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Abstract
We present Rabbit-Mix, a robust algebraic mixing-based
anonymous broadcast protocol in the client-server model.
Rabbit-Mix is the first practical sender-anonymous broad-
cast protocol satisfying both robustness and 100% message
delivery assuming a (strong) honest majority of servers. It
presents roughly 3× improvement in comparison to Blinder
(CCS 2020), a previous anonymous broadcast protocol in the
same model, in terms of the number of algebraic operations
and communication, while at the same time eliminating the
non-negligible failure probability of Blinder. To obtain these
improvements, we combine the use of Newton’s identities
for mixing with a novel way of exploiting an algebraic struc-
ture in the powers of field elements, based on an additive
2-basis, to compactly encode and decode client messages. We
also introduce a simple and efficient distributed protocol to
verify the well-formedness of client input encodings, which
should consist of shares of multiple arithmetic progressions
tied together.

1 Introduction

Anonymous communication is one of the most central com-
puter security goals, yet it is also among the most difficult
to realize at scale. Anonymous communication should hide
the identities of senders and recipients even against net-
work surveillance and traffic analysis. Some of the best-
known practical approaches for the problem include Tor [16]
and anonymization proxies [19, 26, 30]. However, these ap-
proaches are vulnerable to adversaries with powerful traffic
analysis capabilities, which potentially control a portion of
anonymous network servers [24, 25, 37].

Leveraging MPC A cryptographic approach for overcom-
ing traffic analysis leverages secure multiparty computa-
tion (MPC) [6, 11, 21] to build anonymous communication
protocols. Chaum [10] introduced the Dining Cryptogra-
phers (DC) problem formalizing the cryptographic notion for

anonymity, and proposed a seminal MPC-based solution for
sender-anonymous broadcast (AB). In his approach, referred
to as a DC-network (DC-net in short), a group of players can
publish their messages without revealing the information of
linkage between the players and their messages. The main ad-
vantage demonstrated by the DC-net approach was the strong
anonymity guarantee even against adversaries using power-
ful adversarial traffic analysis as long as the players behave
honestly and communicate over authenticated point-to-point
(P2P) channels. A main drawback of the original DC-net ap-
proach is its poor scalability. Every player must have secure
communication channels with all other players, and the num-
ber of players can be potentially large. A second drawback is
that the system is easily disrupted by malicious players.

AB in the Client-Server Model To address both of the
above limitations, a large number of of works considered scal-
able DC-net protocols in the so-called “client-server” model.
In this model, a small set of Ns servers jointly provides a
sender-anonymous virtual bulletin board to Nc clients1, where
Ns ≪ Nc [1, 2, 12–14, 17, 18, 27, 38, 40]. In particular, Dis-
sent [13, 40], Verdict [14], and Riposte [12] proposed AB
protocols with O(NcNs) overall communication showing off
better scalability than typical client-to-client DC-net protocols
that have O(Nc

2) overall communication. Dissent built a DC-
net in the client-server model and Verdict is built upon Dis-
sent, and uses zero-knowledge proofs of knowledge to prevent
disruption from malicious clients. Riposte and Express [18]
rely on Function Secret Sharing (FSS) [8], which in turn
only requires symmetric cryptography (e.g. AES). Sabre [38]
inherits the structure of Riposte and Express and improves
by employing fast secret-shared non-interactive proofs/argu-
ments(of Knowledge) for more efficient audits on client mes-
sages. Indeed, Riposte presented a seminal blueprint for AB
in which message shuffling is achieved via private-writing
(PW). MCMix [2] presented a 3-server shuffling protocol

1Here, Nc is an upper-bound on the size of the anonymity set rather than
the actual number of clients. See Section 1 for further discussion



with a different shuffling paradigm. Clarion [17] proposed
a Ns-server shuffling protocol which improves over MCMix.
We note that all protocols mentioned above do not guarantee
resilience against malicious servers. Concretely, even a single
misbehaving server can mount a Denial-of-Service attack by
preventing output delivery, and can potentially weaken the
security guarantee by disqualifying a subset of the clients,
effectively reducing the size of the anonymity set.

Resisting Malicious Servers Lu et al. [27] pointed out
that fairness of the underlying MPC protocol is essential to
mitigate the leakage of information linking clients and their
messages to corrupted servers. Fair MPC protocols guaran-
tee that an adversary obtains protocol outputs only if honest
clients receives their outputs. If an AB protocol is unfair, then
an adversary may receive output messages and terminate the
protocol forcing potentially some clients to participate again
in the next epoch with the same messages.

Motivated by this security concern, Lu et al. [27] con-
structed the first practical AB protocols with fair output de-
livery in an asynchronous network by relying on honest-
majority MPC based on Shamir’s secret sharing. More con-
cretely, they proposed two distinct mixing protocols: Asyn-
chroMix and PowerMix. AsynchroMix uses honest-majority
MPC to realize the butterfly sorting network for message shuf-
fling. It has O(1) client-to-server (c-to-s) communication and
O(NsNc log2 Nc) server-to-server (s-to-s) communication and
computation with O(log2 Nc) rounds. PowerMix is based on
Newton’s identities relating the sums of powers and symmet-
ric polynomials, where the roots of the symmetric polynomial
are the client messages [12, 27, 28, 33]. PowerMix is light on
the client side: it has O(1) c-to-s communication and client
computation. However, it has O(Nc

3) server computation and
O(Nc

2) (s-to-s) communication. It also requires an expen-
sive offline protocol for securely generating a large amount
of secret correlated randomness. AsynchroMix and Power-
Mix both do not guarantee resiliency against DoS attacks by
corrupted servers since corrupted servers may choose to dis-
rupt the mixing protocols at the cost of receiving no client
message.

To address this limitation, Abraham, Pinkas, and Yanai [1]
presented Blinder, the first practical AB protocol with full
robustness (i.e., guaranteed output delivery). Following the
blueprint of Riposte [12], Blinder also uses a PW-based ap-
proach to shuffle messages by writing them into random lo-
cations, but realizes this approach using an honest-majority
MPC protocol based on Shamir’s secret sharing. Due to the
nature of the PW approach, Blinder requires communication
and computation redundancy to (1) minimize the probability
of severe collisions (e.g., messages will be lost if more than
two clients write into the same location) and (2) recover mes-
sages from mild collisions if a collision involves two client
messages. Similarly to Riposte, Blinder achieves the first goal
by increasing the size of the PW database by some constant

factor c and the second goal by using two database tables
and a simple algebraic technique for recovering (at most)
two colliding messages. As a result, it inherits Riposte’s 95%
message delivery success rate for c = 2.75, in contrast to
PowerMix’s 100% delivery success rate. Blinder has roughly
2c
√

Nc client-to-server communication and O(Nc
2) server

computation/communication.

Technical Goal and Approach The goal of this work is to
build a practical AB protocol that simultaneously achieves ro-
bustness (i.e., guaranteed output delivery) and 100% message
delivery success rate, while concretely improving both com-
munication and computation complexities over the state-of-art
MPC-based AB protocols.

This goal is achieved by a new robust AB protocol that we
call Rabbit-Mix that we build upon authenticated point-to-
point channels and broadcast channels. Our main technical
approach is to combine Newton’s identity based shuffling tech-
nique with novel techniques for re-balancing and optimizing
communications and computations by exploiting the alge-
braic structure of powers of messages. As discussed above,
AB protocols that follow a PW-based approach inherently
require redundant blowups in their communications and com-
putations in order to reduce their message delivery failure
rates. We mitigate this redundancy while achieving perfect
message delivery by using Newton’s identities as a main
building block, similarly to PowerMix. However, PowerMix’s
server computation requires O(Nc

3) algebraic operations to
privately compute secret shares of Nc consecutive powers
(e.g., m,m2, · · · ,mNc ) of each client’s message m, where Pow-
erMix clients submit a single secret-share of their messages to
servers. Another major bottleneck of PowerMix is its reliance
on an expensive offline protocol2 for generating secret-shared
powers of random secret field elements used to compute the
powers of the actual messages.

In order to achieve the best of both worlds, we exploit the
algebraic structure in powers. Our main observation is that the
Nc sequential powers of field element m can be computed by
evaluating a circuit of multiplication depth 1 (and algebraic
degree 2) on a set of 2

√
Nc−1 elements that we call a square-

root encoding of m. This kind of degree-2 quadratic expansion
resembles protocols for private information retrieval/writing
with square-root communication; however, instead of apply-
ing the expansion to sparse vectors, here we apply it to a dense
vector consisting of distinct powers of a message. Employing
this client message encoding results in a graceful tradeoff be-
tween server computation and client communication: servers
only need O(Nc) algebraic operations to compute the Nc pow-
ers of each message m and a client is now required to send the
O(
√

Nc) secret-shares of its message m. Moreover, similarly
to Blinder (and unlike PowerMix), we only require a simple

2In the MPC literature, an offline (sub)protocol is a protocol that is exe-
cuted before the actual protocol inputs are known. See Section 2.1 for further
discussion.
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Required

C-to-S
(Broadcast)

S-to-S
(P2P)

Client
(comp)

Server
(comp)

Server
Round

Switch-Network∗

[27] < Ns
3 Fair 100%

Non-linear
(MultTri) Yes 1 12NsNc log2 Nc 1 2NcNs log2 Nc log2 Nc

PowerMix∗

[27] < Ns
3 Fair 100%

Non-linear
(Powers) Yes 1 6Nc

2 1 Nc
3/2 2

Blinder
[1] < Ns

4 Robust 95%
Linear

(DouRand) Yes 4.97
√

Nc 17Nc 4.97
√

Nc 5.5Nc
2 4

Rabbit-Mix
(This Work) < Ns

4 Robust 100−ε%
Linear

(DouRand) Yes 1.87
√

Nc 5.32Nc 1.87
√

Nc 1.43Nc
2 4

Table 1: Comparison to Related Works: Let Nc and Ns be the numbers of clients and servers respectively. ts = server corruption
threshold. Service strength is either Fair or Robust. The offline communication column shows the types of correlated data
required to be prepared during the offline phase. DouRand, MultTri, Powers denote double random sharing, multiplication
triple sharing, powers of a random sharing respectively. Offline setup marked as “linear” can be generated non-interactively
using pseudorandom secret sharing. All communication complexity is measured by the number of field elements. C-to-S
(broadcast) indicates communication costs from a client to each server in the number of field elements to broadcast. S-to-S
(P2P) indicates the communication cost per server to be transmitted via authenticated P2P channels. Client (comp) is a client’s
computational overhead in Nc and Ns so that actual complexity can be computed by multiplying it by the operations required
for underlying secret-sharings. Similarly, Server (comp) is also a server’s computational overhead in Nc and Ns. The total
communication complexity can be calculated by multiplying by Nc. * indicates that these protocols are built to work over an
asynchronous network. ε denotes a statistical delivery failure percentage which is negligible (e.g., probability≪ 1/2κ) for any
system configurations with at least 32-byte long primes.

constant-round offline setup protocol, which can further be
made entirely non-interactive in some parameter regimes.

