
Abuse Reporting for Metadata-Hiding
Communication Based on Secret Sharing

Saba Eskandarian
University of North Carolina at Chapel Hill

saba@cs.unc.edu

Abstract
As interest in metadata-hiding communication grows in both
research and practice, a need exists for stronger abuse report-
ing features on metadata-hiding platforms. While message
franking has been deployed on major end-to-end encrypted
platforms as a lightweight and effective abuse reporting fea-
ture, there is no comparable technique for metadata-hiding
platforms. Existing efforts to support abuse reporting in this
setting, such as asymmetric message franking or the Hecate
scheme, require order of magnitude increases in client and
server computation or fundamental changes to the architec-
ture of messaging systems. As a result, while metadata-hiding
communication inches closer to practice, critical content mod-
eration concerns remain unaddressed.

This paper demonstrates that, for broad classes of metadata-
hiding schemes, lightweight abuse reporting can be deployed
with minimal changes to the overall architecture of the system.
Our insight is that much of the structure needed to support
abuse reporting already exists in these schemes. By taking a
non-generic approach, we can reuse this structure to achieve
abuse reporting with minimal overhead. In particular, we show
how to modify schemes based on secret sharing user inputs to
support a message franking-style protocol. Compared to prior
work, our shared franking technique more than halves the time
to prepare a franked message and gives order of magnitude
reductions in server-side message processing times, as well
as in the time to decrypt a message and verify a report.

1 Introduction

Public discussions on abuse reporting in messaging platforms
primarily focus on content moderation policy questions re-
garding what kinds of messages should and should not be
allowed. However, when it comes to reporting abuse on pri-
vate messaging platforms that provide end-to-end encryption
or hide metadata, important technical problems must be ad-
dressed before moderation policy decisions can be enforced.

In an unencrypted platform, a moderator can see the con-
tents of all messages, as well as the identities of their senders,

and can use this information to make decisions when a user
reports a message. When messages are end-to-end encrypted,
the moderator no longer sees the message contents, and a user
making a report must be able to demonstrate to the moderator
that the reported message actually corresponds to content sent
through the platform. The metadata-hiding setting poses an
even greater challenge, as the moderator sees neither message
contents nor the identities of message senders.

Message franking, first introduced by Facebook and used
in both WhatsApp and Messenger Secret Conversations, pro-
vides a lightweight solution to the problem of abuse report-
ing for end-to-end encrypted messages [29, 32, 25]. Unfor-
tunately, message franking schemes used in practice do not
work in the metadata-hiding setting. Proposals to handle abuse
reporting for metadata-hiding platforms include asymmetric
message franking (AMF) [44] and the Hecate scheme [33].
While these schemes provide strong security guarantees for
abuse reporting in the challenging metadata-hiding setting,
they come with performance overheads orders of magnitude
higher than the message franking used in practice.

This work takes a new approach to abuse reporting for
metadata-hiding communication. While previous solutions
have been designed to work generically for any metadata-
hiding platform, we take a non-generic approach that applies
to a specific class of private messaging schemes: schemes
based on additive secret sharing techniques. Given the large
number of proposed messaging schemes that use secret shar-
ing, as well as incipient deployments of other privacy preserv-
ing technologies based on secret sharing [19, 26, 5, 1, 2], this
family of approaches merits special attention. We show how
these schemes can use a message franking-style protocol with
minimal performance overhead.

At a high level, our scheme involves secret sharing the
message franking process. Message franking involves the
platform MACing a compactly committing encryption of a
message [29, 32], so we need to reproduce this efficiently in
a setting where the server serving as the moderator does not
have access to the whole message at the time a message is
processed by the platform. Our solution has the moderator

compute a MAC over hashes of shares of the message, ensur-
ing the moderator cannot recover the message itself, and has
the message sender include the necessary information in the
message to regenerate these shares at report verification time.
Starting from this idea, we build a shared franking protocol
that allows a moderator to authenticate messages sent through
a platform and tie them to their senders, despite only ever
seeing secret shares of the messages when they are initially
sent.

In addition to designing the protocol itself, we introduce
appropriate security definitions for abuse reporting in this
setting and prove that our scheme satisfies security under these
definitions. Our threat model allows all the servers except
the moderator to be malicious, and ensures that misbehaving
servers and users cannot violate confidentiality of messages,
forge reports, or evade the reporting mechanism.

We show how to integrate our shared franking protocol with
several families of existing metadata-hiding communication
systems in the research literature. Our protocol is directly
compatible with schemes based on computation over additive
secret shares of messages [8, 35, 16, 27] and, in a limited
sense, with schemes using threshold secret sharing [42, 6, 36].
We also describe how to adapt our scheme to support shared
franking in schemes based on DC-nets [17, 21, 47], including
works that augment a DC-net approach with distributed point
functions [30, 14, 15, 20, 28, 39].

