
ZKSMT: A VM for Proving SMT Theorems in Zero Knowledge
Daniel Luick

Yale University
daniel.luick@yale.edu

John C. Kolesar
Yale University

john.kolesar@yale.edu

Timos Antonopoulos
Yale University

timos.antonopoulos@yale.edu

William R. Harris
Galois, Inc.

bll.hrris@gmail.com

James Parker
Galois, Inc.

james@galois.com

Ruzica Piskac
Yale University

ruzica.piskac@yale.edu

Eran Tromer
Boston University

tromer@bu.edu

Xiao Wang
Northwestern University
wangxiao@northwestern.edu

Ning Luo
Northwestern University
ning.luo@northwestern.edu

Abstract
Verification of program safety is often reducible to proving
the unsatisfiability (i.e., validity) of a formula in Satisfiabil-
ity Modulo Theories (SMT): Boolean logic combined with
theories that formalize arbitrary first-order fragments. Zero-
knowledge (ZK) proofs allow SMT formulas to be validated
without revealing the underlying formulas or their proofs to
other parties, which is a crucial building block for proving
the safety of proprietary programs. Recently, Luo et al. (CCS
2022) studied the simpler problem of proving the unsatisfia-
bility of pure Boolean formulas but does not support proofs
generated by SMT solvers. This work presents ZKSMT, a
novel framework for proving the validity of SMT formulas in
ZK. We design a virtual machine (VM) tailored to efficiently
represent the verification process of SMT validity proofs in
ZK. Our VM can support the vast majority of popular theo-
ries when proving program safety while being complete and
sound. To demonstrate this, we instantiate the commonly used
theories of equality and linear integer arithmetic in our VM
with theory-specific optimizations for proving them in ZK.
ZKSMT achieves high practicality even when running on re-
alistic SMT formulas generated by Boogie, a common tool for
software verification. It achieves a three-order-of-magnitude
improvement compared to a baseline that executes the proof
verification code in a general ZK system.

1 Introduction
Formal verification is the process of using mathematical rea-
soning to prove the correctness of programs. It has been used
to verify large-scale real-world programs like compilers [40],
operating systems [29, 36], and the Transport Layer Security
(TLS) protocol [9]. To confirm that a program adheres to
some property, both are translated into some mathematical
formalism so that the problem of reasoning about programs
is reduced to reasoning about mathematical objects.

Boolean logic is the simplest formalism used for verifica-
tion, but almost all formal verification tasks need something
beyond pure Boolean logic. Satisfiability Modulo Theories
(SMT) is a well-explored formalism that extends the concept

of Boolean satisfiability with theories such as equality with
uninterpreted functions and linear integer arithmetic. Tools
known as SMT solvers [4, 14, 16, 19, 32, 46] are among the
most widely used verification tools. SMT solvers reason about
SMT formulas automatically: they can generate both proofs
for valid SMT formulas and counterexamples for invalid ones.

Standard techniques for program verification require all
relevant information to be completely public: both the pro-
gram and the proof must be available to everyone who wants
to check whether the program is safe. In practice, the owner
of the program and the verifier of the program are not always
the same entity, and the two may not trust each other. If a
program contains sensitive intellectual property, the owner of
the program cannot demonstrate the program’s safety with-
out revealing the program itself. This limitation results in
real-world situations where vendors are forced to reveal their
software. For example, cryptographic modules must be FIPS
140-2 [3] certified to be allowed for use in US government sys-
tems. The certification process requires that auditors inspect
the cryptographic software and run a series of test vectors
on the software. Instead of requiring vendors to share their
proprietary software for certification, a better approach would
enable vendors to prove compliance while keeping their intel-
lectual property secret.

Zero-knowledge (ZK) proofs are a cryptographic primitive
that could make this approach a reality. ZK proofs enable a
prover to demonstrate that they know a witness w that satis-
fies a public predicate P without revealing anything about the
value of w. In a secrecy-preserving program verifier built on
ZK, the predicate will include (1) a formal but easily under-
stood specification of all of a program’s execution, defined
over concepts in a high-level language (including, e.g., tu-
ples, arrays, and classes), and represented as an SMT formula,
and (2) a binary executable that the vendor is prepared to
distribute (perhaps because it is sufficiently obfuscated). The
witness would include (a) a high-level program that satisfies
the specification, (b) a proof that it does so, and (c) a proof
that the secret high-level program is observationally equiva-
lent to the public binary executable. Implementing a complete

daniel.luick@yale.edu
john.kolesar@yale.edu
timos.antonopoulos@yale.edu
bll.hrris@gmail.com
james@galois.com
ruzica.piskac@yale.edu
tromer@bu.edu
wangxiao@northwestern.edu
ning.luo@northwestern.edu

framework that provides such a proof is a massive undertak-
ing that will require several major conceptual and engineering
achievements. This paper focuses on proving component (b),
which depends primarily on validating SMT deductions.

To instantiate such a system, one could take an existing
tool that can convert any C-like program (e.g., [7, 15, 27, 31])
and apply it to execute the program that verifies the validation
of the SMT formula in ZK. However, we observe that such an
approach does not sufficiently scale. When using a state-of-
the-art ZK toolchain [15] to run on a short benchmark with
only 6 steps, the end-to-end running time is almost two hours
(Sec. 7.3)! Since typical SMT proofs often need hundreds
of steps, this approach is clearly impractical, due to a few
reasons:

1. To prove arbitrary programs in ZK, all tools adopt the Von
Neumann architecture, providing an execution environ-
ment that resembles the cleartext computation. However,
translating the SMT proof verification program to such
a format (e.g., TinyRAM [7]) incurs a huge overhead, a
necessary cost to achieve the highest expressiveness.

2. Each SMT theory has its own verification techniques,
which in turn means different optimization opportunities
in ZK. Using a generic tool essentially prohibits theory-
specific optimizations.

3. Supporting random access memory (RAM) in ZK proto-
cols is often the most costly component [8, 17, 20, 30, 33,
44, 48, 49]. Although SMT verification features unique
access patterns in how and when it reads from RAM, they
cannot be captured in a generic toolchain.

Essentially, we need a framework that allows modular sup-
port of new theories (like cleartext SMT solvers) and the
flexibility to introduce customized protocols for different
rules. This framework should be compact, general, and com-
patible with common ZK optimizations simultaneously. The
first two require reasonable proof size and the ability to ex-
press reasoning on first-order theories. Achieving a level
of usability for these two features in SMT in cleartext took
decades [4,14,16,19,32,46]. Introducing a layer of ZK to the
SMT-proof system should ideally maintain the same level of
compactness and generality while being efficient; this requires
a ZK mindset from the outset. Finally, the whole framework
should allow incremental development, meaning that the sup-
port of different SMT theories could be added over time.

Our Contributions and Technical Novelty In this paper,
we introduce ZKSMT, an efficient and extendable framework
for zero-knowledge proofs of SMT formulas. Unlike ZKUN-
SAT [42], which only supports propositional logic, the goal
of ZKSMT is to support first-order logic, which is more ver-
satile and more commonly used for software verification (See
Section 8 for a full comparison with ZKUNSAT). ZKSMT
represents and validates complex SMT proofs involving a

dynamic set of rules, whereas ZKUNSAT’s proofs only re-
quire repeated execution of a single rule. Ideally, we want a
system that can be extended with more rules easily, can be
encoded in ZK with high efficiency, and is not tied to any
specific cryptographic backend. To this end, we adopt a VM
approach.
• We introduce ZKSMT, a virtual machine that allows effi-

cient encoding and validation of refutation proofs of SMT
formulas in the context of zero-knowledge proofs. Com-
pared to VMs that encode generic computation, ZKSMT
is specifically designed for SMT validation and arithme-
tization at the same time. In particular, our VM can be
efficiently instantiated with look-up tables and polynomial
operations, both of which are efficiently supported in many
ZK protocols. In addition, ZKSMT is expressive: it can
be instantiated to efficiently validate any SMT formula in
first-order logic.

• We instantiate three common theories in ZKSMT: Boolean
logic, equality with uninterpreted functions (EUF), and
linear integer arithmetic (LIA). To achieve practical effi-
ciency, we design optimized arithmetizations of these theo-
ries within our VM. For example, we show that many rules
can be checked efficiently as constraints over multisets,
which in turn can be efficiently arithmetized as operations
over polynomials, resulting in improved complexity.

• We implement ZKSMT in ZK and benchmark it over
formulas that are generated by the Boogie verification
toolchain [5] and the Wisconsin Safety Analyzer [2] bench-
mark suite (from the official SMT-LIB benchmark set [1]).
The results for Boogie show that ZKSMT achieves a speed-
up of more than three orders of magnitude compared to
a state-of-the-art system [15]. ZKSMT can also verify an
“ultra-large” proof instance from the Wisconsin Safety Ana-
lyzer set with 200,000 proof steps in about 3 hours.

Information Leakage Our system does reveal some size
parameters of the proof (e.g., the number of proof steps). We
also made some privacy-efficiency trade-offs by revealing
the number of occurrences (but not the order) of each proof
rule. Together with other techniques, our trade-offs enable the
impressive improvement mentioned above.

2 Preliminaries
2.1 Quantifier-Free First-Order Logic
Formula Structure Logical formulas are mathematical state-
ments that assert a property of functions and predicates; the
class of formulas that we consider in this work have the fol-
lowing structure. A set of function symbols is a set in which
each element has an arity, denoted | f | for f ∈ F . The arity of
a function may be any natural number, including 0. The set
of terms over function symbols F and variables V , denoted
TF ,V , is the smallest set containing V and f (t0, . . . , t| f |−1) for
all function symbols f ∈ F and terms ti ∈ TF ,V . For instance,

the function symbols for linear integer arithmetic include all
integer literals n, with |n|= 0, the negation operator −, with
|−|= 1, and the addition operator +, with |+|= 2. An exam-
ple of a term over these function symbols and the variable x
is −(x+3).

Predicate symbols, similar to function symbols, are a set
equipped with arities. The set of atoms over variables V ,
function symbols F , and predicate symbols P is the set of all
P(t0, . . . , t|P|) for predicate symbols P ∈ P and terms ti ∈ TF,V .
The formulas over F , P , and V are all Boolean combinations
of atoms over F , P , and V , i.e. all objects built from atoms
using the distinguished formulas True and False and the con-
structors negation, conjunction, disjunction, and implication.
For example, linear integer arithmetic has the predicate sym-
bols =, ≤, and <, with |=|= |≤|= |<|= 2. A formula over
these function and predicate symbols and the variable x is
x= 0∨10≤ x+2.

The definitions of terms and formulas can be described by
the following BNF grammar for terms t and formulas b:

t ::= v | f (t0, ..., tn)

b ::= True | False | P(t0, ..., tn) | ¬b0 |
∧
{b0, ...,bn} |∨

{b0, ...bn} | b0→ b1

Formula Validity and Proofs One approach for assigning
meaning to function and predicate symbols is to specify which
of the formulas defined over them are conclusions of a given
set of assumed formulas. Evidence that a formula is a con-
clusion of some assumptions A is represented as a proof: a
tree-shaped argument whose nodes are formulas, each derived
from its children by a step of inference.