Finally, we observe that the above quadratic compres-
sion can be viewed as using a simple additive 2-basis of
S = {1,2, ...,Nc}, namely a small set S ′ such that every num-
ber in S can be written as a sum of two numbers from S ′.
Using a more sophisticated additive 2-basis [39], we reduce
the size of encoding to roughly 1.87

√
Nc. Hence, the client

communication (and computation) is smaller than 2
√

Nc, and
the server computation per client is linear in Nc.

An additional difficulty is posed by the need to guarantee
robustness against malicious clients. Indeed, even a single
input encoding which is inconsistent with the underlying ad-
ditive 2-basis format can lead to a corruption of all outputs.
Therefore, it is imperative for the servers to verify that the
received secret-shares of an encoded client message are con-
sistent with the additive 2-basis. We present such an efficient
distributed verification protocol to verify the well-formedness
of the shares contributed by the clients.

Summary of Contributions Following is a summary of the
main contributions of this work.

• We construct Rabbit-Mix, a 4-round robust AB protocol
with statistically negligible delivery failure. Rabbit-Mix
has better concrete efficiency than state-of-the-art AB
protocols, including those with imperfect message deliv-
ery or those that only guarantee fairness. Our protocol is
built upon the existence of reliable broadcast and authen-
ticated point-to-point channels to achieve the desired
guaranteed output property, similarly to the previous re-
lated works.

• We exploit an algebraic structure in sequential powers,
using an additive 2-basis to improve concrete efficiency.

• We design a distributed verification protocol to verify the
well-formedness of the encoded input shares provided
by clients with respect to an additive 2-basis.

Comparison to Related Works Table 1 summarizes con-
crete in-depth comparisons between Rabbit-Mix and relevant
AB protocols with fairness or robustness. Rabbit-Mix im-
proves over the latest robust AB protocol Blinder in all cate-
gories in terms of concrete efficiencies in both the offline and
online phases. In comparison to PowerMix, Rabbit-Mix also
has better concrete server communication and computation
efficiencies and only requires linear correlated randomness
(double random shares). This is contrasted with PowerMix
and Switch-Network, which require non-linear correlated ran-
domness that is more expensive to generate and requires in-
teraction. In contrast, Rabbit-Mix and Blinder can both make
their offline computations non-interactive by using pseudoran-
dom secret sharing (PRSS) (See Section 7 and Appendix 2.1).
On the other hand, in contrast to Switch-Network and Pow-
erMix, Rabbit-Mix has O(

√
Nc) client-to-server communica-

tion overhead which might be a bottleneck in some network
settings especially considering that client-to-server communi-
cation relies on reliable broadcasts. Rabbit-Mix is less tolerant
against malicious servers as it has smaller corruption thresh-
old Ns

4 than PowerMix’s Ns
3 . Furthermore, Rabbit-Mix has a

negligible probability of delivery failure. Due to space limita-
tions, the complexity expressions in the table only include the
leading terms. We refer to Section 8 for in-depth efficiency
comparisons that include empirical benchmarks.



2 Preliminaries

Let λ be the security parameter. Let a and b be integers s.t.
a ≤ b. Then, we write [a,b] to denote the set of all integers
{c ∈ Z|a≤ c≤ b} and [a] to denote the set of positive inte-
gers {1, · · · ,a}. We often abuse our notations for arithmetic
operations over a set. For example, let S be an ordered set of n
field elements as S = {s1,s2, · · · ,sn} and a be a field element.
Then, we denote the ordered set of powers of a with exponents
in an ordered set S by simply aS which is {as1 ,as2 , · · · ,asn}.

2.1 Secure Multiparty Computation
In the following, we provide the brief overview on the secure
multiparty computation (MPC) especially in the honest ma-
jority setting where the number of corrupted servers is strictly
less than the number of honest servers.

Shamir’s Secret Sharing Shamir’s Secret Sharing
(SS) [34] is a core cryptographic scheme that enables one
to share its secret to multiple parties where the secret
remains hidden as long as a certain fraction of the parties
are not compromised. SS scheme is a pair of two algorithms
(Share,Reconst) defined as follows: let n be a positive
integer and q be a prime such that q > n.

1. Algorithm Sharen,d,q(s) : To share a secret s in a fi-
nite prime field Fq to n parties Pi, sharing algorithm
Sharen,d,q(s) will output n secret shares denoted by d [[s]]q
defined as follows: Sharen,d,q(s) will choose a random
degree d polynomial f (x) in Fq[x] with f (0) = s. Then,
the i-th share for party Pi is f (i). We omit d and q as
well when the context is clear. The computational cost
is O(d log2 d).

2. Algorithm Reconstn,d,q([[s]]) : To reconstruct a secret s,
we need to interpolate a d-degree polynomial f (x) such
that f (0) = s from d [[s]]q which is n distinct coordinates
{(i, f (i))}i∈[n] with up to t errors. We abuse the notation
and use Reconstn,d,q([[s]]) for the sake of simpler nota-
tion when the context is clear. We use Reed-Solomon
(RS) decoding algorithm to implement Reconstn,d,q([[s]])
which will interpolate a polynomial f (x) of degree at
most d from n points correcting up to t = ⌊(n− d)/2⌋
errors. The most efficient known version of the decod-
ing algorithm is based on FFTs which has O(n log2 n)
computation [36].

The d-sharing of secret s, d [[s]] is said to be d-consistent if
there exists a polynomial f (x) of at most degree d such that
every honest party Pi holds share f (i).

Batched Robust Opening In order to publicly open secrets,
we use a robust share opening protocol due to the works [4,15]
which opens multiple secret sharings in a batched manner. The

idea is to expand ℓ consistent d-sharings into N consistent
d-sharings for ℓ= N− (2t +1) and d ≤ 2t by using a public
Vandermonde matrix. Let Van(N×ℓ) (simply Van when the
context is clear) be a Vandermonde matrix where the entry at
the i-th row and j-th column of the matrix is i j. Then to open
d [[x(1)]]q, · · · ,d [[x(ℓ)]]q, all parties locally compute the matrix
multiplication of Van with the vector of [[x1]], · · · , [[xℓ]], which
essentially computes consistent d-shares of secret degree-ℓ
polynomial with shared coefficients x1, x2, · · · , xℓ. Then, all
parties will reconstruct at least (N− t) yi’s which can be con-
sequently reconstructed to xi’s. We denote the batched robust
opening protocol by Πrobust

open that takes inputs ℓ d-consistent
sharings d [[x(1)]]q, · · · ,d [[x(ℓ)]]q and outputs x(1), · · · ,x(ℓ).

Protocol 1: Robust Opening Protocol Πrobust
open

Parameters: N is the number of parties (servers), t is the corrup-
tion threshold.
Input: ℓ d-consistent secret-sharings d [[x(1)]]q, · · · , d [[x(ℓ)]]q.
Output: x(1), · · · ,x(ℓ).

1: Each party Pi locally computes
VanN×ℓ(d [[x(1)]]q, · · · ,d [[x(ℓ)]]q)→ d [[y(1)]]q, · · · , d [[x(N)]]q

2: Each party sends share d [[y(i)]]q to party Pi for each i ∈ [N].
3: Each party Pi reconstructs y(i) by running

ReconstN,d,q(
{

d [[y(i)]]q
}

i∈[N]
).

4: Each party Pi sends y(i) to other parties.
5: Each party upon all y(i)’s runs ReconstN,d,q(

{
y(i)

}
i∈[N]

)

that outputs a degree-(ℓ− 1) polynomial with coefficients
x(1), · · · ,x(ℓ).

The concrete communication cost to open ℓ = (Ns− ts)
secret-shares is 2Ns elements by each server as ts < Ns/4 in
this work. The computational cost by each server is 3

4 Ns
2 field

multiplications/additions and two instances of ReconstNs,d,q.

Algebraic MPC over Shamir’s Shares We use a MPC
protocol of basic arithmetic operations secure against mali-
cious adversary with corruption threshold ts < Ns/4 where a
point-to-point authenticated communication and a broadcast
channels are available to the MPC servers [3,4,15]. Let x and
y be two secret input values and z be a public input values
over a prime field Fq. Then, the following secure arithmetic
computations will be used to build our anonymous broadcast
protocol:

1. Share addition: Each party holds input secret-shares
d [[x]]q and d [[y]]q, then locally computes d [[x]] + d [[y]] =
d [[x+ y]]

2. Share multiplication: Each party holds input secret-
shares d [[x]] and d [[y]], then locally computes d [[x]] ·d [[y]] =
2d [[x · y]].

3. Scalar multiplication: Each party holds input secret-
shares d [[x]] and a publicly known scalar z, then locally
computes d [[x]] · z = d [[x · z]].



4. Scalar addition: Each party holds input secret-shares
d [[x]] and a publicly known scalar z, then locally com-
putes d [[x]]+ z = d [[x+ z]].