We implement our shared franking scheme and compare
its performance to AMF, Hecate, and conventional message
franking. We find that shared franking results in compara-
ble or lower communication overhead than AMF and Hecate
while dramatically lowering computation costs. In particular,
for handling 1 KB messages in the two server setting and com-
paring to Hecate, we reduce the computation cost of sending
a message by 2.6×, the overall computation for processing
a message on the server(s) by 22.6×, the cost to read a mes-
sage by 19×, and the cost to verify reported messages by
31×. Comparing to AMF, we achieve 1-2 order of magnitude
performance improvements.

Overall, the performance of our scheme resembles that of
deployed message franking more than it does previous abuse
reporting schemes for metadata-hiding communication. These
significant performance improvements are enabled by the fact
that shared franking requires no public key cryptography,
eliminating the need for signatures or zero knowledge proofs
found in prior work. Our implementation and raw evaluation
data are freely available and open source at https://github.
com/SabaEskandarian/Shared_Franking.

In summary, we make the following contributions.

• Introduce the notion of shared franking and develop ap-
propriate security definitions.

• Build a shared franking scheme compatible with metadata-
hiding communication platforms based on additive secret
sharing.

Sender

Server 1 (Moderator)
Processing

Server N
Processing

Receiver

Report

Shared Franking Scheme

Time Existing Protocol

Figure 1: Shared franking augments a metadata-hiding communica-
tion scheme based on secret sharing. After receiving secret shares of
a client’s message, servers do some additional preprocessing before
running the underlying protocol. This allows the moderator to later
verify any messages reported by users. Only the moderator holds any
new secrets, and security holds even if other servers collude with
each other or with malicious users.

• Show how to integrate shared franking with existing
metadata-hiding communication systems.

• Implement/evaluate our scheme, showing order of mag-
nitude performance improvements and approaching the
performance of conventional message franking used in
practice.

2 Design Goals

A shared franking scheme builds on top of a metadata-hiding
communication scheme based on secret sharing and allows
users of the scheme to verifiably report abusive messages.
This is achieved by augmenting the process of sending, pro-
cessing, and receiving messages with additional information
that can be sent to a moderator to report a message. The mod-
erator runs a new verify() algorithm to authenticate reported
messages and recover relevant metadata that it can use to make
moderation decisions. In addition to satisfying various secu-
rity requirements relating to authentication and verification of
reports, a shared franking scheme must not compromise the
privacy properties of the underlying communication system
that it augments. Figure 1 abstractly illustrates how a shared
franking scheme fits in with an existing metadata-hiding com-
munication system.

We now briefly summarize the security properties we ex-
pect of a shared franking scheme before discussing them in
greater detail below.

• Confidentiality: The shared franking scheme reveals
nothing about who sent a message or what messages
are sent. This property ensures that the security of the
underlying scheme is not compromised by the addition
of shared franking.

https://github.com/SabaEskandarian/Shared_Franking
https://github.com/SabaEskandarian/Shared_Franking

• Accountability: Every message delivered through the
platform must be able to be reported to the moderator.

• Unforgeability: Users cannot be framed for sending
messages they did not send.

• Deniability: Only the moderator can verify the authen-
ticity of reported messages. If the contents of a report
are leaked, it would be impossible for a third party to
verify them.

As is the case in many metadata-hiding communication
schemes, we will assume that the servers operating the com-
munication system are trusted for availability but not for
security. That is, correctness of outputs will assume that the
servers cooperate with the protocol, but all our security defini-
tions will require security against actively malicious servers.
All our definitions additionally aim to protect against mis-
behavior by malicious or disruptive clients. In defining and
achieving security, we will assume pairwise secure connec-
tions (encrypted and authenticated) between servers via TLS,
which are generally already in use by the underlying commu-
nication protocol.

Accountability and anonymity. Before we move on, we em-
phasize that there are inherent tradeoffs between anonymity
and accountability, and that, in addition to the technical con-
siderations of how to build a shared franking scheme, it is
also important to consider whether and where such schemes
should be used. While our confidentiality definition will en-
sure that unreported messages enjoy the same privacy as in a
scheme that does not support abuse reports, adding the ability
to report a message to a moderator means that the moderator
can learn the identity of a message sender and the contents of
that message. Some metadata-hiding communication systems
provide anonymity for the sender even against the message
recipient. In these cases, shared franking would enable a mes-
sage recipient to reveal information to the moderator that the
recipient themself does not know, resulting in a greater cost
to privacy than in standard message franking for end to end
encrypted messaging. While this kind of disclosure may be
desirable in certain limited settings, it does not seem suitable
as a feature for general-purpose communication platforms. As
such, examples of metadata-hiding schemes discussed in this
paper provide unlinkability of message senders and receivers,
but do not necessarily hide the identity of message senders
from the receivers. This is not a technical limitation, but a
reflection of our priorities in building better private commu-
nication technology. However, a relevant technical limitation
of our scheme in the setting where the sender is anonymous
to the receiver is that a malicious receiver could potentially
collude with a malicious non-moderator server to reveal the
sender’s identity. This is not an issue in cases where the sender
and receiver already know each other’s identities.