More precisely, a theory is a set of automatically recog-
nizable proof steps, each of which consists of (1) a symbol,
referred to as the rule identifier, which has a finite arity, (2)
a set of formulas known as the premises, and (3) a formula
referred to as the conclusion. The proofs of a formula ϕ in
theory T under assumed formulas A are the smallest set such
that (1) each assumption ϕ ∈ A is a proof of itself, and (2) if
P0, . . . ,Pn are proofs of formulas ϕ0, . . . ,ϕn, and R is a proof
step with ϕ′ as its conclusion and ϕ0, . . . ,ϕn as its premises,
then R and P0, . . . ,Pn form a proof of ϕ′. If ϕ has a proof in T
under A , then ϕ is derived in T from A . A refutation of for-
mula ϕ in theory T is a proof of False in T under assumption
ϕ. Multiple theories can be combined into a single theory by
combining the programs that recognize applications of their
proof rules. Thus, when convenient, we may consider either
individual theories in isolation (to explain facts that they can
derive) or a combination of multiple theories (when describ-
ing benchmarks that use many theories in combination).

Defining a formal theory for a previously unformalized
domain of interest, and obtaining assurance that it proves
exactly the formulas of interest, can be non-trivial. Our work
is applicable in a setting where each theory of interest is
accompanied by a public definition of the theory as a set of

inference rules that the prover and verifier have agreed allows
the derivation of only desired conclusions from assumptions.

2.2 SMT Theories of Interest
We now introduce illustrative examples of inference rules that
define three logical theories of central importance: proposi-
tional logic, equality with uninterpreted functions, and linear
integer arithmetic. Each of these theories is commonly used
by program verifiers to verify critical properties of software,
and each is supported by the current implementation of our
protocol. Each inference rule is presented using a standard
notation where the rule’s premises occur above a horizontal
bar and its conclusion occurs below.

2.2.1 Propositional Logic

Propositional logic rules—i.e., how formulas constructed
from conjunction, disjunction, and negation can be proved
and used to prove other formulas—include the following.

ExclMid The rule ExclMid formalizes the law of the excluded
middle, stating that each proposition or its negation must hold:

a∨¬a

Resolution The rule Res formalizes the idea of reasoning by
case splitting. If both p∨A and ¬p∨B hold, then either A
must hold (when ¬p holds) or B must hold (when p holds):

p∨A ¬p∨B
A∨B

DeDup The de-duplication rule DeDup prunes duplicated
disjuncts. A weak form of it (which can be applied n times to
prune disjuncts that are repeated n times) is this:

a∨a∨B
a∨B

Given that resolution alone is complete for proving refutations
in propositional logic and there are existing protocols that ver-
ify resolution proofs in ZK [42], it may be surprising that we
consider a large collection of rules instead of a minimal subset.
However, practical SMT theorem provers [14] often generate
proofs that use many distinct rules, both to minimize their
tool’s output and to simplify their implementations. While
such proofs could be rewritten to use a more restricted rule
set, the consequences for both the size of the resulting proof
and the performance of a subsequent ZK proof that verifies it
are non-obvious and well beyond the scope of the this work.

2.2.2 Equality with Uninterpreted Functions

The theory of equality with uninterpreted functions (EUF) en-
ables SMT to describe general properties of system operations
without explicitly defining their complete behavior, which
can be helpful for modeling complex systems that consist
of multiple modules. EUF contains three rules—Reflexivity,
Symmetry, and Transitivity—that express the fact that equality

is reflexive, symmetric, and transitive (i.e., that it is, unsurpris-
ingly, an equivalence relation); their definitions are straight-
forward. It also contains an infinite family of rules, Congn for
all n ∈ N, which express that applying an n-ary function f to
n equal arguments produces equal results:

a0 = b0 . . . an−1 = bn−1

f (a0, . . . ,an−1) = f (b0, . . . ,bn−1)

2.2.3 Linear Integer Arithmetic

Linear integer arithmetic (LIA) is a commonly used first-order
theory of integers that includes addition and multiplication
by constants but does not permit multiplication between vari-
ables. It is used to model the semantics of both bounded and
unbounded arithmetic.

Multiplication Distribution The rule MulDist is the general
law that multiplication distributes over addition, specialized
to the case of constant left factors. It can be applied to derive,
e.g., that 4∗ (2x+3y) = 8x+12y. Its general form is this:

c∗ (∑n
i=0 di ∗ xi) = ∑

n
i=0 c∗di ∗ xi

Here x0, . . . ,xn are arbitrary terms; c,d0, . . . ,dn are constants.

Farkas’ Lemma Farkas’ Lemma derives strict inequalities
from the terms in a larger strict inequality. It can be expressed
as a family of inference rules, indexed by a term size n:

∑
n
i=0 ci ∗ai− ci ∗bi > 0∨n

i=0 ai > bi

A similar rule can be applied to derive a slightly more con-
strained disjunction when a linear term of the identical form
is given to be equal to 0.

2.3 An Example Formalizing Software Safety
We can use EUF and LIA to model safety properties for
numerical type conversion in languages like C. Suppose that
we want to prove the safety of a function that overwrites an
entry in an array:

1 void find_and_replace(int[] a, int x, int y) {
2 int i = get_position(a, x);
3 if (0 <= i) {
4 a[i] = y;
5 }
6 }

The helper function get_position(a, x) returns the in-
dex of the first occurrence of x within a and returns −1 if
x does not appear in a. find_and_replace includes a safe-
guard for the possibility that x is not in a: in that event, it
does nothing rather than attempting to write to an index of
a. We can prove the safety of find_and_replace using the
following SMT formula:

g(a,x) =−1∨ (0≤ g(a,x)∧g(a,x)< l(a)) (1)

∧ i = g(a,x) (2)

∧ 0≤ i (3)

∧ ¬(0≤ i∧ i < l(a)) (4)

Line 1 represents the behavior of get_position(a, x).
We abbreviate the name get_position to g, and l is a func-
tion that returns the length of an array. Line 2 represents the
assignment of a value to i, and line 3 indicates that we are
modeling the situation when the conditional if is satisfied.
Line 4 represents the safety property that we want to establish:
the index i is within the bounds of the array when the check
0 <= i passes. Instead of phrasing the safety property as a
proof goal, we aim to prove the unsatisfiability of the scenario
where the safety property is negated.

We can give this formula as an input to an external SMT
solver that produces a refutation proof that ZKSMT can use.
In Sec. 3.1, we will discuss the encoding that ZKSMT uses
to represent the refutation proof for this formula.

2.4 Zero-Knowledge Proofs
A zero-knowledge proof [24, 26] allows a prover to convince
a verifier that it possesses an input w such that P(w) = 1
for some public predicate P, while revealing no additional
information about w. There have been many lines of work
in designing practically efficient ZK protocols under differ-
ent settings and assumptions (e.g., [25, 28, 34, 35]). ZKSMT
uses a special type of ZK protocol commonly referred to as
“commit-and-prove” ZK [13], which allows a witness to be
committed and later proven over multiple predicates while
ensuring consistency of the committed values.

Although ZKSMT can be instantiated with any commit-
and-prove ZK, we use the recent VOLE-ZK series for max-
imum efficiency [6, 18, 51] and, in particular, take advan-
tage of optimizations for polynomials [53] and RAM oper-
ations [20]. We also use the permutation check originally
proposed by [10].

Note that ZK proofs and refutation proofs are two different
concepts, one in cryptography and one in formal methods.
The verification procedure of a refutation proof is encoded as
a statement proven by two parties using a ZK protocol.

3 ZKSMT Architecture
To verify an SMT refutation proof, ZKSMT examines the
whole proof, step by step, in a loop: one such step is depicted
in Fig. 1. In each iteration, ZKSMT (1) fetches the rule to
be applied to the current step, (2) fetches the rule’s premises,
and (3) verifies that the derived formula is a valid conclusion
of the proof rule. The overall structure resembles the design
of a Von Neumann processor that executes only straight-line
instructions (i.e., instructions that always transfer control to
their successor). The available set of proof rules resembles a
CPU’s set of supported instructions. The proofs themselves

si−1

cycle i−2

cycle i−1

cycle i

…
…
…
…
…
…
…
…
…
…
…
si−2

si

0

0

0

6

1

3

4

stepID

D

(stepID, ruleID, Res, ClArgs)pi

ClArg

Res
2

ClArg

RuleID

Res

stepID

5
RuleID

p
ro

o
f
st

e
p

s
M

p

e
xp

re
ss

io
n
s

M
e

c
h
e
c
ki

n
g

in

st
ru

c
tio

n
s

"#
$%

&'
()

*(
+,

-+

Figure 1: The retrieval and processing of information over
one of ZKSMT’s steps. Operations are numbered in the order
of their occurrence. Data concerning rules applied and proof
expressions to the right is used to check step validity, depicted
in the middle. The result of the check is written to a storage
cell in D, on the left.

are similar to programs composed of sequential instructions.
In this analogy, the checking instruction responsible for each
individual proof rule can be envisioned as analogous to a
CPU’s arithmetic-logic unit to handle specific computations.

Meanwhile, the main checker acts as the control unit, or-
chestrating the overall verification process. For each proof
step, ZKSMT relies on a fixed-length array of formulas to
store premises associated with the current step, functioning
much like instruction operands. Furthermore, temporary stor-
age is needed for a derived conclusion, a pointer to the next
proof step, etc. The expression table, similar to the memory
in CPU architecture, is read-only in this context. Our main
philosophy is to develop a flexible VM that can efficiently
encode and verify SMT refutation proofs when the underly-
ing VM is instantiated using ZK protocols. This way, we can
plug in any suitable ZK protocol for ZKSMT and bring in
optimizations in CPU design. Below we introduce our VM’s
encoding for formulas and proofs and its execution strategy.

3.1 Encoding Formulas and Proofs
We first explain how ZKSMT represents SMT formulas and
checks that particular formulas can be proved from others
according to the rules of a logical theory. ZKSMT’s encoding
of SMT formulas, and the complex terms that they may con-
tain, critically enables it to prove formulas in theories beyond
what existing techniques can support.

Encoding Formulas in an Expression Table Every formula
is constructed from an operator applied to a finite collection
of smaller formulas or terms; thus, it can be represented natu-
rally as an AST. In particular, if we view formulas as being
defined by the BNF grammar from Sec. 2.1, we can think of
every individual production option used to produce a formula

as a node in the formula’s AST. The sub-productions are
the node’s children. Note that even semantically equivalent
formulas can have distinct ASTs (e.g., False and ¬True).
ZKSMT stores the ASTs for all formulas involved in the

proof in a read-only table Me, called the expression table. We
refer to entries in the table as expressions. Each expression
represents an individual node within the AST of a formula.
A node of an AST has three fields: the node ID (NodeID),
the immediate addressing list (ImmAddr), and the indirect ad-
dressing list (IndAddr). NodeID specifies the operator being
employed, such as Eq or Mul. ImmAddr is used to identify
constants and immediate values, like an immediate value of
an operand in a CPU. We also consider the names of variables
as immediate values. AST nodes with children store the in-
dices of their children within the expression table under the
IndAddr field. Most expressions, such as logical negation (Not)
and equality (Eq), have a fixed number of children. Others,
including Boolean conjunction (And), disjunction (Or), and
applications of uninterpreted functions (Apply), can have a
variable number of entries within IndAddr.

