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Abstract
As face recognition is widely used in various security-

sensitive scenarios, face privacy issues are receiving increas-

ing attention. Recently, many face recognition works have

focused on privacy preservation and converted the original im-

ages into protected facial features. However, our study reveals

that emerging Deep Learning-based (DL-based) reconstruc-

tion attacks exhibit notable ability in learning and removing

the protection patterns introduced by existing schemes and

recovering the original facial images, thus posing a significant

threat to face privacy. To address this threat, we introduce

FaceObfuscator, a lightweight privacy-preserving face recog-

nition system that first removes visual information that is non-

crucial for face recognition from facial images via frequency

domain and then generates obfuscated features interleaved

in the feature space to resist gradient descent in DL-based

reconstruction attacks. To minimize the loss in face recog-

nition accuracy, obfuscated features with different identities

are well-designed to be interleaved but non-duplicated in the

feature space. This non-duplication ensures that FaceObfus-

cator can extract identity information from the obfuscated

features for accurate face recognition. Extensive experimental

results demonstrate that FaceObfuscator’s privacy protection

capability improves around 90% compared to existing privacy-

preserving methods in two major leakage scenarios including

channel leakage and database leakage, with a negligible 0.3%

loss in face recognition accuracy. Our approach has also been

evaluated in a real-world environment and protected more

than 100K people’s face data of a major university.

1 Introduction

Face recognition, a technology that utilizes the human face

for biometric identification, is widely used in security-related

scenarios. As facial information is a unique biometric trait of
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an individual, any potential leakage poses a significant risk.

If malicious actors gain access to this facial information, they

could potentially use it to impersonate the affected individu-

als and carry out unauthorized activities. Moreover, since the

biometric profiles of individuals’ facial characteristics are ex-

tremely hard to change, the hazards caused by the leakage will

be long-lasting. Thus, the privacy issue of face recognition

has received more and more attention in recent years. Various

governments have enacted legislation pertaining to safeguard-

ing facial privacy, such as the European Union’s General Data

Protection Regulation (GDPR [1]). Despite advancements,

many commercial face recognition systems [2–4] still store

sensitive facial features. These features are machine learning

attributes extracted from facial images, and in some cases,

the original photos are also stored. This practice significantly

jeopardizes privacy, particularly in instances of database leaks.

In such situations, confidential customer biometric data could

potentially be extracted from facial features through a process

known as a reconstruction attack [40, 43, 61]. Incidents of

such leakages have occurred in the past, as exemplified by

SenseNets’ leakage of 2.5 million face data, Clearview AI’s

exposure of billions of photographs, and the U.S. Customs

and Border Protection’s (CBP) disclosure of an unspecified

number of travelers’ photos.

The root cause of such insecure privacy practices is twofold.

Firstly, existing protection approaches often struggle to meet

the practical requirements of real-world face recognition.

For example, researchers design cryptography-based meth-

ods [26, 32, 42, 50] to encrypt facial features and even per-

form face recognition within the encrypted domain, thereby

safeguarding facial privacy. Despite these cryptography-

based methods taking practicality into account by minimizing

overhead through various optimizations, their computation-

intensive nature makes it difficult to scale to larger datasets.

Consequently, as the volume of real-world production data

increases, these methods incur greater computation and com-

munication overhead [36, 41, 47].

Secondly, the recent advancements made by privacy adver-

saries often make it challenging for existing approaches to



Table 1: Experimental findings on the vulnerability of recent

privacy-preserving methods. represents a good protection

against attacks; represents a poor protection to attacks;

represents no protection against attacks.

Defend Against Privacy Attacks

Methods
Mapping Type

(Images→Features) DL-based
DL-based

(Adversarial Training)

Accuracy

InstaHide [20] Random 0%−10%

Cloak [41] DL + Polynomial − 80%−90%

AdvFace [53] DL + Polynomial 80%−90%

PPFR-FD [52] Orthogonal + Liner 90%−95%

DCTDP [24] Orthogonal + Liner 90%−95%

Duetface [39] Orthogonal 90%−95%

strike a balance between usability and effectiveness in pro-

tection. Because of the usability limitation of cryptography-

based methods, there is a tendency to use more lightweight

transformation-based methods. For instance, recent works [8,

20, 41, 53] use differential privacy or adversarial samples

to generate noises and use such noises to perturb the facial

features against privacy attacks. Other works [24, 39, 52] con-

verted facial images into frequency features and removed

several non-critical frequency channels, to protect facial pri-

vacy. However, our research finds that existing lightweight

methods are vulnerable to state-of-the-art privacy attacks.

In particular, real-world attackers are very powerful given

recent advances in DL-based reconstruction attacks [9, 12,

18, 35, 58, 61]. These attacks aim to learn the inverse map-

ping from facial features to facial images by training a recon-

struction network with powerful fitting capabilities. Using

the trained reconstruction network, the attacker can directly

recover the facial image from the protected facial features.

Our experiments across 8 widely-used datasets with visual

and quantitative results demonstrate that previous privacy-

preserving methods cannot provide comprehensive privacy

protection when countering such a real-world scenario. Specif-

ically, as summarized in Table 1, Cloak [41], AdvFace [53],

PPFR-FD [52], DCTDP [24], Duetface [39] cannot defend

against DL-based reconstruction attacks that use adversarial

training. Although InstaHide [20] can partially protect face

privacy, it suffers from a significant accuracy decline.

Hence, there is an urgent need to propose a new scheme

that can provide strong privacy protection and guarantee the

accuracy of face recognition at the same time, which leads to

two mutually constraining challenges. Challenge 1: How to
disrupt the fitting ability of DL-based reconstruction attacks?
Previous privacy-preserving schemes [24, 39, 41, 52, 53] com-

monly mapped the same identity of facial images to the same

categories of features, so the reconstruction network can al-

ways appropriate the corresponding inverse mapping (from

features to images) via gradient descent to recover facial im-

ages. Therefore, it is a challenge to find a novel mapping that

can essentially defend against reconstruction attacks. Chal-

lenge 2: How to ensure the availability of face recognition at
the same time? If the fitting ability of the reconstruction net-

work has already been disrupted successfully, this disruption

may also have a huge interference on the face recognition

network, resulting in serious degradation of face recognition

accuracy, just as the result of InstaHide [20]. Therefore, it

is challenging to preserve the information that can be used

for face recognition while disturbing the fitting ability of the

reconstruction network.

To address those challenges, we propose a lightweight

privacy-preserving face recognition system, called FaceObfus-

cator, which has two key characteristics. (1) FaceObfuscator
can generate obfuscated features to prevent DL-based face
reconstruction attacks from recovering facial images. To this

end, we first remove the visual information that is non-crucial

for face recognition in frequency domain to weaken the recon-

struction results. Then, we generate different candidate feature

sets containing multiple obfuscated features for different fa-

cial features, and randomly select an obfuscated feature from

the candidate feature set as a final facial feature, as shown in

Fig. 2. Note that the obfuscated features in different candidate

feature sets are interleaved with each other, which disrupts

the essence of the reconstruction network, i.e., the mapping

from features to images, so these features are gradient descent-

resistant to the reconstruction network. Thus, the obfuscated

features can defend against DL-based reconstruction attacks

to achieve privacy protection. (2) FaceObfuscator can still
utilize the unique candidate feature sets of obfuscated features
to maintain face recognition accuracy. Since the obfuscated

features in different candidate feature sets are simultaneously

designed to be not duplicated, a specific candidate feature set

could be found through an obfuscated feature. It is noted that

the candidate feature set is generated from facial features and

contains information about facial features. Therefore, identity

information can be extracted from the obfuscated feature for

face recognition. Extensive evaluation comparing 6 recent

privacy-preserving methods on 8 widely-used datasets, shows

FaceObfuscator’s face privacy protection capability increases

around 90% with a tolerable 0.3% accuracy sacrifice. Due

to its practicability, our approach has also been evaluated

in a real-world environment and protected more than 100K

people’s face data of a major university.

Our main contributions can be summarized as follows:

• We reveal the vulnerability of existing privacy-preserving

face recognition schemes against DL-driven reconstruction

attacks through extensive visual and quantitative experi-

ments across 8 widely-used datasets.

• We propose a novel privacy-preserving face recognition

system called FaceObfuscator, which generates interleaved

but non-duplicated obfuscated features from their candidate

feature sets. The obfuscated features are gradient descent-

resistant to prevent face reconstruction attacks while con-

taining identity information for accurate face recognition.



• FaceObfuscator serves as a lightweight privacy protection

method that can be used for real-time face recognition. The

time cost of FaceObfuscator from inputting an image to

completing face recognition is comparable to the main-

stream face recognition baseline without privacy protection

capabilities, and is faster than most face privacy protection

methods. The storage cost for its obfuscated features is no-

tably lower, at 98KB per image, compared to the recent face

recognition methods.

