomorphism. Our solution is to let the dealer addi-
tionally send { f (x j,yi),π j,i} j∈[n] to Pi apart from f (xi,Y). In
the reconstruction phase, Pi sends (f (x j,yi),π j,i) to Pj. Now,
even with a message delay or a malicious dealer, any honest
Pk can still construct valid f (xk,Y). Our solution increases the
dealer-party communication from O(n2) to O(n2 log2 n) but
does not affect the total complexity (as the party-party com-
munication is already O(n2 log2 n)). We leave it as an open
problem to construct AVSS without such additional commu-
nication using bivariate PCSs without homomorphism.

1.3 Related Work
Polynomial commitment. KZG-PCS [24] achieves O(1)
communication and verifier complexity. It is later extended to
multivariate [28]. They rely on the q-strong Diffie–Hellman
(q-SDH) assumption on pairing groups and a trusted setup.

Bulletproofs [11] removes the trusted setup requirement
and supports multivariate polynomials based only on the
discrete-log (DLog) assumption. It uses the folding technique
to achieve a proof size of 2 logn group/field elements (several
KBs) for polynomial size n. However, verification takes O(n)
exponentiations. Another PCS DARK [12] achieves logarith-
mic proof size and verification but relies on strong RSA and
adaptive root assumptions. It is thus transparent only if (hence
yes/no in Table 1) class groups (of a quadratic number field)
are used, which are known for slower operation (e.g., [33]).

FRI-PC [5, 32], an O(logn)-round transparent PCS, fea-
tures O(n) prover and O(log2 n) communication and verifier.
It is concretely efficient, relying on field operations without
exponentiation/pairings. However, without help from group
structures, the prover uses Merkle trees to commit a vector in
each round, and the verifier needs to open dozens to hundreds
of leaves, leading to a concrete proof size of 50-100 KBs.

If f (z) = y for an n-degree polynomial f (X), f (X)− f (z)
X−z is

a degree-(n−1) polynomial. This makes FRI-PC univariate,
thereby complicating the generalization of the above fact, and
hence FRI-PC, to multivariate polynomials. In particular,
Virgo of Zhang et al. [37] treats a multivariate polynomial
evaluation as a univariate sum-check protocol [7]. The ver-
ifier runs FFT for an O(n)-size random vector challenge to
invoke the sum-check, resulting in O(n logn) verification.
Virgo reduces it by FFT delegation using the GKR proto-
col [21], and both the sum-check and GKR cost O(n logn)
prover complexity. Multivariate HyperPlonk [16] uses the
tensor product [10] to transform a multilinear polynomial

evaluation into evaluations of multiple univariate polynomi-
als, then invokes FRI-PC for logn times to prove them, also
incurring an O(logn) ·O(n) = O(n logn) prover.

One-to-many proofs. Tomescu et al. [31] present AMT, a
one-to-many proof for KZG-PCS. It constructs an authenti-
cated multi-point evaluation tree to compute n2 evaluation
proofs of a degree O(n) univariate polynomial in O(n2 logn)
time. However, both communication and per-verifier com-
plexities increase from O(1) to O(logn). Zhang et al. [36]
achieve a one-to-many proof for KZG with the same prover
complexity without any overhead on the proof size and veri-
fier time. Its main idea is to set the evaluation points as n2-th
root of unity, enabling multiple evaluations via FFT.

For transparent one-to-many proofs, Zhang et al. [36] in-
voke an FFT circuit using the GKR protocol [21] with O(n2)
outputs such that each output is an evaluation. Notably, they
propose an elegant method to unify statements for all outputs
and a new Fiat–Shamir transformation so the challenges can
be used for multiple verifiers. The above procedure is a poly-
nomial interactive oracle proof and can be instantiated with
any univariate polynomial commitment, but it is non-trivial
to be transformed into multivariate cases due to the difficulty
of constructing FFT circuits for multivariate polynomials.

AVSS. Without a synchronous network, parties cannot always
receive the message from the dealer in time and may not know
when all honest parties have obtained their shares to allow
successful reconstruction. One recent common approach for
AVSS is to rely on a bivariate polynomial to share secrets. In
the sharing phase, each party receives not only its share but
also pieces of shares of other parties, i.e., “share-of-share.”
Parties who have received valid messages can help other par-
ties obtain their shares by sending the pieces of other parties’
shares. eAVSS [3], employing bivariate polynomials, is the
first AVSS with O(n2) communication complexity. It is also
achieved by Bingo of Abraham et al. [1], an adaptively secure
and optimally resilient packed AVSS. HAVEN [2] does not use
bivariate polynomials but still follows the above idea using a
univariate polynomial to share the secret and additional uni-
variate polynomials to generate the pieces of parties’ shares.

Encrypt-then-disperse is an alternative [30, 34] with amor-
tized quasi-linear communication complexity. Via asyn-
chronous verifiable information dispersal [14] or Byzantine
reliable broadcast [17], the dealer distributes an encryption
of each share under each party’s key. Parties can eventually
obtain their encrypted share accessible solely with their de-
cryption key. Recently, Das et al. [18] give an AVSS with
complaints, using univariate polynomials but requiring the
dealer to stay online until sharing concludes.

2 Preliminaries

Notations. Let f̂ (X) and f̃ (X1, . . . ,Xµ) represent univariate
and multivariate polynomials, respectively. Given size-N f̃

with coefficients (f0, . . . , fN−1) (low left), f̂ (X) = ∑
N−1
i=0 fiX i

denotes its corresponding (implicitly converted) univariate
polynomial (e.g., φ̃ and φ̂ in Figure 1). Let F be a prime
finite field. Lowercase denotes F-elements, and bold denotes
vectors on F. xi denotes the i-th entry of xxx. ⟨aaa,bbb⟩ and aaa⊗bbb
denote the inner and tensor product, respectively. Given a
code rate ρ ∈ (0,1) and L = {η1, . . . ,η|L|} ∈ F|L|, an RS code
RS[L,ρ] ∈ F|L| means { f̂ (η1), . . . , f̂ (η|L|)|deg(f̂) < ρ|L|}.
Let f̂ |L be the evaluations of f̂ on L.

We denote the security parameter by λ, and PPT means
probabilistic polynomial time. negl(·) denotes a negligi-
ble function, which means for all polynomials f̂ , negl(λ)<
1/ f̂ (λ) for sufficiently large integer λ. y←$ S denotes picking
y from set S uniformly at random. [n] denotes {1,2, . . . ,n} and
[n,m] denotes {n,n+1, . . . ,m} for positive integers m > n.
Merkle trees. Merkle tree is a vector commitment with linear
prover time and logarithmic verifier time and proof size, all
in the vector size. It consists of three algorithms [37]. rt←
MT.Commit(vvv) outputs the Merkle tree root rt for vector vvv.
({vi}i∈I ,path)←MT.Open(I ,vvv) outputs the query location
set I and verification path path. Verification is done via
MT.Verify(rt,I ,{vi}i∈I ,path). This paper uses the Merkle
tree from collision-resistant and non-invertible hash functions.
Interactive argument of knowledge (AoK). An interactive
AoK for an NP relation R is a tuple of algorithms (G ,P ,V).
G is for public parameter (pp) generation. P and V represent
a PPT prover and verifier, respectively. P tries to convince V
that ∃w such that (x,w) ∈ R for a public statement x through
rounds of interaction, and w is efficiently extractable by an
extractor. Below, we adopt an existing definition [37].

Definition 2.1. (G ,P ,V) is an interactive argument of
knowledge for an NP language LR if the following hold:

• Completeness. For every pp← G(1λ), every x ∈ LR and
(x,w) ∈ R , Pr[⟨P (w),V ⟩(pp,x) = 1] = 1.
• Argument of knowledge. For any PPT prover P ∗, any
pp ← G(1λ) and any x, there is a PPT extractor E s.t.
Pr[⟨P ∗(),V ⟩(pp,x)=1,(x,w) /∈R |w←E(pp,x)]≤ negl(λ).

2.1 Polynomial Commitment
Definition 2.2. A polynomial commitment scheme (PCS) [12,
22] for µ variables and degree bound d is defined as follows.
• pp← Gen(1λ,d,µ): Takes as input security parameter λ

and bounds d and µ; generates public parameter pp.
• C← Commit(pp, f̃): Takes pp and polynomial f̃ as input;

generates the commitment C.
• b← VerPoly(pp,C, f̃): Verifies the opening of commit-

ment C to the polynomial f̃ ; outputs b ∈ {0,1}.
• b← Eval(pp,C,xxx,y, f̃): An interactive argument between

a PPT prover P and verifier V , which can be denoted as
b←⟨Open(f̃),Verify⟩(pp,C,xxx,y). P attempts to convince
V that f̃ (xxx) = y. V outputs b ∈ {0,1} at the end.

We call the prover, verifier, and communication complexity
of PC the corresponding complexity of Eval, respectively.

Recent PCS definitions [22] consider completeness, poly-
nomial binding, and knowledge soundness as necessary prop-
erties, but not zero knowledge. Zero-knowledge PCS is also
not necessary for AVSS, as the secrecy only requires that par-
ties less than the threshold cannot recover the secret instead of
obtaining no additional information. Similar to HyperPlonk,
our PCS is not zero knowledge, but we define a property
called t-bound knowledge leaking weaker than zero knowl-
edge (inspired by [15]), meaning that a verifier can only ob-
tain polynomial evaluations bounded by t with no additional
information. This suffices for AVSS, as shown in Section 4.

Definition 2.3. A multivariate PCS [22] requires:
• Completeness. For any polynomial f̃ ∈ Fd [X], every
pp ← Gen(1λ,d,µ), C ← Commit(pp, f̃) and f̃ (xxx) = y,
Pr[Eval(pp,C,r,y,xxx, f̃) = 1] = 1.

• Polynomial binding. For all pp← Gen(1λ,d,µ), any PPT
adversary A , the following probability is negl(λ).

Pr


pp← Gen(1λ,d,µ),(C, f̃0, f̃1)← A(pp)

b0← VerPoly(pp,C, f̃0)
b1← VerPoly(pp,C, f̃1)
(b0 = b1 = 1)∧ (f̃0 ̸= f̃1)

 .

• Knowledge soundness. Eval is an argument of knowledge
given pp← Gen(1λ,d,µ).

• t-bound knowledge leaking. For all PPT adversaries A ,
its random tape rA , pp← Gen (1λ,d,µ), and polynomial
f̃ , there exists a simulator S = (S1,S2) such that the exper-
iments below are computationally indistinguishable, i.e.,
|Pr[RealA , f̃ (pp) = 1]−Pr[IdealA ,SA (pp) = 1]| ≤ negl(λ).

RealA , f̃ (pp):
1: C← Commit(f̂ ,pp)

2: xxx← A(C,pp)
3: y← f̃ (xxx)
4: 1← ⟨P (f̃),A⟩(pp,C,

xxx,y)
5: b← A and output b

IdealA ,SA (pp):
1: C← S1(1λ,pp,rA),

with oracle access to
t evaluations on f̂

2: xxx← A(C,pp)
3: y← f̃ (xxx)
4: 1← ⟨S2,A⟩(pp,C,xxx,y),

with oracle access to y= f̂ (xxx)
5: b← A and output b

2.2 FRI and FRI-based Schemes
FRI. Given a degree bound d and a committed vector, FRI [5]
allows a prover to convince a verifier that the vector is δ-close
to RS[L,d/|L|] in the meaning of relative Hamming distance,
i.e., the vector corresponds to f̂ |L such that deg(f̂)≤ d.

Theorem 2.1 ([5, 6]). FRI is an argument with soundness
error εFRI = O(|L|/|F|) + negl(q,d/|L|) where the verifier
queries q = O(λ) (query repetition number) entries of every

prover’s message. The prover complexity is O(|L|) other than
the O(|L| log |L|) commitment. The verifier complexity and
the communication complexity are O(log2 |L|).

Batch-FRI enables proving efficiently that t committed vec-
tors correspond to polynomials f̂1, . . . , f̂t with degree bounds
d1, . . . ,dt . Specifically, P and V invoke an FRI to check
whether f̂ ′|L ∈ RS[L,dmax/|L|] for f̂ ′(X) = ∑

t
i=1 λi−1 · f̂i(X) ·

Xdmax−di , dmax = max{d1, . . . ,dt} and random λ from V .
FRI-PC [32]. FRI can be turned into a univariate PCS with
no additional asymptotic overhead. We denote it by FRI-PC.
Appendix A recalls the FRI protocol and FRI-PC.
HyperPlonk. HyperPlonk [16, §B], an FRI-based multilinear
PCS, treats a multilinear f̃ (x1, . . . ,xµ) as the inner product of
the coefficient vector of f̃ and the tensor product (1,x1)⊗
·· ·⊗ (1,xµ). Theorem 2.2 (proven in Appendix B) asserts its
security, which is missing in the original paper.

