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Abstract
We focus on the problem of I/O-efficient Dynamic Search-
able Encryption (DSE), i.e., schemes that perform well when
executed with the dataset on-disk. Towards this direction, for
HDDs, schemes have been proposed with good locality (i.e.,
low number of performed non-continuous memory reads) and
read efficiency (the number of additional memory locations
read per result item). Similarly, for SSDs, schemes with good
page efficiency (reading as few pages as possible) have been
proposed. However, the vast majority of these works are lim-
ited to the static case (i.e. no dataset modifications) and the
only dynamic scheme fails to achieve forward and backward
privacy, the de-facto leakage standard in the literature. In fact,
prior related works (Bost [CCS’16] and Minaud and Reichle
[CRYPTO’22]) claim that I/O-efficiency and forward-privacy
are two irreconcilable notions. Contrary to that, in this work,
we “reconcile” for the first time forward and backward privacy
with I/O-efficiency for DSE both for HDDs and SSDs. We pro-
pose two families of DSE constructions which also improve
the state-of-the-art (non I/O-efficient) both asymptotically and
experimentally. Indeed, some of our schemes improve the in-
memory performance of prior works. At a technical level, we
revisit and enhance the lazy de-amortization DSE construc-
tion by Demertzis et al. [NDSS’20], transforming it into an
I/O-preserving one. Importantly, we introduce an oblivious-
merge protocol that merges two equal-sized databases with-
out revealing any information, effectively replacing the costly
oblivious data structures with more lightweight computations.

1 Introduction

Searchable encryption has been the topic of a huge line of
research (e.g., [14, 15, 19–23, 26, 29, 30, 34, 36, 40, 45, 48,
52, 53, 60–63, 66, 67, 69–72]). At the same time, it has been
proposed for use in a number of different applications, e.g.,
for encrypted relational and graph databases [16, 18, 28, 44],
annotated image search [2], encrypted email [54], or maintain-
ing a secure gun registry service [43]. In fact, very recently,

MongoDB announced support for a mode called queryable
encryption, using techniques inspired by this line of research.
The approach followed by most works is to strive for a high
performance at the cost of well-defined leakages observed
by the server storing the encrypted dataset. I.e., although it is
required that the server never accesses decrypted data, search
query on the data allows the server to learn some information
that typically includes which entries are accessed for a query
(access pattern leakage), which queries are for the same term
(search pattern leakage), and how many entries are returned
(volume pattern leakage). Dynamic Searchable Encryption
(DSE) schemes have additional leakage considerations related
to updates, i.e., do not reveal any connection of newly modi-
fied entries to previous ones, or do not reveal information of
deleted entries during queries that take place after the dele-
tion. DSE schemes that protect against both these leakages
are called forward-and-backward private [12].

I/O overhead of DSE schemes. Existing state-of-the-art
DSE schemes achieve extremely low computational over-
head for search and update queries, typically in the order
of a few milliseconds or even microseconds, even for mas-
sive datasets [14, 26]. The key reason for this is that they
employ extremely lightweight symmetric-key cryptographic
techniques, mainly pseudorandom functions (PRF) and sym-
metric key encryption. At a high level, most existing schemes
use some variation of an encrypted map index [14], a key-
value storage data structure where the values are encrypted
tuples of the form (w, id) (where w is a keyword/term, and
id is the identifier of a record from the dataset, and the tuple
attests to “w appears in id)1 and keys are computed pseudo-
randomly with a PRF. This not only simplifies subsequent
searches significantly, but also, due to the PRF usage, tuples
are placed in random-looking positions in the index, which is
crucial for minimizing the information revealed to the server
about structure of the underlying dataset.

While this random placement does not significantly affect
DSE performance when the encrypted index is stored in RAM

1In our constructions the tuple also contain the operation type: (w,id,op).



Scheme Storage Search Update FP / BP HDD / SSD /
Locality Read Efficiency Page Efficiency Cost

LayeredSSE [55] O(N) O(nw/p+ logN) O(log logN) O(log logN) O(nw) × / × SSD
Local[LayeredSSE] [55]* O(N) O(1) Õ(log logN) Õ(log logN) O(nw) × / × HDD

SDa[1C [6]] O(N) O(logN) O(logN) O(logN) O(logN)(am.) X/ II HDD
SDa[2C [6]]* O(N) O(logN) O(logN) O(logN) O(log2 N)(am.) X/ II HDD

SDa[NlogN [6]] O(N logN) O(logN) O(logN) O(logN) O(log2 N)(am.) X/ II HDD/SSD
SDa[sN [31]] O(sN) O(N

1
s + logN) O(logN) O(N

1
s /p+ logN) O(s logN)(am.) X/ II HDD/SSD

SDa[Tethys/Pluto [10]] O(N) O(nw/p+ logN) O(p) O(logN) O(N logN)(am.) X/ II SSD
L-SDd[1C [6]] O(N) O(logN) Õ(logN) Õ(logN) O(log2 N) X/ II HDD
L-SDd[2C [6]]* O(N) O(logN) Õ(logN) O(logN) O(log2 N) X/ II HDD

L-SDd[NlogN [6]] O(N logN) O(logN) O(logN) O(logN) O(log3 N) X/ II HDD/SSD
L-SDd[sN [31]] O(sN) O(N

1
s + logN) O(logN) O(N

1
s /p+ logN) O(s log2 N) X/ II HDD/SSD

Figure 1: Comparison of different locality-aware and page-efficient DSE schemes. For any function f (N) the nonation Õ( f (N))
denote O( f (N)(log f (N))x) for some constant x; nw denotes the number of updates for a keyword w, and p denotes memory
page size and am. stands for amortized complexity. FP and BP stands for forward privacy and backward privacy respectively;
all the schemes except the schemes from [55] satisfy FP and BP-II. The sources of the schemes that SDa[·] and L-SDd[·] are
instantiated with are cited inside the brackets. The schemes marked with * restrict keyword-lists’ size to be at most N1�1/log logN .

it can have a major negative impact, when it is stored on hard-
disk. To see why, we need to consider that the I/O-related
overhead of accessing disk data consists also of moving the
disk head (a “mechanical” component). When using DSE to
retrieve a result of R tuples, due to their random placement,
causes (close to) R such head “jumps” (i.e. disk seeks in
HDDs) if the index is sufficiently large. In this case, this turns
out to be the main DSE bottleneck! Reading data from con-
secutive location costs orders of magnitude less than reading
from random positions. In the relevant literature, the number
of such jumps required for one DSE search query is referred
to as locality. Cash and Tessaro [17] identified different in-
teresting trade-offs between locality and read efficiency, i.e.,
the number of extra data that needs to be retrieved beyond the
result itself (e.g., if we just want to minimize locality we can
just retrieve and locally decrypt the entire dataset; clearly not
a favorable trade-off in this case). Subsequent works [6,27,31]
proposed improved schemes both from a theoretical perspec-
tive [6] and with good practical performance [6, 31]. For the
case of SSDs, recent works [10, 55] indicate that the search
performance depends on another metric which is called page
efficiency, which is the ratio of the number of pages retrieved
for the encrypted results to the number of pages that would
have been retrieved for the plaintext result.

Unfortunately, all of these schemes with bounded locality
and page efficiency are restricted in the static dataset case,
without support for updates. The work closest to ours is the
recent work of Minaud and Reichle [55] from CRYPTO’22,
which suffers from two important drawbacks. First, its updates
are very inefficient–the overhead of adding a single (w, id)
tuple is proportional to the number of entries that already
contain w. This is as costly as running a search for w, whereas
prior DSE achieve constant or, at worst, logarithmic cost w.r.t
the dataset size. Second, and arguably most important, the

DSE of [55] is not forward-private. In practice, it stores all
tuples for the same keyword directly in consecutive locations
in the encrypted index (which very naturally gives it good
locality), so just looking at the location a new entry is stored
during an update, the server infers information about whether
it is related to prior entries. Forward privacy has been shown
to be very important in practice, not only because it allows the
dataset to be incrementally built but also because it impairs
existing privacy attacks against DSE [73].

Forward-privacy AND “good” locality? At first glance,
these two properties seem inherently contradicting. Forward-
privacy seeks to “eliminate” any information about new en-
tries that can be inferred from where they are placed in the
encrypted index (e.g., using random placement). On the other
hand, good locality requires that entries for the same key-
word are placed close to each other, ideally in contiguous
disk locations! Indeed, the authors of [55] claim that the two
properties, locality and forward privacy, “seem to be funda-
mentally at odds.” Prior to this, Bost [11] claimed that the
two are “irreconcilable notions.”

