
DPAdapter: Improving Differentially Private Deep Learning through
Noise Tolerance Pre-training

Zihao Wang1∗, Rui Zhu1∗, Dongruo Zhou1, Zhikun Zhang3, John Mitchell2,
Haixu Tang1, and XiaoFeng Wang1

1Indiana University Bloomington 2Stanford University 3Zhejiang University

Abstract
Recent developments have underscored the critical role of
differential privacy (DP) in safeguarding individual data for
training machine learning models. However, integrating DP
oftentimes incurs significant model performance degradation
due to the perturbation introduced into the training process,
presenting a formidable challenge in the differentially private
machine learning (DPML) field. To this end, several mitiga-
tive efforts have been proposed, typically revolving around
formulating new DPML algorithms or relaxing DP definitions
to harmonize with distinct contexts. In spite of these initia-
tives, the diminishment induced by DP on models, particularly
large-scale models, remains substantial and thus, necessitates
an innovative solution that adeptly circumnavigates the con-
sequential impairment of model utility.

In response, we introduce DPAdapter, a pioneering tech-
nique designed to amplify the model performance of DPML
algorithms by enhancing parameter robustness. The funda-
mental intuition behind this strategy is that models with ro-
bust parameters are inherently more resistant to the noise
introduced by DP, thereby retaining better performance de-
spite the perturbations. DPAdapter modifies and enhances the
sharpness-aware minimization (SAM) technique, utilizing a
two-batch strategy to provide a more accurate perturbation es-
timate and an efficient gradient descent, thereby improving pa-
rameter robustness against noise. Notably, DPAdapter can act
as a plug-and-play component and be combined with existing
DPML algorithms to further improve their performance. Our
experiments show that DPAdapter vastly enhances state-of-
the-art DPML algorithms, increasing average accuracy from
72.92% to 77.09% with a privacy budget of ε = 4.

1 Introduction

Recent years have witnessed an exponential growth in ap-
plications of deep neural networks (DNNs) to various do-
mains [14, 22, 44]. However, DNN models trained with stan-
∗The first two authors contributed equally to this work.

dard pipelines can be attacked by an adversary that seeks to
reveal the data on which the model was trained. For example,
Carlini et al. [9] show that adversaries can generate and detect
text sequences from the training set of a large transformer lan-
guage model, while Balle et al. [5] demonstrate that powerful
adversaries can reconstruct images from the training set of
a classifier. Alongside other results [8, 31, 32], these studies
indicate that models trained on sensitive datasets present a
significant privacy risk.

Differential privacy (DP) [16] has been the golden standard
for effective control of the risks of exposing training examples,
and has already been adopted by various machine learning
tasks for protection [15, 30, 34, 50]. A differentially private
algorithm is a randomized algorithm providing a formal guar-
antee that any single example in the training set only has a
limited impact on the output distributions of the algorithm.
The privacy guarantee, denoted (ε, δ)-DP, is defined by two
parameters (ε, δ), which we refer to as the privacy budget.
The smaller these two parameters are, the closer the output
distributions between the training sets that differ by a single
example, and therefore the more difficult it becomes for an
adversary to infer whether any single data point is included
during training.

Challenges in Private Deep Learning. Differentially pri-
vate stochastic gradient descent (DP-SGD) [1] stands out
as a prevalent DPML technique. DP-SGD modifies the con-
ventional mini-batch gradient calculation used in SGD by
incorporating a privatized version, whereby the gradient of
each training sample is clipped to a maximum norm. Subse-
quently, Gaussian noise, proportional to the clipping norm, is
introduced to the sum of the clipped gradients, masking the
influence of any individual example on the sum. However,
the incorporation of the DP noise often comes with a notable
degradation in the performance of trained models [1, 47]. In
response, efforts to mitigate the adverse impact of DP on
model utility have been made [38, 47, 51, 56]. Nonetheless,
the detriment imposed by DP noise on differentially private
models remains significant.

Our Solution. To mitigate the adverse impact of DP on
model utility, prior research has underscored that transfer
learning [37] from public data markedly enhances the model
performance of DPML algorithms [26]. In our research, we
went a step further. Specifically, we observed that the deep
learning training process is highly sensitive to noise, with
even a small amount of noise leading to a substantial impact
on performance. However, this issue can be mitigated by the
model pre-trained to minimize parameter sensitivity to noise,
which we call parameter robustness, so as to control DP’s
performance impact. Therefore, we designed a new technique
that pre-trains a model with its parameters robust to noise
to enhance the performance of the downstream model fine-
turned with DPML on private data.

A technique that could serve this purpose is sharpness-
aware minimization (SAM), which augments parameter ro-
bustness [17, 49, 55] for the purpose of enhancing a model’s
generality. This technique, however, turns out to be less effec-
tive in controlling the performance impact of DPML, since
it is not designed for maximizing parameter robustness. Con-
cretely, SAM adds the worst-case perturbation to parameters
before computing gradients and later removes the perturba-
tion after each round of parameter updates. For this purpose,
it calculates both the perturbation and gradients on a small
batch of training samples. A problem is that although a small
batch could be enough for improving a model’s generality, it is
inadequate for making an accurate estimate of the worst-case
perturbation, thereby rendering the model parameters less ro-
bust than they could be. To address this issue, we enhanced
SAM for our purpose with a new technique called DPAdapter,
which utilizes two batches of training instances, a large one
for a more accurate estimate of the perturbation and a small
one for effective gradient descent to ensure convergence. We
further theoretically analyzed why this approach improves
parameter robustness against noise, thereby reducing DPML’s
performance impact on the downstream model fine-tuning.

Empiricaly Results. We implemented DPAdapter and evalu-
ated its performance using a model pre-trained on CIFAR-100,
which was then fine-tuned for classification tasks on CIFAR-
10, SVHN, and STL-10 datasets. In these experiments, we
utilized DPAdapter as the pre-training method and the CIFAR-
100 dataset as the public dataset for the pre-training. The
downstream tasks involve fine-tuning the pre-trained model
with DPML. Our experimental results consistently show a
stable improvement in the accuracy achieved by the down-
stream tasks, compared with those fine-tuned from the models
without robustness enhancement. For instance, when the pri-
vacy budget is set to ε = 4 and DPML configured to DP-SGD
(a popular setting), DPAdapter elevates the average accuracy
across three downstream tasks to 77.09%. By comparison,
when utilizing the pre-trained models without DPAdapter, the
accuracy is 72.92%, over 4% below that of our approach. Note
that all existing DPML enhancements could only achieve a
performance gain no more than 3% [48] when the privacy

budget is set to ε = 4. Also, many of them cannot work to-
gether, since they all focus on the downstream fine-tuning
step. Our approach, however, is designed for more generic
protection, independent of tasks, and compatible with these
existing solutions, given its focus on the pre-training step.
Contributions. Our key contributions are outlined below:
• New technique. We developed DPAdapter, a new technique
for enhancing parameter robustness, which leads to a gen-
eral solution significantly outperforming yet compatible with
existing techniques for controlling DPML’s negative impacts.
• Theoretical understandings. We theoretically analyzed
our solution to justify its effectiveness, unveiling intrinsic
relations among parameter robustness, transferability, and
DPML’s performance impacts. Our analysis leads to new
insights about how a pre-trained model can be designed to
maximize the benefits of DPML.
• Extensive empirical studies. We conducted comprehensive
empirical studies of DPAdapter on various downstream tasks
and DPML algorithms under different privacy budgets. Our
results show that our approach effectively enhances the per-
formance of the downstream tasks fine-tuned by DPML.

2 Background

2.1 Differentially Private Machine Learning
Differential privacy [16] (DP) serves as a mathematical struc-
ture intended to quantify the assurance of privacy within data
analysis, providing insights into the preservation of privacy
when an individual’s data becomes part of a publicly analyzed
dataset. This concept typically involves a privacy budget, rep-
resented by ε, where a larger value signifies augmented pri-
vacy protection, and an optional failure probability, δ, defines
the permissible deviation from impeccable privacy. Formally,
we can define differential privacy as:

Definition 2.1 ((ε, δ)-DP). Given two neighboring datasets
D and D′ differing by one record, a mechanism M satisfies
(ε, δ)-differential privacy if

Pr[M (D) ∈ S]≤ eε ·Pr[M (D′) ∈ S]+δ,

where ε is the privacy budget, and δ is the failure probability.

Gaussian Mechanism. There are several approaches for de-
signing mechanisms that satisfy (ε,δ)-differential privacy,
among which the Gaussian mechanism is the most widely
used one. It computes a function f on the dataset D in a
differentially private manner, by adding to f (D) a random
noise. The magnitude of the noise depends on ∆ f , the global
sensitivity or the ℓ2 sensitivity of f . Such a mechanism M is
given below:

M (D) = f (D)+N
(

0,∆2
f σ2I

)

where ∆ f = max
(D,D′):D≃D′

|| f (D)− f (D′)||2, N (0,∆2
f σ2I) de-

notes a multi-dimensional random variable sampled from
the normal distribution with mean 0 and standard deviation
∆ f σ, and σ =

√
2ln 1.25

δ
/ε.

DP-SGD. The integration of differential privacy into deep
learning aims to build models that can learn from data
without compromising the privacy of individuals within the
dataset. Differentially private stochastic gradient descent (DP-
SGD) [1] is the most widely used algorithm to enforce DP
guarantee for the deep learning models. It adapts the stan-
dard SGD algorithm by introducing a few privacy-preserving
modifications: gradient clipping and noise addition.

The gradient clipping operation aims to limit the sensitiv-
ity of each gradient, ensuring that a single data point does
not unduly influence the model’s learning process. Following
gradient clipping, Gaussian noise is added to the clipped gradi-
ents before they are used to update the model parameters. This
noise ensures that the exact values of the gradients—which
could reveal sensitive information—are masked.