In this work, we design our algebraic circuits to only have
the maximum multiplication depth 1. Therefore, secure mul-
tiplications over two d-shares d [[x]]q and d [[y]]q in our work
will be simply local multiplications as 2d [[xy]]q = d [[x]]qd [[y]]q
resulting in a 2d-share. Note that xy cannot be reconstructed
by directly applying Reconstn,d,q on the 2d-shares due to non-
trivial information being leaked about secrets x and y. Thus,
we rerandomize the 2d-shares output by local multiplications
of two shares by employing preprocessed random double shar-
ing [15] (see Section 2.1). A random double sharing is a pair
of d [[r]]q and 2d [[R]]q such that r is a uniformly random secret
over Fq and r = R. With d [[r]]q and 2d [[R]]q, we rerandomize
2d [[xy]]q by computing 2d [[xy]]q + 2d [[R]]q− d [[r]]q.

Security of Algebraic MPC In this work, we rely on stan-
dard MPC components and protocols from secure MPC pro-
tocols [3, 4, 15, 20] that securely realizes necessary MPC
functionalities such as additions, multiplications, coin flip,
etc., in the honest-majority setting. Specifically, we use the
MPC components to construct our AB protocol by design-
ing algebraic circuits of our AB functionality and composing
the standard MPC protocols to securely evaluate the alge-
braic circuits. The protocol is secure as long as the number
of corrupted servers t < Ns

4 where the arbitrary composition
of protocols preserves the security [4, 9, 15].We describe our
protocols in the hybrid model following [9] where the security
of protocol Π that runs a subprotocol Πsub is guaranteed even
if Πsub is replaced with its ideal functionality Fsub. In such
case, we say that Π is a secure protocol in the Fsub-hybrid
model.

Coin Flip We use a coin flip functionality denoted by Fcoin
when invoked with parameters a prime number q and ℓ ∈
Z+ produces a set of ℓ field elements uniformly sampled
random from Fq to participating servers. We can realize the
functionality with information theoretic security by using
a random sharing protocol (described later in this section)
where all parties preprocess ℓ random shares over Fq and
open them when the coins are necessary.

Offline Functionalities/Protocols Our AB protocol exe-
cutes standard offline MPC protocols to prepare (correlated)
randomness information that it uses during the execution of
the main MPC protocols. In the MPC literature, we call these
protocols/functionalities offline computation/functionality so
that MPC servers before getting their inputs execute these
protocols to prepare randomness or correlated information to
execute the main MPC protocol upon their inputs. We use the
following offline functionalities and see [15] for more details:

1. Random Sharing: A random sharing functionality de-
noted by Frand takes N, degree d, and ℓ∈Z+ and outputs
consistent d-sharings of ℓ random field elements from
Fq.

2. Random Double Sharing: A random double shar-
ing functionality denoted by FDouRan() takes parame-
ters N, degree d, and ℓ ∈ Z+ and outputs ℓ pairs of
(d [[ri]],

2d [[Ri]]) such that random ri = Ri for all i ∈ [ℓ].

We measure the offline efficiency of a protocol by the num-
ber of random double sharings required to execute its online
phase protocol.

2.2 Anonymous Broadcast
An anonymous broadcast (AB) functionality is involved with
Ns servers, denoted by P1,P2, · · · ,PNs , which jointly serve at
maximum Nc clients3, in an epoch such that Ns ≪ Nc. An
adversary A may corrupt at most ts servers as well as at most
tc clients where we require ts < Ns/c for some constant at
least 2 while tc < Nc. Given these, we define the ideal robust
AB functionality as follows.

Definition 1 (Robust AB Functionality FAB). Let
C1,C2, · · · ,CNc be participating clients where Ci has
secret message mi such that an adversary A controls at
most tc clients for some tc < Nc. Let a client message be
represented as a field element over a prime field Fq for some
prime q. Then, the ideal AB functionality denoted by FAB
proceeds as follows:

1. Functionality FAB initialize an empty set H and waits
for a message mi ∈ Fq from each client.

2. An adversary A may select and corrupt up to tc clients
and instruct these clients to send any message from Fq∪
{⊥} where⊥ is a special character indicating an invalid
input message.

3. Upon each mi’s, FAB checks if mi = ⊥. If so, drop it.
Otherwise, add mi to H.

4. Once all messages are received from all participating
clients, FAB shuffles mi’s in H and outputs the messages
in a random order.

We note that the above definition of functionality formal-
izes the robust anonymous broadcast functionality in the pres-
ence of malicious adversary. That is, regardless of the mali-
cious activities orchestrated by an adversary A , the function-
ality FAB is guaranteed to receive, mix, and publish messages
from all honestly behaving clients. The fair AB functionality
will allow an adversary to terminate the protocol execution
without delivering the messages to clients. Hence, the ideal

3In general, Nc is a public parameter that sets only the maximum number
of messages per epoch, while not limiting the total number of clients.



functionality for fair AB can be defined by modifying Step 4
in the above definition as follows: Upon completion of shuf-
fling messages in H, FAB asks if A wishes to obtain the mes-
sages. Finally, if A responses with ⊥, then FAB outputs ⊥ to
all clients and A . Otherwise, FAB outputs all the messages to
clients as well as A . Finally, unfair AB functionality allows
an adversary to obtain all messages from honest clients and to
determine which messages from honest clients are published.
For this definition, Step 4 is modified as follows: Upon com-
pletion of shuffling messages in H, FAB sends all the shuffled
messages to A . Then, A returns to FAB a subset of messages
denoted by H ′. FAB then publishes messages in H ′.

3 Warm-up Protocol

To provide the intuition behind the mixing protocol, we start
with the most basic mixing protocol where all servers and
clients are assumed to follow the protocol. The toy protocol
can be seen as a variant of PowerMix [27] where the server
computation and c-to-s communication are re-balanced so
that server computation is minimized at the cost of high
c-to-s communication.

Algebraic Mixing Protocol Consider that clients Ci want
to send a message mi ∈ Fq. The algebraic mixing protocol
is based on Newton’s identities. The mixing protocol can be
summarized as a three-step process. First, suppose that mixing
committee servers have the shares of the j-th powers of each
[[mi]] for each j ∈ [Nc], that is, [[mi

1]], [[mi
2]], · · · , [[mi

Nc ]]. Then,
the servers jointly compute power sums x j = m1

j +m2
j +

· · ·+mNc
j for each power j (i.e., by locally summing the

shares of the same power and reconstructing the sums). Note
that computing power sums is an essential step to achieve
desired mixing property. This step converts all message power
encodings into order-independent aggregate values due to
commutativity of additions. The second step is to locally
compute a degree-Nc polynomial f (x) = xNc + cNc−1xNc−1 +
· · ·+ c0 such that f (x)’s roots are m1, m2, · · · mNc by using
Newton’s identities [29, 41] on the power sums to recursively
compute the coefficients as follows:

cNc−1 =−x1

cNc−2 =−(x2 + cNc−1x1)/2,
cNc−3 =−(x3 + cNc−1x2 + cNc−2x1)/3,

· · ·

We denote this procedure by NewtonId(x1,x2, · · · ,xNc).
The computation of NewtonId takes Nc

2/2 additions and mul-
tiplications. See [29] for more details on Newton’s identities.

Finally, the servers locally executes a root-finding algo-
rithm RootFind on f (x) which eventually outputs roots of
f (x) which are m1, m2, · · · , mNc in a random order.

We instantiate RootFind with a randomized algorithm by
Grenet, Hoeven, and Lecerf (algorithm 11 in [23]) which finds
roots of polynomial f (x) of degree d over a prime field Fq
with prime q = M · 2m + 1 where d < q and M = O(logq),
and 2m is chosen to be much larger than the number of terms
to be found. The average running time of the root finding
algorithm is O(d(log3 q logd + log4 q)).

Naive Client Message Encoding Suppose that a client
wishes to broadcast message m, a field element in Fq. A client
first needs to encode m into an AM-friendly format. With Nc
being the number of participating clients in an epoch, a naive
AM-friendly encoding E0 : Fq→ (Fq)

Nc is simply the ordered
set E0(m) = pkgm =

{
m1,m2, · · · ,mNc

}
.

Warm-up Protocol Let Nc and Ns be the numbers of clients
and servers respectively. First, each client with message m
locally computes E0(m), secret-shares pkgm, and send the
shares [[pkgm]] to appropriate servers. Each server wait for
all client message submissions and then locally compute the
shared sums of powers described above over secret-shares.
Finally, servers will jointly open the sums of powers and
locally computes a symmetric polynomial and run RootFind
to output mixed client messages. As long as all clients and
servers honestly follow the protocol, this warm-up protocol
is immediately correct. The protocol is secure as only the
sums of powers are opened whereas all individual powers of
messages remain shared.

4 Compressing C-to-S Communication

In this section, we describe how to optimize the warm-up pro-
tocol so that client’s computation and c-to-s communication
per server are sub-linear in the number of clients.

The First Attempt We observe that a sequence of Nc
powers of a field element can be encoded into a set of
2
√

Nc − 1 field elements in a way that the original Nc
powers can be recovered (decompressed) with multiplica-
tions of two elements from the encoding. In the further
details, consider that Nc is a square of some integer and
a client has a message m. Then, the client can encode m
into

{
m1,m2, · · · ,m

√
Nc−1,m

√
Nc ,m2

√
Nc , · · · ,m(

√
Nc−1)

√
Nc
}

instead of the entire sequence of Nc powers. Given this subset
of powers of m, it is easy to see that multiplications of two
entries from the subset will give

{
m1,m2, · · · ,mNc

}
where we

call this computation an input decompression. The size of the
naive encoding is 2

√
Nc−1.

Additive 2-basis Above, we observe that multiplications
of two encodings to enumerate all Nc powers are essentially
additions of two entries’ exponents to enumerate all exponents



from 1 to Nc. In mathematics, the later is known as an additive
2-basis for set [Nc]. We adopt the classical optimization of
the additive 2-basis due to Mrose [39]. We denote Mrose’s
additive 2-basis for a set [Nc] by BNc defined as follows. Let
N be N = 14L2 +10L−1, then additive 2-bases B for set [N]
contains five distinct finite arithmetic progressions:

S1 = {1+(i−1)1 | ∀i ∈ Z s.t. 1≤ i≤ L},
S2 = {2L+(i−1)L | ∀i ∈ Z s.t. 1≤ i≤ 3L},
S3 =

{
3L2 +2L+(i−1)(L+1) | ∀i ∈ Z s.t. 1≤ i≤ L

}
,

S4 =
{

6L2 +4L+(i−1)1 | ∀i ∈ Z s.t. 1≤ i≤ L+1
}
,

S5 =
{

10L2 +7L+(i−1)1 | ∀i ∈ Z s.t. 1≤ i≤ L+1
}
.