Our results: I/O Efficient DSE with forward and back-
ward privacy. Based on the above observation, it may seem
that we cannot hope to achieve both of these properties. In this
work, we disprove this by proposing the first DSE schemes
that reconcile the two properties achieving bounded (loga-
rithmic or polylogarithmic) locality and page efficiency, good
overall practical performance, and forward-and-backward pri-
vacy! Our results can be summarized as follows. First, we
observe that the generic “static-to-dynamic” transformation
of Demertzis et al. [26], called SDa, also works as a locality-
preserving compiler that can produce forward and backward
private DSE from existing locality-aware2 static schemes

2Schemes with good locality are referred as locality-aware schemes



with just an extra logarithmic overhead for locality. This ap-
proach yields the first such DSE in the literature, albeit with
“amortized” updates, as the client needs to periodically merge
indexes into larger ones. In practice, while most updates are
fast, some of them are significantly more resource-consuming.

Second, aiming for schemes with de-amortized updates,
we begin with the de-amortized version of SDa presented as
the SDd scheme in [26]. SDd relies on oblivious dictionar-
ies [68], [57] for the de-amortization, which makes updates
computationally intensive and requires multiple rounds of in-
teraction. In this work, we revisit this de-amortization strategy
and refine it to make it work for a variety of schemes based
on our computationally lighter approach of oblivious-merge.
Our oblivious-merge merges encrypted indexes into bigger
ones through multiple oblivious passes and oblivious-sort [5]
and compaction operations in order to compute important
metadata, decide about the placement of the input-elements,
adjust properly the required dummy records and do the final
placement. These operation require to operate on elements
in chunks/batches, as opposed to the individual, one-by-one
manner of SDd . This necessitates multiple oblivious passes on
these chunks and de-amortized oblivious-sort and compaction
implementations in a manner that preserves forward and back-
ward privacy. We named this new locality-aware-deamortized
SDa to be L-SDd . Using oblivious sorting based oblivious
merge, instead of oblivious dictionaries as [26], asymptoti-
cally improves our update overhead by a logarithmic factor
and also reduces the amount of interaction.

Third, we instantiate our two transformations SDa[·] and
L-SDd[·] with several static schemes with (i) good locality
(i.e. locality-aware schemes), well suited for HDD storage,
i.e., the One Choice Allocation (1C), Two Choice Allocation
(2C), NlogN from [6] and [31]; (ii) and with good page effi-
ciency, well suited for SSD storage, i.e., the NlogN, [31] and
Tethys/Pluto from [10]. While SDa[·] can be instantiated with
any static SE scheme, L-SDd[·] can be instantiated only with
One-Choice-Allocation, Two-Choice-Allocation and NlogN
schemes. Figure 1 provides an overview of the asymptotic
performance of the multiple schemes we achieve in this way
from the literature [26,55]. Interestingly, not only our schemes
are the first to combine I/O efficiency with forward and back-
ward privacy, but they also asymptotically outperform prior
(non forward-private) works.

Finally, we experimentally evaluate all of the proposed new
DSE in HDD, SSD, and RAM for variable dataset and result
sizes, considering both synthetic and real datasets [1]. We
plan to make our code publicly available after publication.
Our experimental results are very encouraging; it shows DSE
with good I/O performance and strong privacy is not only
possible but yields schemes with good practical performance.
Below, we discuss our evaluation in more detail.
Experimental evaluation. We implemented all of our
schemes and compare their search and update computation
time with the state-of-the-art forward/backward private DSE

schemes in HDD and SSD settings (Section 4). In partic-
ular, we implement 1C, 2C, NlogN schemes with SDa[·]
and L-SDd[·]3, and compared them with the original PiBAS
based SDa and SDd of [26]. In terms of search, SDa[NlogN]
has the best performance among the schemes at the cost
of more storage. However, all of our amortized (SDa[1C],
SDa[2C], and SDa[NlogN]) and de-amortized (L-SDd[1C]
and L-SDd[NlogN]) schemes with "good-locality" outperform
PiBAS based SDa and SDd . I.e., they are up to two and three
orders of magnitude faster in SSD and HDD settings respec-
tively. Regarding the update computation time, PiBAS based
SDa has the worst update time. Turning to the de-amortized
schemes, L-SDd[1C] has the best performance in memory
and disk and is up to 4⇥ and 179⇥ faster than SDd[PiBAS]4

respectively. Although we do asymptotic comparisons of our
schemes with LayeredSSE and Local[LayeredSSE] [55] in
Figure 1, we did not implement them, as these schemes are
rather a theoretical work.

Comparison with additional prior works. Minaud and Re-
ichle [56] independently and concurrently presented two the-
oretical page-efficient DSE schemes that are forward private.
The selection of the construction is based on a relationship
between the number of entries, page size, and number of key-
words, which leaks more information than our approaches do
(setup leakage). In addition, their constructions target only
SSDs (and cannot be used for HDDs) require up to O(N)
client storage and its updates are very inefficient (similar
to [55]). The concept of using oblivious sorting periodically
and then de-amortizing it to equalize average and worst-case
scenarios has been adopted in previous works, such as in
the rebuilding of square-root ORAM [36] and hierarchical
ORAMs [60] when inputs exceed trusted client memory. We
are not the first to employ and de-amortize oblivious sort.
Oblivious-sort was utilized also by [64]. However, their con-
struction does not achieve backward privacy. Their solution
was tailored to ensure quasi-optimal search time (i.e., search
time independent of the deleted records), which is not our
primary objective. Oblivious sort is used to avoid contiguous
memory locations of deleted entries through binary search
and to obliviously-sort/permute their indexes with sublinear
available client memory (mirroring challenges faced by hier-
archical and square-root ORAMs in prior works).

Limitations. A parallel line of research concentrates on
leakage-abuse attacks for SE [9, 13, 25, 41, 49–51], as well
as on defenses and mitigation techniques [28, 42, 65]. Our
work does not offer new insights into leakage-abuse attacks
or mitigation techniques. Instead, it adheres to the standard
forward and backward privacy leakage profile for DSE.

3Referred as SDa[1C],SDa[2C], L-SDd [NlogN] etc.
4
SDd is the original version of [26] based on PiBAS, and SDd [PiBAS]

is our new framework instantiated with PiBAS, which are equivalent.



2 Preliminaries

Notation. Let (x0;y0)$ P(x;y) denote a protocol execution
between a client and a server, which may consist of multiple
rounds of communication, and (x0;y0) A(x;y) denote an
algorithm execution, with no communication between client
and server—x and x0 are the input and output for the client, and
y and y0 are the input and output for the server. We denote by
l 2N a security parameter and by v(l) a negligible function
in l. PPT stands for Probabilistic Polynomial-Time. D is a
collection of n documents with identifiers id1, . . . , idn. A doc-
ument contains a set of keywords from a dictionary D. Let DB
consist of N tuples of the form (w, id,op)–file id contains key-
word w, and op is either add or del, which denotes whether
the tuple is for an insertion or deletion. DB(w) is the set of
identifiers of documents that contain keyword w. We use nw to
denote |DB(w)|, i.e. the result size of keyword w. The afore-
mentioned tuples can be expanded to (w, id,op,rank,nw),
where 0 rank < nw. EDB denotes the encrypted database/in-
dex stored in the server.
Pseudo Random Functions (PRFs) [46]. A PRF function
F : {0,1}l⇥{0,1}⇤ ! {0,1}⇤ is a two input function where
the first input is the key and the second is the input x. F
can be distinguished from a truly random function by a PPT

adversary only with negligible probability v(l).
Dynamic Searchable Encryption (DSE). A DSE scheme S
consists of a Setup algorithm, and (possibly interactive) pro-
tocols Search and Update–S = (Setup,Search,Update).

• (K,s;EDB) Setup(l,N) takes as input the security
parameter l and N. Returns EDB to the server, and the
secret key K and local state s to the client.

• (res,K,s;EDB)$ Search(K,w,s;EDB) is a protocol
for searching keyword w. The output of this protocol is
the query result res (i.e., DB(w)). The protocol may or
may not modify K, s and EDB.

• (K,s;EDB)$ Update(K,(w, id,op),s;EDB) is a pro-
tocol that inserts/removes (w, id) to/from the DB–op =
add/del. The protocol may modify K, s and EDB. This
protocol modifies EDB and may modify K and s.

The Search and Update algorithm/protocols for the schemes
presented in section 3.2 also include an additional parameter
G, which is an instance of a static SE scheme5

Following [11,12,26,35], we start from an empty database.
Given an input DB of size N, the client populates EDB by
calling the Update protocol N times. Other works [33, 47]
equivalently modeled updates in document granularity, i.e., in-
serting or deleting an entire document. We focus on retrieving
only the document identifiers upon Search; the client may
retrieve the documents separately if needed. This leads to a

5G is a static searchable encryption scheme such that G = (KeyGen,
Setup, Search)..

straightforward leakage formulation and is more natural for
database queries (e.g., [28, 32, 44]).