Theorem 2.2. HyperPlonk is a PCS. Its computation com-
plexity for Commit is O(n logn) for n = dµ. Other complexi-
ties can be divided into two cases according to the concrete
algorithm. Prover: O(n) or O(n logn); Verifier: O(log3 n) or
O(log2 n); Communication: O(log3 n) or O(log2 n).

2.3 Asynchronous Verifiable Secret Sharing
An AVSS scheme consists of two phases. In the Share phase,
a distinguished party called the dealer Pd distributes shares of
a secret s to all n parties {P1,P2, . . . ,Pn} via Deal. When an
honest party Pi receives a share si of s, it completes Share. In
the Reconstruction phase, any t +1 honest parties invoke a
reconstruction function to recover the secret s. Each party out-
puts s′ or ⊥ to indicate either the successful reconstruction of
the secret s′ or to claim that the dealer Pd is malicious, respec-
tively. Each pair of parties is connected by an asynchronous
channel that provides authenticity and privacy [3]. The dealer
can broadcast messages to parties by reliable broadcast [17].

Any PPT adversary A can corrupt and coordinate the ac-
tions of at most t parties. A party is honest if not corrupted.
AVSS assumes no upper bound on message delivery times.
A could delay messages between any two honest parties, but
these messages would eventually be delivered.

Definition 2.4 ([2, 3]). (n, t)-AVSS with n≥ 3t +1 achieves:

• Liveness. If the dealer Pd is honest, all the honest parties
complete the Share phase.
• Agreement. If some honest party completes the Share phase,
then all honest parties eventually complete the Share phase.
If all honest parties subsequently start the Reconstruction
phase, all honest parties complete the Reconstruction phase.
• Correctness. If the dealer Pd is honest, then the secret s′

reconstructed by all honest parties equals s.
• Secrecy. If the dealer Pd is honest, any PPT adversary A
has no extra knowledge about s.

3 PolyFRIM with a One-to-many Prover

We first propose an FRI variant called rolling batch FRI. Sec-
tion 3.2 presents an improved multilinear PCS using the
rolling batch FRI, which is asymptotically better than Hy-
perPlonk. It is then generalized to our FRI-based multivariate
PCS PolyFRIM in Section 3.3. Section 3.4 presents the one-
to-many proofs for PolyFRIM, a key component of FRISS.

3.1 Rolling Batch FRI
A main overhead in HyperPlonk comes from running FRI to
check every f̂i−1|Li−1 ∈ RS[Li−1,n/|L0|] for i ∈ [µ], where L0

is an O(n)-size multiplicative coset and Li = {x2|x ∈ Li−1}.
One could run FRI for µ times separately to complete these
low-degree tests. The prover complexity is ∑i∈[µ] O(n/2i−1 ·
log(n/2i−1)) = O(n logn). The verifier and communication
complexities are ∑i∈[µ] O(log2(n/2i−1)) = O(log3 n). Alter-
natively, a batch FRI evaluates all { f̂i}i∈[µ] on L0. It reduces
verifier and communication complexities to O(log2 n) but
leads to a prover complexity of ∑i∈[µ] O(n · log(n/2i−1)) =

O(n2 logn) due to polynomial evaluations using FFT.
We propose rolling batch FRI (Protocol 1) to perform

these µ low-degree tests with O(n logn) prover complexity
and O(log2 n) verifier and communication complexities. Our
high-level idea is to combine transformed polynomials during
the FRI and new polynomials with the same degree to be
tested. Specifically, in the i-th round of the rolling batch FRI,
the current-round polynomial f̂ (i−1) is transformed to a new
polynomial p̂(i), which has both the same degree bound n/2i

and evaluation domain Li as f̂i. So, the prover could combine
p̂(i) and f̂i using a random linear combination and run the
FRI on a new combined polynomial. Recursively, for every
i ∈ [µ−1], p̂(i) can be combined with f̂i, and µ independent
FRIs are aggregated into one. Theorem 3.1 asserts its security.

Theorem 3.1. Protocol 1 is an AoK with a soundness error
εFRI=|L0|/|F|+((1+ρ)/2)q+negl(λ) for δ∈ (0,(1−ρ)/2].

The soundness of FRI comes from the correlated agreement
over lines of RS code [6]: if uuu000 + λuuu111 is close to an RS
codeword vvv ∈ F|L|, uuu000,uuu111 ∈ F|L| are respectively close to two
codewords with high probability for random λ. As for rolling
batch FRI, the tested vector is a random linear combination of
three vectors instead of two (Steps 5 and 9, Protocol 1). Now
we rely on the generalized correlated agreement over span
spaces [6]: if uuu000 +λuuu111 +λ2uuu222 is close to vvv, then still with
high probability uuu000,uuu111,uuu222 ∈ F|L| are close to three codewords,
respectively. Appendix C gives the detailed proof.
Complexity. The prover complexity is O(n logn) due to the
FFT and Merkle tree construction for f̂0|L0 . The computation
overhead other than this is caused by FRI, where in every
round, the prover computation takes ∑i∈[0,logn−1] O(n/2i) =
O(n). The proof size in the i-th round is O(q) field ele-
ments and O(log(n/2i)) hashes for q = O(λ). The consis-

Protocol 1 Rolling batch FRI

Inputs:
(
(F,L0,d0);({ f̂i}i∈[0,µ−1])

)
. For i ∈ [0,µ− 1], let

di = d0 · 2−i and Li+1 = {x2|x ∈ Li}. Also, set n = d0 = 2µ.
The prover shows f̂i|Li ∈ RS[Li,n/|L0|].
1: For every i ∈ [0,µ−1], P computes f̂i|Li , executes Ci←

MT.Commit(f̂i|Li), and sends Ci to V . Set f̂ (0)← f̂0.
2: for i = 1 to µ do
3: P decomposes f̂ (i−1)(X) into ĝi(X2)+X · ĥi(X2).
4: V sends αi←$ F to P .
5: P computes p̂(i)(X)← ĝi(X)+αi · ĥi(X).
6: if i = µ then P directly sends the coefficients of p̂(i).
7: else P computes p̂(i)|Li .
8: P sends MT.Commit(p̂(i)|Li) to V .
9: P computes f̂ (i)(X)← p̂(i)(X)+α2

i · f̂i(X).
10: for j = 1 to q do
11: V sends β←$ L0 to P .
12: P invokes MT.Open to open { f̂i(±β2i

)}i∈[0,µ−1] and

{ p̂(i)(±β2i
)}i∈[µ−1]. V checks them by MT.Verify.

13: For each i ∈ [µ], V checks whether the three pairs of
evaluations (±β2i−1

, f̂ (i−1)(±β2i−1
)),(αi, p̂(i)(β2i

)) are
on a common line. Note that f̂ (i)(±β2i

) can be computed
by p̂(i)(±β2i

) and f̂i(±β2i
).

14: Iff all the above checks pass, V outputs 1; 0 otherwise.

tency of O(q) elements and Merkle trees can be checked in
one go. Similarly, the verifier computation in the i-th round
mainly comes from verifying the Merkle tree validity, which
is O(log(n/2i)). Thus, the verifier and communication com-
plexities are both ∑i∈[0,logn−1] O(log(n/2i)) = O(log2 n).

3.2 An Improved Multilinear PCS
We rely on the rolling batch FRI to improve HyperPlonk. The
main procedure of HyperPlonk includes: for every i ∈ [µ],
(1) check f̂i−1|Li−1 ∈ RS[Li−1,n/|L0|]; (2) prove the validity
of f̂i−1(±β), f̂i(β

2) by FRI-PC for β←$ F \ {0} from the
verifier. Specifically, for each i ∈ [µ], the prover P proves that

f̂i−1
∣∣
Li−1
∈ RS[Li−1,di−1/|Li−1|], (1)

f̂i−1(X)− f̂i−1(±β)

X∓β

∣∣∣
Li−1
∈ RS [Li−1,(di−1−1)/|Li−1|] ,

f̂i−1(X)− f̂i−1(β
2)

X−β2

∣∣∣
Li−1
∈RS[Li−1,(di−1−1)/|Li−1|] (i ̸= 1).

Here, di = di−1/2, Li = {x2|x∈ Li−1}, d0 = n = 2µ. To prove
the above three equations, for each i ∈ [µ] P and V invoke
a batch FRI to show that p̂i−1|Li−1 ∈ RS[Li−1,di−1/|Li−1|],
where p̂i−1 is a random linear combination of

f̂i−1, X · f̂i−1(X)− f̂i−1(±β)

X∓β
, X · f̂i−1(X)− f̂i−1(β

2)

X−β2 .

HyperPlonk achieves a succinct FRI-based multilinear PCS
without proof composition (cf. [37]), but it has limitations:

(1) The soundness error is directly related to the field size
due to the Schwartz–Zippel lemma. Attaining the desired
security level needs a large field, yet it impacts efficiency.

(2) As shown in Theorem 2.2, there is a tension for Hyper-
Plonk to achieve O(n) prover complexity, O(log2 n) verifier
complexity, and O(log2 n) communication complexity.

(3) The verifier may get additional knowledge from the
multiple evaluations it opens on { f̂i}i∈[0,µ−1], which is inap-
plicable to AVSS for secrecy violation, i.e., parties less than
the threshold may obtain extra information about the secret.

Our proposed PCS overcomes the above limitations.
(1) The verifier picks β from L0 instead of F\{0} and for

i∈ [µ], its queries change to f̂i−1(±β2i−1
) instead of f̂i−1(±β).

Now, the verifier can obtain queries by directly opening the
Merkle trees instead of invoking the FRI-PC. Consequently,
the prover and verifier only need to invoke the FRI to prove
Equation (1) other than the two equations below it. This
avoids their computation of obtaining additional inverses
of field elements and enlarging the polynomial degrees to
the same. Besides, the soundness error originating from the
Schwartz–Zippel lemma is no longer related to the field size.

(2) Based on the idea (1), the prover now needs to show
f̂i−1|Li−1 ∈ RS[Li−1,di−1/|Li−1|] for i ∈ [µ] instead of p̂i−1.
This statement is exactly the same as that of rolling batch
FRI in Section 3.1, and the prover and verifier can invoke the
rolling batch FRI to complete these low-degree tests.

(3) To mask the evaluations on { f̂i}i∈[µ], the prover chooses
a random µ-variate multilinear polynomial r̃(X1, . . . ,Xµ), and
sets f̂0 to be the univariate polynomial determined by f̃ +αr̃
instead of f̃ itself for α←$ F from the verifier. Now, the
evaluations { f̂i}i∈[µ] are uniformly distributed because of r̃.
Although the verifier may still obtain evaluations on f̂0|L0 , the
number of leaked evaluations is limited by an upper bound,
and it suffices for AVSS (in Section 4).

Below, we present PCm, our improved multilinear PCS.

• pp← Genm(1λ,µ): takes security parameter λ and the num-
ber of variable µ; outputs the public parameter pp= {F,L0}.
• C ← Commitm(pp, f̃ , r̃): takes as inputs pp, f̃ , and a
random multilinear polynomial r̃; outputs C = {C f̂ ,Cr̂} for
C f̂ ←MT.Commit(f̂ |L0) and Cr̂←MT.Commit(r̂|L0).

• b← VerPolym(pp,C, f̂ |L0 , r̂|L0 , f̃ , r̃): receives f̂ |L0 and r̂|L0

as openings of C, checks the validity using MT.Verify. Then,
decodes f̂ |L and r̂|L0 , and checks the consistency between the
decoding of f̂ |L, r̂|L0 and f̃ , r̃. Outputs 1 iff all checks pass.
• b← Evalm(pp,C,xxx,y,{ f̃ , r̃}): Given evaluation point xxx =
(x1, . . . ,xµ), y = f̃ (xxx), f̃ , and r̃, P and V run the following:
1: P sends y = f̃ (xxx) and yr = r̃(xxx) to V .
2: V sends α←$ F to P .
3: P sets f̂0(X)← f̂ (X)+α · r̂(X), and for i∈ [µ], computes

f̂i(X)← ĝi−1(X)+ xi · ĥi−1(X) (2)

by uniquely decomposing f̂i−1(X) into ĝi−1(X2) +X ·
ĥi−1(X2). For every i∈ [µ−1], P sets Li = {x2|x∈ Li−1}
and sends Ci ←MT.Commit(f̂i|Li) to V . When i = µ,
V can compute f̂µ = f̃ (xxx)+αr̃(xxx) locally.