• FaceObfuscator has been used as one of the protection meth-

ods to guard the face privacy of over 100,000 individuals in

a major university. Extensive experiments demonstrate that

FaceObfuscator outperforms the state-of-the-art privacy-

preserving face recognition methods in terms of superior

privacy protection performance with a negligible face recog-

nition accuracy loss.

2 Related Work

This section first overviews the related works on face re-

construction attacks, and then introduces recent privacy-

preserving face recognition schemes and their vulnerabilities.

2.1 Face Reconstruction Attacks
In the early years, Mohanty et al. [43] utilized a linear ap-

proach to reconstruct facial images from face templates.

Mignon et al. [40] used the RBF-regression in eigenspace

to reconstruct facial images from their signatures. However,

these traditional methods cannot cope with the features gen-

erated by the later emergence of deep neural networks or

complex mappings.

Nowadays, mainstream face reconstruction attacks can be

mainly divided into two kinds, i.e., optimizing-based and DL-

based. The optimizing-based attacks [13, 45, 46] iteratively

optimize input based on feedback from the face recognition

system until the original image is recovered. However, these

methods require numerous query operations and are heavily

reliant on feedback from the face recognition system. Alterna-

tively, a more practical strategy is the DL-based attack, whose

objective is to establish an inverse mapping from features to

images. Zhmoginov et al. [61] pioneered the utilization of

DNNs to invert face embeddings into realistic images. Cole

et al. [9] generated facial images from the facial features ex-

tracted by the face recognition network. Dosovitskiy et al. [12]

and Mai et al. [35] utilized an up-convolutional neural net-

work to reconstruct visual images from features. He et al. [18]

enabled a malicious participant in collaborative inference to

reconstruct the input of other participants. Moreover, some

works [22,28,58] guided the inversion from labels or features

to images by Generative Adversarial Networks. In this paper,

DL-based attacks are considered the primary threat due to
their heightened attack capability and broader applicability.

2.2 Privacy-preserving Face Recognition

In recent years, some privacy-preserving face recognition

schemes have been proposed, which can be mainly divided

into two categories, i.e., cryptography-based methods and

non-cryptography methods.

The cryptography-based methods usually perform face

recognition in encryption space to defend against privacy

attacks, e.g., homomorphic encryption [14, 26], oblivious pro-

tocols [32], functional encryption [5], key-based CNN [34],

random matrix [30], etc. In fact, real-world face recognition
systems rarely employ cryptography on the client side due to
the contradiction between their weak computational power
and huge computational overheads, which has a 1000x even
10000x slow down [41].

Consequently, there is a growing preference for more

lightweight transform-based methods. Some methods [8, 20,

20, 41, 53] transform facial features against reconstruction

attacks by adding various types of noise. Chamikara et al. [8]

used local differential privacy that adds perturbation to eigen-

faces. Mireshghallah et al. [41] filtered out features that were

less relevant to the target task by perturbation and subse-

quently protected them with a constant suppression value. [20]

employed a one-time key to amalgamate different images for

the protection of specific ones. Wang et al. [53] used adver-

sarial noise to protect existing facial features. Recently, some

methods [24,39,52] have achieved privacy protection by trans-

forming images to the frequency domain. Wang et al. [52]

shuffled and mixed up the channels in the frequency domain

for privacy-preserving. Ji et al. [24] introduced differential

privacy to the frequency domain. Mi et al. [39] removed some

low-frequency channels in the frequency domain, which is

essential for visualization. However, our experiments reveal
that all of these preferred lightweight methods are ineffec-
tive in achieving privacy preservation and maintaining face
recognition accuracy at the same time when confronted with
realistic DL-based reconstruction attacks. This inefficiency

stems from the regular mapping of images to features in pre-

vious perturbations and transformations. This mapping fails

to prevent deep learning within the reconstruction network

from appropriating its inverse mapping from features back to

images, thus enabling the recovery of the facial images.

In summary, previous methods either involve impractical

additional overhead or cannot maintain face recognition accu-

racy and protect face privacy at the same time.

3 Preliminary

This section first outlines typical face recognition systems and

illustrates their susceptibility to privacy attacks. Subsequently,

considering the weak capabilities of the attackers set in pre-

vious privacy-preserving works, we expound upon a more

powerful and practical threat model applicable to nearly all

face recognition systems, aiming to provide a more realistic
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Figure 1: Typical face recognition systems and their potential

attack surfaces.

assessment of the privacy-preserving capacities.

3.1 Typical Face Recognition System
Nowadays, mainstream face recognition systems, illustrated

in Fig. 1, commonly adopt a client-server architecture. The

client side collects and preprocesses facial images from users,

and then transmits the preprocessed image to the server side.

On the other hand, the server side utilizes its powerful com-

puting power to execute the final face recognition process.

In order to further protect privacy, current privacy-

preserving face recognition schemes usually convert facial

images into facial features during the client’s preprocess-

ing stage to achieve privacy protection. Correspondingly, the

database on the server side does not store the original image

but the facial features. Though it is true that the facial fea-

tures are already unrecognizable to humans, there remains a

potential risk of privacy compromise due to the presence of

the aforementioned DL-driven reconstruction attack, which

aims to recover the original facial images.

3.2 Threat Model
Attack Scenarios. In this paper, we consider the server in

face recognition to be trusted, but there exists a powerful exter-

nal attacker whose goal is to recover facial images from facial

features to invade users’ privacy. It is worth noting that prior

attempts at privacy preservation have often underestimated the

capabilities of the attackers. For instance, chamikara et al. [8]

employed traditional methods such as PCA-based models to

reconstruct images and some works [24, 52] even directly

considered inverse DCT operation which is the reverse opera-

tions of preprocessing as a white-box attack. Mireshghallah

et al. [41] only considered attacks on the sensitive attributes

of faces, ignoring attacks that can directly reconstruct the en-

tire face. In addition, some works [24, 39, 52] did not adopt a

strategy of adversarial training while training DL-based recon-

struction network, leading to misjudgment of their scheme’s

ability to protect privacy.

In fact, attackers in the realistic scenario [7,17,23,31,38,49]

can utilize deep learning-based reconstruction attacks and em-

ploy the adversarial training strategy, which can retrain the

reconstruction network using pairs of protected facial features

and facial images to learn its new mapping relationship for re-

covering facial images. This advanced attack methodology is

able to breach established privacy-preserving techniques and

obtain facial information, as summarized in Table 1. There-

fore, we adopt such a powerful threat model to better accu-

rately evaluate the efficacy of our privacy-preserving method.

Attacker’s Knowledge. We assume the attacker has the

following knowledge:

• Leaked facial features X ′ = {x′1,x
′
2, · · · ,x′n}: the attacker

has intercepted the data in the transmission channel or

gained access to the compromised database.

• The client of the face recognition system C(·): the at-

tacker can get the latest black-box client of the face recog-

nition system by purchasing from the service provider.

Attacker’s Strategy. With the mentioned knowledge, the

attacker can obtain protected feature-image pairs (X ,Y ) from

public face datasets Y through the latest client: X =C(Y ),
where X is the facial feature datasets. Then, attackers can train

its corresponding reconstruction network G(·) with (X ,Y ),
and finally feed the leaked facial features X ′ to the reconstruc-

tion network to recover the original images: Ytarget = G(X ′).
All DL-based face reconstruction attacks are based on the

above strategy with adjustments of the training dataset, loss

function, or network architecture. In this paper, we adopted

two of the most prevalent and threatening types of DL-based

reconstruction attacks, which use Deconvolutional Networks

(DN) [9, 12, 18, 35, 57, 61] and Conditional Generative Ad-

versarial Networks (cGAN) [22, 28, 58], respectively, to train

reconstruction networks G(·).

4 Gradient Descent-resistant Face Protection

In this section, we present our novel Gradient Descent-

Resistant system, called FaceObfuscator, for privacy-

preserving face recognition. In Section 4.1, we provide

an overview of our proposed system. In Section 4.2, we

first investigate the role of frequency channels for face

recognition. By retaining only the most critical channels

for face recognition, we aim to reduce as much visual

information as possible to weaken face reconstruction

while preserving recognition accuracy. In Section 4.3, we

reveal our innovative strategy developed to secure residual

visual information by making it challenging for DL-based

reconstruction networks to grasp it. We will elaborate on how

we develop a mathematical model to generate an obfuscated

feature that can be exploited for face recognition and how
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Figure 3: After block discrete cosine transform (BDCT), dif-

ferent visual information in the image is arranged in a zigzag

pattern from low to high frequency. (b) (c) (d) represent the

visual information in frequency channel DC, AC01 and AC77.

it successfully resists gradient descent to undermine the

powerful DL-based face reconstruction capability.