Note that not all nodes in the table are formulas: some
entries simply represent parts of other rows’ formulas. A row
that encodes a term or formula can have multiple other rows
pointing to it if the term/formula appears in different formulas
(which can even come from different theories). For example,
in Table 1, i has only one entry even though it appears within
i = g(a,x), 0≤ i, and multiple other formulas.

Example 3.1. Table 1 shows a portion of the expression
table for the proof in Table 2. The entry with address &14
in Table 1 represents the formula i < l(a), whose NodeID
is Lt (less than). The values indicated within the IndAddr
field represent the indices for the sub-expression children of
i< l(a); specifically, the indices of i (entry &2) and l(a) (entry
&5). The sub-expression l(a) (entry &5) is a term rather than
a formula and has one sub-expression child a (&3) and the
label l as an immediate value stored in ImmAddr.

Encoding Proof Steps A proof step in a theory T consists
of an application of a rule, labeled with an identifier with a
fixed arity n to formulas ϕ0, . . . ,ϕn to conclude a formula ϕ

(Sec. 2.1). The steps of a theory T of interest are checked in
ZKSMT by a finite set of step checking instructions, each one
checking steps identified by a corresponding rule of T . An
occurrence p of a checking instruction has four fields:

• StepID: the position of the step in the execution order.
• RuleID: the identifier of the applied theory rule. The rule

identifier r of theory T is identified as the pair (R,T).
• Premises: a list of the StepID’s of ϕ0, . . . ,ϕn. Each StepID

points to a previous step, whose derived formula is a
premise of p.

• Result: an index into the expression table to identify the
conclusion ϕ of the current proof step.

Addr. NodeID ImmAddr IndAddr Meaning
&1 Var ONE {} ONE
&2 Var i {} i
&3 Var a {} a
&4 Var x {} x
&5 Apply l {&3} l(a)
&6 Apply g {&3,&4} g(a,x)
&7 Mul 0 {&1} 0∗ONE
&8 Mul −1 {&1} −1∗ONE
&9 Eq {&2,&6} i = g(a,x)
&10 Eq {&7,&7} 0 = 0
&11 Leq {&7,&8} 0≤−1
&12 Not {&11} ¬(0≤−1)
&13 Leq {&7,&2} 0≤ i
&14 Lt {&2,&5} i < l(a)
&15 And {&13,&14} 0≤ i∧ i < l(a)
&16 Not {&15} ¬(0≤ i∧ i < l(a))

Table 1: Part of the expression table Me for the proof of
the safety of find_and_replace. We use & to denote the
addresses of expressions.

StepID RuleID Premises Result
#2 Assume &9: i = g(a,x)
#3 Assume &13: 0≤ i
#4 Assume &16: ¬(0≤ i∧ i < l(a))
. . .

#7 Res {#5,#6} 0− (−1) = 1
#8 Farkas {#7} &12: ¬(0≤−1)
. . .

#10 Cong ¬((0≤ i) = (0≤−1))
∨¬(0 = 0)∨¬(i =−1)

#11 Res {#9,#10} ¬(0 = 0)∨¬(i =−1)
#12 Refl &10: 0 = 0
#13 Res {#11,#12} ¬(i =−1)
. . .

#16 Res {#14,#15} &15: 0≤ i∧ i < l(a)
#17 Res {#4,#16} False

Table 2: Part of the proof step array Mp for the proof of
the safety of find_and_replace. Not all conclusions’ ad-
dresses are shown. We use # to denote the IDs of proof steps.

A set of instructions T is a T -logical unit if there is a bijection
from rule identifiers of T to instructions in T such that each
instruction succeeds if and on if it is executed in a machine
state in which it points encoding of premises and a conclusion
that can be derived using its corresponding rule in T .

Size Parameters Five parameters bound the resources used
by a ZKSMT instance. (1) π is the maximum number of
proof steps. It parallels the concept of program size in CPU
design and defines the extent of the proof structure that can be
examined in a manner similar to how the size of a program in
a CPU determines the number of instructions it can execute.
(2) χ is the maximum number of expressions the proof can
use, analogous to the size of the CPU’s memory. (3) µ is the
maximum number of premises in any rule, analogous to the
number of registers in a CPU. (4) α is the maximum argument
list size of any expression, where the argument list size of
an expression e is defined as |e.ImmAddr|+ |e.IndAddr|; it
is analogous to the bit width of memory entries. (5) ρ is
the number of distinct rules used in the proof, analogous
to the size of the architecture’s instruction set. The set of
ZKSMT machines over checking instructions T on particular
size parameters is denoted ZKSMT[T](π,χ,µ,α,ρ).

To define the necessary components of the machine, we
often use the bit widths of these numbers: ℓp = ⌈log(π)⌉,
ℓe = ⌈log(χ)⌉, and ℓr = ⌈log(ρ)⌉.

Example 3.2. Some of the entries of Me and Mp for the
refutation of the formula in Sec. 2.3 are shown in Table 1
and Table 2, respectively. The proof applies rules from EUF
and LIA as well as rules for Boolean connectives. Most of the
1,041 steps in the proof are omitted, and some of the steps
that we show are simplified. For example, we do not show the
steps for adding and removing singleton disjunctions.

3.2 Machine Specification and Execution
Once the encodings are specified, we can build the VM on
top of them. We show the overall architecture in Fig. 1.

Machine Specification ZKSMT has five main components:
- pc: the proof counter, an ℓp-bit integer.

- {ri},{ti}: the list of registers that store information for
the proof step currently being examined. The machine has
2µ+2 registers in total: r0 stores the conclusion, r1, . . . ,rµ
store the premises, and rrule stores the rule ID. The first
µ+ 1 registers are of size ℓe, and rrule is of size ℓr. The
registers {t1, . . . , tµ} store the addresses of r1, . . . ,rµ. The
main checker uses them when fetching the premises of a
proof step from Me. Each ti is of size ℓe.

- Me: the expression table, a read-only array of size χ that
contains all expressions used in the proof, using the encod-
ing system that we explained in Sec. 3.1.

- Mp: the step table, a read-only array of size π that contains
all the proof steps used in the proof.

- D: the checking order of the proof. The checking order is the
order in which proof steps are validated during execution.
If D[i] = j, then the validation of the jth proof step occurs
on the ith iteration of the main verification loop.

Machine Execution to Validate a Proof As mentioned
above, ZKSMT’s proof validation process closely resembles
how a machine program is executed in the Von Neumann
architecture (using a CPU, memory, etc.). To provide more
flexibility in VM execution, we distinguish two orderings: the
logical ordering and the checking ordering. The logical order-
ing is the original ordering of the proof as outlined in Sec. 2: a
proof step should not use a result proven in a step that occurs

Algorithm 1: ZKSMT[T](π,χ,µ,α,ρ)’s execution
Output: True, False

1 D← [0, . . . ,0];
2 for pc= 0 to π−1 do
3 Proof Step Fetch:
4 (StepID,RuleID,Res,ClArgs)←Mp[pc];
5 rrule← RuleID;
6 Conclusion Fetch:
7 r0 = Me[Res];
8 Premise Fetch:
9 t1, · · · , tµ←Mp[ClArgs0], · · · ,Mp[ClArgsµ−1];

10 r1, · · · ,rµ←Me[t1.Res], · · · ,Me[tµ.Res];
11 Rule Checking:
12 CheckingInstrs[rrule](r0,{r1, · · · ,rµ});
13 Cycle Checking:
14 for j = 1 to µ do
15 assert(t j.StepID < StepID);
16 D[i]← StepID ;
17 assert(PermuteCheck(D, [0, . . . ,π−1]));
18 TypeCheck(Me);

later in the logical ordering. The StepID of each proof step is
its logical ordering. However, the checking order, which is
the order in which proof steps are validated during the VM’s
execution, does not need to have any relationship with the
logical ordering other than the former being a permutation
of the latter. Allowing the two orderings to differ helps us to
hide the structure of a proof when we instantiate the VM in
ZK (Sec. 5.2).

Algorithm 1 provides an overview of ZKSMT’s algorithm,
which iterates over the set of all proof steps (line 2). Each
proof step is verified over five phases: proof step fetching,
conclusion fetching, premise fetching, rule checking, and cy-
cle checking. In the fetching phases (lines 3–10), ZKSMT
fetches the relevant elements for that step from the tables Mp
and Me based on the values in the fields Result and Premises
and stores them in r0, . . . ,rµ. Next, the checker determines
the checking instruction to execute by examining the value
specified in RuleID (lines 11–12). It delegates the responsi-
bility of validating the proof step to the selected instruction
and asserts the success of the validation (line 12). Formulas
must be proven before being used as premises. Since StepID
represents the logical ordering of a derived formula, we can
confirm that in cycle checking that the StepID of every for-
mula in Premises for a rule is strictly smaller than the StepID
of the rule’s conclusion. This is checked by iterating over all
rule premises (lines 13–15). To conclude the iteration, the
checker assigns StepID to D[i] (line 16).

To address the potential discrepancies between orderings,
we need to perform one more check. Every proof step needs
to be verified at some point. The array D keeps track of which
proof steps have been validated. When the main loop finishes

execution, the main checker verifies that D is a permutation
of the list [0, · · · ,π− 1] (line 17). If it is, then every step in
the refutation proof has been verified.

Well-Formed Expressions The soundness of ZKSMT also
relies on the well-formedness of expressions in the table Me.
This can be ensured by a process analogous to proof validation.
In particular, we type-check each expression according to a
set of type rules, which work similarly to proof rules and are
provided as public configurations of ZKSMT. To forbid cyclic
expressions, ZKSMT also checks for cycles in Me, similarly
to the check for cycles in proof steps.

3.3 Soundness and Completeness
The following are key properties of ZKSMT that establish
that it produces exactly valid SMT formulas. Both theorems
are defined over an arbitrary theory T and T -logical unit T,
formula ϕ, and size parameters π,χ,µ,α,ρ (Sec. 3.1).

In this context, we say that ϕ is boundedly verifiable if it
has a derivation in T containing at most π steps, χ distinct
expressions with at most α arguments, and using ρ rules which
all have at most µ premises.

Theorem 1 (Soundness). A VM in ZKSMT[T](π,χ,µ,α,ρ)
validates ϕ only if ϕ is boundedly verifiable.

Theorem 2 (Completeness). If ϕ is boundedly verifiable, then
some VM in ZKSMT[T](π,χ,µ,α,ρ) validates it.

Proofs of Thm. 1 and Thm. 2 appear in App. B.

4 Instantiating ZKSMT on Practical Theories
In this section, we explain how to instantiate ZKSMT on
propositional logic, equality with uninterpreted functions
(EUF), and linear integer arithmetic (LIA). We discuss (1)
the encoding of expressions in each theory, (2) the theories’
proof rules, and (3) the implementations of the checking in-
structions for an illustrative selection of each theory’s rules.
Table 3 shows all of the rules that we cover in this section,
along with a few others that we discuss later.

4.1 Checking Propositional Logic
We have implemented in ZKSMT an instruction unit that
checks applications of the rules of propositional logic. We
now describe implementations of checking instructions for
selected example rules (Sec. 2.2.1).