4: Set ϕ̂0(X) = f̂0(X). For each i ∈ [µ]:
a. V sends αi←$ F to P .
b. P derives p̂i(X)← ĝi−1(X)+αi · ĥi−1(X) by uniquely

decomposing f̂i−1(X) into ĝi−1(X2) + X · ĥi−1(X2).
When i = µ, P sends the coefficients of p̂µ to V ; else,
P computes ϕ̂i(X)← p̂i(X) +α2

i · f̂i(X), and sends
C̄i←MT.Commit(p̂i|Li) to V . ϕ̂i(X) represents the
i-th round polynomial to be invoked in FRI.

5: Repeat the following q = O(λ) times.
a. V sends β←$ L0 to P .

b. P invokes MT.Open to open { f̂i(±β2i
)}i∈[0,µ−1] and

{ p̂i(±β2i
)}i∈[µ−1].

c. V runs MT.Verify to check the Merkle trees and
if, ∀i ∈ [µ], triples (±β2i−1

,± f̂i−1(β
2i−1

)),(xi, f̂i(β
2i
))

and (±β2i−1
,±ϕ̂i−1(β

2i−1
)),(αi, p̂i(β

2i
)) (note the +

and − points) are on two common lines, respectively.
6: Iff all above verifications pass, V outputs 1; 0 otherwise.

Theorem 3.2. PCm is a polynomial commitment scheme as
described in Definition 2.3. PCm also has 2q-bound knowl-
edge leaking property. (The proof is in Appendix D.)

Complexity. The computation of Commit is O(2µ ·µ) due to
the FFT and Merkle tree construction for f̂ |L0 and r̂|L0 . As
the main procedure of Eval can be seen as a tensor product
argument (as in [10] and HyperPlonk) and a rolling batch FRI,
the complexity overhead comes from these two protocols.
The prover complexity in each round is linear to the current
polynomial degree and is ∑i∈[0,log(2µ)−1] O(2µ/2i) = O(2µ) in
total. The verifier complexity and communication complexity
in each round are both logarithmic to the current polynomial
degree and are ∑i∈[0,log(2µ)−1] O(log(2µ/2i)) = O(µ2).

3.3 Construction of PolyFRIM
We present PolyFRIM, our multivariate PCS. Suppose
f̃ (X1, . . . ,Xµ) is a µ-variate d-degree polynomial where d =
2t −1. Any evaluation f̃ (x1, . . . ,xµ) is equivalent to the eval-
uation f̃ ′(x1,1, . . . ,x1,t , . . . ,xµ,1, . . . ,xµ,t), where f̃ ′ is a µ · t-
variate multilinear polynomial, and for every i∈ [µ] and j ∈ [t],
xi, j = x2 j−1

i . So, the evaluation proof for f̃ can be transformed
equivalently into that for f̃ ′, which can be proved by PCm.

The algorithms of PolyFRIM are described below.
• pp← GenF(1λ,d,µ): Takes as inputs security parameter λ,
degree d, and variable number µ; outputs pp←Genm(1λ,µ ·t).
• C← CommitF(pp, f̃ , r̃): Takes as inputs pp, polynomials
f̃ and r̃, and sets f̃ ′ and r̃′ be multilinear polynomials with
µ · log(d +1) variables constructed by f̃ and r̃, respectively.
The algorithm runs C← Commitm(pp, f̃ ′, r̃′).

• b← VerPolyF(pp,C, f̃ , r̃): Takes as inputs pp, C, f̃ , and r̃,
and sets f̃ ′ and r̃′ be multilinear polynomials as in CommitF.
The algorithm runs VerPolym(pp,C, f̂ ′|L0 , r̂

′|L0 , f̃ ′, r̃′)
• b ← EvalF(pp,C,xxx,y,{ f̃ , r̃}): Parse xxx = (x1, . . . ,xµ).
The prover and verifier invoke the interactive argument
Evalm(pp,C,xxx′′′,y,{ f̃ ′, r̃′}) to prove f̃ ′(xxx′′′) = f̃ (xxx), where xxx′=
(xxx1,xxx2, . . . ,xxxµ) and for every j ∈ [µ], xxx j = (x20

j ,x
21

j , . . . ,x
2t−1

j).

Complexity. The complexity of PolyFRIM is similar to PCm,
but substituting the term 2µ as dµ. The time complexity of
Commit is O(µdµ logd), the prover complexity is O(dµ), and
the verifier and communication complexities are O(µ2 log2 d).

Theorem 3.3. PolyFRIM is a polynomial commitment
scheme with 2q-bound knowledge leaking property.

Due to the equivalence of transformation from f̃ to f̃ ′,
Theorem 3.3 follows Theorem 3.2 directly.

3.4 Extending to One-to-many Proofs
We extend PolyFRIM for (n,n)-degree bivariate polynomials
to one-to-many proofs with O(n2 logn) prover complexity.

We first explain why reducing the prover complexity is
challenging. When invoking PolyFRIM to prove f (xi,y j) for
i, j ∈ [n], the evaluation proof will be transformed into a proof
for a multilinear polynomial on (x20

i , . . . ,x2t−1

i ,y20

j , . . . ,y
2t−1

j),
where n = 2t − 1. Therefore, Equation (2) in each round is
different for every verifier. Besides, the random challenges
(α and αi) in Steps 3 and 4 of Protocol 1 can also be different
for every verifier. Hence, the prover has to repeat PolyFRIM
for O(n2) times, leading to an O(n3 logn) prover complexity.

We reduce the prover complexity by making evaluation
vectors “partially the same” and random challenges “sharable”
even for different verifiers. This enables the prover to save
the computation overhead by reusing procedures as much as
possible. The details are described below.

Improvement for evaluation vectors. First, we transform
the evaluation vector (x20

, . . . ,x2t−1
,y20

, . . . ,y2t−1
) into its

variable-inverse (x2t−1
, . . . ,x20

,y2t−1
, . . . ,y20

). The outcome
is equivalent after reversing the order of coefficient vector fff .

Second, we make evaluation vectors “partially the same”
by picking special values for every pair (xi,y j). This is
feasible as AVSS only requires no repetition between any
two distinct pairs. Specifically, for every i, j ∈ [n], we set
(xi,y j) = (wi

N ,w
j
N), where N = n = 2t and wz

N denotes the
z-th root of unity. This results in only 2k choices for {x2k

i }i∈[n]
in the k-th round, i.e., the prover only needs 2k operations
instead of n = 2t . The case with Y is alike. The prover com-
putation overhead related to the evaluation vector becomes
O(2 ·∑k∈[t] 2k) = O(n2 logn).

Improvement for random challenges. We construct “shared
random challenges” [34, 36] for different verifiers to make

�𝜙𝜙0

�𝜙𝜙1
(0)

�𝜙𝜙2
(0) �𝜙𝜙2

(4)

�𝜙𝜙3
(0) �𝜙𝜙3

(4) �𝜙𝜙3
(2) �𝜙𝜙3

(6)

�𝜙𝜙4
(0) �𝜙𝜙4

(4) �𝜙𝜙4
(2) �𝜙𝜙4

(6) �𝜙𝜙4
(1) �𝜙𝜙4

(5) �𝜙𝜙4
(3) �𝜙𝜙4

(7)

𝑥𝑥8 = 𝑤𝑤80

𝑥𝑥4 = 𝑤𝑤80 𝑥𝑥4 = 𝑤𝑤84

𝑥𝑥2 = 𝑤𝑤80 𝑥𝑥2 = 𝑤𝑤84 𝑥𝑥2 = 𝑤𝑤82 𝑥𝑥2 = 𝑤𝑤86

𝑥𝑥 = 𝑤𝑤84
𝑥𝑥 = 𝑤𝑤80

𝑥𝑥 = 𝑤𝑤82 𝑥𝑥 = 𝑤𝑤86

𝑥𝑥 = 𝑤𝑤85𝑥𝑥 = 𝑤𝑤81

𝑥𝑥 = 𝑤𝑤83 𝑥𝑥 = 𝑤𝑤87

Figure 1: One-to-many proof for a 15-degree polyno-
mial φ̂(X). φ̂(X) is firstly transformed into a multilin-
ear polynomial φ̃0(X1,X2,X3,X4) and then transformed into
φ̃
(0)
1 (w0

8,X2,X3,X4). For k ∈ {1,2,3} and ℓ ∈ [0,2k−1 − 1],

φ̃
(23−k·ℓ)
k is converted into 2k polynomials {φ̃(2

2−k·ℓ)
k+1 }ℓ∈[0,2k−1].

PolyFRIM non-interactive. Let the set of random challenges
in the ℓ-th round be Arℓ = {α1,ℓ, . . . ,αn,ℓ}, where ℓ ∈ [2t]
and αi,ℓ represents the random challenge from the i-th ver-
ifier. The prover computes αℓ ← MT.Commit({αi,ℓ}ℓ∈[n])
and uses αℓ as the (final) challenge of the ℓ-th round. The ver-
ification path from the leaf αi,ℓ to αℓ is also sent to the i-th ver-
ifier. Figure 1 considers a univariate example, but the process
naturally extends to any multivariate polynomial. Our non-
interactive Evalotm algorithm consists of Evalotm.Open and
Evalotm.Verify, calling CommitF and EvalF of PolyFRIM.

• {(wi
N ,w

j
N), f (wi

N ,w
j
N),πi, j}←Evalotm.Open(pp, f ,r,Vn,n):

P computes proofs {πi, j}i, j∈[n] for bivariate polynomials f ,r
and the evaluation-point set Vn,n = {(wi

N ,w
j
N)}i, j∈[n] as below.

1. For every i, j ∈ [n], P computes

αi, j← H
(
C f ||Cr||(wi

N ,w
j
N)|| f (w

i
N ,w

j
N)||r(w

i
N ,w

j
N)
)
,

where (C f ,Cr)← CommitF(pp, f ,r). Then P computes
α←MT.Commit({αi, j}i, j∈[n]). Let pathαi, j

be the verifi-
cation path of αi, j. Set f̃0 as the multilinear polynomial
determined by f +α0 · r. Denote by f̂0 the univariate poly-
nomial determined by vector fff 0. Set n = N = 2t .

2. Generate proofs about variable X . Let f̂ (0)0 = f̂0. To avoid
long superscripts, for every k ∈ [t] and ℓ ∈ [0,2k−1− 1],
let ξℓ,k = ℓ ·2t−k and −ξℓ,k = ℓ ·2t−k +2t−1. Polynomials
with −ξℓ,k go from the same upper-layer polynomials with
ξℓ,k. Intuitively, ξℓ,k covers 0,2,1,3 in Figure 1, and −ξℓ,k
covers 4,5,6,7. P then computes

f̂
(ξℓ,k)

k (X)← ĝ
(2·ξℓ,k)
k−1 (X)+wℓ·2t−k

N · ĥ(2·ξℓ,k)k−1 (X),

f̂
(−ξℓ,k)

k (X)← ĝ
(2·ξℓ,k)
k−1 (X)−wℓ·2t−k

N · ĥ(2·ξℓ,k)k−1 (X),

C
(ξℓ,k)

k ←MT.Commit(f̂
(ξℓ,k)

k |Lk),

C
(−ξℓ,k)

k ←MT.Commit(f̂
(−ξℓ,k)

k |Lk),

by uniquely decomposing f̂
(2·ξℓ,k)
k−1 as ĝ

(2·ξℓ,k)
k−1 (X2) + X ·

ĥ
(2·ξℓ,k)
k−1 (X2) to get ĝ

(2·ξℓ,k)
k−1 (X2) and ĥ

(2·ξℓ,k)
k−1 (X2) After the

first t rounds, P will get polynomials f̂ (1)t , . . . , f̂ (n)t , corre-
sponding to w1

N ,w
2
N , . . . ,w

n
N . Here, polynomials with 2ξℓ,k

denote the decomposition of those with ξℓ,k.
3. The subsequent computation corresponding to variable Y

is similar to Step 2. For every i ∈ [n], let f̂ (i,0)t = f̂ (i)t . For
every k ∈ [t] and ℓ ∈ [0,2k−1−1], P computes

f̂
(i,ξℓ,k)
k+t (X)← ĝ

(i,2·ξℓ,k)
k+t−1 (X)+wℓ·2t−k

N · ĥ(i,2·ξℓ,k)k+t−1 (X),

f̂
(i,−ξℓ,k)

k+t (X)← ĝ
(i,2·ξℓ,k)
k+t−1 (X)−wℓ·2t−k

N · ĥ(i,2·ξℓ,k)k+t−1 (X),

C
(i,ξℓ,k)
k+t ←MT.Commit(f̂

(i,ξℓ,k)
k+t |Lk+t),

C
(i,−ξℓ,k)

k+t ←MT.Commit(f̂
(i,−ξℓ,k)

k+t |Lk+t),

by uniquely decomposing f̂
(i,2·ξℓ,k)
k+t−1 as ĝ

(i,2·ξℓ,k)
k+t−1 (X2)+X ·

ĥ
(i,2·ξℓ,k)
k+t−1 (X2) to get ĝ

(i,2·ξℓ,k)
k+t−1 (X2) and ĥ

(i,2·ξℓ,k)
k+t−1 (X2). P will

eventually get all paths reaching all evaluation points in
{(wi

N ,w
j
N)}i, j∈[n], all forking from a single root of f̂0.