Our analysis is centered on gradient-level defenses, but it
is crucial to note that methods like the Private Aggregation
of Teacher Ensembles (PATE) [39] also show promise in bal-
ancing between privacy protection and model performance.
Despite its potential, the applicability of PATE in federated
learning [28] (which often involves continuously updated or
streaming data) presents practical challenges, primarily due to
the frequent necessity for retraining or re-aggregating teacher
models. Federated learning serves as a clear example of a sce-
nario where gradient-level defenses, such as DP-SGD, offer
superior flexibility. DP-SGD naturally aligns with federated
learning by seamlessly integrating privacy mechanisms into
the model’s training process, thus effectively managing real-
time data updates. This inherent adaptability, combined with
the challenges associated with implementing PATE in dy-
namic environments, highlights the reasons PATE-like strate-
gies are not the focus of our analysis.
Privacy Budget Composition. On a broader spectrum, the
overall privacy budget calculation of DP-SGD is established
by demonstrating the privacy budget of each iteration under
certain (ε,δ) values, followed by applying amplification by
subsampling and composition throughout the iterations.

2.2 Adversarial Robustness and Model Param-
eter Robustness

Adversarial Training (AT). It is widely regarded as the most
effective defense method against adversarial attacks [4, 6, 18,
40, 46]. AT essentially employs a “fight fire with fire” ap-
proach. It introduces adversarial examples into the training
set, which are slight, carefully calculated modifications of the
original inputs. These modifications are designed to mislead
the model into making erroneous predictions. By learning
from these adversarial examples, the model improves its abil-

ity to correctly classify such inputs in the future, thereby
enhancing its overall resilience and robustness against adver-
sarial attacks.

Parameter Robustness. It typically refers to the sensitivity
of a model to small perturbations in its parameters. When dis-
cussing parameter robustness, we are interested in the model
output (e.g., predictions on testing data) changes when its
parameters are subjected to some level of noise.

Specifically, given a model f parameterized by θ and a
test sample x, the robustness of the model with respect to its
parameters can be defined as:

ρ(f) = max
xxx,θ,∆
| fθ+∆(xxx)− fθ(xxx)|/∥∆∥2

where ρ(f) represents the maximum change in the model’s
output. ∆ is the noise added to the model parameters θ. ∥ · ∥
denotes a norm, for instance, the L2 norm.

This definition provides a measure of the potential variation
in the model’s output when its parameters undergo perturba-
tion due to noise. A diminutive value of ρ is indicative of
pronounced parameter robustness. Subsequently, we aim to
enhance the parameter robustness of f , denoted by the objec-
tive of reducing the value of ρ(f).

Robust Accuracy. We resort to robust accuracy as an eval-
uation metric for parameter robustness in the classification
paradigm; Given a specific model fθ, we introduce Gaussian
noise, represented as N(0,0.1), uniformly across parameters
spanning all layers. The resultant perturbed model is rep-
resented as f

θ̂
. The model’s performance, when faced with

this perturbation, is then assessed. Consequently, the robust
accuracy is computed over a dataset D and is delineated as:

Robust Accuracy =
1
|D| ∑x∈D

I(f
θ̂
(x) = y)

where I is the indicator function that returns 1 when the con-
dition inside is true and 0 otherwise. A model exhibiting a
higher robust accuracy indicates stronger parameter robust-
ness, corresponding to a lower value of ρ.

The optimization of parameter robustness can be achieved
through a technique known as sharpness-aware minimization
(SAM) [17,49,55]. This method typically involves computing
the worst-case perturbation on the parameters. The optimiza-
tion then takes place on the model parameters subjected to this
worst-case perturbation. The intention is to ensure that the
model retains a significant portion of its performance, even
when subjected to the worst-case perturbation. However, this
technique is not designed to maximize parameter robustness
but to achieve better generality. Consequently, it proves to be
less effective in mitigating the performance impact of DPML
(Section 5.2).

3 Problem Formulation and Key Observations

3.1 Problem Formulation

Threat Model. We consider a scenario where an attacker
applies privacy attacks [5, 8, 9, 31, 32] to unveil the training
data of a model. To defend against the attacks, the defender
endeavors to build the model using differential privacy, which
provably protects sensitive data while preserving its original
utility. Additionally, the defender possesses a public dataset
related to the private data, aligning with the standard assump-
tion of transfer learning that the source and the target datasets
follow similar but not identical distributions.
Problem Definition. Our aim is to build a pre-trained model
that can be used for improving both the accuracy and privacy
protection of the models trained for downstream tasks. Specif-
ically, to build a pre-trained model that serves as a beneficial
initialization for DP fine-tuning, we seek to answer two key
questions: 1) what properties the pre-trained model should ex-
hibit for the benefit of downstream models? and consequently
2) how the pre-training of the model should be executed to
acquire these properties?

3.2 Motivation and Key Observations

Motivation. Our motivation to enhance the performance of
the DPML algorithm using pre-trained models is rooted in
our understanding of adversarial robustness training. The tra-
ditional adversarial training (AT) incrementally conditions
the model to resist perturbations of its input. However, in the
DPML algorithm, the noise is predominantly introduced into
the gradients, or equivalently, into the model’s parameters.
Hence, we ask if there is any technique similar to AT that may
condition the model to resist perturbations of its parameters.
Obviously, if this can be achieved, the impact of the noise in-
troduced by the DPML algorithm on the model performance
could be minimized. It turns out, such an AT method has been
proposed previously, referred to as the sharpness aware mini-
mization (SAM), which confers noise resilience to parameters
Section 2.2. Based on the premise, we introduce two working
hypotheses.

We first consider a specialized transfer learning scenario
where the training datasets for the upstream and downstream
tasks are i.i.d. (independent and identically distributed); for
instance, each of these training datasets represent a random
sub-sample of an overarching dataset. Under this scenario,
we propose the first hypothesis:
Hypothesis 1. Assuming the datasets A and B are randomly
sampled from the same distribution, if a pre-trained model
built from the dataset A possesses enhanced parameter robust-
ness, the model fine-tuned on the dataset B using the DPML
algorithm under a fixed privacy budget will yield better per-
formance.

Figure 1: Impact of perturbation magnitude on AMP.

Next, we extend our hypothesis into a more general trans-
fer learning scenario, where the upstream and downstream
datasets are not identical but related, for example, when the
upstream training data comes from ImageNet and the down-
stream data is sourced from CIFAR-10. Under this scenario,
we have our second hypothesis.

Hypothesis 2. Assuming the datasets A and B are sampled
from two different but similar distributions, respectively, if
a pre-trained model built from the dataset A exhibits strong
parameter robustness, the model fine-tuned on the dataset B
using the DPML algorithm under a fixed privacy budget will
yield better performance.

Rationales. Hypothesis 1 is quite intuitive. Drawing parallels
from AT — which can counteract the effects of adversarial
examples by introducing noise into the input — we anticipate
that SAM can similarly mitigate the implications of the noise
added to parameters by the DPML algorithm. Hypothesis 2,
on the other hand, is inspired by prior work [42]. It has been
observed that pre-trained models, when subjected to AT, can
impart some degree of their acquired adversarial robustness
to downstream models via transfer learning. This led us to a
deeper contemplation: Can the parameter robustness garnered
through SAM training also be transferred to downstream tasks
through transfer learning? If this transfer of parameter robust-
ness is indeed feasible, then, based on Hypothesis 1, it could
potentially alleviate the performance degradation in down-
stream training using the DPML algorithm.

Empirical Validation. To evaluate our hypotheses, we uti-
lized state-of-the-art Adversarial Model Perturbation (AMP)
methodologies. Our models were exposed to an array of AMP
intensities, producing pre-trained models that span a spectrum
of parameter robustness. We then measured their parameter ro-
bustness by assessing the model accuracy on testing data after
perturbation, and analyzed their performance in conjunction
with DP-SGD.

Specifically, to validate Hypothesis 1, we examined a sce-
nario where both upstream and downstream training data
were sourced from the CIFAR-100 dataset, with the upstream

data constituting 90% of the CIFAR-100 training dataset and
the downstream data constituting the remaining 10%. As de-
picted in Figure 1, the x-axis signifies the parameter γ in AMP,
which modulates the intensity of parameter robustness. By
adjusting γ, we derived pre-trained models of various levels of
robustness (indicated by the red line). This robustness peaks
with increasing γ and then starts to wane. Correspondingly,
the green line, which illustrates the accuracy of the model’s
performance after downstream optimization using DP-SGD,
displays an initial rise followed by a decline, mirroring the
trajectory of parameter robustness. This result suggests that if
the upstream and downstream training datasets both follow an
i.i.d. distribution, the parameter robustness of upstream model
is directly correlated with the performance of the downstream
fine-tuned model.

For Hypothesis 2, we used the upstream training data com-
prising the same 90% of the CIFAR-100 dataset, while the
downstream training data was entirely from the CIFAR-10
dataset. Still referencing Figure 1, the blue line indicates
the performance (accuracy) of the downstream model after
DP-SGD optimization. Consistent with the results above, the
blue line showcases an initial increase in performance of the
downstream model followed by a significant drop, which is
highly consistent with the pattern of the parameter robustness.
This result suggests that in a transfer learning scenario, the
parameters robustness of an upstream pre-trained model can
influence the performance of the downstream model trained
using the DPML algorithm. Additionally, we observed a grad-
ual decline in the accuracy of the upstream model with an
increase in its parameter robustness, indicating a trade-off
between the parameter robustness and the accuracy of the
model. If the accuracy of the upstream model drops too sig-
nificantly, it can detrimentally impact the performance of the
downstream model. Taking these observation into account,
we outline our design objectives below, aiming to illustrate
our intent of devising a cost-effective strategy to build a pre-
trained model that strikes a balance between two goals, i.e.,
to increase the parameter robustness while maintaining the
high accuracy of the pre-trained model.