ExclMid When the unit instruction that checks applications
of ExclMid (the rule formalizing the law of the excluded mid-
dle) receives the conclusion expression r0 from the main
checker, it first confirms that r0’s NodeID is Or. Next, the
checking instruction retrieves the first two entries a0 and a1
from list r0.IndAddr and confirms that (1) the NodeID of a0
is Not; and (2) the expression table index of a0’s child is the
same as the expression table index of a1. In general, the same
technique is implemented by all checking instructions that
must check that two expressions are identical: the instructions

RuleID Side Condition Premises Conclusion
Boolean

Resolution ∃p.p ∈ ⟨⟨A⟩⟩, ¬p ∈ ⟨⟨B⟩⟩,
∨

A,
∨

B
∨

C
⟨⟨A⟩⟩ ⊆ ⟨⟨C⟩⟩⊎ ⟨⟨p⟩⟩, ⟨⟨B⟩⟩ ⊆ ⟨⟨C⟩⟩⊎ ⟨⟨¬p⟩⟩

DeDup ∀a ∈ ⟨⟨A⟩⟩. a ∈ ⟨⟨B⟩⟩
∨

A
∨

B
ExclMid

∨
{¬a,a}

EUF
Congruence ∃A,B, f .(f A = f B) ∈C, |A|= |B|,

∨
C

∀i ∈ {0, . . . , |A|−1}.¬(Ai = Bi) ∈C
LIA

MulDist c∗ (∑n
i=0 di ∗ xi) = ∑

n
i=0 cdi ∗ xi

Flatten ∃⟨⟨C⟩⟩,⟨⟨D⟩⟩. ⟨⟨C⟩⟩⊎ ⟨⟨∑D⟩⟩= ⟨⟨A⟩⟩, ⟨⟨C⟩⟩⊎ ⟨⟨D⟩⟩= ⟨⟨B⟩⟩ ∑A = ∑B
Farkas ∀i ∈ {0, . . . ,n}. mi ≥ 0 ∑

n
i=0(mi ∗ai)+

∨n
i=0{¬(ai ≤i bi)}

either c > 0, or c = 0 and ∃ j. ≤ j is < (−mi ∗bi) = c

Table 3: A selection of ZKSMT’s rules for Boolean logic, EUF, and LIA that we cover in Sec. 4, Sec. 5, and Sec. 7. Tables 4
and 5 in the appendix show all of the proof rules omitted here.

check the equality of indices in the expression table, instead
of traversing the expressions’ complete ASTs.

Many rules of propositional logic, as in the case of Ex-
clMid, do not have premises. Instead of interacting with the
results of previous steps, they introduce simple tautologies
that other Boolean rules can use as premises later; the check-
ing instructions for such rules need only to pattern-match the
rules’ conclusions. However, in general, an instruction may
need to validate non-trivial side conditions imposed by a rule
on the terms matched to its conclusion and premises (similar
to the LFSC framework [46]). One example of such a rule is
Resolution, whose checking instruction we now describe.

Res The checking instruction for Res (the formalization of
unit resolution) checks properties of the multisets of proposi-
tions that may be in each of its premise clauses. To describe
the instruction’s implementation, we employ the notation ⟨⟨A⟩⟩
(or ⟨⟨a⟩⟩) to represent the multiset containing the elements of
a list A (or single element a). Also, ⊎ is multiset union.

The checking instruction interprets r0.IndAddr, from the
conclusion r0, as a multiset ⟨⟨C⟩⟩ and interprets r1.IndAddr
and r2.IndAddr, from the premises r1 and r2, as multisets ⟨⟨A⟩⟩
and ⟨⟨B⟩⟩, respectively. After checking that r0, r1, and r2 are
Or nodes, the instruction identifies the expression p, locates
p within ⟨⟨A⟩⟩, and locates ¬p within ⟨⟨B⟩⟩. Finally, the in-
struction checks the side conditions ⟨⟨A⟩⟩ ⊆ ⟨⟨C⟩⟩⊎ ⟨⟨p⟩⟩ and
⟨⟨B⟩⟩ ⊆ ⟨⟨C⟩⟩ ⊎ ⟨⟨¬p⟩⟩. Note that p can be provided as an ex-
tended witness so that the checking instruction does not need
to search for it.

In general, checking instructions for all propositional rules
that have premises, as in the case of Res, must perform pattern
matching on both the conclusion r0 and the premises r1, . . . ,rk
that they receive from the main checker.

Remark 4.1 (Extended witnesses). In the context of zero-
knowledge proofs, determining the value of p for the checking
instruction for Resolution can be computationally expensive.

To reduce the runtime cost, the proof itself can cache the
value of p and provide it for the checking instruction directly.
This value serves as an extended witness. When it receives an
extended witness, the checking instruction only needs to test
the side condition on the cached value of p rather than check-
ing all possible options. Multiple other rules use extended
witnesses for the same purpose.

DeDup It is straightforward to implement a checking in-
struction for applications of the de-duplication rule DeDup
as presented in Sec. 2.2.1: the instruction simply checks that
its conclusion and premise are Or nodes, that the children
of the conclusion’s node occur in the premise, and that the
children of the premise at corresponding positions are iden-
tical. However, checking DeDup strictly as presented would
unfortunately require a proof to apply it multiple times to re-
move disjuncts that occur more than twice, and apply another
rule formalizing the associativity of disjunction to arrange the
premise in an expected form.

Instead, DeDup’s actual checking instruction effectively
checks repeated applications of such a rule in one step by
checking that each distinct element in ⟨⟨A⟩⟩ is also in ⟨⟨B⟩⟩,
where A is the argument list for the proof step’s premise and
B is the argument list for its conclusion.

4.2 Checking Equalities with Functions
We have instantiated ZKSMT to refute proofs that use the the-
ory of equality with uninterpreted functions (EUF; Sec. 2.2.2).
To check applications of a Congruencei rule, we model an
alternative formulation, easily shown to be logically equiva-
lent to the standard formalization, which derives a disjunction
from no premises. The checking instruction for Congruence
begins by confirming that the NodeID of the conclusion r0
is Or. Next, it retrieves the set of expressions indexed by
r0.IndAddr, identifies the pair of function applications, and
verifies that the other disjuncts match the corresponding argu-

ments of the function applications.

4.3 Checking Linear Integer Arithmetic
We now describe ZKSMT’s representation of expressions
from linear integer arithmetic (LIA; Sec. 2.2.3). Then, we
discuss implementations of checking instructions in ZKSMT
for two LIA rules: MulDist and Farkas.

Expression Representation In ZKSMT’s representation of
LIA, addition is an n-ary operation, just like ∧ and ∨. Sin-
gleton sums are allowed, and so are empty sums. The entries
in a sum can be arbitrary integer-valued expressions, includ-
ing other sums. Multiplication in LIA is shorthand for the
repeated addition of an expression to itself. A multiplication
node always has exactly one child, which can be an arbitrary
integer-typed expression. It stores its scaling factor in the
ImmAddr field, as we show in entries &7 and &8 in Table 1.
The value of the scaling factor can be any integer, positive
or negative. We store integer constants in Me as multiples of
a special variable ONE that represents 1. This representation
enables checking instructions for rules such as MulDist to
assume that the sums in their conclusions contain only Mul
nodes rather than having a separate case for integer constants.

Multiplication Distribution MultDist’s checking instruc-
tion can validate an application of MultDist by combining a
bounded AST traversal and simple numerical computations
with expression equality checks, implemented as checks for
reference equality. Specifically, it first checks that the conclu-
sion node r0 is an Eq node whose children are (1) a Mul node
with scaling factor denoted (1.1) and child denoted (1.2) and
(2) an Add node. It then iterates over the children of nodes
(1.2) and (2) in lockstep, checking that each child of node (2)
is a Mul node with the same child as the corresponding Mul
node in (1.2) and a scaling factor that is the product of (1.1)
and the scaling factor of the same Mul node.

Farkas’ Lemma Although Farkas’ Lemma formalizes a
somewhat subtle law of linear arithmetic, its application as
a formal rule can be checked efficiently within ZKSMT’s
design. The instruction checks that (1) its conclusion operand
is a node with operation Or whose children are negated in-
equalities, (2) its premise operand is a node with operation Eq
whose children are a linear term matching the pattern given
in the conclusion and a nonnegative constant, and (3) the
sub-expressions of the linear term in the premise match the
children of the inequalities in the disjuncts of the conclusion.

5 Zero-Knowledge Support
In this section we describe the technical details of ZKSMT’s
instantiation in ZK. Recall that the prover needs to demon-
strate to the verifier that it knows a refutation proof of a for-
mula without revealing the proof (or even the formula) to the
verifier. We first explain how to commit ZKSMT’s encod-
ing of a refutation proof in Sec. 5.1. We discuss the details
of how ZKSMT validates a committed refutation proof in

ZK in Sec. 5.2. Finally, in Sec. 5.3, we explain the check-
ing instruction protocols that have some non-trivial design
component for the ZK setting, continuing our focus on the
theories covered in Sec. 4.

5.1 Refutation Proof Commitment
Recall that a refutation proof consists of a set of clauses and
a sequence of proof steps. Both the clauses and proof steps
can be committed as fixed-length vectors of integers. In detail,
for a k-bit integer, we commit each bit individually (i.e., Fk

2)
and they can be converted to an extension binary field ele-
ment (i.e., F2k) for free thanks to the structure of the VOLE
commitment [20]. Let I , Aimm, and Aind denote the set of
all possible NodeID values, elements in ImmAddr, and ele-
ments in IndAddr, respectively. Given three injective functions
εI : I → N, εAimm : Aimm→ N>0, and εAind : Aind→ N>0, an
expression e specified by the tuple (NodeID, ImmAddr, In-
dAddr) can be mapped to the following vector of integers:

{εI (NodeID)}∥{εAimm(ImmAddr)}∥{εAind(IndAddr)}

Here, εAimm and εAind are applied element-wise on the two
respective lists. Given concrete encoding schemes εI , εAimm ,
and εAimm , an expression can be committed by committing
its integer vector element-wise. These encoding schemes are
made known by both the prover and the verifier.

An expression’s NodeID should be kept private. Different
NodeIDs take different numbers of operands. To avoid reveal-
ing an expression’s NodeID from the size of its ImmAddr and
IndAddr, we can pad both ImmAddr and IndAddr to the length
α that is the upper bound of their size (Sec. 3.1).

Each proof step can be committed in a similar way. Recall
that a proof step is encoded by four fields: StepID, RuleID,
Result, and Premises which are either integers or lists of
integers serving as pointers. The list Premises has its size
bounded by µ. Hence, any proof step can be committed as a
list of µ+3 integers.

5.2 Machine Execution in Zero Knowledge
We discuss how machine execution, i.e., the main checker, can
be instantiated in ZK. Recall that the main checker performs
three key operations:

1. Fetching essential clauses and expressions. To verify
SMT proofs, we need to read entries from Me and Mp
using committed addresses. We can achieve this by in-
stantiating Me and Mp with any read-only memory (ROM)
protocol [17, 20, 30] in ZK that is compatible with the
commitment scheme we use.

2. Guaranteeing the proof is acyclic. The proof can be re-
garded as a DAG with proof steps ordered by their logical
order. Proving a graph is a DAG reduces to proving mag-
nitude relationships between pairs of committed integers.

3. Invoking the corresponding checking instructions. To
ensure the privacy of a proof, the proof rule employed
by each proof step should be kept private. This can be
achieved generically by multiplexing all checks, but that
incurs a high cost and leads to a large overhead. Instead,
ZKSMT uses group checking, as we will explain next.