2.1 Formalizing Shared Franking

Notation. Before formally stating the requirements of a
shared franking scheme, we briefly summarize some nota-
tion used throughout the paper. We use y← f (x) to denote
the assignment of the output of f (x) to the variable y, and
we use x←R S to denote assigning to x a uniformly random
element from the set S. The notation {} represents the empty
set. We use AO to indicate that A has oracle access to O. A
function negl(λ) is negligible if for all c > 0, there is an x0
such that for all x > x0, negl(x)< 1

xc . We sometimes omit the
security parameter λ when it is implicit from context.

We use [x] to denote an additive secret sharing of x. For
a message x split into N shares, we use [x]i, i ∈ {1, ...,N} to
denote each share. In particular, for an additive secret sharing
[x] = ([x]1, ..., [x]N) it holds that x = ΣN

i=1[x]i. Finally, we use
⊥ as a special character to indicate failure.

Throughout the paper, we use standard definitions of MACs,
PRGs, CPA-secure encryption, collision-resistance, random
oracles, and other widely used cryptographic primitives [13].

Syntax. A shared franking scheme consists of Send and
Receive algorithms to be run by clients sending or receiv-
ing messages, a processing protocol run by servers S1, ...,SN
who operate a metadata-hiding communication scheme, one
of which also serves a content moderator, and a Verify al-
gorithm used by the moderator to verify reports of abusive
messages sent through the platform. For our scheme, we
model the processing protocol with two functions, Process
and ModProcess. The Process algorithm is the algorithm
run by most of the servers participating in the protocol, and
the ModProcess algorithm is a variant of Process run by the
server serving as the platform’s moderator.

We assume that the users in a shared franking scheme have
access to a shared key kU produced according to the protocol
used in the underlying communication system, which they
will use to encrypt messages. During the processing protocol,
the moderator can include message context ctx with a mes-
sage, to be revealed again if a user later reports the message.
This is where the moderator can include information about
the sender of the message or a timestamp indicating when the
message was sent. Deployed message franking schemes use a
similar mechanism to give moderators relevant information
needed to judge reported messages [29].

We define the syntax of a shared franking scheme as fol-
lows.

Definition 2.1 (Shared Franking Scheme). A
Shared Franking Scheme consists of five algorithms
(Send,Process,ModProcess,Read,Verify). The syntax of a
shared franking scheme is defined with respect to message
space M , context space C , tag space T , user key space KU ,
and server key space KS as follows.

• Send(kU ,m,N) → (w1, ...,wN): This function takes a
user secret kU ∈KU , a message m ∈M , and an integer

N indicating the number of servers to which the mes-
sage will be sent. The function returns a series of write
requests w1, ...,wN , each of which is sent to one of the
servers.

• Process(N, i,wi)→ (vi,w′i): This function takes the total
number of servers in the protocol, as well as the index
of the server running the function and the input for that
server. It returns the server’s output value vi as well as
an output w′i for the moderator server.

• ModProcess(N,kS,w1,ctx,(w′2, ...,w
′
N)) → v1: This

function is a variant of the Process function that is run
by the server serving as moderator. By convention, we
set the moderator to be S1. In addition to the number of
users and the server’s input, this function additionally
takes the moderator’s secret key kS ∈KS, the values w′i
for i ∈ {2, ...,N} from the other servers, and a context
input ctx ∈ C .

• Read(kU ,N,(v1, ...,vN)) → (m, t)/⊥: This function
takes a user secret kU ∈KU , an integer N indicating the
number of servers with which a message is shared, and
a series of server output values v1, ...,vN . The function
either recovers a message m ∈M and tag t ∈ T , or it
outputs ⊥ to indicate malformed server outputs.

• Verify(kS,N,m, t)→ ctx/⊥: This function takes a server
secret kS ∈KS, an integer N, a message m ∈M , and tag
t ∈ T . It outputs a context ctx ∈ C , or it outputs ⊥ to
indicate failed verification of the message/tag.

When a system uses shared franking, the user sending a
message runs the Send algorithm to prepare messages rather
than simply secret sharing – or encrypting and then secret
sharing – their message. Once the servers receive the shares
produced by Send, along with any other protocol-dependent
information, they run the Process or ModProcess algorithms
before doing any of the message processing used to deliver
messages in the underlying communication system. When
message shares are processed according to the design of the
underlying system and delivered to a receiver, the receiver
runs the Read algorithm to recover the message sent by the
sender. If a message receiver decides to report a message, it
sends the message m and tag t to the moderator, who runs
Verify to check that the reported message is authentic and to
recover relevant metadata.