DSE–Leakages & Forward/Backward privacy. The stan-
dard security of a DSE scheme is parametrized by a leakage
function L = (LSt p,LSrch,LU pdt). LSt p corresponds to the
leakage during the setup phase–in our case it reveals size
of the database N; LSrch corresponds to the leakage during
search queries; LU pdt corresponds to the leakage during up-
date queries. Search pattern leakage reveals which searches
are related to the same w, and access pattern leakage re-
veals DB(w) during a search for w. Access pattern leakage
is unavoidable if the client retrieves the actual files with an
additional round of communication with the server; schemes
that avoid this leakage (e.g. by storing files in oblivious data
structures) are referred as result hiding schemes.

A secure DSE scheme with leakage L should reveal noth-
ing to an adaptive PPT

6 adversary about the database DB
other than the leakage L . This is formally captured by a stan-
dard real/ideal experiment presented in the extended version—
for more details see [12, 35, 64].

Forward and backward privacy [12, 64] have become the
de-facto security guarantees for modern DSE.
Forward privacy (FP): limits the information revealed due to
updates. In particular, an L-adaptively secure DSE is forward
private iff the update leakage function LU pdt can be written
as: LU pdt(op,w, id) = L 0U pdt(op, id) where L 0 is a stateless
function, op = add/del, and id is a file identifier. Particularly,
it should be impossible to tell whether an insertion is for a
new keyword or a previously inserted/searched one.
Backward privacy (BP): ensures that during searches the
server does not learn the identifiers of deleted documents
that contained the searched keyword w. Bost et al. [12] pro-
posed various formulations for this property. Here, we tar-
get backward private schemes that reveal the identifiers of
(non-deleted) documents currently containing w (known as
TimeDB(w) leakage) and the timestamps and type (i.e. in-
sertion and deletion) of all prior updates for w (known as
U pdates(w) leakage). This corresponds to the BP-II defini-
tion from [12] (see the extended version for more details).
TimeDB(w) accounts for the leakage from retrieving the ac-
tual files; but we focus only on retrieving the document iden-
tifiers during Search, and we never use it in our proofs as
none of our constructions explicitly leaks TimeDB(w).

Definition 1 ( [12]). A DSE scheme S is L-adaptively-secure
with forward and backward privacy, iff LU pdt(op,w, id) =
L 0(op) and LSrch(w) = L 00(TimeDB(w),U pdates(w)) and
iff for any adaptive PPT adversary Adv issuing polyno-
mially many queries q, there exists a stateful PPT simula-
tor Sim = (SimSetup, SimSearch, SimU pdate) such that
|Pr[RealDSE

Adv (l,q) = 1]�Pr[IdealDSE

Adv,Sim,L(l,q) = 1]|< v(l),

6An adaptive PPT decides its next step based on its previously observed
leakages/search results.



where L 0 and L 00 are stateless functions; op is insertion or
deletion, and id is a file identifier.

DSE for HDDs: Locality/Read-Efficiency/Update Locali-
ty/Update Cost/Space. To scale SE to big data using external
memory (i.e., HDD drives), SE schemes with “small” locality
and read efficiency have been proposed before. Locality is
defined as the number of non-contiguous memory accesses
made during the search by the server. Read-efficiency is the ra-
tio of the total amount of data read/retrieved during the search
over the actual query result size (for querying a keyword w)—
see [17] for formal definitions. Cash and Tessaro [17] proved
that any secure SE scheme with both optimal locality O(1)
and optimal read efficiency O(1) requires w(N) space. For
locality-aware DSE schemes, in addition to the "search" and
"static" efficiency, i.e., (i) locality, (ii) read-efficiency and (iii)
space, we focus on two update metrics: (iv) update-locality,
i.e., the number of non-contiguous memory accesses during
an update and (v) update asymptotic cost, i.e., the asymptotic
cost of one update (i.e., insert/delete one (w, id,op) tuple).
See the extended version for the exact definitions.

DSE for SSDs: Page-Efficiency/Space. Bossuat et al. [10]
proposed a new I/O-efficiency dimension for SSDs, which
is called page efficiency—SSD performance mainly depends
on page efficiency, aiming at reading as few memory pages
as possible. More formally, page efficiency is the ratio of
the total number of pages that the server accesses (using SE)
over the optimal number of accessed pages in a plaintext case.
For page-efficient DSE schemes, in addition to the "search"
and "static" efficiency dimensions, i.e., (i) page-efficiency
and (ii) space, we focus on (iii) update efficiency, i.e., the
number of pages accessed during one update (i.e., insert/delete
one (w, id,op) tuple) and (iv) update asymptotic cost (i.e.,
asymptotic cost of insert/delete of one (w, id,op) tuple). See
the extended version for the exact definitions.

Oblivious sort. An oblivious sorting algorithm sorts an array
of N elements without leaking information about the relative
ordering of the input elements [4, 8, 38, 59]. We use the obliv-
ious bucket sort [5], which has O(N logN) time complexity,
and uses a temporary client storage of two buckets, where
one bucket contains 512 elements. We can decompose bucket
sort into N logN/g rounds of O(g) work per round (e.g., for
g = O(logN) the oblivious bucket sort can be completed in N
rounds). We highlight that fetching O(g) elements from disk
requires always O(1) locality, since accesses are performed
on a bucket granularity, and on consecutive buckets— see the
extended version for more details.

Oblivious compaction. Given an array of N elements, some
of which are tagged with bit 1, and the rest with bit 0, an obliv-
ious compaction [37, 39, 58] generates an output in which all
the elements tagged with bit 1 appear before all the elements
tagged with bit 0, without leaking the information of which
elements were tagged with bit 1 or 0. Our constructions need

the compaction to be order preserving, i.e. the relative order-
ing of the elements tagged with bit 1/0 do not change after the
compaction. We use the oblivious bucket sort [5] mentioned
above for performing order preserving compaction.

Oblivious Maps(OMAP) [24,68]. An oblivious map is a data
structure that supports oblivious read/get and write/put func-
tionality for encrypted (key,value) pairs (i.e., oblivious hash
map). That is, all same-length operation sequences appear
indistinguishable. OMAP has the following algorithms/pro-
tocols: (i) OMAP.Setup initializes an empty data structure
with maximum capacity N blocks, (ii) OMAP.put adds/over-
writes a (key,value) pair, and (iii) OMAP.get returns the
value of a given key. We have used the AVL tree based im-
plementation by Wang et al. [68] on top of PathORAM [65].
For a map with capacity N, each oblivious access requires
O(log2 N) operations/accessed-blocks, O(logN) roundtrips,
and O(log2 N) locality—see [68] for more details.

One-Choice Allocation. Asharov et al. [6] presented the
One-Choice Allocation scheme (we will refer to it as 1C)
that offers optimal locality, optimal space overhead and
O(logN log logN) read efficiency. Given a database of size N,
this scheme allocates an array of m = N/logN log logN bins,
each of size 3logN log logN7. For each keyword w it com-
putes a hash value h(w), and stores the ith document identifier
in the bin (h(w)+ i)mod m. Bins are filled up with dummy
entries, if not full. The formal description of 1C is provided
the extended version.

Two-Choice Allocation. Asharov et al. also presented
the Two-Choice Allocation (2C) in [6]. For a database
of size N, this scheme offers optimal locality and space
overhead and O((log logN)A(logloglogN)2) read efficiency
assuming keyword list sizes < N1�1/(log logN)A , for a con-
stant A � 1. This scheme allocates an array of m =
N/(log logN)A(log loglogN)2 bins, each bin with size
z·(log logN)A (logloglogN)2, where 2 z 4 (we use A= 1).
The keyword lists are padded to be nearest power of 2 and
stored in decreasing length order. For list for w, first it divides
bins into groups of sb = m

nw
superbins; i.e. each superbin con-

sists of nw bins. Then two superbins are chosen with two hash
functions: h1(w)%sb and h2(w)%sb. Finally, the superbin that
has minimal load stores the list for w. The formal description
of 2C is provided the extended version.

NlogN Scheme. The third scheme presented by Asharov et al.
in [6] offers optimal locality and read efficiency at the cost of
O(logN) storage overhead, i.e. a total of O(N logN) storage.
We highlight this scheme provides optimal page efficiency.
This scheme consists of (logN +1) hash tables, each of size
N. The keyword-lists are padded so that their length becomes
nearest power of 2. The kth hash-table stores lists of size 2k.
The pseudocode and more details of the NlogN scheme are

7The bins overflow with negligible probability when the bin size is set to
3 logN log logN for 1C.



provided in the extended version. Demertzis et al. [31] pro-
posed a variation of the NlogN scheme in which only s of the
above mentioned hash tables are stored; s is evenly distributed
(i.e. the server stores the levels {0,x,2x, . . .(s�1)·x}, where
x is set to be d logN+1

s e). In the worst case, a keyword-list is
divided into smaller O(N

1
s ) chunks. This scheme achieves

optimal read efficiency, O(N
1
s ) locality and has a O(s) space

overhead, and O(min{N
1
s /p, p}) page efficiency (p denotes

the memory page size). We refer to this scheme as sN.