We further explore the transferability of parameter ro-
bustness in the context of transfer learning. In specific, we
used CIFAR-100 as the upstream training dataset, and em-
ployed the CIFAR-10, SVHN, and STL-10 datasets, respec-
tively for downstream training. We first trained the model on
the upstream data with five different intensities of Adversar-
ial Model Perturbation (AMP) characterized by the values
γ = 0,0.1,0.2,0.5, and 1.0. This procedure yielded five sets
of pre-trained models, each with distinct robust accuracies.
Subsequently, we performed transfer learning from each of
these five distinct pre-trained models on the downstream data.
Upon the completion of training, the robust accuracy of mod-
els on the downstream dataset was computed. Figure 2 shows
the high between the robust accuracies of the pre-trained mod-
els (x-axis) and the robust accuracy of downstream models

Figure 2: The relationship between the parameter robustness
of the pretrained models and that of the models fine-tuned on
the downstream tasks.

(y-axis). In general, it can be observed that the pre-trained
models with higher robust accuracy tend to maintain their
enhanced robust accuracy during the transfer learning for the
downstream tasks. This observation underscores the inherent
transferability of parameter robustness in a transfer learning
context.
Design Goals. Based on the results from the toy examples as
illustrated above, our objective is to build a pre-trained model
that achieves two primary goals: robustness and effectiveness,
which we elaborate below.
• Robustness. As observed earlier, we aim for our pre-trained
model to exhibit strong parameter robustness (for instance, a
smaller value of ρ). This ensures that when the downstream
model employs the DPML algorithm, the influence on its
performance is minimal.
• Generality. While striving for pronounced parameter robust-
ness in the pre-trained model, it is imperative that the model’s
inherent performance remains commendable. Should we
solely emphasize parameter robustness, the model may exhibit
an extremely low value of ρ—indicating high robustness—but
low accuracy. For instance, f (x;θ+∆) = f (x;θ) ̸= y. As illus-
trated in Figure 1, when γ exceeds 1, the pre-trained model’s
performance may deteriorate considerably. As a result, the
DPML algorithm employed for downstream training might
not inherit sufficient effective features from the pre-trained
model, leading to a diminished outcome. Hence, it is equally
pivotal for the pre-trained model to retain high performance
as compared to enhance its parameter robustness.

4 DPAdapter

In essence, the design of DPAdapter is rooted in the two obser-
vations mentioned earlier. Our objective is for the pre-trained
model to achieve higher parameter robustness while main-
taining its performance. Given the observation that parameter
robustness can be transferred when the model is passed down-

Figure 3: Impact of different batch sizes on AMP.

stream, the fine-tuning DPML algorithms can operate under
the same privacy budget. This, in turn, minimizes the impact
on performance.

4.1 Design Challenge
We observe that while AMP can enhance parameter robust-
ness, leading to an improvement in the DP-SGD performance
of downstream fine-tuned models, the extent of this robust-
ness enhancement is quite limited. This, in turn, results in
only a marginal performance boost. As we illustrated in Sec-
tion 5.4 using AMP as an example, the effect of existing
model parameter adversarial training on enhancing the pa-
rameter robustness of pre-trained models is not significant.
Consequently, the impact on the performance of downstream
DPML algorithms is also marginal. This is primarily because
the existing methods aimed at improving parameter robust-
ness were primarily designed to enhance model generaliza-
tion. Since they were not explicitly designed for robustness
enhancement, the gains in parameter robustness tend to be
limited. While these methods can indeed be adjusted to prior-
itize robustness by increasing the perturbation magnitude at
the expense of generalization, such a trade-off is often costly.
As depicted in Figure 1, a high perturbation magnitude not
only fails to bring much-added robustness but also makes the
model challenging to converge. Given these challenges, we
introduce DPAdapter, a novel approach to help pre-trained
models achieve higher parameter robustness and minimize
the adverse impact on performance when downstream models
employ DPML algorithms.

4.2 Design Intuition
As highlighted in the “Challenge” section above, traditional
methods of enhancing parameter robustness often result in a
significant trade-off between parameter robustness and model
performance. We’ve observed that these conventional meth-
ods of improving parameter robustness primarily leverage
schemes akin to SGD for adversarial training. During a single

optimization iteration, the batch used to compute the pertur-
bation and the batch used to calculate the gradient direction
for optimization are the same. However, the rationale behind
this approach has not been extensively discussed. In fact, tak-
ing the AMP as an example, as depicted in Figure 3, when a
large batch size is chosen, the model’s training becomes sub-
optimal due to the utilization of this large batch. On the con-
trary, if the batch size is too small, computing the perturbation
based on such limited data leads to inaccurate perturbations,
subsequently compromising the robustness of the training.
Note that a recent study suggests employing a linear scaling
rule to adjust the learning rate based on the modified batch
size [20]; specifically, the learning rate should be multiplied
by k when using a batch size of kN. Consequently, in this
experiment, we also adhere to this setting to approximate the
optimal learning rate for each batch size.

Based on these observations, we decided to decouple the
batches used for computing perturbations and those for cal-
culating parameter gradients during the optimization process.
For computing perturbations, we chose a batch size larger
than what is typically required for regular training. The rea-
soning is that perturbation computations don’t necessarily
benefit from being stochastic. Ideally, the entire dataset would
be used to compute the perturbation. However, due to compu-
tational resource constraints, using the complete dataset for
this purpose is challenging. Hence, we opt for a compromise
by selecting a relatively larger batch size for the perturbation
computations. In contrast, for batches used to compute model
optimization gradients, we chose sizes that are conducive to
model optimization, ensuring we avoid sizes that are exces-
sively large or small that could impair model performance.

4.3 Methodology Overview

Figure 4 illustrates the overall workflow of DPAdapter. To
efficiently achieve the parameter robustness of pre-trained
models, DPAdapter employs a Min-Max optimization, iterat-
ing over four steps of model updating as presented below.
Step 1: Warming-up. The pre-trained model initiates with
a warming-up phase using standard training techniques to
ensure the accuracy (ACC) meets the targeted benchmark.
We refer to the model post-warming-up as fθ.
Step 2: Worst-case Model Perturbation. We select an en-
larged batch of training data, denoted as B1. We then compute
the direction of the gradient that maximizes the loss of this
batch under the current model parameters. Subsequently, we
perturb the model parameters along this direction with the in-
tention of impairing the model’s predictive capability on this
large batch of data when subjected to such perturbation. We
denote the perturbation as ∆, and the model after perturbation
as fθ+∆.
Step 3: Update on the Perturbed Model. To enhance the
model’s resilience to perturbations in its parameters (param-

Figure 4: Overview of the DPAdapter approach.

eter robustness), we optimize the perturbed model with the
goal of maintaining good performance even when the model
is subjected to such perturbations. We select a standard-sized
batch of training data, represented as B2. We then perform reg-
ular training using stochastic gradient descent (SGD) on B2.
The updated model is denoted as fθ+∆+α, where α represents
the weight update resulting from the SGD.

Step 4: Revert Perturbation. In Step 3, we have already
enhanced the model’s resilience to parameter perturbations.
As a result, there’s no longer a need to retain the noise applied
to the parameters in Step 2, as doing so would only degrade
our model’s accuracy. Therefore, in this step, we revert the
update of the model weight made in Step 2: the final model is
represented as fθ+∆+α−∆ = fθ+α.

Our workflow operates iteratively. Upon completion of Step
4, the process loops back to Step 1. In each iteration, distinct
batches of training data are randomly selected for both B1
and B2. The algorithm takes the total number of iterations as
an input, ensuring that training concludes after the specified
number of iterations.

Remark. It is important to highlight the distinction between
our approach and conventional techniques aimed at enhancing
a model’s generality by improving parameter robustness, such
as AMP [55]. Specifically, AMP optimizes using the same B2
and B1.

The key innovation in our method lies in the strategic batch
selection during two different optimization processes: the
worst-case perturbation computation and the SGD gradient
computation. By ensuring that the batch size for B1 is rela-
tively large, we obtain a more precise and general perturbation.
In contrast, a standard batch size is used for B2 to facilitate
optimal training with SGD. Such nuanced improvements en-

able our pretrained model, DPAdapter, to achieve heightened
parameter robustness, resulting in significant enhancements
when downstream DPSGD is applied.

4.4 Design Details
We now delve into a detailed presentation of the DPAdapter al-
gorithm, focusing primarily on Steps 2 and 3. These steps are
comparatively more complex: while Step 1 involves standard
training and Step 4 simply involves a subtraction to remove
noise from the parameters. Notably, it’s Steps 2 and 3 that
distinctly set DPAdapter apart from other SAM algorithms.