4. For every i, j ∈ [n], we have commitments {C(i·2t−k)
k }k∈[t]

and {C(i, j·2t−k)
k+t }k∈[t] in the path from the root for f̂0 to the

evaluation point (wi
N ,w

j
N), where C(x)

k ← C(x mod 2t)
k and

C(x,y)
k+t ←C(x mod 2t , y mod 2t)

k+t . P computes the challenge

α
(i, j)
1 ← H

(
α||{C(i·2t−k)

k }k∈[t]||{C
(i, j·2t−k)
k+t }k∈[t]

)
,

and α1 ← MT.Commit({α(i, j)
1 }i, j∈[n]) in this step. Set

ϕ̂
(0)
0 = f̂0. P computes polynomials for rolling batch FRI

q
(ξℓ,1)

1 (X)← g
(2·ξℓ,1)
0 (X)+α1 ·h

(2·ξℓ,1)
0 (X),

ϕ̂
(ξℓ,1)

1 (X)← q
(ξℓ,1)

1 (X)+α
2
1 · f̂

(ξℓ,1)

1 (X),

C̄
(ξℓ,1)

1 ←MT.Commit(q
(ξℓ,1)

1 |L1),

by uniquely decomposing ϕ̂
(2·ξℓ,1)
0 (X) as g

(2·ξℓ,1)
0 (X2) +

Xh
(2·ξℓ,1)
0 (X2) to get g

(2·ξℓ,1)
0 (X2) and h

(2·ξℓ,1)
0 (X2). Let

(x) ← (x mod 2t) for x ∈ Z. Next, for k ∈ [2, t] and
ℓ ∈ [0,2k+1−1], P computes the Fiat–Shamir challenges

α
(ξℓ,k)

k ← H
(
αk−1||C̄

(2·ξℓ,k−1)

k−1

)
,

αk←MT.Commit
(
{α(ξℓ,k)

k }ℓ∈[0,2k−1−1]
)
.

Then for ℓ ∈ [0,2k−1], P computes for rolling batch FRI

q
(ξℓ,k)

k (X)← g
(2·ξℓ,k)
k−1 (X)+αk ·h

(2·ξℓ,k)
k−1 (X),

ϕ̂
(ξℓ,k)

k (X)← q
(ξℓ,k)

k (X)+α
2
k · f̂

(ξℓ,k)

k (X),

C̄
(ξℓ,k)

k ←MT.Commit(q
(ξℓ,k)

k |Lk),

by uniquely decomposing ϕ̂
(2·ξℓ,k)
k−1 (X) as g

(2·ξℓ,k)
k−1 (X2)+X ·

h
(2·ξℓ,k)
k−1 (X2) to get g

(2·ξℓ,k)
k−1 (X2) and h

(2·ξℓ,k)
k−1 (X2).

5. For i∈ [n], set ϕ̂
(i,0)
t = ϕ̂

(i)
t and C̄(i,0)

t = C̄(i)
t . For k ∈ [t], ℓ∈

[0,2k−1−1], P computes the Fiat–Shamir challenges

α
(i,ξℓ,k)
k+t ← H

(
αk+t−1||C̄

(i,2·ξℓ,k−1)

k+t−1

)
,

αk+t ←MT.Commit
(
{α(i,ξℓ,k)

k+t }
i∈[n]
ℓ∈[0,2k+1−1]

)
.

Then for ℓ ∈ [0,2k−1], P computes for rolling batch FRI

q
(i,ξℓ,k)
k+t (X)← g

(i,2·ξℓ,k)
k+t−1 (X)+αk+t ·h

(i,2·ξℓ,k)
k+t−1 (X),

ϕ̂
(i,ξℓ,k)
k+t (X)← q

(i,ξℓ,k)
k+t (X)+α

2
k+t · f̂

(i,ξℓ,k)
k+t (X),

C̄
(i,ξℓ,k)
k+t ←MT.Commit(q

(i,ξℓ,k)
k+t |Lk+t),

by uniquely decomposing ϕ̂
(i,2·ξℓ,k)
k+t−1 (X) as g

(i,2·ξℓ,k)
k+t−1 (X2)+

X ·h(i,2·ξℓ,k)k+t−1 (X2) to get g
(i,2·ξℓ,k)
k+t−1 (X2) and ·h(i,2·ξℓ,k)k+t−1 (X2).

6. For every i, j ∈ [n], P gets qi, j ← H(α2t ||C̄
(i, j)
2t) and com-

putes q←MT.Commit
(
{qi, j}i, j∈[n]

)
as the random evalu-

ation set, which P will open for all polynomials in Evalm.
Every proof πi, j includes all the Merkle tree commitments,
opened evaluations and their verification paths, and all
verification paths for aggregated random challenges.

• b ← Evalotm.Verify(pp,{(wi
N ,w

j
N), f (wi

N ,w
j
N),πi, j}) for

i, j ∈ [n]: V uses MT.Verify to check the consistency of the
Merkle tree commitments against their verification paths. V
outputs 0 if anyone fails. V then outputs EvalF.Verify.

Theorem 3.4. The algorithm Evalotm is a non-interactive
argument for the relation ((C,xxx,yyy); f̃).

From the standpoint of an individual verifier, the major dis-
tinction between EvalF and Evalotm is the random challenge
generation. Instead of deriving it from the hash of preced-
ing messages in EvalF, Evalotm utilizes a Merkle tree root.
This adaptation aligns with the equivalence of this mecha-
nism to logN rounds of dummy messages [36]. The proof
detailing this Fiat–Shamir transformation variant has been
comprehensively addressed [36, Theorem 4].
Complexity. Evalotm computes and commits O(2k) polyno-
mials of degree O(22t−k), ∀k ∈ [2t], where the evaluations
of a polynomial on Lk can be efficiently computed by the
evaluations of polynomials on Lk−1 within O(22t−k) compu-
tations. So, the prover complexity is ∑k∈[2t] O(2k ·22t−k) =

O(t ·22t) = O(n2 logn). The communication and the verifier
complexities per party are O(log2 n), the same as PolyFRIM.

4 Construction of FRISS

Overview. For threshold t and n parties {P1,P2, . . . ,Pn},
FRISS uses a (t, t)-degree bivariate polynomial f (X ,Y) to

Algorithm 2 Deal(s) for the dealer Pd

1: Sample (t, t)-degree polynomials f (X ,Y) and r(X ,Y)
randomly, such that f (z,0) = s.

2: C← CommitF(pp, f ,r); frv← (pp, f ,r,Vn,n).
3: {(wi

N ,w
j
N), f (wi

N ,w
j
N),πi, j}i, j∈[n]← Evalotm.Open(frv).

4: for i = 1 to n do f̂i← f̂ (wi
N ,Y), r̂i← r̂(wi

N ,Y).
5: Broadcast ⟨Commit,C,{C∗i }i∈[n]⟩.
6: for i = 1 to n do
7: for j = 1 to n do f j,i← f (w j

N ,w
i
N), r j,i← r(w j

N ,w
i
N).

8: Send
〈
Share, f̂i, r̂i,{ f j,i,r j,i,π j,i} j∈[n]

〉
to Pi.

share a secret s = f (z,0) for a prescribed z. We set Vn,n =

{(wi
N ,w

j
N)}i, j∈[n] as evaluation points, where n = 3t +1 and

N = 2⌈logn⌉. On a high level, FRISS is similar with eAVSS [3]
using PolyFRIM instead of KZG, where the dealer firstly
sends f̂ (xi,Y) and its commitment as the share to party Pi,
who then sends f (xi,y j) and πi, j to party Pj. After receiving
enough evaluations and proofs, Pj reconstructs f̂ (X ,y j) and
sends { f (xi,y j),πi, j} to Pi to help Pi obtain its share f̂ (xi,Y).
However, trivially following the above idea poses challenges.

Firstly, eAVSS needs KZG to be zero-knowledge. FRISS
achieves secrecy from PolyFRIM’s 2q-bound knowledge leak-
ing by setting threshold t = p+2q for p corrupted parties.

Secondly, without the homomorphism of KZG, generating
πk, j for Pj to aid some honest party Pk to recover its share
using proofs {πi, j}i̸= j is not straightforward. As described in
Section 1.2, this can be resolved by the dealer additionally
sending { f (x j,yi),π j,i} j∈[n] to Pi instead of only f̂ (xi,Y).

Thirdly, again facing the lack of homomorphism, it is un-
clear how to efficiently ensure the consistency among commit-
ments to { f̂ (xi,Y)}i∈[n] and f (X ,Y), which is necessary for
the correctness of AVSS. In a KZG-based AVSS, the dealer
just broadcasts t +1 commitments to f̂ (x1,Y), . . . , f̂ (xt+1,Y),
and every party Pi (i /∈ [t]) can construct the commitment
to f̂ (xi,Y) by homomorphism. Nevertheless, our unique
construction of PolyFRIM allows an almost cost-free solu-
tion. Specifically, all commitments to f̂ (xi,Y) are generated
from one commitment to f̂ (X ,Y), and this naturally guaran-
tees commitment consistency. Each party needs only to use
f̂ (xi,Y) for an extra validity check by invoking VerPoly of
FRI-PC. It is unknown how to handle this problem using other
FRI-based PCSs like Virgo without such special construction.

Below, we present FRISS, consisting of Algorithms 2-4.

Dealing phase (Algorithm 2). Given the secret s, the dealer
Pd randomly picks (t, t)-degree polynomials f (X ,Y) and
r(X ,Y) where f (z,0) = s. Pd generates proofs of f ,r on Vn,n
by Evalotm.Open. In this algorithm, Pd gets {C∗i }i∈[n] where
C∗i is the commitment of f̂ (wi

N ,Y)+α · r̂(wi
N ,Y). Then Pd

broadcasts all the commitments and sends the Share mes-
sage to Pi for i ∈ [n], which includes f̂ (wi

N ,Y), r̂(wi
N ,Y), and

evaluations/proofs of f and r on {(w j
N ,w

i
N)} j∈[n].

Algorithm 3 Sharei() for party Pi

1: honest_dealer← 0, sharei← /0, echo_set← /0.
2: upon receiving from Pd ⟨Commit,C,{C∗i }i∈[n]⟩ and〈

Share, f̂i, r̂i,{ f j,i,r j,i,π j,i} j∈[n]
〉

do
3: if CommitF(pp, f̂i +αr̂i) = C∗i holds and ∀ j ∈ [n] :

Evalotm.Verify(pp,(w
j
N ,w

i
N),{ f j,i,r j,i},π j,i) = 1 then

4: honest_dealer← 1; sharei← f̂i.
5: Send ec j,i = ⟨Echo, f j,i,r j,i,π j,i⟩ to Pj,∀ j ∈ [n].
6: upon receiving eci, j from Pj for the first time do
7: if Evalotm.Verify(pp,(wi

N ,w
j
N),{ fi, j,ri, j },πi, j) then

8: Mark Echo as valid.
9: echo_set← echo_set∪{(wi

N ,w
j
N),{ fi, j,ri, j}}.