A communication system compatible with shared franking
is one that takes shares of (potentially encrypted) messages
as inputs and then runs an interactive protocol between the
servers offering the service to deliver messages. This proto-
col (called Deliver below), involves somehow shuffling the
shares of messages in a way that the recipient of a message
can identify it but the servers cannot link message senders
and receivers. A simple example of such a scheme would be
an MPC-based shuffle followed by anonymous broadcast of

messages, where receivers do a linear scan of results to find
their intended message. More sophisticated systems, such as
MCMix [8], include mechanisms for senders and receivers
to download only their intended messages after a shuffle, dra-
matically reducing communication and eliminating the need
for trial decryptions. DC-net or DPF-based schemes [17, 30]
can also rely on either anonymous broadcast or a mechanism
for clients to privately determine where in a list of messages a
given message will be delivered. In all cases, the correctness
property provided by the underlying communication scheme
must be that shares output by the scheme are shares of the
same messages as the input shares, at least for the parts of
the shares that correspond to the messages themselves. It is
possible for additional protocol-dependent information to be
appended by the servers during processing to aid in retrieval,
but this is not relevant for the purposes of shared franking.

Correctness. The correctness definition for a shared franking
scheme requires that messages sent via the scheme can be
successfully read, and that the context the moderator retrieves
when verifying a report matches the context used when the
message was sent. Our definition of correctness, when re-
stricted to the single-server case where N = 1, corresponds to
a correctness definition for a conventional message franking
scheme.

Our correctness definition also accounts for the possibility
that the platform to which we add shared franking may do
some computation on the shared franking outputs before they
are returned to the user. For example, if the server outputs are
secret shares of some messages and the underlying platform
uses MPC to shuffle the messages before delivery, the final
messages may be re-randomized versions of the shares output
by the shared franking scheme.

We model the message delivery mechanism of the under-
lying protocol as an interactive protocol Deliver⟨⟩ between
N servers, where each server Si has a two-part input consist-
ing of a share [m]i of the message being sent and some extra
protocol-dependent data ei,

Deliver⟨S1([m]1,e1), ...,SN([m]N ,eN)⟩
→ (([m′]1,e′1), ...,([m

′]N ,e′N)),

subject to the condition that the shared message m is pre-
served, i.e., m = m′. Although a real scheme acts on multiple
messages at once, this description abstracts away other mes-
sages and routing logic but captures the impact on an individ-
ual message, which is the scope at which franking operations
take place. A shared franking scheme modifies the shares [m]
of the message, replacing them with the processed outputs vi
of the shared franking protocol.

Definition 2.2 (Correctness). We say that a shared franking
scheme satisfies correctness if for any λ,N ∈N, m∈M , ctx∈

C , kU ∈KU , kS ∈KS and for some e1, ...eN , when we compute

(w1, ...,wN)← Send(kU ,m,N)

vi,w′i← Process(N, i,wi) for i ∈ {2, ...,N}
v1←ModProcess(N,kS,w1,ctx,(w′2, ...,w

′
N))

((v′1,e
′
1), ...,(v

′
N ,e
′
N))← Deliver⟨S1(v1,e1), ...,SN(vN ,eN)⟩

we have that

(m′, t)← Read(kU ,N,(v′1, ...,v
′
N))

where m′ = m, and

ctx′← Verify(kS,m, t)

where ctx′ = ctx.

2.2 Defining Security

This section describes the various security properties we
expect of a shared franking scheme. Following the discus-
sion here, formal definitions for each property appear in Ap-
pendix A.

Confidentiality. The primary confidentiality property re-
quired of a shared franking scheme is that it does not compro-
mise the privacy properties of the underlying metadata-hiding
communication platform, except when revealing metadata
stored in the context attached to a reported message. We
use metadata-hiding to refer to systems that render message
senders and receivers unlinkable to the platform. In secret
sharing based schemes, message senders start by directly con-
necting to the servers to upload message shares, at which
point the servers can identify the senders, as there is no need
for anonymity in that connection. Only after receiving the
messages do the servers process them in a way that breaks
the link between message senders and message recipients.
Our confidentiality definition is designed to ensure that the
security of the message processing cannot be compromised
by the addition of a tag to enable abuse reporting before mes-
sages are processed. This means that no server operating the
platform, and no user other than the intended recipient of a
message, can learn anything about the contents of a message
sent through the platform or about who sent a given message
through the platform. Since our work focuses on the case of
secret-shared data, we will capture this requirement via an
adversary who controls some strict subset of the N servers
operating the service.