First, like any typical SAM algorithm, we define a norm
ball B(µµµ;γ), as a region around a given point µµµ in the parame-
ter space Θ (i.e., µµµ ∈Θ) with the radius of γ (γ≥ 0):

B(µµµ;γ) := {θθθ ∈Θ : ∥θθθ−µµµ∥ ≤ γ} (1)

Recall that a typical SAM loss is designed upon the norm
ball B(θ;γ):

LSAM(θθθ) := max
∆∈B(000;γ)

1
|D| ∑

(xxx,yyy)∈D
ℓ(xxx,yyy;θθθ+∆) (2)

where D represent the training dataset. The training loss, de-
noted by ℓ, varies based on the task at hand: for classification
tasks, it is typically the cross-entropy, while for regression
tasks, it is often the least squares. The perturbation ∆ is the
worst-case model perturbation
Worst-case Model Perturbation. In this section, we detail
the computation of ∆ used to obtain fθ+∆ in Step 2. The worst-
case model perturbation, ∆, is strategically designed to induce
the model parameters θ to achieve the fastest reduction in loss

on the dataset:

∆B1 = argmax
∆∈B(θθθ;γ)

1
|B1| ∑

(xxx,yyy)∈B1

ℓ(xxx,yyy;θθθ+∆) (3)

Recall that in DPAdapter, B1 denote the batch of data use
as to compute the worst-case model perturbation. γ denotes
the radius of the norm ball and acts as a hyperparameter
that governs the degree of parameter robustness training. The
robustness of the model’s parameters is directly influenced by
this radius: a larger γ implies that the model can tolerate more
noise in the parameter space, as determined by DPAdapter.
Consequently, a greater γ results in a model with enhanced
parameter robustness.
Update Perturbed Model. In this section, we detail the
computation of α used to obtain fθ+∆+α in Step 3. Since
in practice, the optimization is typically carried out using
mini-batches. In this case, the LDPAdapter can be approximated
using a mini-batch B2:

L DPAdapter(θθθ)≈ max
∆B1
∈B(000;γ)

1
|B2| ∑

(xxx,yyy)∈B2

ℓ(xxx,yyy;θθθ+∆B1)

:= J DPAdapter,B1,B2(θθθ) (4)

Hence, at this point, the model’s update is given by

α = η2∇J DPAdapter,B1,B2(θθθ) (5)

where η2 represents the optimization step size. It is cru-
cial to highlight the primary distinction between DPAdapter
and other SAM algorithms, which lies in Equation 3 and
Equation 4. In other SAM algorithms, such as those cited
in [17, 49, 55], the batch used to compute the worst-case
perturbation, denoted as B1, is the same as the batch utilized
for computing the update. We argue that by separately se-
lecting B1 and B2, the trained model can achieve a balance
between parameter robustness and overall model performance
in Section 5.4.

The specifics of the DPAdapter algorithm can be found
in Algorithm 1. Importantly, in alignment with other SAM
algorithms such as [17, 49, 55], the finalized model utilizes
the parameters denoted as θθθ

∗
DPAdapter. These parameters are

employed for model inference (or prediction) without the need
for additional perturbations.

As mentioned earlier, the training process of DPAdapter is
divided into two primary stages: The perturbation computa-
tion and the update computation.
• Perturbation Computation. Line 5 to Line 9 in Algo-
rithm 1. This phase is responsible for calculating the worst-
case perturbation, ∆B1 , based on the prevailing conditions.
• Update Computation. Line 10 to Line 12 in Algorithm 1.
In this phase, the ∆B1 derived from the previous perturbation
computation step is used to determine the parameter optimiza-
tion gradient, ∇J DPAdapter,B1,B2 . Following this, the model
parameters are updated.

Algorithm 1 DPAdapter Training

Require: Training set D = {(xxx,yyy)}, perturbation batch size m1,
update batch size m2, loss function ℓ, perturbation computation
learning rate η1, update learning rate η2, norm ball radius γ,
number of update iteration K.

1: while k < K do
2: Draw B1 = {(xxxi,yyyi)}

m1
i=1 from training set D

3: Draw B2 = {(xxxi,yyyi)}
m2
i=1 from training set D

4: Set perturbation: ∆B1 ← 000
5: Calculate the perturbation:

∆B1 ← η1 argmax∆∈B(θθθkkk ;γ)
1
|m1| ∑(xxx,yyy)∈B1

ℓ(xxx,yyy;θθθkkk +∆)

6: if ∥∆B1∥2 > γ then
7: Normalize perturbation: ∆B1 ← γ∆B1/∥∆B1∥2
8: end if
9: Add the perturbation to parameters:

θθθk← θθθk +∆B1

10: Compute update gradient:
∇J DPAdapter,B1,B2 ← ∑

|B2|
i=1 ∇θθθℓ(xxxi,yyyi;θθθk)/m2

11: Update on the perturbed model :
θθθk+1← θθθk−η2∇J DPAdapter,B1,B2

12: Revert perturbation: θθθk+1← θθθk+1−∆B1

13: Increment iteration: k← k+1
14: end while

Training can be executed for a specified number of epochs
K, or it can continue until the parameter loss stabilizes, which
indicates the completion of the training process.

4.5 Theoretical Analyses
In this section, we aim to provide a theoretical explanation
of why DPAdapter achieves improvements in the DPML
algorithm. Specifically, our theoretical examination revolves
around two key points:

1. Understanding the rationale behind the separate selection
of B1 and B2, particularly emphasizing why the batch
size of B2 should be large.

2. Elucidating how enhancing the robustness of pretrained
parameters can ensure superior performance in down-
stream training, given the same privacy budget.

The first point is theoretically proven in Theorem 1, while
the second is validated in Theorem 2.

To give a basic idea, through Theorem 1, we aim to theo-
retically demonstrate that, upon selecting an appropriate B1
conducive to optimization and holding it constant, we can
bound the difference between the actual loss and the maxi-
mum lower bound (Infimum) of the loss. Essentially, as the
magnitude of B2 increases, the upper bound on the expected
convergence rate of the model obtained through DPAdapter
also increases.

In theorem 2, we prove that given a model training by DP-
SGD, the expected difference between the model’s loss and

the maximum lower bound of the achievable loss (termed
as DP-SGD’s performance) is positively proportional to ρ.
Specifically, a lower value of ρ (indicating stronger parameter
robustness) in the model initial stage, results in a lower loss
when optimized using DP-SGD.

Next, we delineate the setup for our theoretical framework.
We first analyze the convergence behavior of our proposed
algorithm. We show that by using a different update batch
(where |B1| ≠ |B2|). We summarize our algorithm as follows.
Let Li(θθθ) := ℓ(fθθθ(xxxi),yyyi). For any batch of the data S ⊆D , let
LS be the average of Li, i∈ S . Then our algorithm is as follows.
Starting from the initial parameter θθθ0, for each iteration t, we
have

θθθt+1 = θθθt −η2 ·∇LB2(θθθt +∆t), ∆t := η1 ·∇LB1(θθθt). (6)

Equation 6 is essentially the same as Algorithm 1 in Sec-
tion 4.3 without the perturbation normalization step (line 6-8
in Algorithm 1). Meanwhile, we need the following assump-
tions.

Assumption 1. f is β-smooth w.r.t. θθθ, i.e., ∥∇ fθθθ(xxx) −
∇ f

θθθ
′(xxx)∥2 ≤ β∥θθθ−θθθ

′∥2.

Assumption 2. ℓ is β1-Lipschitz continuous w.r.t. xxx i.e.,
|ℓ(xxx,yyy)− ℓ(xxx′,yyy)| ≤ β1|xxx− xxx′|.

Assumption 3. ℓ is β2-smooth w.r.t. xxx, i.e., |∇xxxℓ(xxx,yyy)−
∇xxxℓ(xxx′,yyy)| ≤ β2|xxx− xxx′|.

Assumption 4. ∇Li is σ̂2-variance bounded gradient, i.e.,
Ei∥∇Li(θθθ)−∇LD(θθθ)∥2

2 ≤ σ̂2. Here Ei denotes the expecta-
tion over i ∈ 1, . . . ,n.

Assumption 5. LD satisfies the µ-PL-condition, i.e.,
∥∇LD(θθθ)∥2

2 ≥ 1/µ · (LD(θθθ)− inf
θ̂θθ

LD(θ̂θθ)).

We also formally define the parameter robustness in Sec-
tion 2.2 as follows:

ρ(f) = max
xxx,θθθ,∆
| fθ+∆(xxx)− fθ(xxx)|/∥∆∥2.

For simplicity, we use ρ := ρ(f) with a slight abuse of nota-
tion. Then we have the following theorem.

Theorem 1 (Informal). With proper selection of parameters,
our algorithm enjoys the following gradient norm bound:

1
T

T

∑
t=1

E(LD(θθθt)− inf
θ̂θθ

LD(θ̂θθ))

≤ µ ·
(

LD(θθθ0)

T
+

σ̂2

16β̂
(1/|B2|+1/|B1|)

)
,

where β̂ = (ρ2β2 +ββ1).

We note that the significance of increasing the perturbation
batch size, |B1|, directly influences the gradient norm bound
and, consequently, the convergence rate of our algorithm. El-
evating |B1| effectively lowers this bound by diminishing the
noise-to-signal ratio in our gradient estimations, leading to
more precise and efficient optimization steps. This strategy is
particularly crucial within the context of differential privacy,
where striking a balance between privacy protection and al-
gorithmic efficacy is paramount. By judiciously selecting a
larger |B1|, we enable a smoother and more accurate conver-
gence process, highlighting the importance of careful batch
size configuration in achieving optimal learning outcomes
under privacy constraints.

The detailed theorem and proof are deferred to Appendix
A.1. Theorem 1 suggests that selecting a large perturbation
batch size |B1|makes our algorithm have a better convergence
rate, indicating better performance while using a large batch
of perturbations |B1|.

We have another analysis of the noise tolerance and the
DP-SGD performance. Then we have our theorem.

Theorem 2 (Informal). Given (ε,δ), with proper selection
of parameters, let θθθout be the final output of DP-SGD, then
DP-SGD is (ε,δ)-DP and enjoys the following utility bound:

E(LD(θθθout)− inf
θθθ

LD(θθθ))≤C · ρ
√

ρ2β2 +ββ1

|D|ε
,

where C = c ·µβ1
√

d log(|D|/δ) log(1/δ)LD(θθθ0), c is some
positive constant, d is the dimension of parameter θθθ.

The detailed algorithm, theorem, and proof are deferred
to Appendix A.2. Theorem 2 suggests that the parameter
robustness ρ indeed affects the final utility.

5 Evaluation

5.1 Experimental Setup

Datasets. We use the following five datasets in our evaluation.

• CIFAR-10 [25]: This dataset contains 50,000 training im-
ages and 10,000 testing images. Each image has a size of
32×32×3 and belongs to one of 10 classes.