Encrypted dictionary. In our DSE constructions (in section
3) along with the encrypted index we have an encrypted dic-
tionary. The encrypted dictionary maintains a keyword to
keyword-counter mapping, i.e. keyword w maps to |DB(w)|.
To perform searches in 1C, 2C, NlogN, and sN schemes the
keyword-counter is required (to know how many bins to fetch,
or which levels to search). We will refer to the encrypted dic-
tionary as EDB.DICT and the encrypted index as EDB.IND.
For an index with N entries the size of EDB.DICT is at most
N, as there can be at most N distinct keywords.

3 DSE—I/O efficiency meets Forward/Back-
ward Privacy

This section introduces our I/O efficient DSE schemes, which
are the first to simultaneously achieve good I/O performance
and forward/backward privacy. In Section 3.1, we apply the
SDa transformation, as proposed by Demertzis et al. [26],
in conjunction with I/O efficient static SE schemes. In Sec-
tion 3.2, we address the more challenging task of offer-
ing de-amortized I/O efficient constructions that ensure for-
ward/backward privacy. Here, we introduce a novel oblivi-
ous merge framework to meet these objectives and present
three implementations of this framework: the dynamic de-
amortized 1C, 2C, and NlogN schemes.

3.1 Amortized Constructions using SDa [26]

Overview of SDa[·]. Demertzis et al. [26] introduced a com-
piler, SDa, that converts any result hiding static SE scheme
into a forward/backward private DSE scheme. The essence of
SDa is to store the results of N updates across logN indexes
(ranging from 0th to (logN�1)th). The ith index (EDBi) has
a size of 2i. With each update, the client initializes the static
SE scheme (using SE’s Setup) to produce and upload an
encrypted index with size 1 (EDB0). When two same-sized
indexes emerge (in server), the client downloads, decrypts
and combines them into a doubled size index, amortizing the
cost of updates. Searches are performed in each index inde-
pendently. Figure 2 shows an update example using SDa. The
optimized pseudocode for SDa, as depicted in Figure 2, can
be found in the extended version.

insert

EDB0 EDB1

Step 1

Optimized

EDB0

EDB0

EDB1

Step 2

EDB2

Step 3

EDB1 EDB1

Figure 2: Update in SDa. Before the insertion of the new
(black) entry three previous consecutive insertions have cre-
ated EDB0. and EDB1. After the fourth insertion, two EDB0
indexes exist (Step 1), which are downloaded and merged to
a single EDB1 of size 2 (Step 2). Now, two EDB1 indexes
exist, which are downloaded and merged to a single EDB2 of
size 4 (Step 3). The black arrow shows an optimized version
of SDa where the intermediate steps are skipped.

In [26], the authors use PiBAS [14] as the underlying static
SE scheme. PiBAS maps every (w, id,op) tuple to a pseudo-
random location (using a counter cntw that is maintained lo-
cally for each keyword). During search for w, all locations for
counter values 1, . . . ,cntw are accessed to retrieve the results.
The results are decrypted and the deleted entries are filtered
locally at the client. While this gives us a very simple and
lightweight scheme, when it comes to I/O overhead, due to
the pseudorandom placement, the number of disk head move-
ments (HDD case) and the number of fetched pages (SDD
case) is equal to the result size. In other words, SDa[·] when
applied to PiBAS gives a DSE with the worst possible search
locality and page efficiency.

I/O-efficient SDa[·]. Our main observation here is that when
applied to an I/O-efficient static scheme, the SDa transforma-
tion gives dynamic schemes with "good" I/O performance.
In fact, in the extended version we prove two theorems that
state that the resulting SDa[G] transformation will retain same
space-overhead as that for G, where as for locality, read-
efficiency (for HDDs) and page-efficiency (for SSDs) an addi-
tional factor of O(logN) is introduced as each index is queried
independently

Locality-aware SDa[·] (for HDDs). There exist various can-
didates for static locality-aware schemes, the 1C and 2C

schemes from [6] achieve optimal locality, storage, and poly-
logarithmic read-efficiency. The NlogN scheme from [6] pro-
vides optimal locality and read-efficiency but increases stor-
age. Other recent schemes are also introduced in [7, 27, 31].

Page-Efficient SDa[·] (for SSDs). Tethys [10] and NlogN
[6] are candidates for static page-efficient schemes. Table 1



(K,s;EDB) Setup(l,N)

1: ` dlogNe; updcnt  0;
2: Set matrix P of size (`+1)·4
3: krnd  RND.KeyGen(1l)
4: s {updcnt} and K (krnd ,P)
5: Initialize an empty EDB
6: return EDB to Server and (K,s) to the Client

DB(w)$ Search(K,G,q,s;EDB)
Client$ Server:

1: X  /0
2: for i = ` · · ·0 do
3: if OLDESTi.IND 6= /0 then
4: X  X [ G.Search(K[i][0],q,s;OLDESTi)
5: if OLDERi.IND 6= /0 then
6: X  X [ G.Search(K[i][1],q,s;OLDERi)
7: if OLDi.IND 6= /0 then
8: X  X [ G.Search(K[i][2],q,s;OLDi)

Client:
9: DB(w) {id | (w, id,add) 2 X ^ (w, id,del) 62 X }

Figure 3: SDd /L-SDd : from G=(KeyGen, Setup, Search) to
DSE (de-amortized version).

shows various SDa instances from locality-aware and page-
efficient static schemes. In this work, we emphasize the most
practical I/O-efficient static SE schemes: 1C and 2C (suit-
able for HDDs) and NlogN(compatible with both HDDs and
SSDs). The security and forward/backward privacy of the
DSE schemes resulting from the SDa[·] transformation are di-
rectly derived from [26, Theorem 1]. In the extended version
we provide a more detailed discussion for SDa[·].

3.2 De-amortized constructions: L-SDd[·]
Although SDa[·] provides a clean way to transform a static
SE scheme to a dynamic one, its drawback is that it has amor-
tized update cost. In the worst case an update may require
rebuilding an index of size N at once. Figure 16 illustrates
the above weakness of schemes with amortized update cost.
In this section, we construct I/O efficient DSE schemes with
de-amortized updates and with forward and backward pri-
vacy. Our starting point is the de-amortization strategy that
Demertzis et al. [26] proposed for SDa, called SDd (which is
tailored on PiBAS [14]; pseudocode ofPiBAS can be found in
the extended version. In this work, we introduce L-SDd , which
is simpler than SDd and separates the static-to-dynamic trans-
formation from the underlying static SE scheme. We high-
light that L-SDd is not a compiler; it is specifically tailored
for certain schemes, namely 1C, 2C, and NlogN schemes. We
present L-SDd primarily as a framework for the sake of clarity
and concise presentation. Below, we explain the new L-SDd :
Overview of L-SDd[·]. The main idea of L-SDd[·] framework

is to split construction steps of index level i over the previous
2i insertions. We use a static SE scheme G=(KeyGen, Setup,
Search). For dataset size N, L-SDd[G] keeps logN index lev-
els. Every ith index level has 4 indexes (a.k.a. NEWi, OLDi,
OLDERi and OLDESTi); every index stores 2i real entires.
The L-SDd[G].Search simply queries the OLDi, OLDERi and
OLDESTi indexes by individually calling G.Search for all
logN levels as a black box (see Search in Figure 3). Index
NEWi is used as a temporary buffer for moving elements be-
tween levels i�1 and i during L-SDd[G].Update. Below, we
explain L-SDd[G].Update in three rules:
(Rule 1): An update for (w, id,op) (insert or delete) is
performed by creating NEW0 (i.e. an encrypted index
NEW0.IND and an encrypted dictionary NEW0.DICT) by call-
ing G.KeyGen and G.Setup in a black-box manner (see lines
11-12 in Figure 4)—this instantly triggers the next rule.
(Rule 2): If NEWi.IND is full, then NEWi is moved8 to the
oldest empty index among OLDESTi,OLDERi, and OLDi
(see lines 13-15 for level 0 and lines 5-10 for level i in Fig-
ure 4). At the end of 2i updates (equivalently moving 2 ·2i�1

elements from level (i�1)) NEWi.IND becomes full, which
triggers two actions in level (i� 1): OLDi�1 is moved to
OLDESTi�1, and OLDERi�1 is set to be empty (line 6).
(Rule 3): If both OLDERi�1.IND and OLDESTi�1.IND are
full, all the elements of OLDERi�1.IND [ OLDESTi�1.IND
are moved to NEWi.IND over the next 2i updates. Thus, at the
end of these 2i updates NEWi.IND is full, and hence NEWi
is moved to the oldest empty index in level i using Rule 2.

We demonstrate the above L-SDd[G] rules graphically in
Figure 5. So far, all the actions needed for enforcing the Rules
1 and 2 during L-SDd[G].Update and L-SDd[·].Search are
either agnostic to the static SE scheme G, or are using G in
a black-box manner. We mention that the actions needed for
L-SDd[G].KeyGen are also agnostic to G (see Figure 3).