The sizes of arithmetic progressions are: |S1| = |S3| = L,
|S2|= 3L, and |S4|= |S5|= L+1 so that |B|= 7L+2 in total.
Approximately, 7N ≈ 2|B|2, so that the size of the additive

2-basis |B| ≈
√

7N
2 which leads to |B| ≈ 1.87

√
N and L ≈

0.267
√

N. See [32] and [31] for further details and another
variant with the same asymptotic properties.

Decompressing B to set [N] can be done by adding two
entries from the basis in a certain way. Due to space restric-
tion, we provide the additive 2-basis decompression circuit
Decomp(·) in Circuit 1 in Appendix A.

Client’s Input Encoding/Submission Now we describe
how a client with message m ∈ Fq submits its messages to
servers. Let Nc = 14L2 +10L−1 be the maximum number of
participating clients in an epoch for some integer L.4 Given
the corresponding (precomputed) additive 2-basis B , a client
with message m simply encodes m by computing mB , denoted
by pkg. Then, the client computes the secret-sharing ts [[pkg]]q
by running ShareNs,ts,q(xi) for each xi ∈ pkg and send ts [[pkg]]q
to servers accordingly. We denote this client input encoding
submission protocol by Πsubmit that takes a client input mes-
sage m and servers outputs their shares of ts [[pkg]]q at the end
of protocol.

Protocol 2: Client Message Submission Protocol Πsubmit

Parameters: Prime q, the number of clients Nc, the number of
servers Ns, the server corruption threshold ts, and the additive
2-basis B .
Input: Client C holds a message m defined over Fq.
Output: Servers output the secret-shares of ts [[pkg]]q.

1: C computes pkgm← mB .
2: C computes ts [[pkg]]q← ShareNs,ts,q(pkgm).
3: C sends the i-share of ts [[pkg]]q to Si.

Each client’s communication complexity is 1.87
√

Nc
field elements per server. The computational complexity is

4We remind that Nc is a public system parameter that upper-bounds the
number of participating clients in an epoch and does not require the number
of clients to be Nc in order for the AB protocol to work. That is, the Rabbit-
Mix’s functionality works correctly even if the actual participating clients is
smaller than Nc in an epoch.

1.87
√

Nc multiplications followed by the computational cost
from 1.87

√
Nc instances of Shamir’s secret-sharing. We note

that both complexities of computing and transmitting a client
message encoding based on the additive 2-basis offers roughly
10% improvement compared to the ones based on the first at-
tempt encoding described above where the message encoding
is of size 2

√
Nc−1.

Decompressing Client Input Shares Upon clients’ shared
input message encodings d [[mB ]]q, the servers locally decom-
press them to the secret-shares of m[Nc]. Having the additive
2-basis B as exponents in the message encoding, the encod-
ing decompression to shares of m[Nc] can be done by locally
computing 2d [[mi]]q = [[mi]] · [[m j]] from d [[mB ]]q, whenever the
additive 2-basis decompression requires the addition of i and
j from B. Note that the resulting output shares are the 2d-
secret-shares of Nc powers of message m that has degree at
most 2d as the maximum multiplication depth is 1. We denote
this decompression protocol by ΠDecomp(

d [[mB ]]q) that takes
as inputs secret-shares d [[mB ]]q and outputs 2d [[m[Nc]]]q. See
Protocol 4 for the full description in Appendix B.

The correctness immediately follows from the property of
additive 2-basis decompression described in Circuit 1 as the
decompression here is carried out on the exponents via the
secure multiplications. The computational costs of the decom-
pression protocol is essentially 14L2 +9L≈ Nc−0.267

√
Nc

field multiplications.

5 Input Well-formedness Verification

Malicious clients may deviate in two distinct ways from the
protocol instruction submitting shares of malformed message
packages. The first deviation strategy is that a malicious client
submits a t-consistent shares of an input message encoding
but the encoding does not agree with (is not well-formed
w.r.t.) the additive 2-basis format. The second is that a mali-
cious client submits inconsistent shares of an input message
encoding. In both cases, the AB protocol will fail to output
messages. To defeat such DoS attacks, servers must ensure
that input message packages are (1) well-formed according to
the additive 2-basis for Nc and (2) t-consistent. In the section,
we present an efficient input encoding verification protocol
by devising an efficient distributed verification protocol to
defeat the first adversarial strategy. Looking ahead, we will
show how to defeat the second strategy in Section 7.

Verifiable Input Encoding Let Nc = 14L2 +10L−1, B =
{S1,S2, · · · ,S5} be the additive 2-basis for Nc described
in the previous section and finally m be a client message.
Once a client completes the submission of message m,
servers holds the secret-sharings of input package pkg =
{x1,x2, · · · ,x7L+2}. Let sets X1, X2, · · · , X5 be the 5 partitions
of pkg where each Xi corresponds to mSi with denoting the



elements of set Xi by xi,1,xi,2, · · · . Then, servers must jointly
verify that pkg =

{
mB} for some m. This essentially means

that the servers must be able to verify that the linear relations
of the arithmetic progressions S1, S2, · · · , S5 appear as expo-
nents of m in the fixed order. We have two distinct types of
conditions to verify:

• (Inner-Progression) This type, called inner-progression
of Xi is about whether each set Xi have an arithmetic
progression of Si as exponents. We define b0

i to be a
linear sketch which is 0 only if the inner progression of
Xi is satisfied. If an input package pkg is well-formed
according to B , then all b0

i ’s will be 0.

• (Inter-Progression) This condition type, called inter-
progression of Xi for i ∈ {2, · · · ,5} is about whether
Xi’s first element is correctly formed in relation to two
elements in X j for j < i. We define b1

i to be a linear
sketch which is 0 only if the first element of Xi is indeed
the first element of mSi .

In order to verify these conditions, we essentially exploit
an system of degree-2 verification to which a client message
encoding of additive 2-basis is a unique solution.

Inner Progression Verification We outline how to compute
linear sketches for inner-progression conditions. Recall S1 =
{1,2, · · · ,L} starting from 1. This implies x1,1 = m. Then,
we can define linear sketch b0

1 = ∑
L−1
i=1 ci(x1,i+1− x1,i · x1,1)

for random coin ci’s such that b0
1 = 0 if the inner condition

holds for X1. The random coin ci is distributed uniformly and
must be multiplied to x1,i+1−x1,i ·x1,1 to prevent an adversary
from maliciously choosing S1 such that 0 = ∑

L−1
i=1 (x1,i+1−

x1,i · x1,1). Linear sketches b0
2, b0

4, and b0
5 for X2, X4, and X5

can be similarly defined as b0
1 relying on the existing entries

in pkg.
Defining b0

3 for X3 requires adding an additional element to
the client’s input encoding for the verification purpose. S3 is
an arithmetic progression of difference L+1 which does not
exist in S1 nor S2 and can only be computed from the addition
of 1 and L from S1 which creates an additional multiplication
depth for the verification. We bypass this by introducing a
new ordered set denoted by S6 that contains L+1. Then, the
input submission package of message m has additionally X6
with x6,1 = x1,1

L+1 which is supposedly mL+1 for message
m. Given x6,1, the linear sketch of inner progression for X3 is
defined as b0

3 =∑
L−1
i=1 ci(x3,i+1−x3,i ·x6,1)+c(x6,1−x1,1 ·x1,L)

for random coins ci and c where the computation still has
multiplication depth 1. Note that b0

3 = 0 only if the inner
progression condition for X3 is satisfied and x6,1 is x1,1

L+1.

Inter Progression Verification Except for X1, each Xi’s first
element needs to be verified to be correct. If the first element
of Xi is incorrect, then it is possible for Xi to still satisfy
its inner progression while not matching with the correct

additive 2-basis. Specifically, for each i∈ {2, · · · ,5}, we want
to ensure xi,1 = x1,1

si,1 .
The linear sketch of inter progression for X2 can be simply

computed as b1
2 = c(x1,L · x1,L− x2,1) for fresh random coin

c since s2,1 = 2L and s1,L = L. The inter progression linear
sketch for X3 is also simple to compute as b1

3 = c(x2,3L ·x1,L−
x3,1) for fresh random coin c. Also, the inter progression linear
sketch for X4 is simply computed as for fresh random coin c,
b1

4 = c(x4,1− x3,1 · x3,1).
Verifying inter progression for X5 requires a special treat-

ment. S5’s first element is 10L2 +7L that cannot be expressed
as a product of two elements in X1, X2, X3, or X4. Therefore,
to keep multiplication depth 1 in general, we introduce a new
exponent s6,2 into S6 such that (1) s6,2 is an addition of two
elements in any of S j for j < 5 and (2) the exponent of X5’s
first element (which is 10L2 +7L) is an addition of x6,2 and
another element x in any of S j for j < 5. We choose s6,2 to be
10L2 +7L−1 additionally introduced into S6 which is (1) an
addition of s3,L = 4L2+2L−1 and s4,L+1 = 6L2+5L from X3
and X4 respectively and (2) satisfies that s5,1 is an addition of
s6,2 + s1,1. Hence, the linear sketch of inter progression for X5
is defined as b1

5 = c1(x5,1−x6,3 ·x1,1)+c2(x6,3−x3,L ·x4,L+1)
for fresh random coins c1 and c2.

In fact, the additive 2-basis based client message encoding
by itself is verifiable without requiring introduction of S6. We
defer this to the full version of the paper.