• CIFAR-100 [25]: This dataset contains 50,000 training im-
ages and 10,000 testing images. Each image has a size of
32×32×3 and belongs to one of 100 classes.

• SVHN [36]: In this dataset, each image represents a digit
from the house numbers in Google Street View. The size of
each image is 32×32×3. Each image belongs to one of the
10 digits. This dataset has 73,257 training images and 26,032
testing images.

• STL-10 [13]: This dataset contains 5,000 training images
and 8,000 testing images. Each image has a size of 96×96×
3 and belongs to one of 10 classes.

• Tiny ImageNet [27]: This dataset contains 100,000 training
images and 10,000 testing images. Each image has a size of
64×64×3 and belongs to one of 200 classes.

In this paper, CIFAR-100 and Tiny ImageNet serves as a
public dataset used for pre-training, while CIFAR-10, SVHN,
and STL-10 serves as the private data/tasks.
Pre-training Procedure. In our experiments, we utilize
CIFAR-100 as our pre-training dataset and employ DPAdapter
to train a ResNet20 model [22] as the pre-trained model. We
compute the mean and standard deviation on the training set
to normalize the input images. We adopt cross-entropy as the
loss function ℓ and utilize the SGD optimizer with momentum,
incorporating a step-wise learning rate decay. Specifically, the
model is trained for K = 1,000 epochs, with the outer learning
rate η2 initialized at 0.1 and divided by 10 after 500 and 750
epochs. The momentum is set to 0.9, and the weight decay is
set to 1×10−4. The inner batch size m1 is set to 5,000, with
the inner learning rate η1 set to 1.0; the outer batch size m2
is set to 50. For perturbation magnitude, we adopt γ = 2.0 by
default.
Fine-tuning Procedure. Given a pre-trained model, we uti-
lize it to train private downstream classifiers for the remaining
three datasets: CIFAR-10, SVHN, and STL-10. We employ
the parameters of the pre-trained model as the initial parame-
ters of the downstream classifier, which is then trained on the
downstream dataset.

We use Rényi DP to accumulate the overall privacy budget
and precompute the required noise scale (σ in DP-SGD) nu-
merically [1, 35]. We maintain δ = 10−5 and utilize different
privacy budgets: ε = {1,4}. The clipping threshold for all
algorithms is fixed at 4, except when an algorithm employs
special clipping strategies. The cross-entropy loss function
and the DP-SGD optimizer with momentum are adopted when
training a downstream classifier. The model is fine-tuned for
100 epochs, with the learning rate initialized at 0.01 and mo-
mentum set to 0.9. The batch size is configured to 256.
DPML Algorithms. According to the different optimization
methods that the downstream model could adopt, we consider
three types of DP algorithms in addition to vanilla DP-SGD:

• GEP [52]: Yu et al. observed that in vanilla DP-SGD, the
amount of noise increases with the model size and proposed
a solution, GEP [52], to reduce the gradient dimension be-
fore adding noise. GEP first calculates an anchor subspace,
which contains some gradients of public data, using the power
method. Subsequently, it projects the gradient of private data
into the anchor subspace, resulting in a low-dimensional gra-
dient embedding and a small-norm residual gradient. These
two components are independently processed with the DP
mechanism and then combined to update the original weight.

• AdpAlloc [53]: It proposes a dynamic noise-adding mech-
anism, eschewing the practice of maintaining a constant
noise multiplier σ throughout every training epoch in vanilla
DP-SGD. Instead of utilizing a static variance in the Gaus-

sian mechanism, it replaces it with a function of the epoch:
M(d) = f (d) +N(0,S2

f ·σ2
t), where the value of σt is con-

tingent upon the final privacy budget, epoch, and schedule
function. The schedule function delineates the adjustment of
the noise scale throughout training. Yu et al. proposed several
pre-defined schedules. For our evaluation, we select Exponen-
tial Decay, which demonstrated the best average performance
in [53]. The mathematical expression for Exponential Decay
is σt = σ0e−kt , where k(k > 0) represents the decay rate and
σ0 denotes the initial noise scale.

• AdpClip [2]: An adaptive clipping threshold mechanism
is utilized, setting the clip threshold to a specified quantile
of the update norm distribution at each epoch. Formally, the
clipping threshold Ct in epoch t can be computed as Ct =
Ct−1 · exp

(
−ηC(b− γ)

)
, where γ ∈ [0,1] is a quantile to be

matched, b ≜ 1
m ∑i∈[m] Ixi≤C represents the empirical fraction

of samples with a value at most C, and ηC is the learning rate
with a default value of 0.2, as indicated in [2].

5.2 Effectiveness of DPAdapter

In this section, we empirically validate the overall effective-
ness of DPAdapter and conduct ablation studies to illustrate
the effectiveness of each component.
Setup. We conduct experiments using four different DPML
algorithms across three distinct private downstream tasks
(CIFAR-10, SVHN, and STL-10), under four different pre-
training settings: (i) From Scratch: utilizing randomly ini-
tialized weight values (i.e., no pre-training); (ii) Standard
Pre-training [15, 26]: conducting pre-training on the CIFAR-
100 dataset using standard training procedures; (iii) Vanilla
Sharpness-Aware Minimization (SAM): pre-training with
AMP [55], employing the optimal perturbation magnitude
γ = 1.0 and the optimal batch size m = 100; (iv) DPAdapter:
pre-training with the proposed DPAdapter, using hyper-
parameters described in Section 5.1.
Observations. Table 1 illustrates the downstream accuracy
for various settings. In general, we observe that the proposed
DPAdapter substantially enhances the downstream accuracy
in all settings. For instance, when the privacy budget is set to
ε = 1 and the DPML algorithm is configured to vanilla DP-
SGD, DPAdapter elevates the average accuracy across three
downstream datasets to 61.42%. In contrast, when utilizing
models pre-trained normally, the accuracy is only 56.95%,
marking an improvement of over 4%. When the DPML al-
gorithm is AdpClip, DPAdapter boosts the accuracy from
42.67% to 52.54%, representing a near 10% improvement.

We note that, compared to training from scratch, a nor-
mally pre-trained model consistently yields an improvement
in downstream accuracy. This finding aligns with previous
work which noted that transfer learning from public data sig-
nificantly enhances the accuracy of DPML algorithms [26].
Further, we note that employing vanilla SAM to provide pa-

Table 1: Comparison of the performance of training from scratch, standard pre-training, vanilla SAM, and DPAdapter across
various downstream tasks under different privacy budgets.

DPML
Algorithms

Upstream
Training Method

CIFAR10 SVHN STL10 Average
ε = 1 ε = 4 ε = 1 ε = 4 ε = 1 ε = 4 ε = 1 ε = 4

DP-SGD

None (Scratch) [1] 0.4288 0.5070 0.7194 0.8380 0.2831 0.3370 0.4771 0.5607
Standard Pre-training [15, 26] 0.5928 0.7210 0.7822 0.8970 0.3282 0.5695 0.5677 0.7292

Vanilla SAM (Ours) 0.6216 0.7650 0.8042 0.9014 0.3625 0.6212 0.5961 0.7625
DPAdapter (Ours) 0.6416 0.7746 0.8058 0.9018 0.3951 0.6364 0.6142 0.7709

AdpClip

None (Scratch) [2] 0.3738 0.5348 0.6258 0.8294 0.2270 0.3543 0.4089 0.5728
Standard Pre-training [15, 26] 0.4198 0.6780 0.6196 0.8914 0.2406 0.4890 0.4267 0.6861

Vanilla SAM (Ours) 0.5962 0.7108 0.6672 0.8962 0.2539 0.5446 0.5058 0.7172
DPAdapter (Ours) 0.6008 0.7186 0.6730 0.9012 0.3023 0.5676 0.5254 0.7291

GEP

None (Scratch) [52] 0.4008 0.4672 0.5892 0.8158 0.2360 0.3239 0.4087 0.5356
Standard Pre-training [15, 26] 0.6512 0.7456 0.8078 0.8500 0.3326 0.6002 0.5972 0.7319

Vanilla SAM (Ours) 0.6808 0.7472 0.8132 0.8538 0.3739 0.6168 0.6226 0.7393
DPAdapter (Ours) 0.6890 0.7692 0.8180 0.8686 0.4730 0.6462 0.6600 0.7613

AdpAlloc

None (Scratch) [53] 0.4370 0.5166 0.6248 0.7678 0.2923 0.3391 0.4514 0.5412
Standard Pre-training [15, 26] 0.4506 0.6982 0.6604 0.8938 0.2946 0.5104 0.4685 0.7008

Vanilla SAM (Ours) 0.5296 0.7372 0.7652 0.8998 0.2933 0.5675 0.5294 0.7348
DPAdapter (Ours) 0.5352 0.7406 0.7862 0.9008 0.2938 0.6111 0.5384 0.7508

rameter robustness can additionally enhance downstream ac-
curacy. For example, when the privacy budget is designated
as ε = 1 and the DPML algorithm is configured to AdpAl-
loc, using a standard pre-trained model improves the average
downstream accuracy by 1.71%. Meanwhile, applying vanilla
SAM can further augment the average downstream accuracy
by 6.09% (compared with standard pre-training), achieving an
additional gap that is over three times larger than the previous
gap achieved by standard pre-training. This underscores the
significance of leveraging parameter robustness to enhance
DPML algorithms.

Moreover, we observe that employing DPAdapter consis-
tently achieves higher downstream accuracy compared to us-
ing vanilla SAM. For instance, when the privacy budget is
set to ε = 4 and the DPML algorithm is configured to GEP,
applying vanilla SAM enhances the average downstream ac-
curacy by 0.74% compared with standard pre-training. Mean-
while, applying DPAdapter can further increase the aver-
age downstream accuracy by 2.20% (compared with vanilla
SAM). When the privacy budget is ε = 1, applying vanilla
SAM improves the average downstream accuracy by 2.54%;
DPAdapter, in contrast, achieves an improvement of 6.28%
compared with standard pre-training. This emphasizes the im-
portance of leveraging decoupled batches to further enhance
parameter robustness.