We would like to emphasize that up to this point, L-SDd
is identical to SDd [26]. Below, we detail how L-SDd differs
from SDd . Rule 3 gradually builds NEWi by moving elements
from OLDERi�1.IND and OLDESTi�1.IND, i.e. G.Setup for
NEWi needs to be executed in an incremental fashion. In
other words, G.Setup cannot be used as a black-box here.
To overcome this obstacle, we define a new oblivious merge
protocol as follows:

NEWi oblMergei(K,s,OLDESTi�1,OLDERi�1)

For each index level i, an instance of oblivious merge (de-
noted as oblMergei) needs to be executed. The oblMergei
protocol takes as input a structure of necessary keys as K
(created and maintained from L-SDd[·]), client’s local state
s, OLDESTi�1 and OLDERi�1, and creates NEWi. We claim
that if a static G.Setup can be transformed to an oblMergei
with the following three properties then it can be used in con-
junction with the L-SDd’s update functionality to de-amortize

8
OLDESTi NEWi is syntactic sugar for (OLDESTi.IND,

OLDEST.DICT) (NEWi.IND, NEWi.DICT)



(K,s;EDB)$ Update(K,(w, id,op),G,s;EDB)
Client$ Server:

1: Parse K as (krnd ,P) . krnd is encryption key, P is an array of PRF keys
2: for i = `, . . . ,1 do
3: if OLDESTi�1.IND 6= /0^OLDERi�1.IND 6= /0 then . G is {PiBAS,1C,2C,NlogN}
4: Execute the next g steps of G.oblMerge(K,s,OLDESTi�1,OLDERi�1) and update NEWi
5: if NEWi.IND is full then . Client can deduce this from updcnt
6: Server sets OLDESTi�1 OLDi�1 and OLDERi�1 /0
7: if OLDESTi.IND = /0 then server sets OLDESTi NEWi and client sets P[i][0] P[i][3]
8: else if OLDERi.IND = /0 then server sets OLDERi NEWi and client sets P[i][1] P[i][3]
9: else server sets OLDi NEWi and client sets P[i][2] P[i][3]

10: Client sets P[i][3] G.KeyGen(1l)

11: Client sets P[0][3] G.KeyGen(1l)
12: Client runs G.Setup(P[0][3], (w, id,op)) and sends the output to server who stores it as NEW0
13: if OLDEST0.IND = /0 then server sets OLDEST0 NEW0 and client sets P[0][0] P[0][3]
14: else if OLDER0.IND = /0 then server sets OLDER0 NEW0 and client sets P[0][1] P[0][3]
15: else Server sets OLD0 NEW0 and client sets P[0][2] P[0][3]
16: Client sets updcnt  updcnt +1
17: return EDB to Server and (K,s) to Client

Figure 4: SDd /L-SDd : from G=(KeyGen, Setup, Search) to DSE (de-amortized version).

the corresponding SDa[G] construction (maintaining forward
and backward privacy). These properties are:

• (P1): Obliviousness—oblMergei has to be oblivious—
an algorithm/protocol is oblivious iff for any two same-
sized sequence of memory accesses their resulting access
patterns are indistinguishable for anyone but the client.
In other words, we assume the existence of a simulator,
Sim-oblMergei, which takes as an input only the size
of the ith index (i.e. 2i) and is indistinguishable from
G.oblMergei by any PPT adversary (later, we prove that
our G.oblMergei is oblivious for G 2 {1C,2C,NlogN}).

• (P2): Input-Output Indistinguishability—A PPT ad-
versary can recover a "mapping" between the en-
crypted input entries (contained in OLDESTi�1.IND and
OLDERi�1.IND) and the corresponding output ones (in
NEWi.IND) after the execution of oblMergei only with
a negligible advantage.

• (P3): Decomposability—Given oblMergei that requires
s(2i) steps to produce NEWi, can be decomposed into
s(2i)/g rounds/steps of g work at a time (i.e., per update).

We need (P1) in order to achieve forward privacy. If
oblMergei is oblivious, then nothing is leaked about the el-
ements that we are moving from level (i�1) to level i, i.e.,
during an individual update/movement the leakage function
LU pdt can be written as: LU pdt(op,w, id) = L 0U pdt(op, id)
where L 0 is a stateless function. (P2) is not required for the
security of L-SDd[G], e.g., the original PiBAS-based L-SDd

in [26] does not achieve (P2) (explained later). However, we
will see that (P2) is byproduct of (P1) when G is I/O efficient,
as well as it simplifies the security analysis of our L-SDd[G]
(the simulator can use the search simulator of G in black box).

Regarding (P3), every algorithm/protocol naturally can be
decomposed into instructions (e.g., CPU instructions), or sets
of instructions. By maintaining a state locally (e.g. a counter
for each ith level), and running a set of instructions at a time,
we guarantee the correct execution of the algorithm/protocol.
(P3) allowed us to describe L-SDd[G] independent to the used
static scheme G and simplify the presentation of G.oblMergei.

The original Update protocol of SDd in [26], which was
PiBAS-specific SDd , achieves properties (P1) and (P3). We
can also transform PiBAS (and its setup) to an oblMerge
protocol in order to fit to the the new L-SDd[·] transfor-
mation. For completeness, we provide PiBAS.oblMerge
in the extended version. Both versions, SDd presented in
[26] and SDd[PiBAS] fail to achieve (P2) (i.e. input-output
indistiguishability). For moving each input entry e (from
OLDESTi�1.IND[OLDERi�1.IND)—one by one, it simply
does two oblivious accesses to an oblivious dictionary, and
it performs a "write" in a random position in NEWi (using a
PRF), i.e. the server can see the corresponding chosen posi-
tions in NEWi. However, the security does not fail since the
positions in NEWi are chosen randomly. We can also construct
L-SDd[PiBas] that achieves all the properties, including (P2).
This construction improves the update cost of the original
SDd by a logarithmic factor (the pseudocode provided in the
extended version). The proof has been omitted because it can
be derived from the L-SDd proof, as it is based on a subset
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Figure 5: SDd /L-SDd[G] framework. (a) The first element
inserted to NEW0 (Rule 1). NEW0 becomes full and it is
moved to OLDEST0 (Rule 2). Similarly, the second inserted
element to NEW0 (Rule 1) is moved to OLDER0 (Rule 2).
(b) During the third insertion, both OLDEST0 and OLDER0
are full and G.oblMerge1 is called (Rule 3) to move elements
from OLDEST0[OLDER0 to NEW1. The third insertion is
moved to OLD0 (Rules 1 and 2).

of the computations required by L-SDd . In our experimental
evaluation, we refer to this construction as L-SDd[PiBas].

Phases of oblMerge framework. Now we will present our
oblMerge framework that ensures properties (P1), (P2), and
(P3) for the static SE scheme G 2 {1C, 2C, NlogN}, in detail.
Similar to SDa, we have L-SDd[1C] and L-SDd[2C] (suitable
for HDDs), as well as L-SDd[NlogN] (compatible with both
HDDs and SSDs). The corresponding is presented in Figure
6. Some of the steps are not necessary for all the schemes in
{1C, 2C, NlogN}, but we needed them in order to create the
general oblMerge framework. Towards the end of this section
we discuss some optimization specific to each scheme. Here,
we also would like to point out, the temporary client storage
cost is upper bounded by the update cost (e.g. O(log2 N) for
L-SDd[1C]), while the permanent client storage is constant.

The high level idea is, instead of moving elements directly
from OLDERi�1.IND[OLDESTi�1.IND to NEWi.IND (us-
ing oblivious dictionaries, as done in [26]), move them to a
buffer BUF1 first. This step will ensure property (P2). Then
with oblivious operations, re-order the entries of BUF1 to
satisfy the I/O efficiency requirements of scheme G, and then
move BUF1 to NEWi.IND. This step and the previous step to-
gether ensure property (P1). The buffer, BUF2, is used to cre-
ate the keyword dictionary, NEWi.DICT, in an oblivious fash-
ion as well. The references to OLDERi�1 and OLDESTi�1
are passed as parameters to the oblMergei protocol. Each
oblMergei instance runs in four phases. Below we discuss
the four phases in detail. Refer to Figure 6 for the pseudocode.
If a step in the pseudocode does not mention who is per-
forming it (i.e. Client or Server), it means multiple rounds of
communication happens between the client and the server to
perform that step. Finally, at the end of 2i calls to oblMergei
it returns NEWi (i.e. NEWi.IND and NEWi.DICT).