4.1 Overview of FaceObfuscator

Our approach is based on an important observation of the

neural network: the essence of DL-based face reconstruction

attacks is to learn new mappings from protected features to

original images for recovering facial images. Therefore, the

core idea of FaceObfuscator is to disturb those mapping by re-

sisting the gradient descent process in training reconstruction

networks. To this end, we generate the obfuscated features by

removing visual information non-critical for face recognition

and introducing randomness to the features, which aims to

make the obfuscated features of different facial images inter-

leaved in the feature space so that the reconstruction network

cannot distinguish them.

Fig. 2 shows the workflow of FaceObfuscator, which takes

the facial images as the input of the client and generates the

obfuscated features as the output of the client. The obfuscated

features will be transmitted into the server and stored in the

database of the server for face recognition to prevent potential

face reconstruction attacks.

Specifically, FaceObfuscator has two components in the

client (i.e., Frequency domain-based visual information dele-

tion, Identity-retained stochastic obfuscation), and one com-

ponent in the server (i.e. Identity recovery). On the client side,

the client first feeds facial images into Frequency domain-
based Visual Information Deletion to transform them into

frequency-domain features, and then removes visual informa-

tion non-critical for face recognition to weaken the reconstruc-

tion results. After that, through Identity-retained Stochastic
Obfuscation, the client generates different candidate feature

sets containing multiple obfuscated features for different fa-

cial features, and then randomly selects an obfuscated feature

from the candidate feature set as a final facial feature. Note

that the obfuscated features in different candidate feature sets

are interleaved with each other, which disrupts the essence of

the reconstruction network, i.e., the mapping from features

to images, so these features are gradient descent-resistant to

the reconstruction network. On the server side, the server

stores obfuscated features transmitted from the client. Note

that the obfuscated features in different candidate feature sets

are designed to be not duplicated, so the server can find the

candidate feature set of each obfuscated feature. Since the

candidate feature set is generated from facial features and con-

tains information about facial features, identity information

can be extracted from the obfuscated feature through Identity



Table 2: Face recognition with a single frequency channel.

Channel LFW AgeDB-30 CALFW CPLFW

DC 99.83 97.98 95.93 91.73

AC14 99.50 95.82 95.08 87.37

AC37 99.33 95.75 95.23 87.05

AC63 99.57 97.02 95.65 90.08

AC77 99.65 97.30 95.87 90.62

(a) w/o standardization (b) with standardization

Figure 4: The necessity of standardization for evaluating the

importance of the channel for face recognition. (a) is the

importance of frequency channels before standardizing the

numerical values in frequency channels, whose results are

inconsistent with the observation that each channel has visual

information for face recognition; (b) is the re-assessed impor-

tance of frequency channels after standardizing, whose results

are consistent with the above observation.

recovery for face recognition.

4.2 Frequency Domain-based Visual Informa-
tion Deletion

We gain new insight on defending against DL-driven attacks

from the unique perspective of the frequency domain, i.e.,

most of the frequency channels can be removed with little loss
of accuracy, which indeed contain visual information that is
targeted by attacks. Thus, we design our scheme to remove

more than 90% of the channels to weaken the face visual

reconstruction effectiveness (compared to previous schemes

that only remove at most 50% of the frequency channels).

Next, we first explain the correlation between visual in-

formation and frequency channels (Section 4.2.1). Then, we

introduce how we exploit the channel selection to achieve

maximal visual information removal without compromising

face recognition accuracy (Section 4.2.2).

4.2.1 Understanding Visual Information from the Fre-
quency Domain

Because different frequency channels contain different vi-

sual information, as shown in Figs. 3b to 3d, previous

works [24,39,52] indicated that it is possible to remove visual

information to weaken the reconstruction results by partially

removing frequency channels. So, following the standard

Block Discrete Cosine Transform (BDCT) in JPEG compres-

sion [51], as shown in Fig. 3a, we first convert facial images

to the frequency channels to separate out the visual infor-

mation to be removed, say channel DC in Fig. 3b. However,

previous works [24, 39, 52, 56] diverge in determining which

channels should be retained to perform face recognition, i.e.,

most works [24, 52, 56] showed that low-frequency channels

are much more crucial in face recognition, while one [39]

showed another result that face recognition still works well

even if removing such low-frequency channels.

To explore the real relationship between face recognition

and visual information in frequency channels, we test the

feasibility of using a single frequency channel for face recog-

nition and observed that face recognition is possible with

visual information from even a single frequency channel, as

shown in Table 2, which is different from previous percep-

tion [24, 39, 52, 56]. This observation allows us to remove

most of the frequency channels, rather than remove part of

the frequency channels, to remove visual information against

reconstruction attacks without compromising face recognition

accuracy.

4.2.2 Identity-prioritized Frequency Channel Selection

Based on the above observation, our objective can be formu-

lated as retaining only the most critical frequency channels

for face recognition, where no further visual information can

be precluded without compromising ID accuracy.

To further clarify the exact impact of each frequency chan-

nel on face recognition, we design an auxiliary network to

measure different frequency channels’ importance for face

recognition. The auxiliary network assigns unconstrained

weights directly to the initial input of the network, and these

weights will be used to represent importance after training.

Eventually, we reveal the true importance of each channel in

face recognition by standardizing values in frequency chan-

nels, as shown in Fig. 4. Please refer to Appendix A for more

details.

According to the importance of face recognition, we priori-

tize the removal of frequency channels with relatively low im-

portance, thereby ensuring the retention of crucial information

for face recognition. Subsequently, we succeed in retaining

the channels that are the most critical for face recognition by

iteratively removing channels while concurrently assessing

their impact on face recognition. As shown in Fig. 5, only the

retained 2 channels, i.e., channel AC01 and channel AC10, are

the most critical channels for face recognition, which ensures

that there is no significant degradation in accuracy as well as

weakening the face reconstruction results.

Notably, this approach can select the most important fre-

quency domain channel based on different architecture facial

recognition models, and flexibly adjust the number of reserved

channels to ensure recognition accuracy while removing part

of the visual information. In other words, this approach is

scalable to different face recognition models.



Figure 5: COS and Accuracy Loss with different numbers of

channels retained on different datasets (the higher the COS

value, the closer the reconstructed face is to the original face).

When only 1 channel is retained, the loss of accuracy is too

great to be acceptable (Accuracy loss exceeds the accuracy

tolerance, say 0.3%); when many channels are retained, the

reconstructed image is close to the original image. So retain-

ing 2 channels can minimize the visual reconstruction effect

while maintaining accuracy.

4.3 Identity-retained Stochastic Obfuscation
Since part of facial details may still be recovered from the

retained frequency channels by DL-based face reconstruction

attacks, it becomes imperative to further obfuscate the retained

frequency channels to completely thwart potential privacy

breaches.

Next, we introduce a novel algorithm to generate obfus-

cated features from their unique candidate feature sets, which

are gradient descent-resistant to face reconstruction attacks

(Section 4.3.1). Then, we formulate a corresponding algo-

rithm for the server to utilize obfuscated features for face

recognition (Section 4.3.2).

4.3.1 Gradient Descent-resistant Facial Feature Genera-
tion

The key to defending against reconstruction attacks is inter-

fering with the gradient descent process of the reconstruction

network. So, we generate obfuscated features that are gradi-

ent descent-resistant to reconstruction networks to provide

strong privacy protection. This generation process involves

two core steps. Step 1: For each original feature, we generate

a unique candidate feature set by obfuscating the original

feature by altering the sign direction for each element and

value scale for each channel, where the sign direction rep-

resents the positive or negative of numerical values, and the

value scale represents the magnitude of the numerical values.

Step 2: We randomly select an obfuscated feature from the

candidate feature set for each authentication. A step-by-step

example is shown in Fig. 6 and the details of the algorithm

are shown in algorithm 1.
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Figure 6: A step-by-step example of gradient descent-resistant

facial feature generation. (a) is one of the frequency channels

from the original feature, (b) is (a)’s corresponding candidate

feature set, and (c) is (a)’s corresponding obfuscated feature.