We can also observe that GEP is particularly suitable for
DPAdapter, potentially due to the specific challenges posed
by DPML, notably the “curse of dimensionality”. This phe-
nomenon indicates that as the model dimension increases, the

required noise addition also escalates, significantly impacting
model performance. GEP mitigates this challenge by reduc-
ing dimensionality and applying noise in a lower-dimensional
space, effectively diminishing the adverse effects of noise
on model performance. In contrast, DPAdapter focuses on
enhancing each dimension’s resilience to noise, thereby main-
taining model performance even as noise increases in larger
dimensions. The integration of GEP and DPAdapter appears
especially effective for high-dimensional models, leveraging
their distinct methodologies. This synergy arises from their
complementary approaches to managing noise and dimension-
ality, showcasing how combining these strategies can address
the challenges of pre-trained models more efficiently.

5.3 Impact of Perturbation Magnitude

Recall that DPAdapter fundamentally accumulates parameter
robustness by introducing adversarial perturbation during the
training process, the magnitude of which is determined by
the γ term. To comprehend how DPAdapter influences the
performance of downstream tasks, we assess DPAdapter uti-
lizing various γ settings. In this experiment, we fix the privacy
budget at ε = 1 and the DPML algorithm is configured to
vanilla DP-SGD.
Observations. Figure 5 illustrates the fluctuations in up-
stream performance, upstream parameter robustness, and the
performance of various downstream tasks when applying
DPAdapter with different γ values, representing the perturba-
tion magnitude. We observe that the downstream accuracy

Figure 5: Impact of perturbation magnitude on DPAdapter.

trend largely aligns with the trend of upstream parameter ro-
bustness, while demonstrating a nearly inverse relationship
with the level of upstream accuracy. This observation sug-
gests that parameter robustness is the principal factor through
which DPAdapter enhances downstream accuracy. Given that
the trends of upstream accuracy and downstream accuracy
exhibit nearly inverse patterns with changes in γ, we can es-
sentially rule out the possibility that upstream accuracy is the
predominant contributor to downstream accuracy.

Note that when γ is further increased to 5.0, the upstream
accuracy experiences a slight increase while the performance
across different downstream tasks all decline. This could be
attributed to the scenario where the enhancement in parameter
robustness becomes constrained and the decline in upstream
accuracy becomes significant. The advantages conferred by
improved parameter robustness are unable to offset the dis-
advantages brought about by the reduction in upstream accu-
racy, since upstream accuracy also contributes to downstream
accuracy through enhanced generalization ability. This under-
scores the vital necessity of maintaining a balance between
parameter robustness and generalization ability.

In this experiment, for the first time, we identify and es-
tablish a connection between parameter robustness and the
performance of DPML algorithms, marking one of the key
contributions of this paper.

5.4 Comparison with Vanilla SAM

Setup. In this experiment, we consider four perturbation mag-
nitudes: 0.1, 0.5, 1.0, and 2.0. The DPML algorithm is fixed at
vanilla DP-SGD and the privacy budget is fixed at ε = 1. The
results of using the vanilla SAM are denoted by blue trian-
gles, while the results of the proposed DPAdapter are denoted
by red diamonds. The result of using a normally pre-trained
model is denoted as a purple rectangle.
Observations. Figure 6 illustrate the influence of perturbation
magnitude on both vanilla SAM and DPAdapter. The x-axis
represents the robust accuracy, which measures parameter
robustness, while the y-axis indicates the accuracy, reflect-
ing model performance. We observe that models using stan-

Table 2: The impact of public dataset and model architecture.

Public Dataset → CIFAR-100 Tiny ImageNet

Model
Arch. ↓

Pre-training
Method ↓ ε = 1 ε = 4 ε = 1 ε = 4

ResNet20
Standard 0.3282 0.5695 0.3129 0.5460

DPAdapter 0.3951 0.6364 0.3671 0.6031

ViT-B
Standard 0.4331 0.4929 0.5499 0.6118

DPAdapter 0.4480 0.5200 0.5730 0.6374

Table 3: Compatibility of DPAdapter with Downstream En-
hancements.

DPML
Algorithm ↓

Pre-training
Method ↓ ε = 1 ε = 4

DP-SGD
Standard 0.3282 0.5695

DPAdapter 0.3951 0.6364

DP-SGD +
MGC [7]

Standard 0.3397 0.5817
DPAdapter 0.4109 0.6432

dard pre-training typically appear in the bottom-left region,
demonstrating a weak robustness and generalization trade-off,
identified as crucial for DPML algorithms in Section 5.3. Con-
versely, the results derived from the proposed DPAdapter pre-
dominantly reside in the top-right region, showcasing an en-
hancement over the vanilla SAM. This implies that DPAdapter
can further refine the robustness-generalization trade-off com-
pared to vanilla SAM, which may elucidate its consistent
ability to amplify the performance of DPML algorithms with
the most substantial improvements.

5.5 Impact of Public Dataset and Model Archi-
tecture

Setup. In this experiment, we explore the effects of public
dataset selection and model architecture on DPAdapter. We
evaluate two public datasets: Tiny ImageNet and CIFAR-100,
alongside two model architectures: ResNet20 and ViT-B. The
downstream task is fixed as STL-10. For the fine-tuning of
ViT-B, all layers except the linear ones are frozen. The outer
learning rate, η2, is set to 0.05 for experiments involving Tiny
ImageNet.
Observations. The results, as shown in Table 2, reveal the
influence of public dataset selection and model architecture
on the effectiveness of DPAdapter. Overall, DPAdapter en-
hances test accuracy across all configurations, showcasing
its adaptability. Notably, Tiny ImageNet appears to be more
compatible with ViT-B, whereas CIFAR-100 is better suited
for ResNet20. This discrepancy may be attributed to the res-
olution differences between the datasets, given that ViT-B
segments an image into 16x16 tiles.

Figure 6: The results of DPAdapter and vanilla SAM under different perturbation magnitudes.

5.6 Compatibility with Other Enhancements

Setup. In this experiment, we investigate the compatibility of
DPAdapter with downstream enhancements, focusing on the
state-of-the-art DP-SGD enhancement method, mixed ghost
clipping (MGC), as proposed in recent research [7]. We des-
ignate STL-10 as the downstream task and CIFAR-100 as the
public dataset for this evaluation.
Observations. The results, as presented in Table 3, reveal that
both DPAdapter and MGC effectively improve test accuracy.
When combined, they achieve even better test accuracy, indi-
cating that DPAdapter is highly compatible with downstream
enhancements. Furthermore, it is noted that DPAdapter con-
sistently offers a more significant enhancement compared to
MGC. Specifically, the accuracy improvement attributed to
MGC is around 1% for both ε = 1 and ε = 4 scenarios. In
contrast, DPAdapter consistently yields an enhancement of
over 6% across all cases, demonstrating its superior efficacy
in enhancing model performance.

6 Discussion

The current design of DPAdapter is specifically targeted to-
wards supervised learning and cannot be directly applied
to unsupervised learning techniques like contrastive learn-
ing [11, 12, 21]. Thus, the attacker in our scenario needs to
have a labeled dataset for pre-training, which might pose a
challenge in certain specialized fields.

Moreover, while our discussion and implementation center
on a single-party scenario, it is worth noting that our frame-
work is adaptable to both single-party and multi-party situa-
tions. In a multi-party context, the private data originates from
multiple sources. Consequently, private fine-tuning processes
can be facilitated through federated learning [28].

7 Related Work

Parameter Robustness. Numerous studies have shown that
enhancing parameter robustness effectively narrows the gen-

eralization gap, leading to improved model generalizabil-
ity [17, 29, 55]. In this paper, we categorize these efforts
under the umbrella of sharpness-aware minimization (SAM)
approaches. However, all of these studies utilize the additional
benefits conferred by parameter robustness, i.e., generality,
without directly leveraging the property of parameter robust-
ness itself. In contrast, the proposed DPAdapter is among the
first strategies that directly utilize parameter robustness to
benefit private learning. This introduces a fresh perspective
on the potential applications of the parameter robustness prop-
erty. Several pieces of research [41, 45] have incorporated
SAM into DP algorithms to improve test accuracy. Yet, their
protection is applied during the fine-tuning phase, whereas
DPAdapter implements protection in the pre-training phase.
It is important to recognize that each approach brings its own
advantages, and combining DPAdapter with these methods
could potentially boost accuracy further. Therefore, the protec-
tion offered at the pre-training stage deserves special attention
for its unique contributions.
Pre-trained Model as a Service. Adversarial training [19,33]
is recognized as a standard method for developing empirically
robust classifiers in supervised learning. The core concept
involves generating adversarial examples from training in-
stances during the training process and augmenting the train-
ing data with these examples. Several studies [10, 23, 24, 43]
have generalized adversarial training for the pre-training of
robust models in self-supervised learning. Generally, the ap-
proach first generates adversarial examples that result in sig-
nificant loss, which are then used for model pre-training. How-
ever, previous studies have focused solely on offering input
robustness as a service, neglecting to offer parameter robust-
ness, which is the primary contribution of this paper.

8 Conclusion

In this study, we unveiled DPAdapter, a groundbreaking tech-
nique engineered to augment parameter robustness, thereby
navigating the traditionally adversarial relationship between
Differential Privacy (DP) noise and model utility in Deep
Learning. By meticulously reallocating batch sizes for

perturbation and gradient calculations, DPAdapter refines
Sharpness-Aware Minimization (SAM) algorithms, delivering
enhanced parameter robustness and, consequently, mitigating
the impact of DP noise. Our comprehensive evaluations across
several datasets substantiate DPAdapter’s capability to sub-
stantially bolster the accuracy of DPML algorithms on various
downstream tasks, thereby highlighting its potential as a piv-
otal technique in future privacy-preserving machine learning
endeavors.