10: upon getting 2t +1 valid Echo & honest_dealer= 1 do
11: Send ⟨Ready⟩ to all parties.
12: upon receiving t +1 Ready and not yet sent Ready do
13: Send ⟨Ready⟩ to all parties.
14: upon receiving 2t +1 Ready do
15: Wait until t +1 valid Echo.
16: Interpolate f̂i and r̂i using the set echo_set.
17: output sharei← f̂i and terminate

Sharing phase (Algorithm 3). Honest party Pi first checks
the correctness of C∗i , then checks if the received evaluations
are valid by Evalotm.Verify. If all the verifications pass, Pi
will set honest_dealer = 1, and send an Echo message with
f (w j

N ,w
i
N), its proof, and r(w j

N ,w
i
N) to other parties. Through

a typical “Echo + Ready” approach [3] (Steps 6-16, Algo-
rithm 3), a party who has not received the Share message
will get its share by t +1 valid Echo messages. When Sharei
terminates, Pi gets f̂ (wi

N ,Y) as its share.
At the end of the Share phase, every honest party receives

at least 2t +1 valid Echo messages. At least t +1 of them are
sent by honest parties with honest_dealer= 1. Further, every
such honest Pi has a valid commitment C∗i and valid polyno-
mial f̂ (xi,Y), so is able to generate a valid proof for f̂i(0).

Reconstruction phase (Algorithm 4). Every (at least t +1)
honest Pi with honest_dealer = 1 sending f̂i(0) and corre-
sponding proof to other parties would suffice to recover the se-
cret. However, at most t honest parties with honest_dealer =
0 could not participate in the reconstruction as they cannot
generate valid proofs. We propose an alternative to enable
these “weaker” parties to contribute to the reconstruction.

Specifically, if Pi is with honest_dealer = 1, it would send
Rec_strong, evaluations, and corresponding proof to other
parties. Otherwise, it just sends Rec_weak and evaluations.
For another honest party Pj, if it receives at least t+1 proofs, it
can verify the validity of evaluations and get its share directly
by interpolation. If it receives sufficient evaluations (some
with proofs but less than t and some without), it can still
compute f (X ,0) by an efficient RS decoding algorithm such
as Berlekamp–Welch, hence computing f (z,0).

Algorithm 4 Reconstructioni() for party Pi

1: valid_rec← /0, decode_set← /0.
2: if honest_dealer = 1 then
3: πi← Eval.Open(pp,C∗i , f̂i +αr̂i,0).
4: Send rsi = ⟨Rec_strong, f̂i(0), r̂i(0),πi⟩ to all parties.
5: if honest_dealer = 0 then
6: Send rwi = ⟨Rec_weak, f̂i(0), r̂i(0)⟩ to all parties.
7: upon receiving rs j for the first time do
8: if Eval.Verify(pp,C∗j ,0, f̂ j(0)+αr̂ j(0),π j) = 1 then
9: valid_rec← valid_rec∪{ f̂ j(0)}.

10: decode_set← decode_set∪{ f̂ j(0)}.
11: if |valid_rec| ≥ t +1 then
12: Get f̂ (X ,0) by interpolation and obtain f̂ (z,0).
13: terminate
14: upon receiving rw j from Pj for the first time do
15: decode_set← decode_set∪{ f̂ j(0)}.
16: if |decode_set|+2|valid_rec| ≥ 3t +1 then
17: Get f̂ (X ,0) by decoding and obtain f̂ (z,0).
18: terminate

Theorem 4.1. FRISS is an (n, t)-AVSS scheme as in Defini-
tion 2.4. Appendix E provides a formal proof.

Complexity. The dealer complexity mainly comes from gen-
erating proofs in Step 3, Algorithm 2 using the one-to-many
PolyFRIM, which is O(n2 logn) as t = O(n), N = O(n).

The per-party computation overhead comes from:
(1) verifying proofs for O(n) times using Evalotm.Verify in
Steps 3 and 7, Algorithm 3: O(n) ·O(log2 n) = O(n log2 n);
(2) generating proofs using the FRI-PC Eval algorithm in
Step 3, Algorithm 4: O(n);
(3) verifying proofs for O(n) times by the FRI-PC Verify algo-
rithm in Step 8, Algorithm 4: O(n) ·O(log2 n) = O(n log2 n).

So, the per-party computation overhead is O(n log2 n).
The communication overhead comes from:

(1) the dealer sending shares and proofs in Step 8, Algo-
rithm 2: O(n)+O(n2)+O(n2) ·O(log2 n) = O(n2 log2 n);
(2) the dealer broadcasting commitments in Step 5, Algo-
rithm 2: O(n2) using reliable broadcast (e.g., [14]);
(3) party sending shares and proofs in Step 5, Algorithm 3
and Step 4, Algorithm 4: O(n2) ·O(log2 n) = O(n2 log2 n).

So, the total communication complexity is O(n2 log2 n).

5 Empirical Conclusion

We wrote ∼1,600 lines for PolyFRIM and ∼1,800 lines for
FRISS in Rust. We ran all experiments on an AMD Ryzen
3900X processor with 80GB RAM and Ubuntu 22.04 LTS
operating system. Reported figures are averages over 10
executions. We assume no parallelization.
We use Fp2 as our field, p= 261−1 [37], with a multiplicative
coset of size up to 260. For all FRI-based schemes (Virgo [37],

25 27 29 211 213 215 217 219

10- 4

10- 3

10- 2

10- 1

100

101

102

P
ro

v
e
r

ti
m

e
 (

s
)

Polynomial size

 PolyFRIM

 HyperPlonk

 Bulletproofs

 Virgo

(a) prover time

25 27 29 211 213 215 217 219

10- 1

100

101

102

103

104

V
e
ri
fi
e
r

ti
m

e
 (

m
s
)

Polynomial size

 PolyFRIM

 HyperPlonk

 Bulletproofs

 Virgo

(b) verifier time

25 27 29 211 213 215 217 219

10- 1

100

101

102

103

104

P
ro

o
f
s
iz

e
 (

K
B

)

Polynomial size

 PolyFRIM

 HyperPlonk

 Bulletproofs

 Virgo

(c) proof size

Figure 2: Comparison of transparent multivariate polynomial commitments

212 213 214 215 216 217 218 219 220

10- 1

101

103

105

107

P
ro

v
e
r

ti
m

e
 (

s
)

Number of parties

 PolyFRIM

 ZXH+22

 AMT

 KZG

(a) prover time

212 213 214 215 216 217 218 219 220

10- 1

100

101

102

V
e
ri
fi
e
r

ti
m

e
 (

m
s
)

Number of parties

 PolyFRIM

 ZXH+22

 AMT

 KZG

(b) per-verifier time

212 213 214 215 216 217 218 219 220

10- 1

100

101

102

103

104

P
ro

o
f
s
iz

e
 (

K
B

)

Number of parties

 PolyFRIM

 ZXH+22

 AMT

 KZG

(c) per-proof size

Figure 3: Comparison of one-to-many proofs of univariate polynomial commitments with the number of parties as the degree

ZXH+22 [36], HyperPlonk [16], and PolyFRIM), we set the
code rate as 1/8, and the query repetition number as 34, pro-
viding 100 bits of security [6, Conjecture 8.4]. Besides, we
set the FRI reduction parameter as 2, reducing the polynomial
degree by half in each round. Our hash function is blake3.5

5.1 Performance of PolyFRIM
We compare PolyFRIM with other transparent PCSs, includ-
ing Bulletproofs [11]6, Virgo [37]7, and HyperPlonk [16]. As
HyperPlonk is not open-sourced, we implement it ourselves.

Figure 2 shows their prover time, verifier time, and proof
size. The size of the multivariate polynomial (number of
monomials) varies from 25 to 220 (as in [36]). We run out
of memory for HyperPlonk when the polynomial size is 219.
As shown, for size being 220, the prover time of PolyFRIM
takes only 4.4s, which is 6×, 10×, and 25× faster than Virgo,
HyperPlonk, and Bulletproofs, respectively.

PolyFRIM has a 4-10× faster verifier and a 2-3× smaller
proof size than HyperPlonk. This speed stems from avoiding
FRI-PC by changing the queries from the whole field to the
committed domain. Its smaller proof size is due to the rolling

5github.com/BLAKE3-team/BLAKE3
6github.com/dalek-cryptography/bulletproofs
7github.com/sunblaze-ucb/Virgo (in C++)

batch FRI, which reduces Merkle tree depth and verification
path size. The verifier time and proof size of PolyFRIM are
competitive with Virgo (less than 50% and 10% worse, re-
spectively). As for Bulletproofs, PolyFRIM has a 100-200×
larger proof size but can be 1000× faster for verification.

5.2 Performance of One-to-Many PolyFRIM

PolyFRIM is the first multivariate PCS with one-to-many
proof. Figure 3a shows the prover time. One-to-many
PolyFRIM is 800-106× faster than its trivial repetition. It
only takes 0.07s (resp., 49.4s) to generate 212 (resp., 220)
proofs for a 212-degree (resp., 220-degree) polynomial. Using
only lightweight crypto operations (RS codes and hash), our
prover time is 25-100× and 103-106× faster than AMT8 and
KZG, respectively. For one-to-many ZXH+229, our prover
time is 4-7× faster for eliminating the need for the GKR
protocol [21, 36] (and PolyFRIM is faster than Virgo).

As in Figure 2b, our per-verifier time is 3-9× (resp., 2-
4×) faster than AMT (resp., ZXH+22). Even compared with
constant-verifier KZG, ours is concretely faster for n < 214.

Figure 2c shows the proof size. Ours is larger than trusted-
setup-based AMT and KZG. PolyFRIM features up to 20%

8github.com/alinush/libpolycrypto
9github.com/sunblaze-ucb/eVSS

https://github.com/BLAKE3-team/BLAKE3
https://github.com/dalek-cryptography/bulletproofs
https://github.com/sunblaze-ucb/Virgo
https://github.com/alinush/libpolycrypto
https://github.com/sunblaze-ucb/eVSS

26 27 28 29 210 211
10- 2

10- 1

100

101

102

103

104

105

106

D
e
a
le

r
ti
m

e
 (

s
)

Number of parties

 FRISS

 Bingo

 eAVSS

 HAVEN-1

 HAVEN-2

(a) dealer time

26 27 28 29 210 211
101

102

103

104

105

P
a
ry

 t
im

e
 (

m
s
)

Number of parties

 FRISS

 Bingo

 eAVSS

 HAVEN-1

 HAVEN-2

(b) per-party time

Figure 4: Performance of PCSs in different AVSS schemes

smaller proof size than transparent ZXH+22, thanks to its
avoidance of additional GKR protocol for delegation.

5.3 Performance of PolyFRIM in AVSS

Figure 4 compares the performance of PCSs in different AVSS
schemes (eAVSS [3], HAVEN [2], and Bingo [1]) for varying
numbers of parties n = 3t +1 and degree-t polynomials.

For FRISS, the dealer generates n2 proofs for a (t, t)-degree
polynomial using PolyFRIM, and each party verifies n proofs.
In eAVSS and HAVEN, everything is the same except using
different PCSs (KZG for eAVSS and HAVEN-1, and Bullet-
proofs for HAVEN-2). Following these works, we achieve
a bivariate KZG by committing n t-degree univariate poly-
nomials and generating n proofs for every polynomial. For
Bingo, the dealer just commits t+1 2t-degree univariate poly-
nomials, and every party generates n proofs for a 2t-degree
univariate polynomial using KZG.

Figure 4 shows the generation time of commitments and
evaluation proofs for the dealer (Steps 2-3 in Algorithm 2) and
verification time (Steps 3 and 7 in Algorithm 3) for per party.
We omit PCS-irrelevant parts (e.g., broadcast/encryption) to
focus on how PCS improves AVSS. The dealer time of FRISS
caused by the PCS is 4-800× faster than AVSS using a similar
method (eAVSS and HAVEN-1/2). Our per-party time is 0.5-
1.2× of eAVSS and HAVEN-1. In Bingo, proof generation is
partially “shifted” from the dealer to the parties, so FRISS is
10× slower for the dealer but 10× faster for parties.

References

[1] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah
Meiklejohn, and Gilad Stern. Bingo: Adaptively se-
cure packed asynchronous verifiable secret sharing and
asynchronous distributed key generation. In CRYPTO,
2023.