Algorithm 1: Gradient descent-resistant facial fea-

ture obfuscation (client side).

input : Facial features f of size h×w× c
output : obfuscated features e of size h×w× c

1 Initialize constant float b from the server;

2 Preprocess;

3 a ← Self-Normalization( f)

= {ak | ak =
fk−E[ fk]√
Var[ fk]+β

,k ∈ [0,1,2, · · · ,c]}

4 Step 1: Generate candidate feature set P;
5 Obfuscate sign direction: ε1 = Jh×w×c, all elements

in J are (−1)u;

6 Obfuscate value scale: ε2 ← Bc = [bv,bv, · · · ,bv
c];

7 Mask ε ← ε1 	 ε2, all elements in ε are (−1)u ×bv,

where 	 represents Hadamard product;

8 candidate feature set:
P(a,b) = a	 ε = a× (−1)u ×bv

9 Step 2: Selecting an obfuscated feature from
candidate feature set P;

10 for k ← 1 to c do
11 randomly select ek with P(ak,b), where u, v is

in integer range
[
Zlower bound ,Zupper bound

]
;

12 obfuscated features e ←{e1, · · · ,ec};

Generating different candidate feature sets from each
facial feature (line 2 to line 8). Before resisting the gradi-

ent descent of the face reconstruction network, it’s crucial to

ensure the availability of obfuscated features for face recog-

nition. Thus, we need to carefully design the position of the

obfuscated features placed in the feature space. To this end,

we design different candidate feature sets that contain multi-

ple obfuscated features for different facial features, and ensure
the obfuscated features in different candidate feature sets are
interleaved but not duplicated in the feature space.

Such a design serves two purposes. The first purpose is to

make it impossible for the reconstruction network to utilize

the obfuscated features. Due to the obfuscated features of

different facial images interleaved in the feature space, the ob-

fuscated features from different candidate feature sets are not

distinguishable to the reconstruction network. Therefore, the



gradient descent of the reconstructed network will be resisted

when the network tries to fit the mapping from obfuscated

features to facial images. The second purpose is to preserve

the identity information in the obfuscated features used for

face recognition. The non-duplication of obfuscated features

from different candidate feature sets ensures that there exists

a many-to-one relationship between obfuscated features and

candidate feature sets. Thus, a candidate feature set with a

specific identity can be found from an obfuscated feature,

allowing for the extraction of identity information within the

obfuscated feature to perform face recognition accurately.

Specifically, for each facial feature (the remaining fre-

quency channels after channel selection), the client first pre-

processes the facial feature by self-normalization to make

the features initially obfuscated, whose details are shown in

Appendix B. Then, the client generates different candidate

feature sets for different facial features, where each candi-

date feature set uniquely corresponds to a facial feature. The

process to generate candidate feature sets can be expressed

as a× (−1)u × bv, where a is the facial features after self-

normalization, b is a constant value obtained from the server

for initializing the client, (−1)u represents the obfuscation

to facial features on the sign direction, bv represents the ob-

fuscation to facial features on the value scale, and u, v are

discrete variables to be randomly selected, which ensures the

features in different candidate feature sets are interleaved but

not duplicated in the feature space.

Randomly selecting gradient descent-resistant features
from their corresponding candidate feature sets (line 9
to line 12). After generating the corresponding candidate

feature set for each feature, we can map a facial feature to a

large number of obfuscated features. Since the obfuscated fea-

tures from different identities are designed to be interleaved

with each other, we can randomly select an obfuscated feature

from the corresponding candidate feature set as the final fa-

cial feature for each authentication to resist gradient descent

against reconstruction attacks. In this case, the mapping of

original features to obfuscated features is a random mapping.

Notably, we consider a single channel in each feature as the

smallest unit of a. The values of u, v used for random select-

ing in each channel are randomly selected within an integer

range, spanning from the minimum value Zlower bound to the

maximum value Zupper bound .

In the following, we will briefly demonstrate that obfus-

cated features can prevent face reconstruction network learn-

ing the mapping from features to facial images by resisting

its gradient descent.

Formally, given a set of training samples (X ,Y ), where Y
is a set of facial images, X is a set of corresponding facial fea-

tures generated by x= S (y), where S is the process of FaceOb-

fuscator, x denotes a facial features, y denotes a facial image.

The attacker’s network can be defined as G(x) = ŷ(x,θ) with

its corresponding loss function l(θ), where ŷ is an estimate

of the facial image y. Then, the process of gradient descent

algorithm at θ0 can be described as θ ← θ0−α ∂
∂θ0

l(θ), where

α denotes the learning rate of gradient descent, θ denotes the

parameter to be learned in the neural network. Since the α is

set by the attacker and unknown to us, we chose to implement

a substantial manipulation on ∂
∂θ0

l(θ) to break the gradient

descent algorithm. To simplify the demo, we will use the case

of a single layer perceptron ŷ(x,θ) = ∑n
j=0 θ jx j with an MSE

loss function l(θ;x,y) = (ŷ(x,θ)− y)2 as an example, where

y = [y0], x = [x0,x1, · · · ,xn]

, θ0 =

[
θ0

0,θ
1
0, · · · ,θn

0

]
. As

single layer perceptron is the basis of neural networks, the

derivation for multilayer networks with other structures can

be derived from this in the same way. In this case, the gradient

descent algorithm can be described as:

∂
∂θ0

l(θ) =
∂

∂θ0
(ŷ(x,θ0)− y)2 = 2 ·

(
n

∑
j=0

(
θ j

0 · x j

)
− y0

)
· x

(1)

As for our scheme, the core obfuscation process can be

equated to put a random mask ε to the features, i.e., e = ε	x,

where ε = [±bv0 ,±bv1 , · · · ,±bvn ]
, b is a constant value in

the client given by the server, vi is the randomly selected

number range from the minimum value Zlower bound to the

maximum value Zupper bound . So the gradient descent after

our obfuscation can be formulated as:

∂
∂θ0

l(θ) = 2 ·
(

n

∑
j=0

(
θ j

0ε jx j

)
− y0

)
· ε	 x (2)

Then, we use the Manhattan Distance between Eq. (2) and

Eq. (1) to yield the degree of influence of obfuscation on the

normal gradient descent:

d1 (Eq. (2),Eq. (1)) = ‖Eq. (2)−Eq. (1)‖1

=2 ·
n

∑
i=0

∣∣∣∣∣
n

∑
j=0

(
(±bvibv j −1)θ j

0xix j

)
− (±bvi −1)y0xi

∣∣∣∣∣ (3)

where θk
0yiy j, x0y j are fixed values in the state of θ0. As ±bv

is a stochastic value ranging from a very small value close

to 0 to a very large value close to the upper limit of the

floating point number, the distance of the obfuscated gradient

varies considerably compared to the original gradient. To

go a step further, when the reconstructed network performs

gradient descent to fit the inverse mapping, the direction of

the gradient descent is inconsistent at each iteration, which

effectively resists the normal gradient descent to recover the

facial images.

As for the security concern about the reversal of obfuscated

features, two primary difficulties hinder attackers from recov-

ering the original features. The first difficulty arises from the



complexity of determining sign direction. As the direction

of each element in the feature is entirely random, the result-

ing obfuscated feature for a given original feature will have

2h×w×c possibilities, which is hard to reverse. The second

difficulty is associated with the variability in the value scale.

The value of each frequency channel in the feature also un-

dergoes random changes, further expanding the possibilities

of obfuscated feature by Nc, where N represents the number

of choices within the integer range
[
Zlower bound ,Zupper bound

]
.

Consequently, the combination of these difficulties makes it

nearly impossible for attackers to recover the original features

successfully.

So far, the original facial features have been well obfus-

cated. Such obfuscated features will be transmitted to the

server as output from the client and stored in the server’s

database for privacy protection.

4.3.2 Identity Recovery Based on Traceability of Candi-
date Feature Set

Algorithm 2: Identity recovery based on traceabil-

ity of candidate feature set (server side).

input :Obfuscated features e of size h×w× c
output :Identity information d of size h×w× c

1 Initializing b preset with clients;

2 for k ← 1 to c do
3 if max(|ek|)> 0 then
4 r = round down(− logb max(|ek|));
5 dk = ek ×br+bias;

6 else if max(|ek|) = 0 then
7 dk = Oh×w;

8 Identity information d ←{d1, · · · ,dc};

9 Individual ID ← Face recognition(d);

Given that each candidate feature set is generated from the

corresponding facial feature, if we can ascertain the specific

candidate feature set to which the obfuscated feature belongs,

the extraction of identity information from the obfuscated

features for face recognition becomes feasible. Thus, based on

our designed non-duplicated candidate feature sets, we design

an identity recovery method that cannot be learned by neural

networks to trace back the candidate feature set corresponding

to the obfuscated feature, as shown in algorithm 2. After

that, the obfuscated features can be recovered to a specific

feature in its corresponding unique candidate feature set and

eventually utilized by face recognition on the server side.