Our security definition allows an adversary to pick a set M
of corrupted servers to control. In the security experiment, the
adversary is allowed to adaptively ask an honest user to send
the servers write requests for one of two messages m0,m1 of
the adversary’s choosing, and the adversary must determine
which message is sent after seeing the resulting write requests

wi. We say that a scheme has confidentiality if no efficient ad-
versary can distinguish between the two messages. This effec-
tively means that the view of the adversary while processing
messages for shared franking does not depend on the actual
messages sent in any way. After the shared franking process
is over, the security properties of the underlying messaging
scheme will ensure that an adversary cannot see the contents
of delivered messages or identify their senders. Our defini-
tion only requires that the additional message preprocessing
required for shared franking does not expose information that
could compromise users’ privacy.

One could imagine other supplemental confidentiality re-
quirements, such as requiring that a user’s message remains
confidential even against an adversary who controls all the
servers, or that the context string ctx does not leak to servers
other than the moderator. We do not formalize security def-
initions for these notions, but our scheme trivially satisfies
both. To protect message contents against compromise of all
servers, messages are encrypted via a CPA-secure encryp-
tion scheme before being secret shared. Our syntax prevents
the message context ctx from being sent directly from the
moderator to the other servers, and our scheme masks ctx
with pseudorandom bits before the moderator outputs it to the
underlying messaging protocol.

Accountability. Our accountability definition ensures that ev-
ery message sent through the system can be successfully veri-
fied if reported, even in the presence of malicious clients and
servers. In particular, an adversarial client or group of clients,
even if they collude with all the servers except the moderator,
cannot send a set of write requests where a message will be
successfully decrypted by the recipient but verification of that
message by the moderator will fail.

In our definition, the adversary is allowed to play the role
of any number of malicious clients and servers, except for
the moderator. The adversary controls the write requests, in-
termediate outputs, and context received by the moderator
and gets the moderator’s output share v1 in response to in-
puts of the adversary’s choosing. The adversary wins the
game if, after its interactions with the moderator, it can pro-
duce a user key k∗U , a context ctx∗, and write request w∗1, and
server outputs v∗2, ...,v

∗
N ,w

′
2, ...w

′
N , such that, after processing

via ModProcess, the Read algorithm can recover a non-⊥
message, but Verify either fails to verify or returns an incor-
rect ctx∗∗ ̸= ctx∗.

Unforgeability. Unforgeability requires that a malicious re-
porter cannot report messages or message contexts that were
not actually sent through the platform. This property differs
from accountability in that accountability protects against
malicious senders who wish to send unreportable messages
and abuse the platform without repercussions, whereas un-
forgeability protects against malicious receivers who wish to
produce false reports that frame honest senders.

In this definition, similar to the accountability definition,

the adversary plays the role of any number of malicious clients
and servers, except the moderator. After being allowed to in-
teract with the moderator and receiving the moderator outputs
for any successfully delivered/verified message, the adversary
produces a new message and tag pair. The definition requires
that the adversary cannot produce successfully verifying tags
on new messages, and, moreover, the adversary cannot pro-
duce tags on already-sent messages that verify but return a
context different from the context used when the message was
originally sent.

Deniability. Deniability requires that only the moderator can
verify the authenticity of reported messages. This property
helps maintain the expectation that messages sent through
private channels are largely ephemeral and cannot verifiably
be exposed to third parties other than the moderator.

We do not formalize our own deniability definitions here,
as notions of deniability from prior work extend to our setting
in a straightforward way [44, 33, 40]. Instead, we briefly dis-
cuss some forms of deniability that a shared franking scheme
must achieve and return to these in the security analysis of
our scheme. See the asymmetric message franking work of
Tyagi et al. [44] for an extensive discussion of the potential
space of security definitions for deniability.

Following Tyagi et al., we consider three forms of deniabil-
ity, all three of which should be satisfied: receiver compromise
deniability, moderator compromise deniability, and universal
deniability. Each definition requires that there exist a forgery
algorithm that produces message, report pairs that are indis-
tinguishable from real ones, thus allowing users to deny that
they really sent or received a given message. The difference
between the three definitions lies in what information the
forgery algorithm can use in producing its forgery and in
what information the distinguisher is allowed to see. Univer-
sal deniability gives the forger and distinguisher access to
any public parameters of the system and the secret keys of
all users uninvolved in the message being denied. In receiver
compromise deniability, the forger and distinguisher addition-
ally receive the user secret key that encrypts and decrypts
the message being denied. In moderator compromise deni-
ability, the forger and distinguisher additionally receive the
moderator’s secret key.

3 Franking for Secret-Shared Messages

This section introduces our shared franking scheme. We be-
gin with background on conventional message franking. Our
scheme can be seen as a way to lift standard, single-server
message franking into the secret shared setting.

We will consider the message franking scheme used
by Facebook [29] using the abstractions introduced by
Grubbs et al. [32]. Roughly speaking, the scheme consists of
two components: a compactly committing encryption scheme
and a MAC. At its core, it consists of the platform MACing

part of an appropriately formatted ciphertext from the user
sending a message. This ciphertext, along with associated
context information, is revealed later in the event that the re-
ceiving user reports the message. Verifying the MAC when a
user reports a message allows the platform to record the con-
text for each message without the need for extensive metadata
collection and storage.