[2] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang.
High-threshold AVSS with optimal communication com-
plexity. In FC, 2021.

[3] Michael Backes, Amit Datta, and Aniket Kate. Asyn-
chronous computational VSS with reduced communica-
tion complexity. In CT-RSA, 2013.

[4] Michael Ben-Or, Ran Canetti, and Oded Goldreich.
Asynchronous secure computation. In STOC, 1993.

[5] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Fast Reed-Solomon interactive oracle
proofs of proximity. In ICALP, 2018.

[6] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kop-
party, and Shubhangi Saraf. Proximity gaps for Reed-
Solomon codes. In FOCS, 2020.

[7] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev,
Nicholas Spooner, Madars Virza, and Nicholas P. Ward.
Aurora: Transparent succinct arguments for R1CS. In
EUROCRYPT, 2019.

[8] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas
Spooner. Interactive oracle proofs. In TCC, 2016.

[9] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay,
Muthuramakrishnan Venkitasubramaniam, Tiancheng
Xie, and Yupeng Zhang. Ligero++: A new optimized
sublinear IOP. In CCS, 2020.

[10] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and
Michele Orrù. Gemini: Elastic SNARKs for diverse
environments. In EUROCRYPT, 2022.

[11] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Gregory Maxwell. Bullet-
proofs: Short proofs for confidential transactions and
more. In S&P, 2018.

[12] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Trans-
parent SNARKs from DARK compilers. In EURO-
CRYPT, 2020.

[13] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya,
and Reto Strobl. Asynchronous verifiable secret sharing
and proactive cryptosystems. In CCS, 2002.

[14] Christian Cachin and Stefano Tessaro. Asynchronous
verifiable information dispersal. In DISC, 2005.

[15] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs
Querol, and Hadrián Rodríguez. Lunar: a toolbox for
more efficient universal and updatable zkSNARKs and
commit-and-prove extensions. In ASIACRYPT, 2021.

[16] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei
Zhang. HyperPlonk: Plonk with linear-time prover and
high-degree custom gates. In EUROCRYPT, 2023.

[17] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchrono-
us data dissemination & its applications. In CCS, 2021.

[18] Sourav Das, Zhuolun Xiang, Alin Tomescu, Alexander
Spiegelman, Benny Pinkas, and Ling Ren. Verifiable
secret sharing simplified. IACR ePrint 2023/1196.

[19] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew
Miller, Lefteris Kokoris-Kogias, and Ling Ren. Practi-
cal asynchronous distributed key generation. In S&P,
2022.

[20] Ariel Gabizon, Zachary J. Williamson, and Oana Ciob-
otaru. PLONK: Permutations over Lagrange-bases for
oecumenical noninteractive arguments of knowledge.
IACR ePrint 2019/953, 2019.

[21] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Roth-
blum. Delegating computation: Interactive proofs for
muggles. J. ACM, 62(4):27:1–27:64, 2015.

[22] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin
Thaler, and Riad Wahby. Brakedown: Linear-time and
field-agnostic SNARKs for R1CS. In CRYPTO, 2023.

[23] Bin Hu, Zongyang Zhang, Han Chen, You Zhou, Huazu
Jiang, and Jianwei Liu. DyCAPS: Asynchronous
dynamic-committee proactive secret sharing. IACR
ePrint 2022/1169.

[24] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In ASIACRYPT, 2010.

[25] Assimakis Kattis, Konstantin Panarin, and Alexander
Vlasov. Redshift: Transparent SNARKs from list poly-
nomial commitments. In CCS, 2019.

[26] Tohru Kohrita and Patrick Towa. Zeromorph: Zero-
knowledge multilinear-evaluation proofs from homo-
morphic univariate commitments. IACR ePrint 23/917.

[27] Jonathan Lee. Dory: Efficient, transparent arguments
for generalised inner products and polynomial commit-
ments. In TCC, 2021.

[28] Charalampos Papamanthou, Elaine Shi, and Roberto
Tamassia. Signatures of correct computation. In TCC,
2013.

[29] Srinath Setty. Spartan: Efficient and general-purpose
zkSNARKs without trusted setup. In CRYPTO, 2020.

[30] Victor Shoup and Nigel P. Smart. Lightweight
asynchronous verifiable secret sharing with optimal re-
silience. J. Cryptol., 2024. To appear.

[31] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abra-
ham, Benny Pinkas, Guy Golan-Gueta, and Srinivas
Devadas. Towards scalable threshold cryptosystems. In
S&P, 2020.

[32] Alexander Vlasov and Konstantin Panarin. Transparent
polynomial commitment scheme with polylogarithmic
communication complexity. IACR ePrint 2019/1020.

[33] Harry W. H. Wong, Jack P. K. Ma, and Sherman S. M.
Chow. Secure multiparty computation of threshold
signatures made more efficient. In NDSS, 2024.

[34] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket
Kate, and Andrew Miller. hbACSS: How to robustly
share many secrets. In NDSS, 2022.

[35] Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew
Miller. Long live the honey badger: robust asynchronous
DPSS and its applications. In Usenix Sec. (USS), 2023.

[36] Jiaheng Zhang, Tiancheng Xie, Thang Hoang, Elaine
Shi, and Yupeng Zhang. Polynomial commitment with
a one-to-many prover and applications. In USS, 2022.

[37] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and
Dawn Song. Transparent polynomial delegation and its
applications to zero knowledge proof. In S&P, 2020.

A The FRI Protocol and FRI-PC

Protocol 5 The FRI protocol to test if f̂ |L ∈ RS[L,d/|L|]
Inputs:

(
(F,L,d),(f̂)

)
. L is a multiplicative coset. Without

loss of generality, we assume d = 2r for a positive integer r.
1: P sets L0 = L, f̂0 = f̂ , computes f̂0|L0 , executes rt0 ←

MT.Commit(f̂0|L0), and sends rt0 to V .
2: for i = 1 to r+1 do
3: P decomposes f̂i−1 as ĝi(X2)+X · ĥi(X2).
4: V sends αi←$ F to P .
5: P computes f̂i(X)← ĝi(X)+αi · ĥi(X).
6: If i ̸= r+ 1, P computes f̂i|Li where Li = {x2|x ∈

Li−1}, runs rti←MT.Commit(f̂i|Li), and sends rti to V .
7: If i = r+1, P directly sends f̂i to V .
8: for j = 1 to q = O(λ) do
9: V sends β←$ L0 to P .

10: for i = 1 to r+1 do
11: P uses MT.Open to open f̂i−1(±β2i−1

), f̂i(β
2i
).

12: V checks the correctness by MT.Verify.
13: V checks if the pairs (±β2i−1

, f̂i−1(±β2i−1
)) and

(αi, f̂i(β
2i
)) are on a common line.

14: If all the above checks pass, V outputs 1; 0 otherwise.

We recall FRI in Protocol 5, and FRI-PC below.

• pp← Gen(1λ,d): Takes as inputs the security parameter λ

and the degree bound d; outputs public parameter pp, which
includes the field F and a multiplicative coset L.
•C← Commit(pp, f̂): Executes C←MT.Commit(f̂ |L).

• b← VerPoly(pp,C, f̂ |L, f̂): Receives f̂ |L as the opening of
C; outputs 1 iff the decoding of f̂ |L and f̂ are consistent.

• b← Eval(pp,C,y,x, f̂): P and V invoke the batch FRI on
proving f̂ |L ∈RS[L,d/|L|]∧ f̂ ′|L ∈RS[L,(d−1)/|L|], where
f̂ ′(X) = (f̂ (X)− y)/(X− x). V outputs 1 iff FRI outputs 1.

The batch version of FRI-PC for multiple evaluation points
on multiple polynomials can be obtained from the batch FRI.

B HyperPlonk

We recall HyperPlonk, which uses the FRI-PC algorithms
(Genu,Commitu,VerPolyu,Evalu).

• pp←Gen(1λ,µ): Takes as inputs λ and a variable number µ,
outputs public parameter pp← Genu(1λ,n) where n = 2µ.

•C← Commit(pp, f̃): Takes as inputs pp and f̃ , outputs the
commitment C← Commitu(pp, f̂).

• b← VerPoly(pp,C, f̂ |L, f̃): Runs VerPolyu(pp,C, f̂ |L, f̂).

• b← Eval(pp,C,xxx,y, f̃): Given pp, C, the evaluation point
xxx = (x1, . . . ,xµ), y = f̃ (xxx), and the multilinear polynomial f̃ ,
P and V invoke the following argument:
1: Let f̂0(X) = f̂ (X). For every i ∈ [µ], P first decom-

poses f̂i−1(X) into ĝi(X2) +X · ĥi(X2), and then com-
putes f̂i(X)← ĝi(X)+ xi · ĥi(X). If i < µ, P runs Ci←
MT.Commit(f̂i|Li), and sends {Ci}i∈[µ] to V , where
Li = {x2|x ∈ Li−1}. For i = µ, P sends f̂µ directly to V .

2: V picks β←$ F\{0} and sends it to P .
3: For every i ∈ [µ], P computes f̂i−1(β), f̂i−1(−β), and

f̂i(β
2). Note that f̂µ is a constant polynomial and equals

f̃ (xxx). P and V then invoke Evalu to prove the validity of
{ f̂i−1(β), f̂i−1(−β), f̂i(β

2)}i∈[µ] except f̂µ(β
2). If Evalu

outputs 0, V outputs 0 and aborts.
4: For every i ∈ [µ], V checks if f̂i(β

2) equals(
f̂i−1(β)+ f̂i−1(−β)

)
/2+ xi ·

(
f̂i−1(β)− f̂i−1(−β)

)
/2β.

If so, V outputs 1; otherwise, V outputs 0 and aborts.

We give a detailed proof of Theorem 2.2 (inspired by [10]).

Proof. Completeness. Supposing f̃ (x1, . . . ,xµ)= y, we prove
that the verifier V will output 1 in the interactive argument
Eval. Setting fff = (a0, . . . ,a2µ−1) as the coefficient vector
of f̃ , we first prove by induction that for all i ∈ [0,µ],

f̂i(X) = ∑
j∈[0,2µ−1],
(j1,..., jµ)2← j

(a jx
j1
1 · · ·x

ji
i)(X

ji+1+2· ji+2+···+2µ−i−1· jµ).

(3)
In Equation (3) and below, (j1, . . . , jµ)2 denotes the binary
representation of j. When i = 0,

f̂i(X) = ∑
j∈[0,2µ−1]

a jX j = ∑
j∈[0,2µ−1]

a jX j1+2· j2+···+2µ−1· jµ .

Suppose Equation (3) holds when i = k, and we next prove
Equation (3) also holds when i = k + 1. Since f̂k(X) =

f̂ (k−1)
E (X2)+X · f̂ (k−1)

O (X2), we have

f̂ (k−1)
E (X2) = ∑

j∈[0,2µ−1], jk+1=0
a jx

j1
1 · · ·x

jk
k X2· jk+2+···+2µ−k−1· jµ ,

f̂ (k−1)
O (X2) = ∑

j∈[0,2µ−1], jk+1=1
a jx

j1
1 · · ·x

jk
k X2· jk+2+···+2µ−k−1· jµ .

We thus have f̂k+1(X)← f̂ (k−1)
E (X)+ xk+1 · f̂ (k−1)

O (X) by
the procedure of HyperPlonk, then we have f̂k+1(X) equals

to ∑ j∈[0,2µ−1] a jx
j1
1 · · ·x

jk
k x jk+1

k+1 X j(k+1)+1+···+2µ−(k+1)−1· jµ . So,
Equation (3) holds for all i ∈ [0,µ].

To see f̂µ(±β) = y, we show by induction that f̂µ(X) equals
to ∑ j∈[0,2µ−1] a jx

j1
1 · · ·x

jµ
µ = ⟨ fff ,(1,x1)⊗·· ·⊗ (1,xµ)⟩= y.

Besides, for every i ∈ [µ], f̂i(X) ← f̂ (i−1)
E (X) + xi ·

f̂ (i−1)
O (X), where f̂ (i−1)

E (X2) =
(

f̂i−1(X)+ f̂i−1(−X)
)
/2 and

f̂ (i−1)
O (X2) =

(
f̂i−1(X)− f̂i−1(−X)

)
/2X , hence f̂i+1(β

2) =(
f̂i(β)+ f̂i(−β)

)
/2+ xi ·

(
f̂i(β)− f̂i(−β)

)
/2β.