Verifiable Input Encoding/Submission Due to space re-
striction, we provide the full description of the client input
submission protocol with well-formedness verfiability (Pro-
tocol 5) in Appendix D. The new protocol is identical to the
encoding/submission protocol described in Section 4 except
adding S6 =

{
L+1,10L2 +7L−1

}
to additive 2-basis B .

Thus, with two additional field elements, the c-to-s commu-
nication cost is 7L+4 field elements per server which is still
approximately 1.87

√
Nc. The new input submission protocol

ΠSubmit(m) will have client with input message m computes
and secret-shares mSi for i ∈ [6] and finally send the shares to
servers accordingly.

Input Well-formedness Verification Protocol For the well-
formedness verification, servers proceed as follows. Once they
receive a secret-shared client input package pkg, they run coin-
flip protocol Fcoin to generate 1.87

√
Nc random coins. Then,

each server locally computes the secret-share of sum of all
linear sketches 2t [[b]]q = ∑

1
i=0 ∑

5
j=1

2t [[bi
j]]q. Finally, servers

jointly reconstruct and check b. If b = 0, servers will keep
pkg, otherwise delete it. Note that it is possible that b= 0 with
probability 1/|F| while the input is malformed. Let κ be the
statistical soundness parameter. The above verification needs
to be executed κ/ logq times with independent input challenge
ci’s to achieve the desired soundness error probability 1/2κ.
We denote the well-formedness verification protocol by Πver()
and see Protocol 6 in Appendix E.



6 Rabbit-Mix against Malicious Adversaries

We describe our secure Rabbit-Mix protocol secure against
malicious clients and servers without fairness. Looking ahead,
we transform this unfair AB protocol into a robust protocol
with tools for robustness in Section 7. We put together all
the pieces built so far into an anonymous broadcast proto-
col that securely realizes the functionality FAB according to
Definition 1. The complexity analysis will be provided in
Section 8.

Protocol 3: Anonymous Broadcast ΠAB

Input Parameters: Let q be a prime. Let Nc = 14L2 +10L−1
be the number of participating clients in the current epoch. Let
Ns be the number of servers.
Preprocessed Information: 2Nc consistent random double shar-
ings (t [[ri]],

2t [[Ri]]) for i ∈ [Nc] prepared by running FDouRan(Nc)
in the offline phase. In addition, µ sets of (7L + 3) random

coins each denoted by
{

c(i)
}

j∈[7L+3]
prepared by invoking

Fcoin(µ(7L+4)) such that µ = κ/ logq.
Input: All servers receive and hold message package shares
t [[pkg(i)]]q from all clients Ci via Πsubmit (Protocol 5 in Ap-
pendix D). A set of identified malicious clients C ∗ initialized to
be an empty set.
Output: The servers output m1, m2, · · · , mNc in a randomly shuf-
fled order.

1: (Format Verification): repeat µ times with random coins.
2: Each server locally computes for each i ∈ [Nc], 2t [[b(i)]]q ←

Πver([[pkg
(i)]],

{
c(i)

}
).

3: All servers open all b(i)’s as Πrobust
open (

{
2t [[b(i)]]q

}
).

4: Each server updates set C ∗: for every i ∈ [Nc], do the fol-
lowings:

1. If any opening returns ⊥, output ⊥ and terminate.

2. If b(i) is a non-zero value, add the client to C ∗.
5: Set C H = C \C ∗, a set of clients’ indexes that submitted

inputs of valid format.
6: (Input Decompression and Mixing)
7: Each server locally runs for each i ∈ C H ,

ΠDecomp([[pkg
(i)]]) to decompress the input shares

into
{
[[mi

1]], [[mi
2]], · · · , [[mi

Nc ]]
}

.
8: Each server locally computes for each j ∈ [Nc], [[x j]] =

∑i∈C H [[mi
j]].

9: All servers open all x j’s by running Πrobust
open (

{
[[x j]]

}
).

10: Locally apply Newton’s identity to compute a symmetric
polynomial f (x) of degree Nc using x j’s.

11: Run the root finding algorithm RootFind on f (x) which
returns the set of {mi}i∈C H in a shuffled order which is the
protocol output.

Theorem 1. For any malicious adversary corrupting some
constant tc < Nc clients and ts < Ns/4 servers and for any
client messages m1, m2,· · · ,mNc , protocol ΠAB securely and
statistically realizes unfair FAB with anonymity set size at
least Nc− tc as defined in Definition 1.

Proof. Intuitively, our simulator (ideal world adversary) S
simulates the view of adversary in the real execution with
an access to the ideal functionality FAB. Let A be an ad-
versary corrupting less than ts servers. S starts simulating
honest servers’ computation by initiating C∗ to be an empty
set and invoking FAB. S locally computing verification cir-
cuit on corrupted clients’ input shares given by A . Then, S
opens every verification bit bi for the i-th submitted input
message. If any reconstructions fail, S sends a termination
signal to FAB and ends the simulation. Otherwise, S updates
C∗ with i’s such that bi ̸= 0. S simulates the rest: it obtains
all corrupted clients’ inputs {mi} such that mi =⊥ for i ∈C∗.
S sends corrupted clients inputs to functionality FAB which
returns all messages {mi} including honest clients’ messages.
S simulates the rest of interaction to provide A with {mi} by
simulating Πrobust

open where S possibly obtains a subset of {mi}
as its output. Finally, S submits the returned subset of {mi}
to FAB and completes the simulation. The view of adversary
in the real execution is identical to the simulated view in the
ideal execution except with probability tc/2κ where κ is a
security parameter since two views are different when A in
the real execution succeeds to pass input well-formedness ver-
ification with malformed message packages from corrupted
clients. We note that the sender-anonymity is guaranteed re-
gardless of adversary’s strategy since messages from honest
clients are reconstructed only at the end of protocol after the
algebraic mixing is correctly completed.

Handling Large Messages The above description assumes
that the maximum message length of clients is upper-bounded
by log |F| bits. For larger messages, we let clients and servers
do as follows: now clients and servers have an additional
parameter for the maximum number of sub-messages per
epoch, denoted by µ. Clients then partition their messages
into µ sub-messages each attached with the same random tag
τ of fixed length (e.g., statistical parameter κ≥ 40) so that m
is partitioned into m1||τ, · · · , mµ||τ where each mi||τ can be
encoded in F. Then clients submit each sub-message to mix-
ing servers. To avoid deanonymization by different message
lengths, clients with shorter messages must pad their mes-
sages. Servers wait for all clients completing the submissions
of all µ sub-messages (one sub-message for each AB proto-
col instance). Once all submissions are completed, servers
execute the µ instances of AB protocol. Since servers don’t
execute AB protocols until all sub-messages arrive, corrupted
servers/clients cannot corrupt messages with identical tags
except with very small chance.

7 Rabbit-Mix with Robustness

We transform the AB protocol in Section 6 to provide the
robustness as described in Section 2.2. The main technical
problem is that bad shares can be dealt by malicious clients or



servers so that batch reconstruction fails to reconstruct secrets
resulting in the abort of protocol execution. This means there
are two places that should be upgraded for Protocol 3 to be
robust according to Definition 1: (1) client message input
submission protocol and (2) random double sharing protocol
(including random sharing protocol). Obviously, using a veri-
fiable secret sharing (VSS) protocol, for example [6], to deal
every secret for both protocols will immediately resolve the
entire technical issue, resulting in a robust AB protocol. How-
ever, VSS protocols are expensive, relying on the interactions
of multiple rounds or other heavy cryptography tools. Hence,
we rely on the combination of dispute control techniques as
well as lightweight robust input protocol by [5, 15] discussed
below.

Robust Input Submission Protocol The robust input sub-
mission protocol denoted by Πrobust

Submit must guarantee that all
honest servers receive consistent secret-shares ts [[pkg]]q. Such
input submission protocol can be realized using offline and
online phases [5, 15]. In the offline phase, recipient servers
jointly computes [[r]] for a random value r (in the robust way,
described in the next subsection) and sends the shares to a
client and the client recovers r from the shares. In the online
phase, the client now having secret input x to be shared com-
putes x− r and broadcasts it to servers. Here, a broadcast
channel is a cryptographic broadcast channel where it is guar-
anteed for all receivers to received the same data. Then, the
servers locally compute their shares [[x]] = (x− r)− [[r]]. We
provide the analysis on the amount of data to be broadcasted
and compare with other relevant works in Section 8. We note
that Protocol 3 is a fair protocol if input message packages are
submitted by Πrobust

Submit so that the input shares are guaranteed
to be ts-consistent.

Robust Double Random Protocol The robust double ran-
dom functionality denoted by F Robust

DouRan() takes as input a posi-
tive integer ℓ, and outputs ℓ pairs of double random sharings in
a batched way regardless of an adversary’s disruption strategy.
In this work, we simply adopt a robust double random proto-
col that securely realizes F Robust

DouRan() from [1, 20] which relies
on an elegant non-interactive dispute control [5, 15]. Due to
space restriction, we refer the reader to further discussion and
protocol description in [1, 20].

For the case of small number of servers, F Robust
DouRan() can re-

alized in a non-interactive manner removing communication
during the offline phase by using Pseudo-Random Secret Shar-
ing (PRSS). In this way, servers generate double random shar-
ings by relying only on local evaluations of pseudo-random
functions on seeds pre-distributed only once at the initializa-
tion of servers [7]. We refer to Appendix F for the further
discussion of corresponding parameters and efficiency.

With replacing ΠSubmit with Πrobust
Submit and FDouRan with

F Robust
DouRan in Protocol 3, we finally have our robust Rabbit-Mix

protocol.

Theorem 2. Define Πrobust
AB to be the protocol obtained from

modifying ΠAB (Protocol 3) as follows: (1) clients submit
their messages by using Πrobust

submit and (2) servers compute dou-
ble random shares by running F Robust

DouRan. Then, for any mali-
cious adversary corrupting up to tc <Nc clients and ts <Ns/4
servers and for any client messages m1, m2,· · · ,mNc , protocol
Πrobust

AB securely realizes robust anonymous broadcast func-
tionality FAB with the anonymity set size at least Nc− tc as
defined in Definition 1.