Phase 1. Entries of OLDERi�1.IND[OLDESTi�1.IND are
first copied (not moved) to BUF1. Next, BUF1 is obliviously
sorted based on the lexicographic order of the keywords (line
3). The sort places entries for the same keyword adjacent to
each other in BUF1, and the dummy entries are placed at
the end. Each entry of BUF1 is then assigned a rank and an
nw value via two linear scans (line 4). Next, each keyword-
list in BUF1 is padded to make their lengths to be nearest
power of 2 (line 5). Another oblivious sort is performed on
BUF1, based on the lexicographic order of the keywords, as
well as descending order of the nw values (line 6). This sort
places same keyword entries adjacent to each other and entries
with higher nw values are placed before entries with lower nw
values in BUF1. We provide a more detailed pseudocode for
lines 4 and 5 in the extended version.
Phase 2. This phase prepares the elements in BUF1 for
NEWi.IND by adding proper position tags to them (lines
12-13), and prepares BUF2 for creating NEWi.DICT (lines
9-11). For every entry in BUF1 (w, id,op,rank,nw) an en-
try is appended to BUF2. When rank = 0, a real entry
(w,nw, p) is appended to BUF2. In all other cases a dummy
entry (?,?,?) is added (line 11) (because we can neither
reveal the length of each keyword-list, nor the number of
unique keywords). Here, p is a uniformly generated ran-
dom key of l bit. The Map function of G is called for each
entry of BUF1, which returns a pair (level, pos). For every
G 2 {1C,2C,NlogN} the pseudocode for the corresponding
Map function is provided in the extended version. For 1C and
2C the value of level indicates the bin number assigned to this
entry, and pos is 0 by default. Whereas, for NlogN scheme
level(2 {0, . . . , i}) indicates the array level, and position in-
dicates the position pos(2 {0, . . . ,(2i�level -1)}) in the array
level. The encrypted entry (w, id,op, level, pos) replaces the
existing (w, id,op,rank,nw) entry in BUF1.
Phase 3. This phase adds dummy elements (lines 14-15) to
BUF1, beacuse every bin needs to be filled up to their max-
imum capacity. For 1C and 2C if bin size is bi then the
dummy element (?,?,?,bin,0) is appended to BUF1 bi
times. This step is repeated for each bin number bin. For
NlogN scheme, array level k contains 2i�k lists of size 2k.
Hence, the dummy entry (?,?,?,k, pos) is appended 2k

times for each pos 2 {0, . . . ,(2i�k�1)}. This step is repeated
for levels k 2 {0, . . . , i}. We add a total of 3·2i dummy el-
ements for 1C and 2C and 2i· log2i dummy elements for
NlogN. The goal is to add dummy entries for every vacant po-
sitions of the bins/levels. But we want to hide the number of
real elements in each bin/level, and so the number of dummy
elements we add is equal to the index size. Extra dummy
elements are discarded in Phase 4.
Phase 4. This phase consists of few steps. The oblivious sort
on line 16 sorts BUF1 based on (level, pos) values. Dummy
elements come last, as usual. But now we have more elements
assigned to each bin/level than their capacity. Hence, with a
linear scan (line 17) unnecessary elements are tagged with



G 2 {1C,2C,NlogN}
If G = 1C, N0 = 3·2i,mi = d 2i

log2i log log2i e, 8level 2 {0 . . .mi�1} blevel = 3· log2i log log2i and clevel = 0
If G = NlogN, N0 = 2i· log(2i +1), mi = (i+1), 8level 2 {0 . . .mi�1} blevel = 2level and clevel = 2i�level

If G= 2C, N0= z·2i,mi = d 2i

(log log2i)(log loglog2i)2 e, 8level 2 {0 . . .mi�1} blevel = z·(log log2i)(log loglog2i)2 and clevel = 0,
2 z 4

NEWi $ G.oblMergei(K,s;OLDESTi�1,OLDERi�1)

Client$ Server:

//** Phase 1 - Preparing sorted input array **//
1: Client parses K as (krnd ,P) . all encryptions and decryptions are done with key krnd , P is an array of PRF keys
2: Server initializes arrays BUF1 of size 3·N0, and BUF2 of size N0 to be empty at Server
3: Copy OLDESTi�1.IND[OLDERi�1.IND to BUF1; obliviously sort BUF1 w.r.t. lexicographic order of keywords
4: Perform two linear scans (one in reverse and one in correct order) on BUF1, to add the rank and nw values to each

entry of keyword w. The entries now look like (w, id,op,rank,nw), where 0 rank < nw.
5: Linearly scan BUF1 and pad each keyword-list with dummy elements so that its size is nearest power of 2, hide list

lengths by padding total size to 2N0
6: Perform oblivious sort on BUF1 w.r.t. lexicographic order of the keywords and descending order of the nw values.

Keep first N0 elements.

//** Phase 2—Prepare index elements and prepare keyword counters **//
7: for each j = 1 . . . |BUF1| do
8: Client decrypts (w, id,op,rank,nw) RND.Dec(krnd ,BUF1[ j])
9: Client generates p $ {0,1}l

10: if rank = 0 then Client appends (RND.Enc(krnd ,(w,nw, p))) to BUF2
11: else Client appends (RND.Enc(krnd ,(?,?,?))) to BUF2
12: Client generates ((level, pos),s) Map(P[i][3],w,rank,nw,s) . pos = 0 for 1C and 2C

13: Client writes (RND.Enc(krnd ,(w, id,op, level, pos))) to BUF1[ j]

//** Phase 3—Add dummies **//
14: for level = 0 . . .mi�1 do
15: for every pos 2 {0 . . .clevel} call Client appends (RND.Enc(krnd ,(?,?,?, level, pos))) to BUF1 blevel times

//** Phase 4—Final placement **//
16: Perform oblivious sort on BUF1 w.r.t. the integer values of (level, pos) in ascending order
17: Linearly scan BUF1, and tag first blevel entries for each level 2 {0, . . . ,S.mi�1} and pos 2 {0, . . . ,clevel} with 1, and

with 0 the rest of them (the existing (level, pos) tags are replaced with 0/1 tags, the entries now look like (w, id,op,x),
where x 2 {0,1})

18: Perform order preserving oblivious compaction on BUF1; keep first N0 entries; discard the 0/1 tags
19: Perform oblivious sort on BUF2 w.r.t. the random keys in ascending order; keep first 2i entries; discard random keys
20: Server moves BUF1 to NEWi.IND . elements in each bin/pos is randomly shuffled
21: for each s 2 BUF2 do
22: Client decrypts (w,cntw) RND.Dec(krnd ,s)
23: Client generates (key,value) PiBAS.Map((P[i][3],krnd),w,cntw,1) . parameter 1 is used by the PRF F
24: Client writes NEWi.DICT[key] value
25: return NEWi

Figure 6: oblMerge framework of G 2 {1C,2C,NlogN}



a 0; and the entries to be kept are tagged with a 1. This tag
replaces the existing (level, pos) tags. Next, an order preserv-
ing oblivious compaction (line 18) is performed so that all
elements tagged with 0 come at the tail of the output and can
be discarded altogether. We use another round of oblivious
bucket sort (which is order preserving) for the compaction.
NEWi.IND is created with the remaining entries of BUF1
(line 20). BUF2 is also obliviously sorted (line 19) based on
the random keys in ascending order. The dummy entries with
p = ? will be placed at the end of the sorted buffer. There
can be at most 2i entries such that p 6=?, as there can be at
most 2i distinct keywords at index level i. Hence, the first 2i

elements are used to create NEWi.DICT (lines 21-24).
Locality-aware L-SDd [·]. The search-locality and search-
read efficiency of L-SDd[G] depends on the same of the
static SE scheme G. For both locality and read efficiency,
a logN factor is added due to querying 3· logN dictionar-
ies and calling G.Search on 3· logN indexes (for OLDEST,
OLDER, and OLD). For example, 1C offers O(1) locality
and O(logN log logN) read efficiency, whereas L-SDd[1C]
offers O(logN) locality and O(logN log logN + logN) read
efficiency. Similarly, L-SDd[NlogN] offers O(logN) locality
and O(logN) read efficiency, as opposed to optimal locality
and read-efficiency that is offered by NlogN.
Page-efficient L-SDd[·]. We can instantiate L-SDd[·] on SSDs
with static page efficient schemes like NlogN [6] and its vari-
ations i.e. sN [31]. The page efficiency of L-SDd[NlogN] is
O(logN) vs. the optimal page efficiency offered by NlogN,
whereas for L-SDd[sN] page efficiency is O(N

1
s /p+ logN).