Group Checking ZKSMT groups the verification of the
proof steps with the same proof rule, where the real checking
instruction is the only checking instruction that will be called.
There is no multiplexing, and no other checking instructions
are executed. For instance, all proof steps employing the Res-
olution rule are verified consecutively, and only the checking
instruction of Resolution is invoked on them.

The RuleID of a proof step, which identifies the specific
step being validated within a particular checking group, is
private to the prover. The StepID of every step that has been
verified so far appears in D. The array D is append-only, and
at the end of each proof step, the step’s committed StepID is
appended to it. D can be implemented using a standard array
containing commitments when ZKSMT is instantiated in ZK.

The soundness of ZKSMT relies on the permutation check-
ing between D and {0,1, . . . ,π−1} (see Algorithm 1, line 17).
Permutation checking ensures that every proof step is val-
idated. When D contains committed values, the Schwartz-
Zippel lemma allows for efficient permutation checking.

Remark 5.1 (Leakage and Optimization). By group check-
ing, we reveal the number of applications of each proof rule
in the input proof. On the other hand, grouping checking for
identical proof rules over different premises and conclusions
offers a chance for optimization by using a ZK protocol opti-
mized for batch proofs (i.e., single instruction multiple data
(SIMD) optimizations), such as [52].

5.3 Checking Instructions in Zero Knowledge
Some checking instructions for Boolean, EUF, and LIA rules
consist of only reading operations over the expression table
and comparisons, such as ExclMid (Sec. 2.2.1). All necessary
ZK operations are already needed by the main checker, and
the same operations suffice for handling these simple rules.

The instantiation of checking instructions becomes com-
plex when the side condition of the proof rule involves travers-
ing the IndAddr. In Sec. 4, we explain how these side con-
ditions can be represented using the language of multisets.
This level of abstraction further enables us to leverage the
polynomial commitment scheme when instantiating these
checking instructions in ZK. Next, we explain how to check
two relations, subset and subsetd , between multisets using
a polynomial commitment scheme. Following this, we will
illustrate our implementations of the DeDup and Resolution
checking instructions as examples.

Checking Multiset Relations To enable compact represen-
tation and efficient operations simultaneously, our protocol
encodes multisets as polynomials over a finite field.

For the checking instructions we consider, we focus on two
relations: subset and subset up to the number of occurrences
(subsetd). The subset relation takes multiplicities into account.
The multiset ⟨⟨A⟩⟩ is a subset of the multiset ⟨⟨B⟩⟩ if the multi-
plicities of all elements in ⟨⟨A⟩⟩ are less than or equal to their
multiplicities in ⟨⟨B⟩⟩. On the other hand, ⟨⟨A⟩⟩ is a subsetd of
⟨⟨B⟩⟩ if all distinct elements of ⟨⟨A⟩⟩ also appear in ⟨⟨B⟩⟩.

Checking the subset relation between two multisets is based
on encoding multisets as univariate polynomials. Let Σ be a
finite set, and F a finite field such that |F| > |Σ|. Let ⟨⟨Σ∗⟩⟩
be the set of all possible multisets over Σ. Given an injective
function ψ : Σ→ F, we define an encoding γψ : ⟨⟨Σ∗⟩⟩ → F[X]
of a multiset as univariate polynomials over F such that for
each multiset ⟨⟨ℓ⟩⟩, the images under ψ of the Σ-elements ℓi in
⟨⟨ℓ⟩⟩ are the roots of the image of ⟨⟨ℓ⟩⟩ under γψ:

γψ(⟨⟨{ℓ0, . . . , ℓd}⟩⟩) = (X−ψ(ℓ0)) . . .(X−ψ(ℓd))

To check the subset relation between two multisets ⟨⟨ℓsub⟩⟩
and ⟨⟨ℓsup⟩⟩, the prover commits their polynomial encodings,
and the verifier checks that γψ(⟨⟨ℓsub⟩⟩) divides γψ(⟨⟨ℓsup⟩⟩)
by attesting that γψ(⟨⟨ℓsub⟩⟩) ·W = γψ(⟨⟨ℓsup⟩⟩). Here, W is a
private polynomial committed by the prover as an extended
witness. We use bivariate polynomials to verify the subsetd
relation between two multisets, leveraging an observation
from [21]. Let ℓ̄sub, ℓ̄sup and ℓ̄ be permuted versions of ℓsub,
ℓsup and ℓ= ℓsub⊎ ℓsup respectively with the d′ being the size
of ℓ̄sub and d being the size of ℓ̄sup. Given the same ψ we use
for subset checking, define the following two polynomials:

αψ(⟨⟨ℓ̄sub⟩⟩,⟨⟨ℓ̄sup⟩⟩) := (1+X)d′ ·Πd′−1
i=0 (Y +ψ(ℓ̄sub

i))

·Πd−2
i=0 (Y · (1+X)+ψ(ℓ̄

sup
i)+X ·ψ(ℓ̄sup

i+1))

βψ(⟨⟨ℓ̄⟩⟩) := Π
d′+d−1
i=0 ((1+X) ·Y +ψ(ℓ̄i)+ψ(ℓ̄i+1) ·X)

It is proved that αψ(⟨⟨ℓ̄sub⟩⟩,⟨⟨ℓ̄sup⟩⟩)(X ,Y) equals
βψ(⟨⟨ℓ̄⟩⟩)(X ,Y) if and only if (1) ⟨⟨ℓ̄sup⟩⟩ is a subsetd of
⟨⟨ℓ̄sup⟩⟩; and (2) ℓ̄sub, ℓ̄sup and ℓ̄ are order-consistent1. A set
of lists is order-consistent if values appear in the same order
across all lists in the set. Putting it all together, to check if the
subsetd relation between ⟨⟨ℓsup⟩⟩ and ⟨⟨ℓsub⟩⟩ holds, the verifier
attests the following relation between polynomials:

αψ(⟨⟨ℓ̄sub⟩⟩,⟨⟨ℓ̄sup⟩⟩) = βψ(⟨⟨ℓ̄⟩⟩)
γψ(⟨⟨ℓ̄sub⟩⟩) = γψ(⟨⟨ℓsub)⟩⟩)
γψ(⟨⟨ℓ̄sup⟩⟩) = γψ(⟨⟨ℓsup)⟩⟩)

γψ(⟨⟨ℓ̄⟩⟩) = γψ(⟨⟨ℓsup)⟩⟩) · γψ(⟨⟨ℓsub)⟩⟩)

Here, the prover computes and commits ℓ̄, ℓ̄sub and ℓ̄sup using
some proper order over Σ.

Resolution Recall that the side condition of Resolution
on premise clauses

∨
A,

∨
B and conclusion clause

∨
C is

1See Claim 3.1 [21] and its proof.

that ⟨⟨A⟩⟩ ⊆ ⟨⟨C⟩⟩ ⊎ ⟨⟨p⟩⟩ and ⟨⟨B⟩⟩ ⊆ ⟨⟨C⟩⟩ ⊎ ⟨⟨¬p⟩⟩. Here, A,
B, and C are lists of addresses of the expression table and
p is an address. Given that the size of the expression ta-
ble is bounded by χ, we can restrict the co-domain of εI to
N≤χ, i.e., εI : I → N≤χ. We further fix an injective function
ψI :N≤χ→F for a given proof. Then the checking instruction
of the resolution rule can be implemented by verifying the
subset relation between multisets εI (⟨⟨A⟩⟩), εI (⟨⟨C⟩⟩⊎ ⟨⟨p⟩⟩)2

and between εI (B) and εI (⟨⟨C⟩⟩⊎ ⟨⟨¬p⟩⟩) using the approach
mentioned above, with ψ concretized by ψI . By applying εI
to the multisets, we mean element-wise application.

DeDup The side condition of DeDup asserts that for all
a ∈ ⟨⟨A⟩⟩ it holds that a ∈ ⟨⟨B⟩⟩ given the premise clause

∨
A

and the conclusion clause
∨

B. This side condition can be
validated by checking if ⟨⟨A⟩⟩ is a subsetd of ⟨⟨B⟩⟩. Using the
same encoding scheme as is used for the Resolution rule, we
can implement the checking instruction of the DeDup rule by
checking the subsetd relation between εI (⟨⟨A⟩⟩) and εI (⟨⟨B⟩⟩).
This relation checking can be achieved using the protocol we
explain at the beginning of this section.

6 Implementation
We implement our protocol using the EMP-toolkit [50] for
ZKP operations (circuits, polynomials, read-only memory ac-
cess). We instantiated the arithmetic field as the extension
field F2128 , under which field operations (and their ZK coun-
terparts) can be efficiently implemented. The indices of proof
steps are 32-bit integers, which support refutation proofs with
more than one billion steps. In addition, as a performance
optimization, we use an array Ma known as the expression
list table to store argument lists for expressions that can take
variable numbers of children. Expressions that take a fixed
number of children (which is always 1 or 2 for the theories that
we cover) store pointers to their children directly in Me, but
nodes that take variable numbers of children store a pointer to
an entry in Ma that contains pointers to the expression’s chil-
dren. It allows us to keep the individual entries of Me small
and to avoid the cost of scanning a variable-length argument
list for nodes like Not and Eq. We use η to denote the number
of lists in Ma. This is not to be confused with α, which is the
maximum length of an individual list within Ma.

7 Evaluation
We evaluate ZKSMT to compare our protocol with the prior
state of the art. We intend to answer three key questions:

Q1 Does our protocol efficiently validate SMT formulas that
formalize the safety and security of practical software?

Q2 Does our protocol scale well in response to increases in
proof size?

2When verifying equivalences that involve the combination of multisets
through union operations, we compute the product of the two corresponding
polynomials.

Q3 Is ZKSMT more efficient than a zkVM running a com-
modity SMT proof validator?

The results of our experiments allow us to report an affirmative
answer for all three questions. For all benchmarks, we ran
ZKSMT on AWS instances of type r5b.4xlarge with 128
GB of memory, 16 vCPUs, and a 10 Gbps network connection
between the prover and verifier. However, the underlying
ZK protocols that we use only consume about 100 Mbps
bandwidth. We also configured ZKSMT to use 8 threads.
Our methodology and results for Q1, Q2, and Q3 appear in
Sec. 7.1, Sec. 7.2, and Sec. 7.3, respectively.

7.1 Verifying Practical Software
To answer Q1, we collected a set of SMT formulas whose
validity formalizes program correctness. Specifically, the
SMT formulas were generated by the Boogie verification
toolchain [5]. The Boogie toolchain contains an intermediate
language for expressing low-level programs annotated with
function requirements and guarantees, along with compilation
passes to an intermediate language from high-level languages
including C, Spec#, and Dafny [39]. Boogie generates verifi-
cation conditions from the annotated intermediate programs
in the SMT-LIB 2.0 format, which can be validated by SMT
solvers like Z3 [16]. We ran Boogie on its test suite to collect
the corresponding SMT formulas, and we validated the SMT
formulas using the solver SMTInterpol [14, 32] to generate
proof certificates that ZKSMT can process.

Fig. 2 shows the runtime of ZKSMT versus the number of
proof steps used in each of the SMT statements in the Boogie
test suite. ZKSMT is able to verify most of the test suite SMT
statements in ZK within a few seconds, but the largest bench-
mark takes 39 seconds. We also observe a general linear trend
between the running time and the number of steps, which is
expected. The fluctuation is due to the use of different rules in
each instance, since some rules are more costly than others.