Proof. The security and correctness of Πrobust
AB follow from

the security and correctness of Protocol 3 with the similar sim-
ulation strategy. Intuitively, the robustness is guaranteed as
follows. By the robustness guarantees of F robust

DouRand , the prepro-
cessed correlated randomness (ts [[ri]],

2ts [[Ri]]) is guaranteed
to be ts-consistent such that all honest servers hold consistent
shares. In addition, Πrobust

submit guarantees that client input shares
ts [[pkg(i)]]q are ts-consistent as well. Therefore, all [[b(i)]]’s at
Step 3 and all [[x j]]’s at Step 8 are 2ts-consistent regardless
of an adversary’s strategies so that Πrobust

open always succeeds
to reconstruct all secret shares to honest servers. Therefore,
Πrobust

AB always outputs honest clients’ messages.

8 Concrete Complexity Analysis

We present the in-depth communication and computation
cost estimates and comparisons to relevant anonymous broad-
cast protocols with fairness at minimum, Blinder [1], Switch-
Network and PowerMix [27].

Online Communication We present communication cost
estimates: the first is the c-to-s communication cost is the
number of field elements broadcast by a client to each server.
Recall that the robust input submission protocol described
in Section 7 requires a client to broadcast message package
masked by random elements. Hence, we provide the number
of field elements to be broadcast per client. The second is the
per-client/per-server s-to-s communication cost which is the
number of field elements to be transmitted over point-to-point
authenticated (P2P) channels. See Table 2. We note that the
server communication for Blinder and our protocol do not
include the communication incurred by computing random
coins. Random coins can be computed by either (1) opening
as many random shares as required using the batch open-
ing protocol or (2) opening a single random share and then
applying a pseudo-random generator on the reconstructed ran-
domness. We provide the required number of random coins
and corresponding necessary offline resources in Table 5.

Communication vs. Blinder Note that Blinder’s complexi-
ties are estimated based on the protocol with 95% message
delivery success rate. Blinder relies on the private writing
(PW) paradigm similarly to Riposte [12] that employs redun-
dancy. Blinder’s server-to-server communication complexity



ts
Network

Type
Service
Strength

Delivery
Success

Offline
Preprocess

C-to-S
(Broadcast)

S-to-S
(P2P)

Server
Round

Switch-Network
[27] < Ns

3 A Fair 100%
Non-Linear
(MultTri) 1 12NsNc log2 Nc log2 Nc

PowerMix
[27] < Ns

3 A Fair 100%
Non-Linear

(Powers) 1 6Nc
2 2

Blinder
[1] < Ns

4 S Robust 95%
Linear

(DouRand) 4.97
√

Nc 17Nc 4

Rabbit-Mix
(This Work) < Ns

4 S Robust 100−ε%
Linear

(DouRand) 1.87
√

Nc 5.32Nc 4

Table 2: Online Communication Comparisons: Let Nc and Ns be the numbers of clients and servers respectively. ts = server
corruption threshold, Network Type is either S (Synchronous) or A (Asynchronous). Protocol Feature is either Fair or Robust.
The offline communication column shows the types of information that needs to be prepared during the offline phase for a
protocol execution of a single epoch. DouRan, MultTri, Powers mean double random sharing, multiplication triple sharing,
powers of a random sharing. See Table 5 for more in-depth offline complexity comparisons. C-to-S (Broadcast) is the number of
field elements for a client to reliably broadcast to all servers. S-to-S (P2P) is the number of field elements sent by a server to
each server via authenticated P2P channels.

Client Computation Server Computation
Switch-Network [27]

(Fair) Css (2NcNs log2 Nc)Cm +(2NcNs log2 Nc)Ca +(12 Nc
Ns

log2 Nc)CM
rec

PowerMix [27]
(Fair) Css (Nc

3

2 +NcNs)Cm +(Nc
3 + Nc

2

2 +NcNs)Ca +6 Nc
Ns

CM
rec +CRF (Nc)

Blinder [1]
(Robust) 4.97

√
NcCss (5.5Nc

2 +13.2Nc
√

Nc +5.74NcNs)(Cm +Ca)+15.3 Nc
Ns

CM
rec +α(logq−2)Cm

Rabbit-Mix
(Robust) 1.87

√
NcCss (1.43Nc

2 +6.15Nc
√

Nc +2NcNs)Cm +(1.5Nc
2 +2NcNs)Ca +5.32 Nc

Ns
CM

rec +CRF (Nc)

Table 3: Online Computation Complexities: Let Nc and Ns be the numbers of clients and servers respectively. The computational
complexity is measured in terms of the numbers of field operations (multiplications and additions) and of invocations of secret-
sharing or share-reconstruction. Cm and Ca denote the costs of field multiplication and addition respectively. Css denotes the cost
of secret-sharing. CM

rec denote the costs of Reed-Solomon-decoding. CRF(Nc) is the cost of root-finding for Nc roots. In the above,
α is the expected number of locations in the Blinder’s PW table with non-zero values.

is (6+4γ)Nc with γ = 2.75 for 95% message delivery success
rate5. With a target message delivery success rate similar to
ours (e.g., 100%), γ needs to increase accordingly (See Ta-
ble 4) resulting in the increase of the communication (as well
as computation) in a linear fashion in γ. Specifically, Blinder
with 99.9% delivery success rate has server-to-server commu-
nication of 96Nc field elements per server which is 17 times
bigger than Rabbit-Mix while still expectedly dropping 10
messages out of 10000 messages.

Success Rate (%) 95 96 97 98 99 99.9
Expansion Rate γ 2.75 3.14 3.67 4.63 6.71 22.02

Table 4: Redundancy and Delivery Success Rate

Online Computation We present the concrete computa-
tional cost estimates of the related work in terms of the num-
ber of field operations, multiplications and additions as well
as the number of calls to the secret-share reconstruction proto-

5We assume here that the choice of prime is large enough so that a single
execution of verification satisfies its info-theoretic security requirement.

col (Table 3). Our implementation of Root-finding algorithm
has expected computational cost CFindRoot(Nc)≈ 7Nc log2 Nc
for a fixed q. Thus, we observe that the major computational
bottleneck in common is the cost to decompress clients’ input
shares.

Offline Requirements The performance of a system also
crucially depends on the offline complexity. If the online
phase requires the offline phase to prepare huge amount of
preprocessed data, then the system in general cannot provide
a continuous and efficient service. Table 5 provides the of-
fline computation estimates of relevant protocols. Rabbit-Mix
requires to prepare 2Nc +0.94

√
Nc double random shares in

the offline phase which is approximately 30% of Blinder and
asymptotically improves by factor of Nc over PowerMix and
Switch-Network, mixing protocols with fairness that in turns
use these double random shares to prepare non-linear random
shares (Multiplication Triple and Powers of random shares).

Discussion Both C-to-S and S-to-S communication of our
robust AB protocol are reduced by over 60% in comparison to
the latest robust AB protocol Blinder [1] while our message



Double
Random

Random
Coin

Multiplication
Triple

Random Bit
Share

Nc-Powers of
A Random Share

Total # of
Double Random’s

Switch-Network
[27] 0 0 1.25Nc log2 Nc

1
2 log2 Nc 0 1.75Nc log2 Nc

PowerMix
[27] 0 0 0 0 2Nc

2 2Nc
2

Blinder
[1] 5.75Nc Nc +2.49

√
Nc 0 0 0 6.75Nc +2.49

√
Nc

Rabbit-Mix
(This Work) 2Nc 0.94

√
Nc 0 0 0 2Nc +0.94

√
Nc

Table 5: Offline Requirement Comparisons: Nc is the number of clients. The middle five columns (Double Random, Random
Coin, Multiplication Triple, Random Bit Share, Nc-Powers of Random Share) show the types of preprocessed material shares
required to execute each protocol per epoch. The values represents the amount of each preprocessed materials measured by the
necessary numbers of Double Random Shares. The last column shows the total required number of double random shares which
is the sum of all values on the left columns. Computing a preprocessed shared random coin (e.g. random shares) only requires the
half of the computational cost of a double random so that the values of the column represent the half number of double random
shares for the sake of measuring convenience.

delivery success rate is 100% in contrast to Blinder’s 95%.
The server computation cost of our protocol also improves
over Blinder by over 60% in terms of number of field oper-
ations. In comparison to PowerMix, our protocol provides
further optimized mixing efficiency with stronger robustness
of the protocol. Essentially, our optimization allows our ro-
bust AB protocol to have O(Nc

2) computational overhead
with sublinear client computation and C-to-S communication
overhead in contrast to O(Nc

3) computational overhead of
PowerMix [27]. Our AB protocol also requires minimal of-
fline resources compared to previous relevant works as our
protocol’s offline resource requires less than 30% of double
random shares compared to robust Blinder and PowerMix
which requires the quadratic number of double randoms in
the number of clients.

9 Implementation and Benchmarks

We implemented the preliminary prototype6 of Rabbit-Mix
protocol described in Section 6 and Section 7. Specifically, we
implemented all online-computation subprotocols of robust
Rabbit-Mix protocol (Protocol 3) with mock-up communica-
tion. That is, broadcasts and P2P channels between servers
and clients are performed by direct reads and writes to each
others’ memory. The simulation of the Rabbit-Mix protocol is
synchronized and local where servers’ state machines config-
ured with the number of servers, clients, and prime numbers
execute subprotocols one by one in the state-by-state manner
with mock-up communication where clients and servers di-
rectly read data from their read memory and write data to other
servers’ read memory. Therefore, our experimentation and
benchmarks have limitations in capturing network-induced
latencies and exposing bandwidth bottlenecks.

6This will be open-sourced at the point of publication due to an adminis-
trative reason.

Our prototype is implemented in C++ using Number The-
oretic Library [35] to implement the algebraic operations.
We note that, as our prototype directly uses NTL’s native
classes, the prototype is not to claim the best performance but
to provide the insights on the protocol asymptotic behavior
depending on distinct settings and parameters.7 We tested
our prototype on a virtual machine running 64-bit Ubuntu
equipped with Intel Xeon CPU E3-1505M 3.00GHz with
4 CPU cores and 32 GB memory. All the benchmarks are
measured based on 10 trials with 5 servers.