Security and efficiency. We formally state and prove the se-
curity of L-SDd[G] (for G 2 {1C,2C,NlogN}) in the extended
version. The security of SDd[PiBAS] is already proven in [26].
We prove also that when we instantiate a locality-aware static
scheme G with L-SDd[·], it retains its space overhead, but for
locality and read-efficiency an additional 3 logN factor is in-
troduced as 3 logN indexes are queried (similar proof for the
page-efficient L-SDd[·] transformation can be proven)—see
the extended version.
1C Optimization. In 1C scheme we do not need to make
the keyword-lists’ sizes to be of power of 2. We also do not
need to store the larger keyword-lists into the bins before
the smaller lists. Hence the lines 5 and 6 in Figure 6 are not
required for 1C. The two linear scans that add rank and nw
values to each entry can be also removed (line 4). This is
because, after the first oblivious sort the entries for the same
keyword are all placed together in adjacent locations. In Phase
2, with the help of a single counter one can count how many
occurrences of a particular keyword has been seen. Based on
this counter value BUF2 can be updated accordingly. The
same counter value can be used in 1C.Map function to com-
pute the bin numbers.The counter needs to be reset to 0 every
time a new keyword is observed. We provide the optimized
pseudocode for 1C.oblMerge in the extended version.

Scheme
Size(GB) for
|DB|= 223

Size(GB) for
|DB|= 226

L-SDd[NlogN] 49 436
L-SDd[1C] 7.5 60

SDd[PiBAS] 5 40

Figure 7: Needed storage for a dataset and encrypted index.

NlogN Optimization. Here the order of storing lists does
not matter. Thus, the second oblivious sort (line 6) can be
omitted in Phase 1 for the NlogN scheme. This can be further
optimized by storing only s evenly distributed arrays, instead
of `= logN +1 arrays, which is essentially the Ns scheme.

2C Optimization. For 2C scheme, the client needs to maintain
a map to remember which bin has how many entries. This is
because, placement of a keyword-list into a superbin depends
on how full the superbin is. There are can be maximum of
m = dN/log logN(log loglogN)2e bins. But in L-SDd there
are logN index levels. Hence, to maintain this information the
required client storage is O(m· logN). To achieve a constant
client storage, this map can be stored at the server in oblivious
maps (see section 2).

Update cost. The oblMerge framework shown in Figure 6
mainly consists of three types of building blocks: bucket obliv-
ious sorts, basic for loops and linear scans. Linear scans are
realized with basic for loops. The costliest operation among
these is the bucket oblivious sort [5], which can be decom-
posed into N steps of O(logN) work per step, assuming an in-
dex contains at most N entries (recall the ith index contains 2i

elements). In the extended version we explain how to deamor-
tize the bucket oblivious sort in detail. Even the for loops can
be executed for O(logN) iterations during a particular call of
oblMergei (for the ith index). Overall, an oblMergei protocol
can be decomposed into N steps of at most O(logN) work
per step. There are logN levels in L-SDd[·]. Hence, the worst
case update cost is O(log2 N) for L-SDd[1C], and L-SDd[2C].
For L-SDd[NlogN] the update cost is O(log3 N), because it
has at most logN levels per index.

4 Experimental Evaluation

We report the performance of our schemes and compare them
with previous state-of-the-art works.

We implemented SDa[1C], SDa[2C], SDa[NlogN],
SDa[sN], L-SDd[1C] and L-SDd[sN] with approximately 31K
lines in C++. We used OpenSSL-AES [3] PRF evaluation and
semantically secure encryption. We also used Oblivious MAP
of [26] for the SDd[PiBAS] implementation, and merge-sort
as the last step in the implementation of bucket oblivious
sort [5]. We ran our experiments on a machine with Intel
Xeon E-2174G 3.8GHz processor, 128GB RAM, 1TB SSD,
and 5TB HDD running Ubuntu 20.04 LTS (limited to one
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Figure 8: Search computation time for |DB|= 223 and variable result size for (a) |block|= 32B in (a) HDD, (b) SSD. Search
computation time for variable database size and nw = 1K in (c) HDD, (d) SSD.
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Figure 9: Search computation time for |DB|= 223 and variable result size for (a) |block|= 512B in HDD. Search computation
time for variable database size and nw = 10K in (b) HDD, (c) SSD. (d) Search computation time for |DB|= 223, |block|= 32B
in HDD and variable result size for WAN machines with 24.7ms network delay and 2.5Gbps bandwidth.

CPU core for our experiments). Our code is available online.9
We focus on the computation time for Search and Update

queries and measure these parameters for variable-size syn-
thetic datasets with |DB|= 211-226 records randomly shuffled
before insertion, each time setting the total number of distinct
keywords |W | to |DB|/100. Likewise, we report results for
varying result size nw between 10 and 5M documents. We
also consider two block sizes: 32B and 512B. To highlight the
significance of I/O in a memory-constrained environment, we
conduct our experiments in a cold cache setting, but we also
provide two sets of experiments to show the effect of cache
on the performance of our schemes. In the first one, we keep
the different ratios of datasets in the memory (as cache) and
respond to the queries for those encrypted data from memory.
Note that we normalize the cache for each scheme. In other
words, we fix the cache size and load as much as data we
can in that memory. In the second, we assume there are many
users (200 for HDD and 75 for SSD) each of which has her
own dataset with size 220 and they execute their own search
queries randomly when the cache in the system is enabled.

Experiments were repeated five times, and the average re-
sult is reported. We also provide a comparison between the
needed storage on the server for each de-amortized scheme in
Figure 7 for a dataset with |block|= 32B where |DB|= 223

and |DB| = 226. Note that we focus on small client storage
schemes. Therefore, client storage is constant.

We also repeated the search experiments on a real dataset
9https://github.com/jgharehchamani/DSE-with-IO-Locality

consisting of 22 attributes and 6,123,276 records of reported
crime incidents in Chicago [1]. We used two different at-
tributes, containing 34 and 170 distinct keywords, respectively,
and keyword frequency ranging from 1 record to 1,631,721
records. Finally, we simulated the search and update time
of our schemes when run over WAN with 24.7ms delay and
2.5Gbps bandwidth on AWS (between two machines on Ire-
land and Frankfurt zones).

4.1 Search Performance
Our first set of experiments focuses on search performance
and we demonstrate the impact of variable data block sizes,
variable result sizes, variable database sizes, and cache size
on all our schemes and compare them with SDa[PiBAS] [26]
and SDd[PiBAS] [26]. We do not provide the big-block ex-
periments for SSD due to disk space limits.
Variable Block and Result Sizes. Figure 8 (a,b) and Figure 9
(a) show the search computation time of a dataset with size 223

|block| = 32B as the result size nw changes. Similar results
for our amortized schemes are in Figure 10 (a),(b),(e).

The conclusions from these experiments are: (i) As ex-
pected, SDa[PiBAS] and SDd[PiBAS] have the worst perfor-
mance among all other schemes for large result sizes due to
their poor locality (in HDD) and page efficiency (in SSD).
They need to change the position of the hard-drive head or
bring different pages of the results, stored at random locations,
which leads to significant slowdown. (ii) The SDa[NlogN]
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Figure 10: Search computation time for |DB|= 223 and variable result size for (a) |block|= 32B in HDD, (b) |block|= 512B in
HDD. Search computation time for variable database size and (c) nw = 1K in HDD, (d) nw = 10K in HDD. Search computation
time for |DB|= 223 and variable result size for (e) |block|= 32B in SSD. Search computation time for variable database size
and (f) nw = 1K in SSD, (g) nw = 10K in SSD.
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Figure 11: Search computation time for |DB|= 223, variable
result size, and |block|= 32B for different NlogNsettings in
(a) amortized HDD, (b) amortized SSD.

and L-SDd[NlogN] schemes achieve the best performance
in the amortized and de-amortized setting, at the cost of ex-
tra storage. The number of indexes searched in L-SDd[·] is
three times than that of SDa[·], hence the search time of L-

SDd[NlogN] is slightly more than SDa[NlogN]. (iii) SDa[2C]
performs better than SDa[1C] for small result sizes. However,
their performance is the same for result sizes more than the
bin’s threshold, since, after the threshold entries are stored us-
ing SDa[1C] (therefore we ignored this scheme in SSD exper-
iments). (iv) The execution time for SDa[1C] for result sizes
bigger than 105 remains approximately constant, as at this
point the database is read in its entirety (i.e. all bins contain re-
sults). (v) When the block size is increased from 32B to 512B,
the search time of all schemes increases, but the gap between
SDa[2C]/SDa[1C] and SDa[PiBAS] decreases. This is due to
the increase in the volume of the data read for blocks of size
512B, which becomes the dominant factor in the performance.
(vi) Amortized and de-amortized versions of PiBAS, 1C, and

NlogN have similar performance. Finally, all our schemes
have excellent performance in practice. E.g., SDa[1C] and
SDa[NlogN]/L-SDd[NlogN] are up to three orders of mag-
nitude faster than SDa[PiBAS]/SDd[PiBAS] (for |nw|= 105

and |DB|= 223
SDa[1C], SDa[NlogN], and SDa[PiBAS] take

16s, 0.8s, and 903s respectively).