Polynomial binding. For proximity parameter δ≤ (1−ρ)/2,
by the soundness of batch FRI, if the verifier accepts in
VerPoly, with probability 1− negl(λ) each opened vector
of commitment binds to the encoding of a unique univariate
polynomial. The polynomial binding property hence follows.
Soundness. Suppose that f̃ (x1, . . . ,xµ) ̸= y, and f̂ ′1, . . . , f̂ ′µ are
actually committed polynomials. We argue by two cases:
• Case 1. There exists some f̂ ′i for i ∈ [0,µ−1] of degree at
least 2µ−i or the evaluation proof for f̂ ′i is invalid. According
to Theorem 2.1, this probability is at most εFRI.
• Case 2. Degrees of { f̂ ′i } are less than 2µ−i for i ∈ [0,µ] and
the evaluation proofs are all valid. Since f̃ (xxx) ̸= y, there must
be some i such that f̂ ′i (X) ̸= f̂ ′(i−1)

E (X)+ xi f̂ ′(i−1)
O (X) but it

holds for all queries. Assume j is the smallest of such is.
By definition, f̂ ′(j−1)

E (X2) = (f̂ j−1(X)+ f̂ j−1(−X))/2, and
f̂ ′(j−1)
O (X2) = (f̂ j−1(X)− f̂ j−1(−X))/2X . Set ĝ(X) to be:

f̂ ′j(X
2)−

f̂ j−1(X)+ f̂ j−1(−X)

2
− x j ·

f̂ j−1(X)− f̂ j−1(−X)

2β
.

ĝ(X) is a non-zero polynomial with a degree at most 2µ− j+1,
so the soundness error is bounded by 2µ− j+1/|F\{0}| ≤
2µ/|F\{0}| according to the Schwartz–Zippel lemma.

Using the union bound argument, the total soundness error of
HyperPlonk is εFRI+2µ/|F\{0}|. By appropriate parameter
choices for F,L, and q, the soundness error can be negligible.
Knowledge soundness. HyperPlonk is an argument of knowl-
edge with extractability of Merkle trees proven in the random
oracle model [8, 37]. Roughly, given the root and sufficiently
many authentication paths, there exists an efficient extrac-
tor that reconstructs the leaves with high probability. Addi-
tionally, the leaves are RS codewords and can be efficiently
decoded by decoding algorithms such as Berlekamp–Welch.

Specifically, for any PPT adversary P ∗ with Commit∗ and
Eval∗, there exists a PPT extractor E such that given the ran-
dom access tape of P ∗, the following probability is negl(λ):

Pr

[
C∗← Commit∗(pp, f̃ ∗)

1← Eval∗(pp,C∗,xxx,y∗, f̃ ∗)
:

f̃ ∗← E(pp,C∗,xxx,y∗)

y∗ ̸= f̃ ∗(xxx)

]
.

Suppose the Merkle tree is based on a random oracle H :
{0,1}2λ → {0,1}λ. We then construct a PPT extractor E
with the same random type of P ∗ working as follows:
1. E mirrors the process of P ∗ querying H . Let the queries

made by P ∗ to H be (q1,q2, . . . ,qmax) in the order they
are made with duplicates excluded, which implies that
queries are not generated from parent nodes to child ones.
Define qi ∈H (q j) if the first λ bits or the last λ bits of qi is
H (q j), i.e., qi could be the parent node of q j. If there exists
some i ̸= j, H (qi) = H (q j) or some i≤ j, qi ∈H (q j), E
outputs random polynomial f̃ and aborts.

2. E constructs a directed graph G according to the query set
Q = {q1, . . . ,qmax}. There is an edge from qi to q j in G if
and only if qi ∈H (q j). The outdegree of each node is at
most 2. When P ∗ generates C∗ in the Commit∗ algorithm,
if C∗ does not equal H (q) for some q ∈ Q with depth ⌈µ⌉
of the binary tree, E outputs a random polynomial f̃ and
aborts; otherwise we suppose that H (qr) =C∗ for some r.
If any verification path is invalid, E outputs a random
polynomial f̃ and aborts.

3. E reads all leaves from the root qr. If there exists any
missing leaf, E outputs a random f̃ and aborts; otherwise,
it concatenates these leaf strings and decodes the string
using an efficient RS decoding algorithm. Therefore, E
could efficiently output the coefficients of f̃ .
Let E1 be the event V accepts, and E2 be y∗ ̸= f̃ ∗(xxx). Con-

sider Pr[E1∧E2]. Suppose that E aborts before constructing
the graph G. If for some i ̸= j, H (qi) = H (q j), E finds a
collision. If for some i≤ j, qi ∈H (q j), E could generate a
Merkle tree violating the logical order. Either probability is
negl(λ) since H is collision-resistant and non-invertible.

Otherwise, E has successfully constructed a graph G. If
some node on a verification path does not lie in G, P ∗ has to
guess the value to construct a valid verification path, and this
probability is negl(λ) since H is non-invertible. Additionally,
if any leaf is missing, V will be convinced with probability
negl(λ) once it queries this leaf. The probability that this leaf
is not queried by V is at most (1−1/|L0|)q = negl(λ) as the
query repetition number of FRI-PC q satisfies q = O(λ). If
E does not abort, it could always efficiently extract the coeffi-
cient vector of f̃ . In this case, V accepts the statement with
probability negl(λ) with an appropriate choice of parameters
according to the soundness. So, we can bound Pr[E1∧E2]:

Pr[E1∧E2 |E aborts]+Pr[E1∧E2 |E does not abort]
≤ Pr[E aborts]+Pr[E1∧E2 |E does not abort]≤ negl(λ).

Complexity. Commit takes O(n logn), mainly caused by the

FFT operation and the construction of the Merkle tree for f̂ |L.
The other complexities depend on the concrete algorithm.

• Case 1. The prover shows that { f̂i(±β), f̂i(β
2)}i∈[0,µ] is

valid round by round independently. The prover complexity
is ∑i∈[0,logn] O(n/2i)=O(n). The verifier and communication
complexities are both ∑i∈[0,logn] O(log2(n/2i)) = O(log3 n).
• Case 2. The prover invokes a batch FRI to prove the validity
of all the evaluations, where all { f̂i}i∈[µ] are computed and
evaluated on the same multiplicative coset. The prover com-
plexity is hence O(n logn) caused by constructing Merkle
trees for logn n-length vectors. The verifier and communica-
tion complexities are both O(log2 n) due to the batch FRI.

C Proof of Theorem 3.1

Proof. The completeness comes directly from that of the FRI
protocol. Similar to the proof in Appendix B, the argument of
knowledge property holds according to the extractability of
Merkle trees. We mainly prove the soundness property below
from the following two cases.
• Case 1. If any of the Merkle tree commitments {rti}i∈[0,µ]
is not valid, or the leaves are inconsistent with the roots, the
verification passes with probability no more than negl(λ).
• Case 2. All the Merkle tree commitments are valid, and the
leaves are consistent with corresponding roots. For this case,
we first define functions {backi}i∈[0,µ] and sets {erri}i∈[0,µ].

Define back0(A0) = A0 for A0 ⊆ L0, and backi(Ai) =
backi−1(Ai−1) for Ai = {x2|x ∈ Ai−1} and i≥ 1.

Define err0 = /0. For i ∈ [µ], let the set E be {x ∈ Li−1 :
ĝi(x2)+αĥi(x2)+α2

i f̂i(x2) ̸= f̂ (i)(x2)}, where f̂ (i−1)(X) =
ĝi(X2)+X · ĥi(X2). Define erri = erri−1∪backi−1(E).

For i ∈ [µ], suppose that ĥ(i)|Li ∈ RS[Li,ρ] and set Ai =

{x ∈ Li| f̂ (i)(x) = ĥ(i)(x)}. Define εi(·) : Li → {0,1} such
that εi(Ai) = |backi(Ai)∩ erri|/|L0|+(1−|Ai|/|Li|).

By definition, |backi(Ai)| = 2i|Ai|, Ai ⊆ Li, and erri ⊆ Li.
Further, εµ(Aµ) means the probability that the verifier finds
inconsistency and rejects with a single query in Step 13 of
Protocol 1. Suppose:

Pr[εµ(Aµ)≥ (1−ρ)/2]≥ 1−|L0|/|F|. (4)

That is, with probability at least 1−|L0|/|F|, the verifier can
catch about δ = (1−ρ)/2 inconsistency if it picks only one
query. For q queries, the probability that a malicious prover
cheats successfully will be (1−δ)q = ((1+ρ)/2)q.

By the union bound argument, the total soundness error is
1−|L0|/|F|+((1+ρ)/2)q +negl(λ).

To prove Inequality (4), we first describe three lemmas.

Lemma C.1 ([6]). For δ < (1−ρ)/2, { f̂}i∈[n−1] with degree
bounds d and multiplicative coset L where ρ = d/|L|, if

Pr
α←$F

[∆(
n−1

∑
i=0

α
i · f̂i|L,RS[L,ρ])≤ δ]≥ |L|/|F|,

where ∆(aaa,bbb) is the relative Hamming distance between aaa
and bbb, there exists L′ ⊂ L and p̂0, . . . , p̂n−1 with degree bound
d such that |L′|/|L| ≥ 1−δ and f̂i|L′ = p̂i|L′ for i ∈ [0,n−1].

Lemma C.2. For any S1 ⊆ S2 ⊆ Li, εi(S1)≥ εi(S2).

Proof. By definition, εi(S1)− εi(S2)

=
(|S2|− |S1|)
|Li|

− (|backi(S2)∩ erri|− |backi(S1)∩ erri|)
|L0|

=|S2\S1|/|Di|− |(backi(S2)\backi(S1))∩ erri|/|backi(Li)|

=
|backi(S2\S1)|
|back(Li)|

− |backi(S2\S1)∩ erri|
|backi(Li)|

≥ 0.

Lemma C.3. For every i∈ [µ] and ĥ(i)Li
∈RS[Li,ρ], if ∆(ĝi|Li +

αiĥi|Li +α2
i f̂i|Li , ĥ

(i)|Li)≥ θ, then εi(Ai)> θ.

Proof. Let f̂ ← f̂ (i)E +αi f̂ (i)O +α2
i f̂i. Define set B = Ai∪{xi ∈

Li| f̂ (x) ̸= f̂ (i)(x)}. Define polynomial f̂ ′ such that f̂ ′(x) =
h(i)(x) when x ∈ B and f̂ ′(x) = f (x) when x /∈ B.

For all x ∈ B, if f̂ (x) ̸= f̂ ′(x), f̂ (x) ̸= ĥ(i)(x). Besides, for
all x /∈ B, f̂ (x) = ĥ(i)(x). Thus, the number of inconsistency
points in B is not less than the Hamming distance between
f̂ |Li and f̂ ′|Li , i.e., |backi(B)∩ erri|/|L0| ≥ ∆(f̂ |Li , f̂ ′|Li).

Also, as f̂ ′(x) = ĥ(i)(x) holds for all x ∈ B, 1−|B|/|Li| ≥
∆(f̂ ′|Li , ĥ

(i)|Li). So, εi(B)≥ ∆(f̂ |Li , f̂ ′|Li)+∆(f̂ ′|Li , ĥ
(i)|Li)≥

∆(f̂ |Li , ĥ
(i)|Li)≥ δ. As Ai ⊆ B, εi(Ai)≥ εi(B)≥ δ.

Proof of Inequality (4). We prove by induction. When µ = 1,
Protocol 1 is a standard FRI, and soundness holds naturally.
If Inequality (4) holds ∀µ≤ t, we show it holds for µ = t +1.

When µ = t, the protocol can be seen as a partial proto-
col starting from f̂ (1) for µ = t + 1. Set δ = (1−ρ)/2. By
induction, when µ = t +1, the following holds:
• If there exists i≥ 1, such that ∆(f̂ (i)|Li ,RS[Li,ρ])≥ δ, then
Pr[εµ(Aµ)≥ δ]≥ 1−|Li|/2|F|> 1−|L0|/|F|.
• If there exists i ≥ 2, such that ∆(f̂i|Li ,RS[Li,ρ]) ≥ δ, then
Pr[εµ(Aµ)≥ δ]≥ 1−|Li|/2|F|> 1−|L0|/|F|.