Computation Latency with Distinct Primes and Numbers
of Clients First, we measured the server computation la-
tency of the robust Rabbit-Mix prototype. We tested our pro-
totype with Nc clients and distinct FFT-friendly primes of
64-1664 bits where the number of clients Nc is selected to
be Nc = 14L2 + 10L− 1 according to the additive 2-basis
encoding to encode client messages. Specifically, we chose
Nc = 399,1223,2135, · · · so that the number of clients are
spread approximately by 800. Figure 1 presents the per-server
computation latency with distinct primes.

Figure 2 shows the server computation latencies per client
depending on distinct settings of number of clients, servers
and primes as in the previous. As the latency measurements
are scaled by the number of clients, a linear (or close-to-linear)
trend can be observed as server computation is O(Nc

2). In
addition, we observe in Figure 3 that some primes yield larger
throughput in comparison to other prime settings.

Indeed, Figure 3 shows that a group of primes leads to
larger throughput in comparison to a 208-byte prime. Specifi-
cally, consider that clients wish to send a 208-byte message.

7For example, even though the Rabbit-Mix’s input decompression proto-
col requires less than half of algebraic operations (for both multiplications and
additions) that Blinder requires, our implementation has higher latency than
Blinder implementation due to differences in experimentation systems and
implementations. The more optimized implementation based on light-weight
libraries such as GMP is a future work.



Figure 1: Per-Server Computation-Only
Latency with Distinct Primes and Num-
bers of Clients.

Figure 2: Per-Server Computation-Only
Per-Client Latency with Distinct Primes
and Numbers of Clients.

Figure 3: Per-Server Computation-Only
Latency Delivering fixed-length Mes-
sages with the Distinct Prime Lengths.

Figure 4: Server Computation Latency with Subprotocol Dis-
tribution in Logarithmic Scale: The benchmarks are measured
with 5 servers executing the protocol over a 256 bit FFT-prime.
Blue, orange, gray, yellow, purple colors corresponds to in-
put format verification, input decompression, computing sum
of powers, the symmetric polynomial, and the Graeffe-root
finding algorithm to find roots from the symmetric protocol
respectively.

In the first case, clients may submit a single 208-byte message
to servers which run Rabbit-Mix with a 208-byte prime. In
the second (and other) case(s), clients may partition its 208-
byte messages into and submit µ messages of size < 208/µ
to servers that in turns execute sequential Rabbit-Mix proto-
col µ-many times. For example, the gray line represents the
total server computation latency of 8 sequential Rabbit-Mix
executions with a 32-byte prime delivering a 208-byte mes-
sage. Here, each message partition contains a 40-bit tag (See
Section 6). Here, we set each partition to contain a 40-bit
tag to reconstruct the whole messages at the end. Figure 3
essentially shows the selections of primes smaller than 208
bytes with which Rabbit-Mix delivers 208-byte messages
with smaller server computation latency.

Server Computation Distribution In the following, we
present the online computation latency distributions among
the subprotocols of our robust ACB server. We first provide
the server computation latency of Rabbit-Mix protocol de-

Figure 5: Server Subprotocol Computation Distribution Ratio:
The ratio is based on the measurements in Figure 4.

pending on distinct numbers of clients spread by about 1000
up to over 10k clients per epoch with the settings of a 256-bit
FFT-prime in Figure 4. Root-finding computation is observed
to induce less computational time as the number of clients
increases. However, it induces non-trivial computational la-
tency due to the complexity of polynomial operations [23] for
the smaller number of clients.

In Figure 5, we present the ratio between subprotocol com-
putation latencies. We observe that the input decompression
becomes the major computational bottleneck as expected
when the number of clients grows. Recall that the overheads
of subprotocols computing; input decompressions, sums of
powers, and a symmetric polynomial is O(Nc

2), quadratic in
the number of clients whereas the root-finding algorithm’s
overhead is Õ(Nc) with a relatively large hidden constant.
Therefore, when mixing larger volumes (e.g., 1 million) of
client messages of relatively small sizes (e.g., 200 bytes),
the computation latency from the root-finding is expected to
be relatively tiny compared to the other subprotocols such
as input decompression, the sums of powers, and symmetric
polynomials. We note that Blinder’s main computational bot-
tleneck is also the input decompression where the Blinder
protocol’s input decompression requires at least 2 times more
algebraic operations than ours.

Finally, Figure 6 presents concrete communication over-



Figure 6: Server Communication Overhead in Bytes: Each
server transmits the respective numbers of bytes to other
servers during the online phase. The experimentation is taken
with clients sending a single message of a 256-bit prime.

heads in bytes. Specifically, we measure the sizes of memory
blocks (containing field elements) for each server to trans-
mit to other servers via authenticated point-to-point channels
during Rabbit-Mix’s online phase. The experimentation is per-
formed with two distinct number of servers (5 and 10 servers)
with 256-bit FFT prime field.

Malicious Clients’ Impact on Server Latency In the ro-
bust Rabbit-Mix protocol, clients are forced to submit con-
sistent shares to honest servers by Πrobust

submit . Therefore, only
a place that malicious clients may deviate is to submit the
secret shares of a malformed message encoding that does
not obey its additive-2 encoding format. In such cases, hon-
est servers will detect those malformed encoding shares at
the end of subprotocol Πver and simply drop those messages
in the rest of execution with adding that client to the list of
corrupted clients. Therefore, deviation by corrupted clients
cannot degrade server computation latencies.
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A Additive 2-basis Decompression Circuit

Let N = 14L2 +10L−1 for a positive integer L and B be the
additive 2-basis for [N]. Then the following circuit shows how
to decompress B into [N].

Circuit 1: Additive 2-basis Decompression Circuit
Decomp(β)

Input: Let N = 14L2 + 10L − 1. The input is B =
{S1,S2,S3,S4,S5} as above.
Output: [N] = {1,2, · · · ,N}.

1: Elements from 1 to 2L: We already have elements from 1
to L. We can populate the rest by computing i+L for each
i ∈ L. This requires L additions in total.

2: Elements from 2L+ 1 to 3L2 + 2L: These elements can
be computed as i+ j for each i ∈ S1 and j ∈ S2. The total
number of additions is 3L2.

3: Elements from 3L2 +2L+1 to 4L2 +3L−1: The elements
in this range can be computed also by computing additions

between S1 and S3 as i+ j for each i ∈ S1 and j ∈ S3. The
total number of additions is L2.

4: Elements from 4L2 +3L to 6L2 +4L−1: These elements
can be computed by computing additions of elements of
i ∈ S3 and j ∈ S′2 ⊂ S2 where the subset S′2 = {L2 +Li′−
L j′ | i′ ∈ [2L + 1] and j′ ∈ {0,1, · · · ,L−1}}. Let s3, j be
the j-th number of S3. Then, the circuit populates the el-
ements in the range by adding for each i ∈ [2L+1] and each
j ∈ [1, · · · ,L], s3, j +L2 +Li−L( j−1). The total number of
additions is 2L2 +L.

5: Elements from 6L2 + 4L to 6L2 + 5L: S4 trivially covers
this range.

6: Elements from 6L2 + 5L+ 1 to 6L2 + 6L: The elements
in the range can be computed by additions between S1 and
6L2 +5L, the last element of S4, thus with L additions.

7: Elements from 6L2 +6L+1 to 9L2 +6L: The elements in
this range can be computed by additions between S2 and S4
where the number of additions is 3L2.

8: Elements from 9L2+6L+1 to 10L2+7L−1: This interval
can be computed by additions between S3 and S4 where the
number of additions is L2 +L.

9: Elements from 10L2 +7L to 10L2 +9L: The elements up
to 10L2 +8L in this interval is already covered by S5 and the
rest can be computed by additions between S1 and 10L2+9L.
Hence, the number of additions is L.

10: Elements from 10L2 + 9L+ 1 to 13L2 + 9L: The interval
is computed by adding elements between S2 and S5. Hence,
the number of additions is 3L(L+1).

11: Elements from 13L2 +9L+1 to 14L2 +10L−1: Finally,
the interval can be computed by adding elements between
S3 and S5 and the number of additions is L2 +L.

B Client-Input Encoding Decompression

The following protocol shows how to decompress the secret-
shares of client message package pkg into the secret-shares
of Nc powers of a message. In the following, we have Nc =
14L2 + 10L− 1 for some positive integer L and denote a t-
consistent secret-shared encoding of client message m by
t [[pkg]]q where pkg = mB .

Protocol 4: Client Input Decompression Protocol
ΠDecomp(

t [[pkg(i)]]q)

Parameters: Nc and L such that Nc = 14L2 +10L−1. The num-
ber of servers is Ns. t is the threshold on the number of corrupted
servers. q is a prime number.
Preprocessed Information: None
Input: A mixing server S j has as inputs the j-th consis-
tent t-sharings of input message encoding t [[pkg(i)]]q ∈ Fq

7L+2

received from client Ci with input message mi such that
t [[pkg(i)]]q =

{
t [[S(i)1 ]]q,

t [[S(i)2 ]]q, · · · , t [[S(i)5 ]]q

}
, where pkg(i) is

submitted via Protocol 2.

http://www.shoup.net/ntl/


Output: An ordered set of Nc secret-shares [[x(i)]]q defined as

{t [[x(i)1 ]]q, · · · , t [[x(i)L ]]q,

2t [[x(i)L+1]]q, · · · ,
2t [[x(i)6L2+4L−1]]q,

t [[x(i)6L2+4L]]q, · · · ,
t [[x(i)6L2+5L]]q,

2t [[x(i)6L2+5L+1]]q, · · · ,
2t [[x(i)10L2+7L−1]]q,

t [[x(i)10L2+7L]]q, · · · ,
t [[x(i)10L2+8L]]q,

2t [[x(i)10L2+8L+1]]q, · · · ,
2t [[x(i)Nc

]]q}.