In this work, we will take advantage of the fact that, for
metadata-hiding communication schemes based on secret
sharing, the servers involved in the protocol can identify the
sender of a message at the time a message is sent, even though
they cannot identify the recipient or link senders and recipients
for any message. In secret sharing based schemes, message
senders start by directly connecting to the servers to upload
message shares (without need for any intermediate anonymity
layer), at which point the servers can identify the senders.
Only after receiving shares of messages do the servers process
them in a way that breaks the link between message senders
and message recipients. This allows the server acting as the
moderator to attach the necessary context, e.g., sender identity,
at the time a message is sent.

Our approach is fundamentally different from prior work
that extends content moderation to the metadata-hiding set-
ting (e.g., [44]). Whereas prior works use cryptographic tech-
niques to remove the involvement of the moderator from the
message delivery process, we find ways to render the modera-
tor’s involvement harmless. This results in increased perfor-
mance at the cost of only being applicable to schemes based
on secret sharing.

3.1 Background: Message Franking and Com-
pactly Committing Encryption

As mentioned above, a message franking scheme requires
compactly committing encryption. This is an encryption
where the ciphertext c = (c1,c2) can be thought of as con-
sisting of two components. Component c1 is a conventional
ciphertext, and c2 functions as a commitment to the under-
lying message, which a moderator can verify in the event
the message is reported. Compactness means that the size
|c2| of the committing component of the ciphertext must be
independent of the length |m| of the underlying encrypted
message m.

We restate the syntax for a compactly committing encryp-
tion scheme below. This is the same syntax introduced by
Grubbs et al. [32], except whereas they presented their def-
initions in terms of compactly committing AEAD schemes,
we present a syntax for compactly committing AE only. An
AEAD scheme allows for additional authenticated, unen-
crypted data to be associated with a ciphertext [41], but we
will not need this feature for our scheme. That said, although
we do not use the AEAD syntax for simplicity of presentation,
our scheme can easily be modified to accommodate additional
associated data should it be necessary.

Definition 3.1 (Committing AE [32]). A committing AE
scheme CE = (Kg,Enc,Dec,Ver) is a four-tuple of algo-
rithms with the syntax described below. Associated to a
scheme is a key space K , message space M , ciphertext space
C , opening space Ko, and franking tag space T .

• Kg(1λ)→ k: This function takes a security parameter
and generates a key for use in the ccAE. We omit calls
to this function when the key is provided by the calling
context.

• Enc(k,m)→ (c1,c2): This function takes in a key k ∈K
and message m ∈M , and it returns a two part ciphertext
(c1,c2) where c1 ∈ C and c2 ∈ T .

• Dec(k,(c1,c2))→ (m, fo)/⊥ : This function takes a key
k ∈ K and a two part ciphertext (c1,c2) ∈ C ×T , and
it returns either ⊥ or a message m ∈M and a franking
opening fo ∈Ko.

• Ver(m, fo,c2) : 0/1 This function takes a message m ∈
M , an opening fo ∈Ko, and a tag c2 ∈ T , and it outputs
1 or 0 to indicate acceptance or rejection of a message,
respectively.

Our implementation uses the CtE1 scheme of Grubbs et al.,
which can be built entirely from standard primitives.

Grubbs et al. introduce sender and receiver binding security
definitions for committing AE that go beyond the standard
CPA-security and ciphertext integrity properties of authenti-
cated encryption and ensure the security of the committing
component of the ciphertext. See their work for a detailed
description of these definitions [32]. In this work, we use
SBadv and RBadv to denote the sender binding and receiver
binding advantage of an adversary against a ccAE scheme.

3.2 Our Shared Franking Protocol
This section describes the intuition and design choices for
our shared franking scheme. As a starting point, consider a
scheme where the client computes a ccAE ciphertext (c1,c2)
of the message it wishes to send, and secret shares it among
the N servers. As an optimization, we set the shares wi for
i ∈ {2, ...,N} to be short seeds which the servers can expand
into message shares, and only the share sent to the moderator
is a full-length message share. We now show how to build up
from this starting point to a shared franking scheme.

Secret sharing a MAC. In order to apply the intuition of mes-
sage franking to the secret shared setting, we need to compute
a MAC on a ccAE ciphertext in a way that is amenable to
computation on secret shared data.

One option for building a sharing-friendly MAC would
be to adopt a Carter-Wegman MAC [46] or a homomor-
phic MAC [7]. Unlike widely used standard MACs like
HMAC [12], the structure of these MACs allows efficient

distributed computation of MACs over secret-shared data us-
ing MPC. Unfortunately, this is only the case if every party
involved in the MAC computation holds the secret key for
the MAC. In the shared franking setting, only the modera-
tor holds the key, so a MAC cannot be computed by simply
aggregating computations done by the servers processing a
message. We can get around this by using a multiparty com-
putation protocol over an arithmetic circuit that computes the
MAC [31, 9, 24, 23], but this adds both communication and
computation costs that we wish to avoid.