Therefore, we only need to prove Inequality (4) in the fol-
lowing case: (a) For all i ≥ 1, ∆(f̂ (i)|Li ,RS[Li,ρ]) ≤ δ; (b)
For all i ≥ 2, ∆(f̂i|Li ,RS[Li,ρ]) ≤ δ; (c) At least one of
∆(f̂ (0)|L0 ,RS[L0,ρ])> δ and ∆(f̂1|L1 ,RS[L1,ρ])> δ holds.

As (3) holds, there does not exist A
′
1 ⊆ L1 and |A′1|/|L1| ≥

1−δ such that ĝ1|L1 , ĥ1|L1 , f̂1|L1 are all δ-close to RS[L1,ρ],
respectively. Otherwise, f̂ 0|L0 and f̂1|L0 are both close to
some RS[L0,ρ] by the linearity of RS code, respectively.
Therefore, by Lemma C.1, for random α1 and codeword
ĥ(1)|L1 ∈ RS[L1,ρ], with probability 1− |L0|/|F|, ∆

(
(ĝ1 +

α1ĥ1 +α2
1 f̂1)|L1 , ĥ

(1)|L1

)
≥ δ. Thus, by Lemma C.3,

Pr[ε1(A1)≥ δ]≥ 1−|L0|/|F|. (5)

Next, we prove that in the case mentioned above, it holds

Pr[εi+1(Ai+1)≥min{εi(Ai),δ}]≥ 1−|Li|/|F|. (6)

Note that if Inequalities (5) and (6) hold, Inequality (4) will
hold. Below are two cases underlying Inequality (6).

On one hand, if there does not exist B′ ⊆ Li+1 and
|B′|/|Li+1| ≥ 1− δ, such that f̂ (i+1)

E |B′ , f̂ (i+1)
O |B′ , f̂i+1|B′ are

some RS codeword, respectively. By Lemma C.1, with proba-
bility 1−|Li+1|/|F|, the relative Hamming distance between
(ĝi+1 +αi+1ĥ(i+1)+α2

i+1 f̂i+1)|Li+1 and RS[Li+1,ρ] is greater
than δ. Then by Lemma C.3, εi+1(Ai+1)≥ δ.

On the other hand, there exists such B′ ⊆ Li+1 and
|B′|/|Li+1| ≥ 1− δ. Set ĥ(i+1)

E |Li+1 , ĥ
(i+1)
O |Li+1 , ĥi+1|Li+1 ∈

RS[Li+1,ρ], and suppose the following relation hold iff x∈ B′:

ĝ(i+1)(x)= ĥ(i+1)
E (x), ĥ(i+1)(x)= ĥ(i+1)

O (x), f̂i+1(x)= ĥi+1(x).

By properties of random linear combination, with prob-
ability at least 1− |Li+1|/|F|, the relative Hamming dis-
tance between (f̂ (i+1)

E + αi+1 f̂ (i+1)
O + α2

i+1 f̂i+1)|Li+1 and

(ĥ(i+1)
E + αi+1ĥ(i+1)

O + α2
i+1ĥi+1)|Li+1 equals 1− |B′|/|Li+1|.

If ĥ(i+1)|Li+1 ̸= (ĥ(i+1)
E +αi+1ĥ(i+1)

O +α2
i+1ĥi+1)|Li+1 ; by the

code distance of the RS code,

∆(f̂ (i+1)
E +αi+1 f̂ (i+1)

O +α
2
i+1 f̂i+1)|Li+1 , ĥ

(i+1)|Li+1)≥ δ.

Hence, by Lemma C.3, εi+1(Ai+1)≥ δ. Therefore, below, we
only need to consider the following case:

ĥ(i+1)|Li+1 = (ĥ(i+1)
E +αi+1ĥ(i+1)

O +α
2
i+1ĥi+1)|Li+1 .

In this case, for x ∈ Di+1\B, with probability at least 1−
|Li+1|/|F|, ĥ(i+1)(x) ̸= f̂ (i+1)

E (x)+α · f̂ (i+1)
O (x)+α2 f̂i+1(x).

Let B = {x ∈ Li : x2 ∈ B′}. By definition, B⊆ Ai. Define set
C = Ai+1∪B′. To prove that εi+1(Ai+1)≥ εi(Ai), it suffices
to prove εi+1(C)≥ εi(B) according to Lemma C.2 as B⊆ Ai
and Ai+1 ⊆C. By the definition of B′, for every x ∈ Ai+1\B′,

f̂ (i+1)(x) = ĥ(i+1)(x) ̸= ĝ(i+1)(x)+α · ĝ(i+1)(x)+α
2 f̂i+1(x).

So, backi+1(Ai+1\B′) = backi+1(C\B′)⊆ erri+1. Define sets
M = backi(B)∩erri and N = backi+1(C\B′). As erri⊆ erri+1,

M∪N ⊆ erri∪backi+1(C\B′)⊆ erri+1. (7)

Besides, as B′ ⊆C and backi(B) = backi+1(B′), we have

M∪N = (backi+1(B′)∩ erri)∪N ⊆ backi+1(C). (8)

By Relations (7) and (8),

M∪N ⊆ backi+1(C)∩ erri+1. (9)

Since backi(B) = backi+1(B′),

M∩N ⊆ backi+1(B′)∩backi+1(C\B′) = /0. (10)

According to Relation (10), Relation (9) can be rewritten as

|backi+1(C)∩ erri+1| ≥ |backi+1(C\B′)|+ |backi(B)∩ erri|.

Since
|backi+1(C\B′)|

|D|
=
|C\B′|
|Di+1|

=
|C|
|Di+1|

− |B|
|Di|

, we have

|backi+1(C)∩ erri+1|−
|C|
|Di+1|

≥ |backi(B)∩ erri|−
|B|
|Di|

.

So εi+1(C)≥ εi(B), Inequalities (6) and (4) hold.

D Proof of Theorem 3.2

Proof. Completeness and polynomial binding. Polynomial
binding directly comes from HyperPlonk. The main differ-
ences between PCm and HyperPlonk lie in the usage of rolling
batch FRI and random polynomial r̃. The completeness of
PCm follows from that of HyperPlonk and rolling batch FRI.

Soundness. We bound the soundness error via two cases.
• Case 1. There exists some polynomial f̂i for i ∈ [0,µ−1],
which has a degree at least 2µ−i. According to Theorem 3.1,
the verification passes with a probability bounded by εFRI.
• Case 2. For every i ∈ [0,µ−1], the degree of f̂i is less than
2µ−i. Suppose that f̃ (xxx) ̸= y. We have f̂ (xxx) + α · r̂(xxx) =
y+α · yr holds with a probability bounded by 1/|F| due to
the randomness of α. Otherwise, there must exist some i
such that f̂i(X) ̸= ĝi−1(X)+ xi · ĥi−1(X) but for every query,
the equation holds. Assume that j is the smallest of these
i’s. By definition, ĝ j−1(X2) =

(
f̂ j−1(X)+ f̂ j−1(−X)

)
/2, and

ĥ j−1(X2) =
(

f̂ j−1(X)− f̂ j−1(−X)
)
/2X . Set φ̂(X) to be

f̂ j(X2)−
f̂ j−1(X)+ f̂ j−1(−X)

2
− x j ·

f̂ j−1(X)− f̂ j−1(−X)

2β
.

As f̂ j(X) ̸= ĝ j−1(X)+ x j · ĥ j−1(X), φ̂ is a non-zero polyno-
mial of degree less than 2µ− j. By the Schwartz–Zippel lemma,
the verification passes with a probability of no more than
(2µ− j/|L j|)q ≤ (2µ/|L0|)q.

By the union bound argument, the total soundness error is
less than εFRI+(2µ/|L0|)q +1/|F| for εFRI in Theorem 3.1.

Knowledge soundness. Similar to HyperPlonk, knowledge
soundness comes from the extractability of Merkle trees and
efficient decoding algorithms for RS code. We omit the proof.

2q-bound knowledge leaking. Figure 5 gives the simulator.
In Step 3 of Evalm, a random f̂ ′ can always be found when
2q+m ≤ 2µ− 1. The consistency check in the first round
always passes as only evaluations corresponding to {±βi}i∈Q
would be opened and f̂ (±βi)= f̂ ′(±βi). In addition, { f̂ ′i }i∈[µ]
are valid, so consistency checks in other rounds will pass. Due
to random r̃, f̂ ′i is uniformly distributed. So, no verifier can
notice the simulation with non-negligible probability.

E Proof of Theorem 4.1

Proof. Liveness. If the dealer Pd is honest, then every party
will receive their share in the Share phase, so there will be at

•C← S1
(
1λ,pp,rA

)
1: Get {±βi}i∈Q from rA and { f̂ (±βi)}i∈[Q] by the oracle

access to f̂ , where Q is the set of all queries.
2: Construct a map F̂ : L0→F such that F̂(±βi)= f̂ (±βi)

for every i ∈Q, and take random values on other points.
3: Randomly pick a multilinear polynomial r̃′(X1, . . . ,Xµ).
4: Output C′f ← MT.Commit(F̂ |L0) and C′r ←

MT.Commit(r̂′|L0).

• S2
(
pp,{C′f ,C′r},{xxx j = (x(j)

1 , . . . ,x(j)
µ)} j∈[m]

)
1: Send {y j, r̃(xxx j)} j∈[m] to V given oracle access to y j =

f̃ (xxx j) for all j ∈ [m].
2: Receive α from V , and generate a random polynomial

f̂ ′ with coefficient vector fff ′ such that for every i ∈ Q,
f̂ ′(±βi) = f̂ (±βi) and for every j ∈ [m], ⟨ fff ′,(1,x(j)

1)⊗
·· ·⊗ (1,x(j)

µ)⟩= f̃ (xxx j). Let f̂ ′0(X) = f̂ ′(X)+α · r̂′(X).
S2 acts like an honest prover with input f̂ ′0.

Figure 5: Simulator S of the PCm

least 2t +1 valid Echo messages sent by honest parties. Also,
every honest party will send a Ready message, which means
every honest party will complete the Share phase.

Agreement. Suppose an honest party Pi completes the Share
phase; we consider the case for every other honest party Pj.
We first prove that they will receive 2t +1 Ready’s. Comple-
tion means Pi must have received 2t +1 Ready’s according
to Step 14 in Algorithm 3 with at least t +1 sent by honest
parties. From Step 12, if an honest party who has not sent
Ready receives t+1 Ready’s, it will send Ready. Thus, every
honest party will eventually receive at least 2t +1 Ready’s.

Next, we prove every honest party will receive t +1 Echo
messages. An honest party sends Ready only via Step 10 or
Step 12. If all honest parties send Ready by Step 12, there
must be t + 1 Ready’s sent by dishonest parties, which is
impossible. Thus, at least one honest party has sent Ready by
Step 10. Consequently, at least t +1 honest parties have sent
the Echo’s. So, Pj will eventually receive t +1 valid Echo’s.
It can then obtain its share f j and complete the Share phase.

Correctness. If the dealer Pd is honest, then f (X ,Y) only cor-
responds to a set of the same secret that s = f (z,0), so honest
parties will reconstruct the same secret. If an honest party Pi
reconstructs zi, every honest party receives at least t +1 valid
Echo messages corresponding to a common commitment of
a bivariate polynomial, so they reconstruct the same secret.

Secrecy. If the dealer Pd is honest and the corrupted set of A is
{Pci}i∈[t−ℓ], then A will get univariate polynomials f̂ (wci

N ,Y)
and f̂ (X ,wci

N) for all i ∈ [t− ℓ] along with the proof of these
polynomials’ evaluations. According to Theorem 3.2, the
evaluation proof only leaks ℓ queried evaluations of f̂ . As the
variable degree of X and Y are both t, A has no extra informa-
tion about polynomial f̂ (X ,0) and the secret s = f (z,0).

	Introduction
	Our Contribution
	Technical Overview
	Related Work

	Preliminaries
	Polynomial Commitment
	FRI and FRI-based Schemes
	Asynchronous Verifiable Secret Sharing

	PolyFRIM with a One-to-many Prover
	Rolling Batch FRI
	An Improved Multilinear PCS
	Construction of PolyFRIM
	Extending to One-to-many Proofs

	Construction of FRISS
	Empirical Conclusion
	Performance of PolyFRIM
	Performance of One-to-Many PolyFRIM
	Performance of PolyFRIM in AVSS

	The FRI Protocol and FRI-PC
	HyperPlonk
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 4.1