Specifically, since Huang et al. [20] indicated that the

sign direction factor (−1)u has minimal impact on the im-

age classification tasks, i.e., face recognition in our case, we

only offset the value scale factors bv in the obfuscated fea-

tures (line 2 to line 7) to extract the identity information,

where each channel’s maximum value is recalibrated to the

range
[
bbias,bbias+1

)
with the other values adjusted propor-

tionally in multiples. For example, for facial features with

different identities fAlice and fBob, all obfuscated features

of them will be uniquely transformed into final identities

fAlice ×bλ, fBob ×bλ though algorithm 2, respectively, where

f represents the facial feature of an individual before obfus-

cation, λ is the final value scale determined by bias. As a

result, the final identity will be a specific obfuscated feature

within the same interval range in different candidate feature

sets. Such identities of different individuals are no longer

interleaved with each other in the feature space, so they can

be utilized by face recognition on the server side, as shown in

Table 5 of Section 5.4.

Discussion on the value of b. In mathematics, we can

choose b with any float value in range (0,1)∪ (1,+∞). The

value of b will not impact the process of algorithm 2, since

the obfuscated features of the same individual can always

be unified to a specific feature in the range
[
bbias,bbias+1

)
,

which is discriminative for face recognition. However, in prac-

tical deployment, the precision limitations of floating-point

numbers impose constraints on b. For instance, considering a

32-bit floating-point number adhering to the IEEE 754 stan-

dard [27], the range of floating-point numbers is confined

to ± [1,2)× 2[−126,127]. Thus, the values of a× bv must fall

within this specified interval. In this case, when b is smaller,

say b = 2, the range in which v can be selected is larger and

the randomness is equally stronger. In addition, the value

of b cannot be very close to zero because there may exist a

floating-point precision loss problem during computing.

5 Experiments

To evaluate the efficacy of FaceObfuscator, we perform ex-

tensive evaluations of privacy protection and face recognition

across diverse datasets. In the following sections, we will first

introduce the experimental setup in Section 5.1, and discuss

our evaluation results with three research questions:

• RQ1: How does our obfuscation impact face recognition

accuracy? (Section 5.2)

• RQ2: Can FaceObfuscator effectively defend against vari-

ous attacks to protect privacy? (Section 5.3)

• RQ3: How does each component contribute to the overall

improvement of accuracy and privacy? (Section 5.4)

5.1 Experimental Setup

Datasets&Pre-prcocess. In the experiments, we use the

MS-Celeb-1M [15], CelebA [33] as the train datasets and use

the LFW [19], CFP-FF [48], CFP-FP [48], AgeDB-30 [44],



CALFW [60], CPLFW [59], IJB-B [55], IJB-C [37] as the

test datasets, whose details are shown in Appendix C.

Following common image pre-processes [10, 34, 53], we

first randomly flip the images and resize them into 112×112.

Then, we rescale the pixel value of images from [0,255] to

[0,1]. Finally, we normalize images with a mean of 0.5 and a

variance of 0.5, whose values will be in [−1,1].

Models and Implementation Details. We will show the

detailed setting of FaceObfuscator and DL-based face recon-

struction attacks.

FaceObfuscator. Like most face recognition schemes, we

choose Arcface [10] as the basis for the server side and choose

Resnet50 [16] as its backbone. We use the SGD optimizer [6]

with a learning rate of 0.1, momentum factor of 0.9, and

weight decay of 5e-4. And we use a polyscheduler to dy-

namically adjust the learning rate according to a polynomial

of given power 2. The b used to initialize the client is set to

2, and results for other b values are shown in Appendix D.

All of the experiments of our scheme will be trained on MS-

Celeb-1M [15] for 10 epochs. For easier deployment, we will

turn the initial image into grayscale and upscale this image

by 8 times when in the frequency domain scheme, at which

point the image size after BDCT transformation aligns with

the original and only a modification in the input channel for

the face recognition network is needed.

DL-based attacks in threat model. In the experiments,

we use the methods proposed by Mai et al. [35] and Isola

et al. [22] as benchmark attacks of DN-based attacks and

cGANs-based attacks respectively, which have proven to

be effective and are also widely used by existing defense

works [24,52,53]. Both of them are trained on the CelebA [33]

dataset.

Methods for comparison. We compare our method with 8

different face recognition methods, specifically focusing on

the last 6 methods that assert privacy protection capability.

Arcface [10] is the baseline method of face recognition for

RGB images without privacy protection. Arcface-FD [11] is

the baseline method of face recognition on the frequency

domain without privacy protection. InstaHide [20] is a

lightweight encryption-based method that incorporates the

mix-up of k images, which we set to 2. Cloak [41] disturbs

the input feature by a gradient-based perturbation model and

we set its accuracy-privacy parameter to 1. AdvFace [53] pro-

poses adversarial facial features obtained by adding adversar-

ial latent noise to the original facial features to mislead the re-

construction network. PPFR-FD [52] is a privacy-preserving

method in the frequency domain that disrupts the channel

order and mixes them up, and face recognition is performed

after the channels are reordered by energy. DCTDP [24] is

a privacy-preserving face recognition with learnable privacy

budgets of differential privacy, whose ε mean is set to 0.5.

Duetface [39] is also a privacy-preserving method in the fre-

quency domain that protects privacy by removing some of the

Figure 7: The effect of ranges of u,v on face reconstruction

and face recognition.

low-frequency channels and deploying lightweight face recog-

nition networks in the client to transfer additional auxiliary

information to the server.

Evaluation Metrics. We will use 5 metrics to evaluate the

face privacy protection capabilities of different methods.

MSE, PSNR [25], SSIM [54] are three different methods

for calculating the difference in pixels between two images.

Specifically, a higher MSE, a lower PSNR, and a lower SSIM

indicate a lower similarity between the reconstructed image

and the original facial image, which implies a stronger de-

fense. COS describes the cosine similarity between the iden-

tity vector of the reconstructed image and the identity vectors

of the original image in the 512-dimensional facial feature

space through another independent face recognition system.

Specifically, a lower COS means a lower similarity between

the reconstructed image and the original image. SRRA [53]
(success rate of replay attacks) measures the success rate of

replay attacks, which uses the reconstructed images from a

certain face recognition system to cheat the same face recogni-

tion system for successful identity authentication. Specifically,

a lower SRRA means a better privacy protection capability.

5.2 Accuracy of the Face Recognition (RQ1)
In this subsection, we will demonstrate what the impact

of our FaceObfuscator on the accuracy of face recognition

can be. We first discuss the effect of the range of u,v, i.e.,[
Zlower bound ,Zupper bound

]
, on the accuracy, where u,v deter-

mine which obfuscated feature is selected from the candidate

feature set. Then, we reassess the effect of the number of

retaining frequency channels under our whole scheme, and

finally compare our scheme with the state-of-the-art scheme.

The accuracy of face recognition remains almost un-
changed as the range of values of u,v gradually expands.
One factor that may affect the accuracy of face recognition

is the upper and lower bounds of the perturbation magnitude.

To this end, we gradually adjust the range of values of u,v
from low to high, i.e., [0,1], [-30,30], [-60,60], [-90,90], to



Table 3: The performance of privacy protection methods in terms of face recognition accuracy. represents good protection

against attacks; represents poor protection against attacks; represents no protection against attacks; The yellow squares

indicate flaws, say an accuracy loss over 3% compared to the baseline(Arcface) or poor protection capability, and The red squares

indicates severe flaws, say an accuracy loss over 5% compared to the baseline(Arcface) or no protection capability.

Method
LFW
(%)

CFP-FF
(%)

CFP-FP
(%)

AgeDB-30
(%)

CALFW
(%)

CPLFW
(%)

IJB-B
(TPR@FPR)
10e-4 / 10e-5

IJB-C
(TPR@FPR)
10e-4 / 10e-5

Channel
Protection

Database
Protection

Storage cost
(KB/pic)

Time cost
(ms/pic)

Arcface [10] 99.72 99.74 98.06 97.80 95.85 91.48 93.24 / 87.52 94.90 / 92.07 147 1.05
Arcface-FD [11] 99.8099.8099.80 99.9099.9099.90 98.50 97.97 95.97 92.08 94.81 / 90.3194.81 / 90.3194.81 / 90.31 96.20 / 94.2296.20 / 94.2296.20 / 94.22 9408 1.34
InstaHide [20] 96.05 92.43 86.89 74.60 76.97 74.62 0.71 / 0.17 0.70 / 0.19 147 0.98
Cloak [41] 99.50 99.69 96.29 96.20 95.17 88.38 86.45 / 67.37 88.99 / 77.61 147 0.88
AdvFace [53] 99.55 99.24 94.71 95.20 94.98 88.93 87.06 / 70.99 89.46 / 78.63 784 286.98
PPFR-FD [52] 99.82 99.76 98.33 98.00 95.87 91.97 94.08 / 89.40 95.67 / 93.57 1715 1.08
DCTDP [24] 99.83 99.81 98.5998.5998.59 98.1798.1798.17 96.00 92.00 94.64 / 90.62 96.11 / 94.21 9261 3.20
Duetface [39] 99.80 99.81 98.46 98.15 96.1296.1296.12 92.3392.3392.33 94.69 / 90.05 96.09 / 94.00 7938 4.40
Ours 99.68 99.71 97.57 97.65 95.83 91.33 92.93 / 88.48 94.57 / 92.17 989898 1.18

Figure 8: The effect of the number of retaining frequency

channels on face reconstruction and face recognition.

see how it affects privacy protection and face recognition ac-

curacy respectively. Fig. 7 shows the trend of the accuracy

and COS values (represent privacy-preserving capability) un-

der different ranges, i.e., when the range of values of u,v
gradually expands, the accuracy of face recognition remains

almost unchanged. Therefore, we could theoretically choose

a range as large as possible, as long as the value does not

exceed the range of floating-point. Because the reconstructed

network is no longer able to compute the gradient when the

range reaches [-90, 90], we choose [-60, 60] in order to have

a visual comparison with other schemes.