Instead, we have the moderator compute a MAC on the
secret shares of the message rather than directly on the mes-
sage itself. Since the shares, taken together, allow for recon-
struction of the messages, this is equivalent to MACing the
message directly. To avoid having the moderator see all the
message shares directly, we have each server send the mod-
erator a hash of its input share w′i← H(wi). The moderator
computes a MAC over its own share [c2]1 of c2, all the hashes
it receives, and the context string ctx for the message being
processed. Formally, the moderator computes

h← (w′2, ...,w
′
N)

σ←MAC.Sign(kS,([c2]1,h,ctx)).

Note that, as is the case in standard message franking, ap-
pending a MAC means messages sent through the shared
franking scheme will be longer than user-submitted cipher-
texts. To accommodate this, other servers generate sufficiently
long pseudorandom outputs from their write request seeds to
match the length of the moderator’s output. The moderator
also masks these outputs with randomness generated from a
seed provided by the user sending the message.

Reproducing shares. While MACing shares of a message
suffices to serve as a MAC on that message, MACing hashes
of shares of a message poses a problem for the correctness
of our scheme. In order to verify this MAC, the recipient
of a report needs the exact same shares that were used to
generate the MAC tag. But the shares of a message delivered
to the message recipient after passing through an MPC-based
metadata-hiding communication scheme will almost certainly
differ from the ones produced when a sender produces the
message.

We get around this problem by ensuring the recipient of a
message can reproduce the original shares used by the sender.
When sending a message, the randomness for producing each
share is generated from a seed r, and the sender includes r
in the ciphertext delivered to the platform. Specifically, the
sender computes

r←R {0,1}λ

c = (c1,c2)← ccAE.Enc(kU ,(m,r))

{si}i∈{1,...,N}← G(r)

[c]1← c⊕G(s2)⊕ ...⊕G(sN),

where G is a PRG with suitable output lengths. Since the
message recipient can recover r, it can reproduce the original
shares used when the message was sent. These can in turn
be used to send the moderator the correct inputs to the MAC
produced when it was processing the message, fixing the cor-
rectness problem introduced by MACing hashes of message
shares instead of the message itself.

Adding accountability. The scheme as sketched thus far
suffices to provide confidentiality and unforgeability (via the
secret sharing and the MAC+ccAE combination), but account-
ability can easily be circumvented by a malicious user or
server:

• A malicious user could include an incorrect value r′

instead of r in the ccAE ciphertext.

• A malicious server could output a partially incorrect
secret share so that the MAC σ is corrupted and fails to
verify.

In order to achieve accountability, we need to ensure that
these kinds of misbehavior can be caught by the receiving user
in the Read algorithm, rather than only becoming apparent
when Verify fails after a user reads and reports a message.

This problem can be resolved via additional integrity
checks by receiving users to ensure messages can be veri-
fied by the moderator. In particular, we have the moderator
compute a hash σc on the same message as the MAC σ, but
with σ itself included at the end of the hash input. That is,

σc← H ′(kr, [c2]1,h,ctx,σ)

where the hash function H ′ is modeled as a random oracle.
This serves as a checksum on the values that will be verified
if a message is later reported.

The hash σc is masked and appended to the moderator’s
output, and the receiving user verifies σc when running Read
on a received message. The fact that messages are secret
shared means that σc is not visible to any party besides the
moderator until a message is read.

Observe that when we instantiate this scheme with a MAC
that also serves as a PRF, e.g., HMAC [12, 10, 11], the func-
tion H ′ has a pseudorandom input σ known only to the mod-
erator. Since the values of σ and σc are secret shared among
the servers, an adversary can only introduce additive offsets
to them between the time σc is generated and checked. Since
H ′ is modeled as a random oracle, an attacker has a negli-
gible chance of offsetting both σc and its inputs in such a
way that the checksum still verifies. Thus a receiving user
can recompute σc to verify for itself that σ will be accepted
during verification.

3.3 Formal Protocol Description
We formalize our protocol in Construction 3.2 below, includ-
ing details on message lengths and masking/unmasking that

were omitted in the explanation of the protocol above. We
present our scheme assuming the servers operate over bit
strings using the XOR operation, but the scheme generalizes
to additive secret sharing in an arbitrary abelian group.

Construction 3.2. Our N party shared franking protocol Π

appears in Figure 2 makes use of the following primitives to
send messages of length ℓ.

• A ccAE scheme ccAE(Kg,Enc,Dec,Ver) where Enc :
K ×M →{0,1}ℓ+ν1 ×{0,1}ν2 .