7.2 Scalability
To determine how our protocol scales in response to increases
in proof size (Q2), we microbenchmark various aspects of
ZKSMT while varying the size of input SMT statements.

Proof Breakdown To assess the relative time consumption
of different parts of our protocol, we run three of our Boogie
benchmarks and separate the timing results into three phases:
type checking, Resolution, and all other proof rules. We place
Resolution in a phase of its own because, for each of the
examples, it takes more time than checking all of the other
rules combined. Fig. 3 shows the performance decomposition
for the three benchmarks. All of them are related to program
safety verification: Lock is a Boogie benchmark for verifica-
tion of a lock, Houdini is a benchmark on modular contract
checking [37], and McCarthy is an adaptation of a standard
benchmark for verification of recursive functions [43].

0 1000 2000 3000
Number of Steps

0

10

20

30

40

Ti
m

e
(s

)

Figure 2: Step counts and time costs
for validating SMT statements from
the Boogie test suite in ZKSMT.

Lock Houdini McCarthy
0

10

20

30

Ti
m

e
(s

)

Type checking
Resolution
All Other Rules

Figure 3: Time cost decomposition for
Lock, Houdini, and McCarthy bench-
marks.

0 500 1000 1500 2000
SMTInterpol step count

0

1000

2000

3000

ZK
SM

T
st

ep
 c

ou
nt

Figure 4: Relative step counts of
ZKSMT’s proofs and the original
SMTInterpol proofs.

We observe that type checking can be as time-consuming
as the main checking loop itself. This is due to the fact that
ZKSMT needs to fetch every entry of every list in Ma at least
once to confirm that its type fits with the list’s type.

Max List Size To understand how α, the maximum list size,
affects the running time of our rules, we benchmark the run-
ning time of our individual proof rules in isolation. To find the
amortized cost of each rule, we run the rule 1,000 times and
average the result. Most of our rules are simple, so we present
the results for only our four most performance-intensive rules:
Resolution, Consolidate, Farkas, and Flatten.

The results of varying α with values ranging from 10 to
50 are presented in Fig. 5a. We ran a linear regression and
determined that all four rules scale linearly, with R2 values
above 0.99. This occurs because all four rules contain loops
or procedures which iterate O(α) times.

Many of ZKSMT’s rules are affected by the size of the
longest list in the proof because all argument lists are padded
to be the same size. The worst-case scenario for ZKSMT
would be a proof that operates mainly on short lists but con-
tains one extra-long list that forces all list-traversing rules to
perform a large number of iterations. Fortunately, our bench-
marks demonstrate that this degenerate case does not appear
in practice. In the future we plan to mitigate the effect of α on
a proof’s overall running time by breaking down list-based
rules into smaller pieces, which will improve runtime even
more by eliminating the impact of large maximum list sizes.

Table Size Next, we consider how χ, the size of Me, affects
the running time of our four main rules. For each trial, we
ran 10,000 instances of a rule with an α value of 10, which
was a common value among our benchmarks, an η value
of 1,000, and a π value of 10 while varying the value of
χ to between 1,000 and 4,000. The results are plotted in
Fig. 5b. Unlike our results for α, the running time does not
change appreciably. This is because the main operation in
these rules that is affected by a change in table size is the cost
of accessing an element from ROM, for which the amortized
access time does not depend on the number of elements. For
similar reasons, changing the value of η does not change the

running time significantly.

Rule Breakdown We also consider which operations make
up the running time of our four main rules. With α values of 5
and 21, we divide the running times for each rule into the time
taken for memory operations (retrieving entries from Me or
Ma) and the time taken for arithmetic operations (everything
else). 5 is a small but still realistic value for α, and 21 is the
highest value of α that appears in our Boogie benchmarks.
The results appear in Fig. 5c. Arithmetic operations dominate
the running time for Resolution, Consolidate, and Flatten, but
memory operations dominate the running time for Farkas.
This makes sense because, unlike the other three rules, Farkas
does not perform any multiset equivalence or containment
checks. Multiset checks can work directly with expressions’
addresses, but Farkas needs to fetch every entry in its premise
and conclusion to pattern-match their NodeIDs and arguments.

Original Proof Size Our work uses a compiler to convert the
output of SMTInterpol to the format accepted by ZKSMT. To
enable evaluation in zero knowledge, some rules in SMTIn-
terpol, particularly the LIA rules, must be broken down into
simpler rules. This increases the proof size. A comparison be-
tween the number of proof steps in SMTInterpol and ZKSMT
is given in Fig. 4 for the Boogie test suite. The proof size
increases by a factor from 1 to 7, which is not problematic
because ZKSMT is still vastly more efficient than the generic
zkVM solution (Sec. 7.3).

Stress Test To stress test ZKSMT, we ran it against a series
of larger tests from the Wisconsin Safety Analyzer [2] bench-
mark suite found in the official SMT-LIB benchmarks reposi-
tory [1]. The benchmarks from the Wisconsin Safety Analyzer
represent correctness and security properties for commercial
off-the-shelf software. The resulting running times are plotted
in Fig. 6a. The largest test which passed uses 200K steps,
380K expressions, and a maximum list size α of 97. This
verified in about 3 hours, requiring more than 22.9 billion F2
multiplications and 336 million F2128 multiplications. Larger
tests ran out of memory. This demonstrates that ZKSMT
can scale up to proofs of a larger size, and gives insight into
ZKSMT’s current limitations.

10 20 30 40 50
Max List Size (α)

5

10

15

20

25

Ti
m

e
(m

s)

Resolution
Consolidate
Farkas
Flatten

(a)

1000 2000 3000 4000
Table Size (χ)

0

2

4

6

8

Ti
m

e
(m

s)

Resolution
Consolidate
Farkas
Flatten

(b)

Resolution Consolidate Farkas Flatten
Rule

0.0

2.5

5.0

7.5

10.0

Ti
m

e
(m

s)

Memory Ops
Arithmetic Ops

(c)
Figure 5: Scalability and rule breakdown of our protocol. Fig. 5a and Fig. 5b contain the running times of a single proof step
across different rules for changing values of max list size α and expression table size χ, respectively. Fig. 5c shows the time cost
decomposition across the four rules with max list size α = 5,21.

104 105

Number of Steps

102

103

104

Ti
m

e
(s

)

(a) Step counts and time costs for validating
SMT statements from the Wisconsin Safety
Analyzer, plotted on a logarithmic scale.

Tool zkVM F2 F2128 Timecycles muls muls

Baseline 183K 14B 421K 1h 51m
ZKSMT — 108K 770 2s

Improvement — 129,629× 546× 3,330×

(b) Comparison of ZKSMT’s performance
against Cheesecloth and Diet Mac’n’cheese
on the shortest Boogie benchmark.

1.6

1.8

2.0

2.2

ZK
SM

T
Ti

m
e

(s
)

0 20000 40000 60000 80000 100000
Estimated Cheesecloth Time (s)

0

Min Slowdown: ~1,100×
Max Slowdown: ~54,000×

(c) Cheesecloth’s estimated running times for
our Boogie benchmarks, compared to the ac-
tual running times of ZKSMT.

Figure 6: More experimental results.

7.3 Comparison with Alternative Protocols
Instead of developing a custom ZK protocol to validate SMT
formulas, a simpler approach would be to take a commodity
SMT proof validator and compile it to a ZK statement using a
ZK virtual machine (zkVM). We benchmark the performance
of ZKSMT against such a zkVM to determine whether the
benefits of a custom ZK protocol are worth the effort (Q3).

In our evaluation, we used Cheesecloth [15] and Diet
Mac’n’cheese [6, 22] as the baseline zkVM. Cheesecloth is
a general-purpose tool for generating zero-knowledge proof
statements that verify the execution of LLVM programs. Diet
Mac’n’cheese is an interactive VOLE-based zero-knowledge
proof backend, capable of verifying ZK statements.

We developed a cleartext C++ version of ZKSMT that
verifies SMT statements, and we used Cheesecloth and Diet
Mac’n’cheese to verify the shortest Boogie benchmark (with
only 6 steps) in ZK. The results in Fig. 6b demonstrate that
ZKSMT is significantly faster than the baseline, taking sec-
onds instead of hours to verify it. With a 3,330× reduction
in runtime, it is clear that ZKSMT provides a significant im-
provement over the zkVM approach in enabling SMT valida-
tion for program verification in ZK.

For a fuller comparison, we ran Cheesecloth to output the
number of zkVM cycles required for 190 of our 440 Boo-

gie benchmarks. Cheesecloth failed to process 28 of the
benchmarks, and the remaining 222 benchmarks timed out
after 5,000,000 zkVM cycles. From the zkVM cycle count,
we estimate the ZK running time of Cheesecloth and Diet
Mac’n’cheese, which scales linearly relative to cycle count3.
Fig. 6c compares this estimated running time with ZKSMT’s.
At best, Cheesecloth’s estimated running time is approxi-
mately 1,100 times slower than ZKSMT’s running time for
the same benchmark. At worst, Cheesecloth’s estimated run-
ning time is more than 54,000 times slower. We highlight the
two extremes in the figure.

The wide gap in running time improvements is due to
the fact that Cheesecloth can handle only the smaller bench-
marks in our suite. Because we focus on small benchmarks,
ZKSMT’s running times in Figure 6c are dominated by the
fixed startup time of EMP-toolkit, which ranges from 1.5
to 1.7 seconds on our evaluation machine. On the largest
benchmarks, this startup time is less than 0.1 percent of the
overall running time. Cheesecloth does not have a compara-
ble startup cost, but it is significantly slower than ZKSMT
in general. We estimate that, if Cheesecloth could run on
larger benchmarks, ZKSMT’s speedup rate would stabilize at

3A single zkVM cycle corresponds to approximately 0.021 seconds of
running time.

an even larger number. Still, ZKSMT is much faster than a
conservative estimation of Cheesecloth’s performance.

8 Related Work

Vulnerability Proofs Prior research on ZK proofs has fo-
cused on protocols for proving the existence of bugs and
vulnerabilities in programs [15, 27, 31]. With ZKSMT, we
work towards the opposite goal of proving that a program is
free of bugs and vulnerabilities. Specifically, ZKSMT effi-
ciently proves the unsatisfiability of SMT formulas, which is
the first step in a pipeline for safety proofs about programs.

Safety Proofs ZKSMT is not the first ZK protocol to en-
code refutation proofs. ZKUNSAT [42] is a ZK protocol
for validating proofs in propositional logic. Among existing
ZK protocols, ZKUNSAT is the most similar to ZKSMT, but
ZKSMT is more versatile than ZKUNSAT. ZKUNSAT re-
quires SAT formulas to be in conjunctive normal form, while
ZKSMT supports arbitrary AST structures in its more expres-
sive SMT formulas. Also, ZKUNSAT supports only one proof
rule, namely resolution. In contrast, ZKSMT’s implementa-
tion supports dozens of distinct proof rules, and the protocol
itself generalizes to any suite of first-order proof rules.

A concurrent work that addresses a similar problem is
zkPi [38]. Unlike ZKSMT and ZKUNSAT, zkPi encodes
proofs written in interactive theorem provers, primarily Lean.
The proofs encoded by zkPi can contain algebraic data types,
lambda calculus terms, and induction. ZKSMT differs from
zkPi in that it prioritizes efficiency for large-scale first-order
proofs that encode formalisms like integer arithmetic directly
rather than as part of a broader framework.