Channel AC01 and channel AC10 are still the most critical
channels for face recognition. Another factor that can influ-

ence both face privacy protection capability and face recogni-

tion accuracy is the channels we retain in the face recognition

system. So, we re-assess the importance of different frequency

domain channels for face recognition under the whole scheme

and prioritize the removal of channels with relatively low im-

portance. Fig. 8 shows the accuracy and COS values when

retaining a different number of channels. When the number

of channels decreases from 64 to 2, there is no significant

degradation in face recognition accuracy, whereas dropping

to 1 channel results in a notable accuracy loss, as shown in

the outlier in Fig. 8. Meanwhile, the lower the number of

channels, the transmission and storage overheads required in

face recognition, as well as the computational overheads, will

be reduced accordingly. Therefore, combining the defending

visual reconstruction effect, face recognition accuracy, and

all kinds of overhead under different numbers of channels,

our scheme only retains 2 channels, i.e., channel AC01 and

channel AC10, in Frequency domain-based visual information

deletion. Notably, such fixed selection will not impair the

protection effectiveness of our scheme. One reason for this is

that the selected few channels only preserve little information

that is useful for face reconstruction attacks. The other reason

is that possibilities for obfuscated features derived from the

same input still exceed 107556 when only retaining 2 channels

in our case, making recovery highly challenging.

FaceObfuscator has only a slight accuracy loss compared
to the face recognition baseline. We compare the accu-

racy of face recognition with 2 baselines and 6 different

privacy-preserving methods. As shown in Tab. 3, among the

privacy protection schemes compared, the privacy-preserving

schemes in the spatial domain, i.e., InstaHide, Cloak, and Ad-

vFace, have a significant loss in accuracy, while the privacy-

preserving schemes in the frequency domain, i.e., PPFR-FD,

DCTDP, and Duetface, have less accuracy degradation but

suffers from the disadvantage of tens of times higher commu-

nication and storage overhead. Most notably, none of the ex-

isting protection schemes in either the spatial or the frequency

domain are able to provide privacy-preserving capabilities.

In the case of providing outstanding privacy-preserving ca-

pability, our scheme has only a slight accuracy degradation

compared to the baseline method Arcface-FD, and almost the

same accuracy compared to the baseline method Arcface in

the baseline, with minimal overhead.

5.3 Effectiveness of Privacy Protection (RQ2)
In this subsection, we will demonstrate the effectiveness of

our scheme to defend against various attacks to protect privacy.
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Figure 9: The facial images that are recovered by DN-based attacks (a) and cGAN-based attacks (b) from different face recognition

schemes. Note that the reconstructed image is the same for all schemes except Advface, when the transmission channel leakage

and the database leakage occur.

We compare FaceObfuscator’s capability of privacy protection

with the 2 baselines and the other 6 privacy-preserving meth-

ods by evaluating their performance against privacy attacks

including 2 types of face reconstruction attacks (DN-based

attacks and cGAN-based attacks), and their corresponding

replay attacks in 2 different leakage scenarios (leakage from

transmission channels and leakage from databases).

FaceObfuscator can effectively protect privacy in the
scenario of transmission channel leakage. Protection

schemes usually choose to protect the data prior to trans-

mission to provide full-process protection capabilities, which

also leads to the fact that an attacker can get the protected

facial features and utilize adversarial training to obtain a map-

ping from the protected facial feature to the original image.

Thus, once attackers capture the facial features transmitted in

the transmission channel, they can use the trained generator

to recover their corresponding original facial images.

We initially assessed the efficacy of safeguarding privacy

against DL-based face reconstruction attacks. As for DN-

based attacks, the channel leakage portion in Fig. 9a shows

that the reconstruction images protected by our proposed

FaceObfuscator are completely indistinguishable from each

other, whereas the face details in the reconstruction images

protected by the other privacy-preserving schemes are still

clearly visible, leaking a large amount of facial information.

As for cGAN-based attacks, as shown in the channel leakage

portion of Fig. 9b, the original images of comparison schemes

other than InstaHide [20] are completely recovered, while our

scheme gets an average face rather than a face of a specific

individual. Such an average face does not disclose personal

privacy and is meaningless to the attacker.

Tab. 4 quantitatively shows that our method achieves higher

MSE value, lower PSNR value, SSIM value, and COS value,

which all indicate that our method achieves improved face pri-

vacy protection capabilities. Additionally, when attackers use

reconstructed images to perform a replay attack, our scheme

is considerably superior to the comparison schemes, where

SRRA decreased from about 90% to about 0%, further prov-

ing the privacy protection capabilities of FaceObfuscator.

FreqObfuscator can effectively protect privacy in the sce-
nario of database leakage. For most protection schemes,

the server still stores the same protected features sent by

the client instead of the "decrypted" features to cope with

the requirement of achieving desensitized storage. Thus,

when database leakage occurs, the protection effect of most

schemes [20,24,39,41,52] is consistent with channel leakage

portion in Figs. 9a and 9b.

However, Advface [53] achieved the aim of blocking ad-

versarial training by only protecting facial features in the

server. As shown in Table 4, although Advface [53] has some

progress in privacy protection capability compared to other

protection schemes, there is still a significant gap compared

to our scheme quantitatively, especially in COS and SRRA.

From the database leakage portion in Figs. 9a and 9b, we can

see that the reconstructed image protected with advface may

still reveal some outlines of faces, while the reconstructed

image of our scheme reveals no private information at all.

FaceObfuscator can still protect privacy to some extent
when facing white-box attacks. We also discuss scenarios

of facing white-box attacks when the attacker knows all the

details of the architecture and parameters of both the client

and server. It can be seen from Fig. 10 that the defense effect

of FaceObfuscator in the face of complete white-box attacks

has declined slightly, but it is still far better than the defense

effects of other solutions in the face of black-box attacks,

as shown in Figs. 9a and 9b. It also indicates that service

providers cannot reconstruct faces to violate privacy, even if

they try to reconstruct facial images on the server. The reason

that facial images can still be protected to some extent is two-

fold. First, the facial features only remain a small amount of

frequency channels, retaining little visual information useful

for reconstruction. Second, since the sign directions of all

the elements in the features remain randomly obfuscated



Table 4: The performance of privacy protection methods in terms of MSE, PSNR, SSIM, COS against DN-based attacks,

cGAN-based attacks and their corresponding replay attacks (SRRA), under 2 different leakage scenarios, i.e., leakage from

transmission channels (C) and leakage from databases (D).