Variable Database Size. Figures 8 (c,d) and Figures 9
(b),(c) show the effect of database size on search compu-
tation. (Results for the amortized schemes are in Figures 9
(c),(d),(f),(g)). For small blocks it varies search time for vari-
able database sizes between 211 � 226 and for result size
nw=1K in HDD and SSD. As the figures show, the search
time of all schemes increases as the database size increases,
because of the added levels in the data structures. However,
all our schemes are significantly faster than SDa[PiBAS] and
SDd[PiBAS]. For instance, the amortized schemes SDa[1C],
SDa[2C], and SDa[NlogN] are faster than SDa[PiBAS] by
2�136⇥, 5�159⇥, and 4�209⇥ respectively. Also, the de-
amortized schemes, L-SDd[1C] and L-SDd[NlogN] are faster
than SDd[PiBAS] by 2�58⇥ and 3�70⇥ respectively.

Effect of the value of s on SDa[NlogN] and L-SDd[NlogN].
The previous experiments showed that our NlogN-based
schemes have the best performance at a cost of more (i.e.
logN times) storage. However, as discussed in Section 3.2,
these schemes can be used more "cleverly" to reduce the
storage overhead. In Figure 8 (a,b), we measured the effect
of keeping s intermediate levels instead logN levels for the
de-amortized schemes (e.g., L-SDd[3N] refers to keeping 3
levels). Similar experiments for amortized schemes are pre-
sented in Figure 11. If the level that a keyword-list should be
stored does not exist, we split the list into multiple equal-sized
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(d)
Figure 12: Search computation time for |DB|= 223 and variable result size for |block|= 32B in HDD, (a) 25% Caching, (b) 50%
Caching, (c) 75% Caching, (d) 100% Caching.
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(d)
Figure 13: Search computation time for |DB|= 223 and variable result size for |block|= 32B in SSD, (a) 25% Caching, (b) 50%
Caching, (c) 75% Caching, (d) 100% Caching.
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Figure 14: Search computation time for |DB|= 220 for each
user and variable result size for |block|= 32B with caching
enabled in (a) HDD where 200 users exist in the system (b)
SSD where 75 users exist in the system

chunks (last chunk is padded, if necessary) and store them
in the next closest existing level. The experiment shows that
even when keeping fewer levels than logN, SDa[NlogN]/L-

SDd[NlogN] outperform PiBAS and 1C based schemes in
terms of search time, due to its practical locality and page
efficiency, while also reducing storage to 3s⇥N. E.g., when
storing every 8th level (SDa[3N]/L-SDd[3N]), the achieved
scheme is up to 30⇥ and 1949⇥ faster than SDa[1C] and
SDa[PiBAS] and up to 8⇥ and 833⇥ faster than L-SDd[1C]
and L-SDd[PiBAS] for big result sizes.
Cache Experiment. Figures 12 and 13 show the effect of
cache on the search time. They represent the search compu-
tation time over a dataset with size 223 and |block| = 32B
for variable result sizes and variable cache sizes on HDD
(Figure 12) and SSD (Figure 13). As explained above, for
these experiments we fix the cache size in memory according

to the SDd[PiBAS] scheme which has the smallest storage
size in the de-amortized schemes (e.g., 25% of the encrypted
dataset of SDd[PiBAS]), and we use the same cache size as
for other schemes for fairness. The figures show that: i) as
the cache size increases, all schemes’ perform better and their
search time reduces. However, SDd[PiBAS] benefits more
from the cache than others (i.e., its search time improves up
to 8⇥ while L-SDd[1C] and L-SDd[NlogN] only improve up
to 2.4⇥ and 2⇥) due to the smaller needed storage. ii) all
our schemes still outperform SDd[PiBAS] for big enough
result sizes (>1K). Even when 75% of data is cached in
SDd[PiBAS], L-SDd[1C] and L-SDd[NlogN] are up to 191⇥
and 641⇥ faster. iii) When all data is cached (assuming it
fits entirely in memory), L-SDd[NlogN] outperforms other
schemes (as expected) because it has the best locality and
needs minimal cryptographic operations. On the other hand,
L-SDd[1C] becomes worse than SDd[PiBAS] in big result
sizes because in these queries the dominant overhead comes
from crypto and L-SDd[1C] needs to execute Sim3⇥ more
decryptions than the other schemes due to padding.

In a second experiment (Fig. 14) we emulate a scenario
with multiple users (200 for HDD and 75 for SSD) each
with her own independent dataset (of size 220). With cache
enabled, we executed random queries among users. As the
figure shows, due to the size of datasets being larger than the
memory (encrypted indexes for HDD and SSD were 1.8TB
and 675GB), we see a similar trend as Figures 8 (a, b).

Search Over Real Datasets. We evaluated search times on
two attributes of the crime dataset [1], with (a) 34, and (b) 170
distinct keywords. We measured the search time for differ-
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Figure 15: Crime Dataset—Search computation time vs
variable result size for an attributed with (a) |W | = 34, (b)
|W |= 170.

ent keywords associated with increasing numbers of results.
Our experiments show that our schemes clearly outperform
both SDa[PiBAS] and L-SDd[PiBAS], and we reach similar
conclusions as previously (Figure 15).

Search Over WAN We also simulated the end-to-end search
time when client and server are located on two different
machines. Our testbed was two AWS machines in Ireland
and Frankfurt (with 24.7ms delay and 2.5Gbps bandwidth).
Our experiments show a similar trend as the single machine
case due to the constant roundtrip number and high net-
work bandwidth, so our schemes outperform SDa[PiBAS]
and SDd[PiBAS] (see Fig. 10 (d)).

4.2 Update Performance
Next, we report the update performance of our schemes via
two sets of experiments: (i) update cost of the amortized
scheme, (ii) update cost of the de-amortized schemes.

Update Cost of Amortized schemes. In the first experiment,
we measured the update time for 1K consecutive updates.
Each time, the client fetches and merges some previously built
levels and then uploads them to the server. Clearly, the update
cost depends on the number of previously inserted indexes
and it increases when more indexes need to be merged. We
repeated the same experiment for SDa[NlogN] and saw the
same behaviour (see Figure 16). It is clear that SDa[PiBAS]
has the best update cost for small merges (due to storing fewer
entries) and the worst update cost for big merges (as random
I/Os increases). The minimum and maximum observed time
for SDa[PiBAS] is 2ms and 12905ms, while for SDa[NlogN]
they are 58ms and 6421ms.

Update Cost of De-Amortized schemes. To measure the
update performance of our de-amortized schemes, first we
measured the update computation time for variable database
sizes in memory. According to our experiment (Figure 17
(a)), L-SDd[1C] outperforms other schemes for database sizes
above 100K which is compatible with its better asymptotics
(e.g., L-SDd[1C] is up to 2.5⇥ faster than SDd[PiBAS] for
database size of 5M). Furthermore, L-SDd[NlogN] has the
worst performance in the memory setting due to the large
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Figure 16: Update computation time of amortized schemes
for 1K updates starting from an empty dataset (a) SDa[1C] vs
SDa[PiBAS] (b) SDa[NlogN] vs SDa[PiBAS]
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Figure 17: Update computation time for variable database
sizes (a) over single machine (b) over WAN machines with
24.7ms network delay and 2.5Gbps bandwidth.

number of layers it needs to create for each level of the de-
amortized framework. We also provided L-SDd[PiBAS] up-
date time to show our framework is applicable to SDd[PiBAS]
and can reduce its cost from O(log3 N) to O(log2 N). Finally,
we re-executed this using HDD storage. We observe that
L-SDd[1C] is still the most efficient scheme in all database
sizes. On the other hand, L-SDd[NlogN] becomes better than
SDd[PiBAS] in bigger database sizes due to its better locality
(e.g., L-SDd[1C] and L-SDd[NlogN] are 123⇥ and 5⇥ faster
than SDd[PiBAS] for size 5M).
Update Over WAN. We measured end-to-end update times
when client and server are located on different AWS machines,
as above (Figure 17 (b)). The performance of memory-based
SDd[PiBAS] worsens due to the round trips for OMAP access
and the amount of data that must be transferred over the net-
work (L-SDd[1C] is 8�11.3⇥ and L-SDd[NlogN] is 1.2�2⇥
faster than SDd[PiBAS]). That said, the performance of disk-
based schemes is similar to the single-machine case as the
disk overhead is the dominant cost and the bandwidth is high
enough to “cover” for the network overhead.

5 Conclusion
In this work, we proposed the first I/O efficient DSE schemes
with forward/backward privacy by re-visiting prior “static-to-
dynamic" compilers. First, we came up with a new oblivious
merge framework, that enabled us to place entries for the
same keyword close to each other (preserving locality). More-
over, we optimized performance by replacing oblivious data



structures for more lightweight and easier-to-implement obliv-
ious sorting algorithms and linear scans. We implemented
both amortized and de-amortized transformations with I/O-
efficient static schemes, such as 1C, 2C, NlogN, and sN (for
s = 3 and 6), and compared their search and update times
with prior works, overall showcasing our schemes’ superior
performance in various settings and configurations.
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