General-Purpose ZK Protocols General-purpose ZK proto-
cols emulate program executions in ZK. These protocols are
much less efficient than ZKSMT since they must support arbi-
trary computations while obliviously concealing a program’s
control flow. When Cheesecloth [15] and TinyRAM [7] exe-
cute a program in ZK, they multiplex over all CPU instruc-
tions and simulate read, write, malloc, and free operations
for the program’s memory. Likewise, Pantry [11] and Buf-
fet [49] model programs with memory operations and mutable
states. ZKSMT does not incur the same performance costs as
Cheesecloth, Pantry, and Buffet because it efficiently checks
SMT rules instead of arbitrary computations.

9 Conclusion
This paper introduces ZKSMT, an efficient protocol for vali-
dating SMT formulas in ZK. This work sets up exciting future
work in multiple directions. First, protocols can be developed
for other theories that model practical verification problems
but are not currently supported, including the theory of ar-
rays and the theory of bit-vectors [23]. Arrays and bit-vectors
are commonly used by symbolic execution engines that exe-
cute low-level code [12]. Second, the core logic itself can be

extended to validate formulas that contain universal and exis-
tential quantifiers. Prominent program verification toolchains
often produce quantified formulas as output [5, 39].

Another direction for further research is the combination
of ZKSMT’s proofs with other proofs about program safety.
ZKSMT is a protocol for validating proofs about programs
written in a high-level language. For a full ZK program veri-
fication pipeline, the prover would also need to demonstrate
that a compiled and distributed binary version of the program
is observationally equivalent to the high-level program whose
correctness proof is covered by ZKSMT. The construction
and representation of such proofs is the subject of translation
validation [45, 47] and verified compilers [41]. Validating
these proofs in ZK is an exciting direction for future work.

Acknowledgments
The authors would like to thank Chantal Keller for early
discussions on SMTCoq, Stuart Pernsteiner for helping to
run Cheesecloth, and Tanja Schindler and Jochen Hoenicke
for helping with SMTInterpol. This material is based upon
work supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR001120C0085 and
HR001120C0087. Timos Antonopoulos was partially sup-
ported by the NSF awards CCF-2131476, CCF-2106845,
CCF-2318974, and CCF-2219995. Ruzica Piskac and John
Kolesar were supported by CCF-2131476, CCF-2219995, and
CCF-2318974. Work of Xiao Wang is also supported by NSF
awards #2236819 and #2318975. Work by Daniel Luick is
supported in part by NSF awards #1763399 and #2019285.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the Defense Advanced Re-
search Projects Agency (DARPA). Approved for Public Re-
lease, Distribution Unlimited.

References
[1] SMT-LIB: The Satisfiability Modulo Theories Li-

brary - Benchmarks. http://smtlib.cs.uiowa.edu/
benchmarks.shtml.

[2] WiSA: Wisconsin Safety Analyzer. https://
research.cs.wisc.edu/wisa/.

[3] FIPS PUB 140-2. Security requirements for crypto-
graphic modules. NIST, 2001.

[4] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon
Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mo-
hamed, Mudathir Mohamed, Aina Niemetz, Andres Nöt-
zli, et al. cvc5: A versatile and industrial-strength smt
solver. In TACAS. Springer, 2022.

[5] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine,
Bart Jacobs, and K Rustan M Leino. Boogie: A modular
reusable verifier for object-oriented programs. In FMCO.
Springer, 2005.

http://smtlib.cs.uiowa.edu/benchmarks.shtml
http://smtlib.cs.uiowa.edu/benchmarks.shtml
https://research.cs.wisc.edu/wisa/
https://research.cs.wisc.edu/wisa/

[6] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and
Peter Scholl. Mac’n’cheese: Zero-knowledge proofs for
boolean and arithmetic circuits with nested disjunctions.
In Crypto, 2021.

[7] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin,
Eran Tromer, and Madars Virza. SNARKs for C: Veri-
fying program executions succinctly and in zero knowl-
edge. In Crypto, 2013.

[8] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct non-interactive zero knowledge
for a von neumann architecture. In USENIX Security,
2014.

[9] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-
Lavaud, Cédric Fournet, Chris Hawblitzel, Catalin
Hritcu, Samin Ishtiaq, Markulf Kohlweiss, K. Rustan M.
Leino, Jay R. Lorch, Kenji Maillard, Jianyang Pan,
Bryan Parno, Jonathan Protzenko, Tahina Ramananan-
dro, Ashay Rane, Aseem Rastogi, Nikhil Swamy, Laure
Thompson, Peng Wang, Santiago Zanella Béguelin, and
Jean Karim Zinzindohoue. Everest: Towards a verified,
drop-in replacement of HTTPS. In SNAPL, 2017.

[10] Manuel Blum, William S. Evans, Peter Gemmell, Sam-
path Kannan, and Moni Naor. Checking the correctness
of memories. In 32nd FOCS , 1991.

[11] Benjamin Braun, Ariel J Feldman, Zuocheng Ren, Sri-
nath Setty, Andrew J Blumberg, and Michael Walfish.
Verifying computations with state. In ACM SOSP, 2013.

[12] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI,
2008.

[13] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit
Sahai. Universally composable two-party and multi-
party secure computation. In 34th ACM STOC, 2002.

[14] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz.
Smtinterpol: An interpolating smt solver. In Interna-
tional SPIN Workshop on Model Checking of Software,
2012.

[15] Santiago Cuéllar, Bill Harris, James Parker, Stuart Pern-
steiner, and Eran Tromer. Cheesecloth: Zero-Knowledge
proofs of real world vulnerabilities. In USENIX Security,
2023.

[16] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient smt solver. In TACAS, 2008.

[17] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini,
Titouan Tanguy, and Michiel Verbauwhede. Efficient
proof of ram programs from any public-coin zero-
knowledge system. In SCN, 2022.

[18] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-
Point Zero Knowledge and Its Applications. In ITC,
2021.

[19] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal
Keller, Guy Katz, Andrew Reynolds, and Clark Barrett.
Smtcoq: A plug-in for integrating smt solvers into coq.
In CAV, 2017.

[20] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Os-
trovsky, Xiao Wang, and Chenkai Weng. Constant-
overhead zero-knowledge for RAM programs. In ACM
CCS, 2021.

[21] Ariel Gabizon and Zachary J Williamson. plookup: A
simplified polynomial protocol for lookup tables. Cryp-
tology ePrint Archive, 2020.

[22] Galois, Inc. swanky: A suite of rust libraries for secure
computation. https://github.com/GaloisInc/
swanky, 2019.

[23] Vijay Ganesh and David L Dill. A decision procedure
for bit-vectors and arrays. In CAV, 2007.

[24] Oded Goldreich, Silvio Micali, and Avi Wigderson.
Proofs that yield nothing but their validity or all lan-
guages in NP have zero-knowledge proof systems. J.
ACM, 38(3), July 1991.

[25] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Roth-
blum. Delegating computation: interactive proofs for
muggles. In 40th ACM STOC, 2008.

[26] Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof-systems
(extended abstract). In 17th ACM STOC, 1985.

[27] Matthew Green, Mathias Hall-Andersen, Eric Hen-
nenfent, Gabriel Kaptchuk, Benjamin Perez, and Gijs
Van Laer. Efficient proofs of software exploitability for
real-world processors. PETS, 2023.

[28] Jens Groth. Short pairing-based non-interactive zero-
knowledge arguments. In Asiacrypt, 2010.

[29] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (New-
man) Wu, Jieung Kim, Vilhelm Sjöberg, and David
Costanzo. CertiKOS: An extensible architecture for
building certified concurrent os kernels. In USENIX
OSDI, 2016.

[30] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-
knowledge processor with BubbleRAM. In ACM CCS,
2020.

[31] David Heath, Yibin Yang, David Devecsery, and
Vladimir Kolesnikov. Zero knowledge for everything
and everyone: Fast ZK processor with cached ORAM
for ANSI C programs. In IEEE S&P, 2021.

https://github.com/GaloisInc/swanky
https://github.com/GaloisInc/swanky

[32] Jochen Hoenicke and Tanja Schindler. A simple proof
format for smt. In International Workshop on SMT,
2022.

[33] Zhangxiang Hu, Payman Mohassel, and Mike Rosulek.
Efficient zero-knowledge proofs of non-algebraic state-
ments with sublinear amortized cost. In Crypto, 2015.

[34] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. Zero-knowledge from secure multiparty
computation. In ACM STOC, 2007.

[35] Marek Jawurek, Florian Kerschbaum, and Claudio Or-
landi. Zero-knowledge using garbled circuits: how to
prove non-algebraic statements efficiently. In ACM CCS,
2013.

[36] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David A. Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: formal verification of an os kernel. In ACM SOSP,
2009.

[37] Shuvendu Lahiri and Julien Vanegue. Explain houdini:
Making houdini inference transparent. In VMCAI, 2010.

[38] Evan Laufer, Alex Ozdemir, and Dan Boneh. zkpi:
Proving lean theorems in zero-knowledge. Cryptol-
ogy ePrint Archive, Paper 2024/267, 2024. https:
//eprint.iacr.org/2024/267.

[39] K Rustan M Leino. Dafny: An automatic program
verifier for functional correctness. In LPRA, 2010.

[40] Xavier Leroy. Formal verification of a realistic compiler.
Communication of ACM, 2009.

[41] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bern-
hard Schommer, Markus Pister, and Christian Ferdinand.
Compcert-a formally verified optimizing compiler. In
ERTS, 2016.

[42] Ning Luo, Timos Antonopoulos, William R. Harris, Ruz-
ica Piskac, Eran Tromer, and Xiao Wang. Proving UN-
SAT in zero knowledge. In ACM CCS, 2022.

[43] Zohar Manna and John McCarthy. Properties of pro-
grams and partial function logic. Stanford University,
1969.

[44] Payman Mohassel, Mike Rosulek, and Alessandra Sca-
furo. Sublinear zero-knowledge arguments for RAM
programs. In Eurocrypt, 2017.

[45] George C Necula. Translation validation for an optimiz-
ing compiler. In ACM SIGPLAN, 2000.

[46] Duckki Oe, Andrew Reynolds, and Aaron Stump. Fast
and flexible proof checking for smt. In Proceedings of
the 7th International Workshop on SMT, 2009.

[47] Amir Pnueli, Michael Siegel, and Eli Singerman. Trans-
lation validation. In TACAS, 1998.

[48] Srinath Setty. Spartan: Efficient and general-purpose
zkSNARKs without trusted setup. In Crypto, 2020.

[49] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, An-
drew J. Blumberg, and Michael Walfish. Efficient RAM
and control flow in verifiable outsourced computation.
In NDSS, 2015.

[50] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz.
Emp-toolkit: Efficient multi-party computation toolkit.
https://github.com/emp-toolkit, 2016.

[51] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao
Wang. Wolverine: Fast, scalable, and communication-
efficient zero-knowledge proofs for boolean and arith-
metic circuits. In IEEE S&P, 2021.

[52] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie,
and Xiao Wang. AntMan: Interactive zero-knowledge
proofs with sublinear communication. In ACM CCS,
2022.