Metric Method Scenario
DN-based face reconstruction attack cGAN-based face reconstruction attack

LFW CFP-FF CFP-FP AgeDB-30 CALFW CPLFW LFW CFP-FF CFP-FP AgeDB-30 CALFW CPLFW

MSE↑

Arcface C/D 0.002 0.008 0.022 0.001 0.002 0.002 0.004 0.013 0.027 0.002 0.003 0.003

Arcface-FD C/D 0.002 0.007 0.013 0.001 0.001 0.001 0.005 0.014 0.023 0.003 0.004 0.004

InstaHide C/D 0.025 0.040 0.052 0.046 0.033 0.033 0.026 0.043 0.052 0.047 0.031 0.031

Cloak C/D 0.007 0.018 0.025 0.008 0.008 0.007 0.009 0.019 0.025 0.009 0.009 0.009

AdvFace C 0.002 0.008 0.022 0.001 0.002 0.002 0.004 0.013 0.027 0.002 0.003 0.003

AdvFace D 0.047 0.072 0.090 0.048 0.049 0.051 0.064 0.090 0.106 0.068 0.069 0.070

PPFR-FD C/D 0.042 0.064 0.086 0.045 0.045 0.050 0.039 0.063 0.074 0.042 0.043 0.045

DCTDP C/D 0.041 0.063 0.076 0.044 0.045 0.048 0.045 0.063 0.076 0.046 0.048 0.049

Duetface C/D 0.040 0.062 0.082 0.041 0.043 0.046 0.038 0.057 0.065 0.040 0.041 0.042

Ours C/D 0.0570.0570.057 0.0980.0980.098 0.1150.1150.115 0.0740.0740.074 0.0680.0680.068 0.0670.0670.067 0.0730.0730.073 0.1060.1060.106 0.1200.1200.120 0.0900.0900.090 0.0830.0830.083 0.0830.0830.083

PSNR↓

Arcface C/D 26.383 21.975 17.305 31.139 28.356 26.978 24.060 19.581 15.981 27.917 25.981 25.871

Arcface-FD C/D 27.368 22.266 19.329 31.671 29.228 28.961 23.980 19.361 16.685 26.722 25.044 24.958

InstaHide C/D 16.662 14.827 13.497 14.841 15.857 15.804 16.380 14.729 13.997 14.928 16.030 15.914

Cloak C/D 21.391 17.704 16.182 21.085 21.253 21.437 20.645 17.370 16.214 20.426 20.584 20.730

AdvFace C 26.383 21.975 17.305 31.139 28.356 26.978 24.060 19.581 15.981 27.917 25.981 25.871

AdvFace D 13.333 11.524 10.551 13.331 13.194 13.022 12.078 10.585 9.889 11.853 11.720 11.712

PPFR-FD C/D 14.101 12.298 11.120 13.966 13.958 13.658 14.722 12.256 11.577 14.350 14.478 14.261

DCTDP C/D 14.282 12.342 11.419 14.076 14.098 13.757 13.989 12.190 11.333 13.954 13.840 13.688

Duetface C/D 14.258 12.580 11.356 14.396 14.257 13.966 14.713 12.649 12.100 14.538 14.541 14.438

Ours C/D 12.71012.71012.710 10.24410.24410.244 9.5149.5149.514 11.65011.65011.650 11.95511.95511.955 12.08812.08812.088 11.63811.63811.638 9.8699.8699.869 9.3719.3719.371 10.77810.77810.778 11.08911.08911.089 11.17111.17111.171

SSIM↓

Arcface C/D 0.968 0.852 0.672 0.974 0.971 0.964 0.923 0.785 0.639 0.956 0.946 0.944

Arcface-FD C/D 0.980 0.806 0.665 0.984 0.984 0.978 0.952 0.790 0.632 0.968 0.965 0.956

InstaHide C/D 0.703 0.562 0.456 0.595 0.677 0.673 0.697 0.575 0.475 0.602 0.681 0.689

Cloak C/D 0.832 0.702 0.591 0.824 0.833 0.831 0.843 0.720 0.602 0.829 0.838 0.845

AdvFace C 0.968 0.852 0.672 0.974 0.971 0.964 0.923 0.785 0.639 0.956 0.946 0.944

AdvFace D 0.424 0.363 0.321 0.415 0.414 0.403 0.395 0.322 0.287 0.380 0.381 0.378

PPFR-FD C/D 0.619 0.616 0.524 0.662 0.653 0.628 0.820 0.680 0.588 0.821 0.827 0.802

DCTDP C/D 0.710 0.662 0.569 0.727 0.732 0.692 0.800 0.677 0.579 0.804 0.802 0.782

Duetface C/D 0.677 0.653 0.560 0.723 0.716 0.677 0.819 0.687 0.592 0.825 0.827 0.801

Ours C/D 0.4710.4710.471 0.3130.3130.313 0.2790.2790.279 0.4120.4120.412 0.4340.4340.434 0.4790.4790.479 0.3910.3910.391 0.2610.2610.261 0.2480.2480.248 0.3400.3400.340 0.3640.3640.364 0.4050.4050.405

COS↓

Arcface C/D 0.993 0.983 0.935 0.995 0.995 0.989 0.986 0.989 0.980 0.993 0.992 0.979

Arcface-FD C/D 0.993 0.989 0.979 0.991 0.993 0.990 0.979 0.983 0.964 0.985 0.987 0.970

InstaHide C/D 0.464 0.513 0.396 0.402 0.466 0.403 0.400 0.412 0.318 0.367 0.425 0.360

Cloak C/D 0.854 0.882 0.862 0.876 0.875 0.835 0.867 0.886 0.864 0.884 0.884 0.854

AdvFace C 0.993 0.983 0.935 0.995 0.995 0.989 0.986 0.989 0.980 0.993 0.992 0.979

AdvFace D 0.216 0.188 0.200 0.215 0.214 0.195 0.223 0.199 0.209 0.233 0.225 0.192

PPFR-FD C/D 0.629 0.710 0.682 0.685 0.671 0.619 0.915 0.922 0.906 0.938 0.932 0.889

DCTDP C/D 0.780 0.832 0.801 0.812 0.809 0.745 0.921 0.931 0.917 0.939 0.935 0.897

Duetface C/D 0.739 0.799 0.780 0.782 0.788 0.722 0.923 0.932 0.915 0.939 0.939 0.900

Ours C/D 0.0040.0040.004 0.0020.0020.002 0.0090.0090.009 0.0050.0050.005 0.0050.0050.005 0.0230.0230.023 0.0040.0040.004 0.0030.0030.003 0.0080.0080.008 (0.0001)(0.0001)(0.0001) (0.0004)(0.0004)(0.0004) 0.0070.0070.007

SRRA↓

Arcface C/D 99.37 97.63 94.54 95.90 91.67 85.93 99.50 99.60 96.83 96.40 92.27 86.27

Arcface-FD C/D 99.60 99.86 97.57 97.03 92.37 85.53 99.53 99.74 97.23 96.90 92.33 85.27

InstaHide C/D 74.43 65.57 75.94 46.87 53.80 53.93 53.73 39.60 58.91 37.10 38.10 42.30

Cloak C/D 99.10 99.11 93.71 93.60 89.80 80.50 97.87 98.14 93.06 92.73 88.23 80.23

AdvFace C 99.03 96.46 90.74 93.83 90.67 79.43 99.27 98.89 92.94 94.13 91.13 79.50

AdvFace D 30.93 22.57 53.14 34.17 30.67 42.67 13.17 11.20 40.57 20.37 16.17 16.17

PPFR-FD C/D 95.33 96.37 91.91 88.33 87.90 78.23 99.53 99.37 97.17 95.83 92.47 84.40

DCTDP C/D 98.30 98.60 96.37 94.06 90.40 82.10 99.53 99.51 97.71 96.33 92.27 84.17

Duetface C/D 96.83 98.71 93.20 91.37 90.13 81.20 99.50 99.69 96.29 96.20 92.63 85.57

Ours C/D 0.000.000.00 0.000.000.00 1.311.311.31 0.130.130.13 0.060.060.06 6.006.006.00 0.030.030.03 0.030.030.03 1.311.311.31 0.070.070.07 0.030.030.03 6.206.206.20

and unpredictable in the white-box scenario, it is difficult

to recover the direction of elements to reverse the obfuscated

features, which prevents the reconstruction of facial images.

Note that in realistic scenarios, we can use techniques such

as code obfuscation to hide the operation of clients or redesign

the candidate feature set of each feature to regain optimal

protection.

Real-world Evaluation. Due to its practicability, we have

submitted our method to the relevant authority at the univer-

sity, which has carried out an evaluation of protection effec-

tiveness and used it as one of the protection methods to protect

the existing face data of over 100K individuals. The evalua-

tion demonstrates that when the simulated attacker gets the

facial features, they can neither obtain information about the



Table 5: Face recognition accuracy on the server side

Face recognition LFW IJB-B(TPR@FPR) IJB-C(TPR@FPR)

w/o ID Recovery 50.00 0.01 / 0.00 0.02 / 0.00

ID Recovery 99.70 93.14 / 88.68 94.82 / 92.42

LFW

CFP-FF

CFP-FP

AgeDB-30

CALFW

CPLFW

Original
DN-based 
Attacks

 cGAN-based 
Attacks Original

DN-based 
Attacks

 cGAN-based 
Attacks Original

DN-based 
Attacks

 cGAN-based 
Attacks

Figure 10: Reconstructed images generated by DN-based and

cGAN-based from our scheme, when attackers know all the

details of our scheme (white-box attack).