Acknowledgements

We sincerely thank our shepherd and the anonymous review-
ers for their valuable feedback. Authors from Indiana Uni-
versity were supported in part by IARPA W91NF-20-C-0034
(the TrojAI project).

References

[1] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang. Deep learning with
differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages
308–318, 2016.

[2] G. Andrew, O. Thakkar, B. McMahan, and S. Ra-
maswamy. Differentially private learning with adaptive
clipping. Advances in Neural Information Processing
Systems, 34:17455–17466, 2021.

[3] M. Andriushchenko and N. Flammarion. Towards un-
derstanding sharpness-aware minimization. In Interna-
tional Conference on Machine Learning, pages 639–668.
PMLR, 2022.

[4] A. Athalye, N. Carlini, and D. A. Wagner. Obfuscated
gradients give a false sense of security: Circumventing
defenses to adversarial examples. In Proceedings of
the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, pages 274–283, 2018.

[5] B. Balle, G. Cherubin, and J. Hayes. Reconstructing
training data with informed adversaries. In 43rd IEEE
Symposium on Security and Privacy, SP 2022, San Fran-
cisco, CA, USA, May 22-26, 2022, pages 1138–1156,
2022.

[6] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic,
P. Laskov, G. Giacinto, and F. Roli. Evasion attacks
against machine learning at test time. In Machine Learn-
ing and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2013, Prague, Czech Repub-
lic, September 23-27, 2013, Proceedings, Part III, pages
387–402, 2013.

[7] Z. Bu, J. Mao, and S. Xu. Scalable and efficient training
of large convolutional neural networks with differential
privacy. In Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022, 2022.

[8] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and
F. Tramèr. Membership inference attacks from first
principles. In 43rd IEEE Symposium on Security and
Privacy, SP 2022, San Francisco, CA, USA, May 22-26,
2022, pages 1897–1914, 2022.

[9] N. Carlini, F. Tramèr, E. Wallace, M. Jagielski,
A. Herbert-Voss, K. Lee, A. Roberts, T. B. Brown,
D. Song, Ú. Erlingsson, A. Oprea, and C. Raffel. Ex-
tracting training data from large language models. In
30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, pages 2633–2650, 2021.

[10] T. Chen, S. Liu, S. Chang, Y. Cheng, L. Amini, and
Z. Wang. Adversarial robustness: From self-supervised
pre-training to fine-tuning. In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages
696–705, 2020.

[11] X. Chen, H. Fan, R. B. Girshick, and K. He. Improved
baselines with momentum contrastive learning. CoRR,
abs/2003.04297, 2020.

[12] X. Chen, S. Xie, and K. He. An empirical study of
training self-supervised vision transformers. In 2021
IEEE/CVF International Conference on Computer Vi-
sion, ICCV 2021, Montreal, QC, Canada, October 10-17,
2021, pages 9620–9629, 2021.

[13] A. Coates, A. Y. Ng, and H. Lee. An analysis of single-
layer networks in unsupervised feature learning. In
Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, AISTATS 2011,
Fort Lauderdale, USA, April 11-13, 2011, pages 215–
223, 2011.

[14] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. P. Kuksa. Natural language
processing (almost) from scratch. J. Mach. Learn. Res.,
12:2493–2537, 2011.

[15] S. De, L. Berrada, J. Hayes, S. L. Smith, and B. Balle.
Unlocking high-accuracy differentially private image
classification through scale. CoRR, abs/2204.13650,
2022.

[16] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith.
Calibrating noise to sensitivity in private data analysis.

In Theory of Cryptography, Third Theory of Cryptogra-
phy Conference, TCC 2006, New York, NY, USA, March
4-7, 2006, Proceedings, pages 265–284, 2006.

[17] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur.
Sharpness-aware minimization for efficiently improving
generalization. arXiv preprint arXiv:2010.01412, 2020.

[18] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and harnessing adversarial examples. In 3rd Interna-
tional Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and harnessing adversarial examples. In 3rd Interna-
tional Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[20] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch SGD: training imagenet in 1
hour. CoRR, abs/1706.02677, 2017.

[21] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick. Mo-
mentum contrast for unsupervised visual representation
learning. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020, pages 9726–9735, 2020.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 770–778,
2016.

[23] Z. Jiang, T. Chen, T. Chen, and Z. Wang. Robust pre-
training by adversarial contrastive learning. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020.

[24] M. Kim, J. Tack, and S. J. Hwang. Adversarial self-
supervised contrastive learning. In Advances in Neu-
ral Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[25] A. Krizhevsky. Learning multiple layers of features
from tiny images. Tech. report, University of Toronto,
2009.

[26] A. Kurakin, S. Chien, S. Song, R. Geambasu, A. Terzis,
and A. Thakurta. Toward training at imagenet scale with
differential privacy. CoRR, abs/2201.12328, 2022.

[27] F.-F. Li, A. Karpathy, and J. Johnson. Cs231n: Convolu-
tional neural networks for visual recognition. Course at
Stanford University, 2016.

[28] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated
learning: Challenges, methods, and future directions.
IEEE Signal Process. Mag., 37(3):50–60, 2020.

[29] T. Li, W. Yan, Z. Lei, Y. Wu, K. Fang, M. Yang, and
X. Huang. Efficient generalization improvement guided
by random weight perturbation. CoRR, abs/2211.11489,
2022.

[30] X. Li, F. Tramèr, P. Liang, and T. Hashimoto. Large
language models can be strong differentially private
learners. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022, 2022.

[31] Z. Li and Y. Zhang. Membership leakage in label-only
exposures. In CCS ’21: 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vir-
tual Event, Republic of Korea, November 15 - 19, 2021,
pages 880–895, 2021.

[32] Y. Liu, R. Wen, X. He, A. Salem, Z. Zhang, M. Backes,
E. D. Cristofaro, M. Fritz, and Y. Zhang. Ml-doctor:
Holistic risk assessment of inference attacks against
machine learning models. In 31st USENIX Security
Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022, pages 4525–4542, 2022.

[33] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to
adversarial attacks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, 2018.

[34] H. Mehta, A. Thakurta, A. Kurakin, and A. Cutkosky.
Large scale transfer learning for differentially private
image classification. CoRR, abs/2205.02973, 2022.

[35] I. Mironov, K. Talwar, and L. Zhang. Rényi differential
privacy of the sampled gaussian mechanism. CoRR,
abs/1908.10530, 2019.

[36] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and
A. Y. Ng. Reading digits in natural images with unsu-
pervised feature learning. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 2843–2851,
2011.

[37] S. J. Pan and Q. Yang. A survey on transfer learn-
ing. IEEE Trans. Knowl. Data Eng., 22(10):1345–1359,
2010.

[38] N. Papernot, M. Abadi, Ú. Erlingsson, I. J. Goodfellow,
and K. Talwar. Semi-supervised knowledge transfer for
deep learning from private training data. In 5th Interna-
tional Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings, 2017.

[39] N. Papernot, M. Abadi, Ú. Erlingsson, I. J. Goodfellow,
and K. Talwar. Semi-supervised knowledge transfer for
deep learning from private training data. In 5th Interna-
tional Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings, 2017.

[40] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami. The limitations of deep learning
in adversarial settings. In IEEE European Symposium
on Security and Privacy, EuroS&P 2016, Saarbrücken,
Germany, March 21-24, 2016, pages 372–387, 2016.

[41] J. Park, H. Kim, Y. Choi, and J. Lee. Differentially
private sharpness-aware training. In International
Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, pages 27204–27224,
2023.

[42] W. Qu, J. Jia, and N. Z. Gong. Reaas: Enabling adversar-
ially robust downstream classifiers via robust encoder
as a service. arXiv preprint arXiv:2301.02905, 2023.

[43] W. Qu, J. Jia, and N. Z. Gong. Reaas: Enabling adversar-
ially robust downstream classifiers via robust encoder
as a service. In 30th Annual Network and Distributed
System Security Symposium, NDSS 2023, San Diego,
California, USA, February 27 - March 3, 2023, 2023.

[44] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-
CNN: towards real-time object detection with region
proposal networks. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 91–99, 2015.

[45] Y. Shi, Y. Liu, K. Wei, L. Shen, X. Wang, and D. Tao.
Make landscape flatter in differentially private federated
learning. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2023, Vancouver, BC,
Canada, June 17-24, 2023, pages 24552–24562, 2023.

[46] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. J. Goodfellow, and R. Fergus. Intriguing prop-
erties of neural networks. In 2nd International Confer-
ence on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Conference Track Pro-
ceedings, 2014.

[47] F. Tramèr and D. Boneh. Differentially private learn-
ing needs better features (or much more data). In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

[48] C. Wei, M. Zhao, Z. Zhang, M. Chen, W. Meng, B. Liu,
Y. Fan, and W. Chen. Dpmlbench: Holistic evalua-
tion of differentially private machine learning. CoRR,
abs/2305.05900, 2023.

[49] D. Wu, S. Xia, and Y. Wang. Adversarial weight per-
turbation helps robust generalization. In Advances in
Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[50] D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Ka-
math, J. Kulkarni, Y. T. Lee, A. Manoel, L. Wutschitz,
S. Yekhanin, and H. Zhang. Differentially private fine-
tuning of language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022, 2022.