[53] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao
Wang. QuickSilver: Efficient and affordable zero-
knowledge proofs for circuits and polynomials over any
field. In ACM CCS, 2021.

A Proof Rule Tables
Tables 4 and 5 show our full set of proof rules for Boolean
logic, EUF, and LIA. Table 4 contains the simple rules that
have no premises or side conditions, and Table 5 contains the
more complex rules.

B Proofs
We now prove that ZKSMT is sound and complete. The
proofs are independent of the theories on which ZKSMT
is instantiated. A proof Π of a formula ϕ exists in ZKSMT’s
format under a theory T if and only if a corresponding proof
Π′ exists for ϕ in T outside ZKSMT.

B.1 Proof of VM Soundness
Let Π be a proof in ZKSMT’s format that derives ϕ. Assume
that Algorithm 1 succeeds for Π. Our goal is to convert Π

into a derivation tree Π′ that derives ϕ. Π′ needs to follow the
structure defined in Section 2.1.

Let T be the theory used for Π. We can use the exact same
theory for Π′, so the logical structure of the proof can stay
the same. We can simply translate all of the proof steps from
Π verbatim to create a proof tree for Π′. No new proof steps

https://eprint.iacr.org/2024/267
https://eprint.iacr.org/2024/267
https://github.com/emp-toolkit

RuleID Conclusion
Boolean

TruePos
∨
{True}

FalseNeg
∨
{¬False}

ExclMid
∨
{¬a,a}

ImplPos1
∨
{a→ b,a}

ImplPos2
∨
{a→ b,¬b}

ImplNeg
∨
{¬(a→ b),¬a,b}

EquivPos1
∨
{a = b,a,b}

EquivPos2
∨
{a = b,¬a,¬b}

EquivNeg1
∨
{¬(a = b),a,¬b}

EquivNeg2
∨
{¬(a = b),¬a,b}

EUF
Refl

∨
{a = a}

Symm
∨
{a = b,¬(b = a)}

Trans
∨
{a = c,¬(a = b),¬(b = c)}

LIA
Total

∨
{a≤ b,b < a}

Trichotomy
∨
{a < b,a = b,b < a}

AddSingle ∑{a}= a
MulSingle 1∗a = a
MulDist c∗ (∑n

i=0 di ∗ xi) = ∑
n
i=0 cdi ∗ xi

Table 4: ZKSMT’s rules that have no premises or side condi-
tions, grouped by theory.

need to be created for Π′, but some steps from Π may need to
be duplicated. In ZKSMT’s format, the conclusion of a proof
step can be used as a premise for any number of other proof
steps. However, in ordinary proof trees, each step’s conclusion
can be used only once. If a proof step’s conclusion is ever used
as a premise for multiple other steps in Π, we can duplicate
that proof step in Π′ for every place where it is used.

If a proof step is duplicated for Π′, then all of its premises
need to be duplicated as well. This can lead to a cascading ef-
fect where duplicating a proof step requires even more steps to
be duplicated as a consequence, but the process is guaranteed
to terminate eventually. There are only finitely many steps in
Π, each original step takes only finitely many premises, and
there are no cycles. An infinite chain of expansions would vi-
olate one of those three properties of Π, so we can always find
a finite value for π to confirm that ϕ is boundedly verifiable.

The expression table Me in Π stores terms and formulas
together, but we need to distinguish between terms and for-
mulas for Π′. Recall that ZKSMT’s format includes typing
constraints (Sec. 3.2). There is a type for formulas, and it does
not overlap with the types used for terms in ZKSMT’s format,
so we can always distinguish between terms and formulas
when creating Π′. In Π, the premises and conclusion of every
proof step have the type of formulas. We can interpret all ex-
pressions of that type as formulas for Π′ and treat everything
else as a term. We can unfold every term and formula in Me
into a full AST because we forbid Me to contain cycles. All
terms and formulas must be well-formed because they satisfy

the typing rules in Π that are based on T .
One minor issue for the conversion from Π to Π′ is the

fact that functions in Π can behave as predicates. We need to
distinguish between functions and predicates for Π′, so we
can treat functions from Π as either functions or predicates
in Π′ depending on whether their output type is the type of
formulas. Each function in Π has only one permitted output
type, so there can be no ambiguity in the conversion.

Every proof step in Π is checked exactly once, so each step
in Π′ must be valid according to T . We know that every step
in Π is checked once because of the permutation check on
line 17 of Algorithm 1. A proof tree is valid if every individual
step in the tree is valid, and every step in Π′ is a copy of a
step in Π, so Π′ must be a valid derivation of ϕ.

All that remains to be shown is that we can fix size pa-
rameters for Π′. We already covered π. χ can be the same
as it is for Π because no new expressions have been created,
only copies of existing ones. µ can be the same as it is for Π

because every proof step in Π′ takes as many premises as it
does in Π. α can be the same as it is for Π because no argu-
ment lists have been changed. ρ can be the same as it is for
Π because every rule has the same premises in Π′ as it does
in Π. This covers all five size parameters, so ϕ is boundedly
verifiable, and ZKSMT is sound.

B.2 Proof of VM Completeness
For the reverse direction, we will start with a valid derivation
tree Π′ and produce a valid proof Π in ZKSMT’s format.
To convert Π′ into Π, we can perform some of the same
conversions that we performed for the soundness proof in
reverse. We can let Π use the same theory T that Π′ uses.
Every proof step in Π′ can become a valid proof step in Π

without being altered. Likewise, every term and formula in
Π′ that is well-typed becomes a well-typed expression in Π.
It is possible that Π′ contains groups of identical proof steps,
but there is no need to consolidate identical proof steps for Π.

We can construct the expression table Me by giving every
distinct AST node in Π′ its own entry. It is important that
Me does not contain any duplicates. Whenever two terms or
formulas are identical, they should have the same entry in Me.
This is what allows equality checks to work in instances of
ZKSMT. The order of the entries in Me is unimportant. We
can add a type for formulas and preserve all of the distinctions
between types for terms. We can treat predicates as formula-
typed functions.

To finish the construction of Π, we need to define the size
parameters π, χ, µ, α, and ρ. Let π be the number of proof
steps in Π′. We copied the structure of Π′ without adding or
removing any steps, so π is also the number of proof steps in
Π. Let χ be the number of distinct AST nodes in the terms
and formulas in Π′. This is also the number of expressions
in Π because of our definition of Me. Let µ be the maximum
number of premises that any proof step in Π′ takes. There
must be a maximum because Π′ is a finite proof, and this is

RuleID Side Condition Premises Conclusion
Boolean

Resolution ∃p.p ∈ ⟨⟨A⟩⟩, ¬p ∈ ⟨⟨B⟩⟩,
∨

A,
∨

B
∨

C
⟨⟨A⟩⟩ ⊆ ⟨⟨C⟩⟩⊎ ⟨⟨p⟩⟩, ⟨⟨B⟩⟩ ⊆ ⟨⟨C⟩⟩⊎ ⟨⟨¬p⟩⟩

DeDup ∀a ∈ ⟨⟨A⟩⟩. a ∈ ⟨⟨B⟩⟩
∨

A
∨

B
OrNil

∨
{} False

OrSingle a
∨
{a}

OrSingleRev
∨
{a} a

AndPos ∃A,B.⟨⟨
∧

A⟩⟩⊎ ⟨⟨B⟩⟩= ⟨⟨C⟩⟩,
∧

A =
∧n

i=0 ai,
∨

B =
∨n

i=0¬ai
∨

C
AndNeg a ∈ ⟨⟨A⟩⟩

∨
{¬

∧
A,a}

OrPos a ∈ ⟨⟨A⟩⟩
∨
{
∨

A,¬a}
OrNeg ∃A.⟨⟨¬

∨
A⟩⟩⊎ ⟨⟨A⟩⟩= ⟨⟨B⟩⟩

∨
B

EUF
Congruence ∃A,B, f .(f A = f B) ∈C, |A|= |B|,

∨
C

∀i ∈ {0, . . . , |A|−1}.¬(Ai = Bi) ∈C
LIA

TotalInt i0 = m∗ONE, i1 = (m+1)∗ONE
∨
{a≤ i0, i1 ≤ a}

Consolidate ∃a,Aa,Ba,C. ⟨⟨Aa⟩⟩⊎ ⟨⟨C⟩⟩= ⟨⟨A⟩⟩,⟨⟨Ba⟩⟩⊎ ⟨⟨C⟩⟩= ⟨⟨B⟩⟩, ∑A = ∑B
Aa = {α0 ∗a, . . . ,αt−1 ∗a},Ba = {β0 ∗a, . . . ,βt ′−1 ∗a},

α0 + · · ·+αt−1 = β0 + · · ·+βt ′−1
Flatten ∃⟨⟨C⟩⟩,⟨⟨D⟩⟩. ⟨⟨C⟩⟩⊎ ⟨⟨∑D⟩⟩= ⟨⟨A⟩⟩, ⟨⟨C⟩⟩⊎ ⟨⟨D⟩⟩= ⟨⟨B⟩⟩ ∑A = ∑B
Farkas ∀i ∈ {0, . . . ,n}. mi ≥ 0 ∑

n
i=0(mi ∗ai)+

∨n
i=0{¬(ai ≤i bi)}

either c > 0, or c = 0 and ∃ j. ≤ j is < (−mi ∗bi) = c

Table 5: ZKSMT’s rules that have premises or side conditions, grouped by theory. Capital letters represent argument lists for
n-ary operations, and lowercase letters represent individual expressions.

also the maximum number of premises for Π because we did
not modify the proof steps. Let α be the maximum number
of arguments taken by any AST node in Π′. Again, this max-
imum must exist because Π′ is finite, and it applies equally
well to Π. Lastly, let ρ be the number of distinct proof rules
used in Π′. Π uses the same suite of proof rules as Π′, so ρ is
also the number of distinct proof rules in Π.

We need to confirm that Π passes the checks in Algorithm 1.
The rule check on line 12 of Algorithm 1 will always pass
because Π and Π′ use the same theory. The cycle checks
in Algorithm 1 must pass because Π′ does not contain any
cyclic terms, formulas, or proof steps. The type checking must
pass because every term and formula in Π′ is well-formed.
The permutation check on line 17 must succeed because π

is defined as the number of steps in Π′ and every step from
Π′ is copied into Π. There are no other checks that can cause
Algorithm 1 to fail, so Π must be a valid instance of ZKSMT.
Therefore, ZKSMT is complete.

	Introduction
	Preliminaries
	Quantifier-Free First-Order Logic
	SMT Theories of Interest
	Propositional Logic
	Equality with Uninterpreted Functions
	Linear Integer Arithmetic

	An Example Formalizing Software Safety
	Zero-Knowledge Proofs

	ZKSMT Architecture
	Encoding Formulas and Proofs
	Machine Specification and Execution
	Soundness and Completeness

	Instantiating ZKSMT on Practical Theories
	Checking Propositional Logic
	Checking Equalities with Functions
	Checking Linear Integer Arithmetic

	Zero-Knowledge Support
	Refutation Proof Commitment
	Machine Execution in Zero Knowledge
	Checking Instructions in Zero Knowledge

	Implementation
	Evaluation
	Verifying Practical Software
	Scalability
	Comparison with Alternative Protocols

	Related Work
	Conclusion
	Proof Rule Tables
	Proofs
	Proof of VM Soundness
	Proof of VM Completeness