1911

LFW

CFP-FF

CFP-FP

AgeDB-30

CALFW

CPLFW

Original
DN-based AttacksDN-based Attacks cGAN-based Attacks

Figure 11: Reconstructed images generated by DN-based and

cGAN-based from our scheme with different components

in the client. � represents frequency domain-based visual

information deletion, � represents identity-retained stochastic

obfuscation.

original real-world faces nor use them to pass authentication

systems. The quantitative results show that when exposed

to DN-based attacks, the MSE, PSNR, and SSIM values are

0.084, 11.202, and 0.507, respectively. Similarly, when fac-

ing cGAN-based attacks, the corresponding values are 0.085,

11.285, and 0.493, achieving similar reconstruction results to

Tab. 4. Furthermore, the COS between the original images and

the images reconstructed from the facial features protected

by FaceObfuscator are 0.201 and 0.227 against DN-based

attacks and cGAN-based attacks respectively, far below the

threshold that can be used for face reconstruction.

5.4 Ablation Study (RQ3)

In this subsection, we will demonstrate how each component

on the client side and the server side contributes to the overall

improvement of accuracy and privacy.

Frequency domain-based visual information deletion and
identity-retained stochastic obfuscation on client side both
contribute to privacy preservation. On the client side, we

perform evaluations against face reconstruction attacks after

the permutation of visual information deletion and stochastic

obfuscation. From Fig. 11, we can see that visual information

deletion reduces the visual information in reconstructed facial

images, and stochastic obfuscation makes the reconstructed

images almost unrecognized. Moreover, when they are used

in combination, they provide perfect protection.

Identity recovery based on traceability of candidate fea-
ture set on the server side is essential to face recognition.
On the server side, identity recovery based on the traceability

of the candidate feature set is designed to maintain face recog-

nition accuracy. To demonstrate its efficiency, we will perform

face recognition without it. Table 5 shows that the accuracy

of face recognition is right at 50% under datasets LFW, and

the accuracy drops to near 0% under IJB after removing it.

This means identity recovery based on the traceability of the

candidate feature set is crucial for face recognition, without

which face recognition simply cannot work.

6 Conclusions

In this work, we revealed that existing privacy-preserving

face recognition schemes cannot defend against DL-based

face reconstruction attacks. Then, we gave a new understand-

ing, i.e., most frequency channels can be removed without

compromising face recognition accuracy, which allows us to

achieve privacy protection with lower storage costs and time

costs. Eventually, we proposed, FaceObfuscator, a lightweight

privacy-preserving face recognition system, that generates ob-

fuscated features to achieve gradient descent-resistant against

face reconstruction while maintaining the accuracy of the

face recognition. Extensive experiments showed that FaceOb-

fuscator significantly outperforms state-of-the-art methods in

terms of privacy protection (90% improvement) with negligi-

ble 0.3% accuracy degradation.
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A Evaluating the importance of different fre-
quency channels for face recognition

Algorithm 3: Analysis of Channels’ Importance

input :Facial features f of size m×n× c
output :Weight αi of different channels

1 Initializing;

2 learnable weight αi = 1;

3 for i ← 1 to c do
4 if input is in RGB mode then
5 fi = [Yi,Cbi,Cri];
6 new feature ← [αiYi,αiCbi,αiCri];

7 else if input is in Gray mode then
8 new feature ← αi × fi;

9 Training;

10 for j ← 0 to N steps do
11 loss ←Network(new feature);

12 Update Network←loss;

13 Update αi ←loss

This section shows the design of the auxiliary network in Sec-

tion 4.2.2 and further elaborates on the necessity of standard-

ization for evaluating the importance of frequency channels.

As shown in algorithm 3, we analyzed the importance of

face recognition directly through the auxiliary network and

found that the low-frequency channels play a much more

important role than the high-frequency channels, shown in

Fig. 12a, which is similar to HVS. However, as we systemati-

cally eliminated channels of higher importance, the roles of

the channels with less importance previously became gradu-

ally apparent without significantly influencing the accuracy of

face recognition, shown in Figs. 12b and 12c, which indicates

the low-frequency channels inhibit the effect of the high-

frequency channels on the face recognition network. Upon

deeper analysis of the causes of the inhibition phenomenon,

we note there is a large difference in the order of magnitude

of the different frequency domain channels. Consequently,

we hypothesized that it is the numerical magnitude of differ-

ent frequency domain channels that affects the expression of

importance. To validate this hypothesis, we carried out a re-

assessment after standardizing the numerical values of each

channel to the same level. The results in Fig. 12d demonstrate



(a) (b) (c) (d)

Figure 12: The importance of frequency channels for face

recognition (the deeper the color is, the higher the importance

is). (a) is the importance of frequency channels before stan-

dardizing the numerical values in frequency channels; (b)

(c) are the re-assessed importance of frequency channels af-

ter removing the significant channels; (d) is the re-assessed

importance of frequency channels after standardizing the nu-

merical values of each channel.

the difference between different channels is not as disparate
as the conclusions of previous works [24, 39, 52, 56]. Further-

more, experiments shown in Table 2, demonstrating that face

recognition can be performed on a single channel regardless

of high frequency or low frequency, is a strong proof of the

correctness of our analysis.

B Self-normalization

To prevent reverse analysis of the numerical transformation

process, we first need to make the facial features irreversible

to the exact original values but still available for training neu-

ral networks. A practical approach is to normalize the data.

However, the most prevalent normalization operation in deep

learning, i.e., batch normalization [21], is sensitive to outliers

in the batch, which normalizes the data by values in the en-

tire batch. Such outliers are common in facial images due to

factors such as shooting angle, lighting, and background. [52]

tried to address this problem and enhance security by calcu-

lating the mean and variance of each image independently

and normalizing each image separately. Nonetheless, this ap-

proach falls short when faced with substantial differences

between different channels within a feature, compromising

the maintenance of the feature’s original characteristics.

Consequently, we design Self-Normalization to make each

feature retain its own characteristics at the initial transfor-

mation, shown in line 3, where a represents the output of

Self-Normalization, fk represents the kth channel in facial fea-

ture f , E(·) is the mean of the elements, Var(·) is the variance

of the elements with Bessel’s correction and β is a bias term

to prevent infinity. In other words, each channel of each image

in a batch has its own mean and variance, so normalization

can be performed independently on channels.

C Details of datasets

MS-Celeb-1M [15] is a dataset consisting of 10M images

of faces collected from the Internet. In this paper, we choose

Table 6: Face recognition under different values of b.

Value of b Range of u and v LFW AgeDB-30 CALFW CPLFW

1.8 [−60,60] 99.62 97.73 96.00 91.38

2 [−60,60] 99.68 97.65 95.83 91.33

10 [−18,18] 99.65 97.33 95.77 90.97

100 [−9,9] 99.67 97.53 96.05 90.92

Original
DN-based Attacks

b=1.8 b=2 b=10 b=100
cGAN-based Attacks

b=1.8 b=2 b=10 b=100

Figure 13: The facial images that are recovered by DN-based

attacks and cGAN-based attacks with different values of b.

its third version, i.e., MS1Mv3 as the train set, which con-

tains approximately 93K classes with more than 5.1M im-

ages. CelebA [33] is CelebFaces Attributes dataset, which

contains 202,599 facial images from more than 10K identi-

ties. LFW [19] is a public benchmark for face verification,

containing more than 13K images and 6K pairs to verify.

CFP-FF [48] only compares the frontal faces of Celebrities

in Frontal-Profile in the Wild, which contains 7K pairs to

verify. CFP-FP [48] compares the frontal and profile faces of

Celebrities in Frontal-Profile in the Wild, which also contains

7K pairs to verify. AgeDB-30 [44], including 6K pairs, is

the most challenging version with an age gap of 30 years in

AgeDB. CALFW [60] is a renovation of LFW, which selects

3K positive face pairs with age gaps to add the aging process

intra-class variance. CPLFW [59] is also a renovation of

LFW, which selects 3K positive face pairs with pose differ-

ence to add pose variation to intra-class variance. IJB-B [55]
contains 1845 subjects with 11,754 images, which are col-

lected from the Internet and are totally unconstrained, with

large variations in pose, illumination, image quality, etc. IJB-
C [37] is an extension of the IJB-A [29] dataset with about

138K facial images.

D The effect of FaceObfuscator under differ-
ent values of b

To discuss the numerical stability concerns regarding other

values of b, we evaluate the visual reconstruction and face

recognition by taking values of b as 1.8, 2, 10, and 100. Addi-

tionally, due to the limitations in the representation of floating-

point numbers mentioned in Section 4.3.2, different b corre-

spond to different ranges of u and v. As shown in Table 6, the

face recognition accuracy under different values of b is similar,

proving that the value of b does not influence the stability of

facial recognition. As shown in Fig. 13, all the reconstructed

images are unrecognizable, indicating that different values of

b also do not affect the effectiveness of privacy protection.