[51] D. Yu, H. Zhang, W. Chen, and T. Liu. Do not let privacy
overbill utility: Gradient embedding perturbation for
private learning. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

[52] D. Yu, H. Zhang, W. Chen, and T.-Y. Liu. Do not let
privacy overbill utility: Gradient embedding perturba-
tion for private learning. In International Conference
on Learning Representations (ICLR), 2021.

[53] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex. Dif-
ferentially private model publishing for deep learning.
In 2019 IEEE Symposium on Security and Privacy (SP),
pages 332–349. IEEE, 2019.

[54] J. Zhang, K. Zheng, W. Mou, and L. Wang. Efficient
private erm for smooth objectives. In Proceedings of
the 26th International Joint Conference on Artificial
Intelligence, pages 3922–3928, 2017.

[55] Y. Zheng, R. Zhang, and Y. Mao. Regularizing neural
networks via adversarial model perturbation. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2021, virtual, June 19-25, 2021, pages 8156–
8165, 2021.

[56] Y. Zhu, X. Yu, M. Chandraker, and Y. Wang. Private-
knn: Practical differential privacy for computer vision.
In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020, pages 11851–11859, 2020.

Appendix

A Theoretical Results

A.1 Proof of Theorem 1
We first restate Theorem Theorem 1 as follows.

Theorem 3 (Formal version of Theorem 1). Denote β̂ := (ρ2β2 +ββ1). Select step sizes η1 = η2 = 1/(4β̂). Then Algorithm 1
enjoys the following utility bound:

1
T

T

∑
t=1

E(LD(θθθt)− inf
θ̂θθ

LD(θ̂θθ))≤ µ ·
(

LD(θθθ0)

T
+

σ̂2

16β̂
(1/|B2|+1/|B1|)

)
.

To prove Theorem 3, we need the following lemma which estimates the Lipschitz constant and smoothness constant of Li.

Lemma A.1. For each i, Li is β1ρ-Lipschitz continuous and (ρ2β2 +ββ1)-smooth.

Proof. We have for all θθθ,θθθ′,

|Li(θθθ)−Li(θθθ
′)|= |ℓ(fθθθ(xi),yi)− ℓ(f

θθθ
′(xi),yi)|

≤ β1| fθθθ(xi)− f
θθθ
′(xi)|

≤ β1ρ∥θθθ−θθθ
′∥2,

and

∥∇Li(θθθ)−∇Li(θθθ
′)∥2

= ∥∇xℓ(fθθθ(xi),yi)∇ fθθθ(xi)−∇xℓ(f
θθθ
′(xi),yi)∇ f

θθθ
′(xi)∥2

≤ ∥∇xℓ(fθθθ(xi),yi)∇ fθθθ(xi)−∇xℓ(f
θθθ
′(xi),yi)∇ fθθθ(xi)∥2 +∥∇xℓ(f

θθθ
′(xi),yi)∇ fθθθ(xi)−∇xℓ(f

θθθ
′(xi),yi)∇ f

θθθ
′(xi)∥2

≤ ∥∇ fθθθ(xi)∥2|∇xℓ(fθθθ(xi),yi)−∇xℓ(f
θθθ
′(xi),yi)|+ |∇xℓ(f

θθθ
′(xi),yi)|∥∇ fθθθ(xi)−∇ f

θθθ
′(xi)∥2

≤ ρ
2
β2∥θθθ−θθθ

′∥2 +β1β∥θθθ−θθθ
′∥2.

Therefore, Li is β1ρ-Lipschitz continuous and (ρ2β2 +ββ1)-smooth.

We now begin to prove Theorem 3.

Proof of Theorem 3. The proof is adapted from [3]. First, by Lemma A.1 we know that Li is β1ρ-Lipschitz continuous and
(ρ2β2 +ββ1)-smooth. By Lemma 13 in [3], we have

E⟨∇LB2(θθθt +η2 ·∇LB1(θθθt)),∇LD(θθθt)⟩ ≥ (1− β̂η2)∥LD(θθθt)∥2
2−

β̂2η2
2σ̂2

2|B1|
. (7)

By Lemma 14 in [3], denote θθθt+1/2 := θθθt +η2 ·∇LB1(θθθt), then we have for all η1 ≤ 1/(2β̂) and η2 ≤ 1/(2β̂),

ELD(θθθt+1)≤ ELD(θθθt)+η
2
1β̂σ̂

2/|B2|−η
2
1β̂E∥∇LD(θθθt)∥2

2−η1(1−2η1β̂)E⟨∇LD(θθθt+1/2),∇LD(θθθt)⟩

+η
2
1β̂E∥∇LD(θθθt+1/2)−∇LD(θθθt)∥2

2

≤ ELD(θθθt)+η
2
1β̂σ̂

2/|B2|−η
2
1β̂E∥∇LD(θθθt)∥2

2−η1(1−2η1β̂)E⟨∇LD(θθθt+1/2),∇LD(θθθt)⟩

+η
2
1β̂E∥θθθt+1/2−θθθt∥2

2

= ELD(θθθt)+η
2
1β̂σ̂

2/|B2|−η
2
1β̂E∥∇LD(θθθt)∥2

2−η1(1−2η1β̂)E⟨∇LD(θθθt+1/2),∇LD(θθθt)⟩

+η
2
1β̂

3
η

2
2E∥∇LB1(θθθt)∥2

2

≤ ELD(θθθt)+η
2
1β̂σ̂

2/|B2|−η
2
1β̂(1−2β̂

2
η

2
2)E∥∇LD(θθθt)∥2

2−η1(1−2η1β̂)E⟨∇LD(θθθt+1/2),∇LD(θθθt)⟩

+2η
2
1β̂

3
η

2
2σ̂

2/|B1|.

Algorithm 2 Random round DP-SGD
Require: Training set D = {(xxx,yyy)}, loss function Li := ℓ(fθθθ(xxxi),yyyi), privacy parameter (ε,δ), learning rate η.

1: Randomly draw R∼ P, where

P(R = k+1) :=
1
|D|2

,k = 0,1, . . . , |D|2−1.

2: for t = 0, . . . ,R−1 do
3: Uniformly randomly draw i from 1, . . . , |D|
4: Draw zt ∈ Rd from the following Gaussian distribution:

zt ∼N (0,4β
2
1ρ

2 log(3|D|/δ) log(2/δ) · I) (9)

5: Update θθθt+1 := θθθt −η · (∇Li(θθθt)+ zt)
6: end for

Ensure: θθθout = θθθR

Then substituting Equation 7 and setting η1 = η2 = 1/(4β̂), we have

ELD(θθθt+1)−ELD(θθθt)

≤ σ̂
2/(16|B2|β̂)−1/(16β̂) ·7/8 ·E∥∇LD(θθθt)∥2

2−1/(8β̂) · (3/4 ·E∥∇LD(θθθt)∥2
2− σ̂

2/(32|B1|))+ σ̂
2/(128β̂|B1|)

≤ σ̂
2/(64β̂|B1|)+ σ̂

2/(16β̂|B2|)−1/(8β̂) ·E∥∇LD(θθθt)∥2
2.

Therefore, we have

1
T

T

∑
t=1

E∥∇LD(θθθt)∥2
2 ≤

LD(θθθ0)

T
+

σ̂2

16β̂
(1/|B2|+1/|B1|). (8)

Finally, by using the PL-condition we have ∥∇LD(θθθt)∥2
2 ≥ 1/µ · (LD(θθθt)− infθθθ LD(θθθ)). Substituting it into (8) concludes the

proof.

A.2 Proof of Theorem 2
We present the random round DP-SGD proposed in [54] as Algorithm 2. Compared with the standard DP-SGD [1], the main

difference is the random selected round number R here. The use of a random round number is only due to the need of theoretical
proof. Next, we state the formal version of Theorem Theorem 2 as follows.

Theorem 4 (Formal version of Theorem 2). Select the step size η = min{1/(ρ2β2 +ββ1),D f /(σ|D|)}, where

D f :=
√

2(LD(θθθ0)−min
θθθ

LD(θθθ))/(ρ2β2 +ββ1),

σ := 2β1ρ

√
1+

d log(3|D|/δ) log(2δ)

ε2 ,

then we have the following utility bound:

E(LD(θθθout)− inf
θθθ

LD(θθθ))≤C · ρ
√

ρ2β2 +ββ1

|D|ε
,

where C = c ·µβ1
√

d log(|D|/δ) log(1/δ)LD(θθθ0), c is some positive constant, d is the dimension of parameter θθθ.

Proof of Theorem 4. First, by Lemma A.1, we have Li is β1ρ-Lipschitz continuous and (ρ2β2 +ββ1)-smooth. Then according to
Theorem 5 in [54], we have the following utility bound:

E∥∇LD(θθθout)∥2
2 ≤ c ·

(
β1ρ

√
ρ2β2 +ββ1

√
d log(|D|/δ) log(1/δ)LD(θθθ0)

|D|ε

)
, (10)

where c is some positive constant. Meanwhile, random round DP-SGD is (ε,δ)-DP due to Theorem 4 in [54]. Finally, by using the
PL-condition we have ∥∇LD(θθθout)∥2

2 ≥ 1/µ · (LD(θθθout)− infθθθ LD(θθθ)). Substituting it into Equation 10 concludes the proof.

	Introduction
	Background
	Differentially Private Machine Learning
	Adversarial Robustness and Model Parameter Robustness

	Problem Formulation and Key Observations
	Problem Formulation
	Motivation and Key Observations

	DPAdapter
	Design Challenge
	Design Intuition
	Methodology Overview
	Design Details
	Theoretical Analyses

	Evaluation
	Experimental Setup
	Effectiveness of DPAdapter
	Impact of Perturbation Magnitude
	Comparison with Vanilla SAM
	Impact of Public Dataset and Model Architecture
	Compatibility with Other Enhancements

	Discussion
	Related Work
	Conclusion
	Theoretical Results
	Proof of Theorem 1
	Proof of Theorem 2