Protocol: Each server locally computes the following:
1: Every j from 1 to 2L: We already have output shares from

1 to L so that set [[x(i)j ]] = [[s(i)1, j]] where [[s(i)1, j]] is the j-th

share in the input share set [[S(i)1 ]]. Compute the rest ( j ∈
[L+1, · · · ,2L]) by computing 2t [[x(i)j ]] = t [[s(i)1, j−L]] ·

t [[s(i)1,L]].
2: Every j from 2L+ 1 to 3L2 + 2L: Compute for each for

l ∈ [3L] and k ∈ [L], 2t [[x(i)j ]] = t [[s(i)1,k]] ·
t [[s(i)2,l ]].

3: Every j from 3L2+2L+1 to 4L2+3L−1: For each k ∈ [L]
and l ∈ [L], compute 2t [[x(i)j ]] = t [[s(i)1,k]] ·

t [[s(i)3,l ]].
4: Every j from 4L2 +3L to 6L2 +4L−1: For each k ∈ [2L+

1] and each l ∈ [L], compute 2t [[x(i)j ]] = t [[s(i)2,L+k−l ]] ·
t [[s(i)3,l ]].

5: Every j from 6L2+4L to 6L2+5L: Set for each k ∈ [L+1],
t [[x(i)j ]] = t [[S(i)4,k]].

6: Every j from 6L2 + 5L+ 1 to 6L2 + 6L: For each k ∈ [L],
compute 2t [[x(i)j ]] = t [[S(i)1,k]] ·

t [[S(i)4,L+1]].
7: Every j from 6L2 +6L+1 to 9L2 +6L: For each k ∈ [3L]

and each l ∈ [2,L+1], compute 2t [[x(i)j ]] = t [[S(i)2,k]] ·
t [[S(i)4,l ]].

8: Every j from 9L2 + 6L + 1 to 10L2 + 7L− 1: For each
k ∈ [L] and each l ∈ [L + 1], skip the first computation
t [[S(i)3,1]] ·

t [[S(i)4,1]] and then compute the rest as 2t [[x(i)j ]] =

t [[S(i)3,k]] ·
t [[S(i)4,l ]].

9: Every j from 10L2 + 7L to 10L2 + 9L: For k ∈ [L + 1],
set t [[x(i)j ]] = t [[s(i)5,k]]. Then, compute for k ∈ [L], compute
2t [[x(i)j ]] = t [[s(i)1,k]] ·

t [[s(i)5,L+1]].
10: Every j from 10L2+9L+1 to 13L2+9L: For each k ∈ [3L]

and l ∈ [2,L+1], compute 2t [[x(i)j ]] = t [[s(i)2,k]] ·
t [[s(i)5,l ]].

11: Every j from 13L2+9L+1 to 14L2+10L−1: For each k∈
[L] and l ∈ [L+1], skip the first computation t [[s(i)3,1]] ·

t [[s(i)5,1]]

and then compute the rest 2t [[x(i)j ]] = t [[s(i)3,k]] ·
t [[s(i)5,l ]].

C Input Well-formedness Verification Circuit

The following circuit describes the algebraic circuit to com-
pute a share of linear sketch predicate indicating whether a
client’s input message encoding is well-formed according to
additive 2-basis for the number of clients Nc.

Circuit 2: Well-formedness Verification Circuit
FormatVerify()

Input Parameters: Let q be a prime. Let Nc = 14L2 +10L−1
be the number of participating clients in the current epoch.
Input: A set of 7L+ 4 field elements X = {x1, · · · ,x7L+4} to
be verified which can be partitioned into 6 ordered sets X1, X2,
X3, X4, X5 and X6. A set of random field elements {ci}i∈[7L+3]
sampled independent of X .
Output: Output b where b = 0 if and only if pkg satisfies both
the inner progression and inter progress conditions as defined
above.

1: Parse the input set X into 6 ordered subsets X1,X2, · · · ,X6
where X1,X2, · · · ,X5 are ordered sets of elements having
additive 2-basis S1, S2, · · · , S5 as exponents accordingly. We
let X6 contain the final two elements of X .

2: Compute b0
1 = ∑

L−1
i=1 ci(x1,i+1− x1,ix1,1)

3: Compute b0
2 = ∑

3L−1
i=1 ci+L−1(x2,i+1− x2,ix1,L)

4: b0
3 = ∑

L−1
i=1 ci+4L−2(x3,i+1 − x3,ix6,1) + c5L−2(x6,1 −

x1,1x1,L)
5: b0

4 = ∑
L
i=1 ci+5L−2(x4,i+1− x4,ix1,1)

6: b0
5 = ∑

L
i=1 ci+6L−2(x5,i+1− x5,ix1,1)

7: b1
1 = 0

8: b1
2 = c7L−1(x1,Lx1,L− x2,1)

9: b1
3 = c7L(x2,3Lx1,L− x3,1)

10: b1
4 = c7L+1(x4,1− x3,1x3,1)

11: b1
5 = c7L+2(x5,1− x6,2x1,1)+ c7L+3(x6,2− x3,Lx4,L+1)

12: Compute and output b = ∑
1
i=0 ∑

5
j=1 bi

j.

D Well-formedness Verifiable Client Input
Submission

In order for (shared) client input encodings to be verifiable,
an additive 2-basis B now modified to contain additional
set of elements S6 = {s6,1,s6,2}=

{
L+1,10L2 +7L−1

}
as

described in Section 5. Hence, the new input submission
protocol is identical a client with message m and the new
B = {S1,S2, · · · ,S6} creates mB and secret-shares them to-
wards servers. We will simply use the identical notation
Πsubmit for this input submission protocol.

Protocol 5: Well-formedness Verifiable Input Submis-
sion Protocol Πsubmit

Parameters: Prime q, the number of clients Nc, the number of
servers Ns, the server corruption threshold ts, and the additive
2-basis B = {S1,S2, · · · ,S6}.
Input: Client C holds a message m defined over Fq.
Output: Servers output the secret-shares of ts [[pkg]]q.

1: C computes pkgm← mB .
2: C computes ts [[pkg]]q← ShareNs,ts,q(pkgm).
3: C sends the i-share of ts [[pkg]]q to Si.



E Input Well-formedness Verification Protocol

The following protocol describes the protocol that takes as
inputs the t-consistent sharings of a client’s input message
encoding and outputs a 2t-consistent sharing of a linear sketch
that indicates the well-formedness of the input message encod-
ing. The output sharing is re-randomized by using a random-
double sharing. The protocol uses Circuit 2 as a sub-module.

Protocol 6: Well-formedness Verification Protocol
Πver()

Parameters: Let q be a prime. Let Nc = 14L2 +10L−1 be the
number of participating clients in the current epoch.
Preprocessed Information: A pair of consistent random double
sharings (t [[r]],2t [[R]]).
Input: For each i ∈ [Nc], Client Ci’s degree-t sharing of input

package t [[pkg(i)]]q =
{
[[x(i)1 ]], · · · , [[x(i)7L+5]]

}
. Finally, a set of ran-

dom challenge {ci}i∈[7L+4] over Fq.

Output: Output 2t [[b(i)]]q.
1: Each server locally computes a linear sketch by evaluating

FormatVerify([[pkg(i)]],{ci})→ 2t [[b(i)]]q.
2: All servers rerandomize 2t [[b(i)]]q using the preprocessed

random double sharing.

F Removing Offline Communication

As an alternative approach for generating robust random
shares, we can make use of the recent improvements in pseu-
dorandom secret sharing (PRSS) due to Benhamouda, Boyle,
Gilboa, Halevi, Ishai, and Nof [7]. Using PRSS, participants
can generate robust shares and robust double random shares
locally after an initial setup step for distributing PRF seeds.
This approach is worse asymptotically as Ns and the associ-
ated corruption threshold and polynomial degree grow, but
it is likely to be more efficient in cases where a bounded
number of servers Ns wish to perform a series of mixes for a
large group of clients. For a fixed number of servers, using
PRSS attains the Server-to-Server communication and round
complexity in exchange for a O(1) setup cost and a O(Nc)
computational cost.

More precisely, the online communication cost using the
PRSS approach is always zero, while the associated setup
time, memory costs, and online computational costs depend
linearly on the minimum known size of a combinatorial object
known as a (n,m, t) cover. When t = Θ(n), this minimum size
is exponential in n, and so the approach is not feasible in the
asymptotic case.

Nevertheless, for many concrete values of n, the resulting
parameters are efficient, as we show in Table 6. For exam-
ple, generating the 2Nc double shares required for our ro-
bust server requires around 81Nc PRF calls per server with 8
servers and 564Nc PRF calls per server with 12 servers, which
are both likely to give a small increase in computation com-

pared to the expression given in Table 3 for, say, NC = 100. In
many concrete settings, this increase in computation will be
more than offset by the 2.7x improvement in communication
from removing the interaction required to generate the robust
shares.

Ns d ts PRSS seeds Seed storage
PRF calls

per double share
7 2 1 12.9 64.3 32.1
8 2 1 13.5 81.0 40.5

11 3 2 54.3 411.9 206.0
12 3 2 66.0 564.0 282.0
15 4 3 264.7 2785.3 1392.7
16 4 3 348.8 3975.0 1987.5
19 5 4 1686.9 22866.9 11433.5
20 5 4 2059.2 29867.4 14933.7
48 15 4 2746.4 86747.2 7228.9
72 23 4 5717.2 271813.5 13590.7

Table 6: The online and offline costs of generating packed
double secret shares over polynomials of degree d and 2d for
a given number of servers Ns and a corruption threshold ts.
All costs are given on a per-party basis. The offline costs are
measured in PRSS seeds per party, which measures offline
setup time, and PRSS seed storage per party, which measures
memory cost. PRF calls per double share measures online
computational time per party.

We require 2d +2ts < Ns, and in all rows but the last two,
choose ts maximal subject to the condition ts < Ns/4. The
numbers in this table can be derived from Theorems 3.3 and
3.6 in [7] along with the list of covering designs maintained
by Dan Gordon [22]. We include the last two rows of the
table as a demonstration of how PRSS can continue to be
efficient for much larger values of Ns when we set an even
lower corruption threshold.
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