• A PRG G : {0,1}λ → {0,1}∗. We abuse notation and
truncate {0,1}∗ to the needed length of the PRG output
in each case where the PRG is used. We explicitly spec-
ify the length of the PRG output unless it’s clear from
context.

• Hash functions H : {0,1}λ′ → {0,1}λ′′ and H ′ :
{0,1}∗→{0,1}λ′′ modeled as random oracles. The pa-
rameters λ′,λ′′ = poly(λ) are derived from the security
parameter λ.

• A MAC scheme (Sign,Verify) with tag space {0,1}ν3

where the Sign algorithm is also a PRF.

We assume that the input ctx to ModProcess has a fixed,
publicly-known length denoted by |ctx|.

The correctness of this scheme follows from the correct-
ness of the underlying cryptographic tools used to build it,
namely the ccAE encryption scheme and the MAC scheme,
as well as the correctness of the underlying metadata-hiding
communication scheme. Recall that correctness is defined
(Definition 2.2) with respect to a scheme-dependent Deliver⟨⟩
protocol. In many schemes, this will involve some kind of
re-randomization or shuffling of the ciphertext shares sent to
the servers [8, 36, 27]. Our scheme remains correct regardless
of how this re-randomization happens because as long as the
correct message is reconstructed at the end, the moderator
can get the “original” shares the sender sent to the system by
deriving them from r. This means that the correctness of the
shared franking scheme only relies on the correctness of the
underlying metadata-hiding communication scheme, not on
the details of how it manipulates shares.

3.4 Security
We now briefly discuss the various security properties of our
scheme. Due to space limitations, proofs for the theorems
stated here appear in the full version of this paper.

Confidentiality. The confidentiality of our scheme relies on
the fact that the view of any subset of the servers simply con-
sists of secret shares of ciphertexts that the adversary, who
does not control all the servers, cannot reconstruct. Since the
secret shares are generated by several invocations of the PRG

Send(kU ,m,N) :

r←R {0,1}λ

c = (c1,c2)← ccAE.Enc(kU ,(m,r))

{si}i∈{1,...,N}← G(r)

where |si|= λ for i ∈ {1, ...,N}
[c]1← c⊕G(s2)⊕ ...⊕G(sN)

w1← ([c]1,s1)

wi← si for i ∈ {2, ...,N}
output w1, ...,wN

Process(N, i,wi)

vi← G(wi)

where |vi|= ℓ+ν1 +ν2

+ |ctx|+ν3 +λ
′′

w′i← H(wi)

output vi,w′i

ModProcess(N,kS,w1,ctx,(w′2, ...,w
′
N)) :

([c]1,s1)← w1

([c1]1, [c2]1)← [c]1
h← (w′2, ...,w

′
N)

σ←MAC.Sign(kS,([c2]1,h,ctx))

u′1← G(s1), |u′1|= |ctx|+ν3 +λ
′′

σc← H ′([c2]1,h,ctx,σ)

output ([c]1,(u′1⊕ (ctx,σ,σc))

Read(kU ,N,(v1, ...,vN)) :

v← v1⊕ ...⊕ vN

(c1,c2,c3)← v

where |c1|= ℓ+ν1, |c2|= ν2,

and |c3|= |ctx|+ν3 +λ
′′

(m,r, fo)← ccAE.Dec(kU ,(c1,c2))

if (m,r, fo) =⊥, output ⊥
{si}i∈{1,...,N}← G(r), |si|= λ for i ∈ {1, ...,N}
(ui,u′i)← G(si) for i ∈ {2, ...,N}
where |ui|= ℓ+ν1, |u′i|= ν2 + |ctx|+ν3 +λ

′′

u′1← G(s1), |u′1|= |ctx|+ν3 +λ
′′

([c2]1,ctx,σ,σc)← (c2,c3)⊕ (0ν2 ,u′1)⊕u′2...⊕u′N
h← (H(s2), ...,H(sN))

if σc ̸= H ′([c2]1,h,ctx,σ),output ⊥
else output m,(r, fo, [c2]1,ctx,σ)

Verify(kS,N,m, t) :

(r, fo, [c2]1,ctx,σ)← t

{si}i∈{1,...,N}← G(r), |si|= λ for i ∈ {1, ...,N}
h← (H(s2), ...,H(sN))

ver←MAC.Verify(kS,([c2]1,h,ctx),σ)

(ui,u′i)← G(si) for i ∈ {2, ...,N}
where |ui|= ℓ+ν1, |u′i|= ν2

c2← [c2]1⊕u′2⊕ ...⊕u′N
ver′← ccAE.Ver((m,r), fo,c2)

if ver = 0 ∨ ver′ = 0, output ⊥; else output ctx

Figure 2: Our shared franking scheme (Construction 3.2).

G, security primarily reduces to the security of G. The only
messages sent in the confidentiality experiment that are not
secret shared are outputs of queries to H, so we additionally
bound the probability that the adversary queries the random
oracle at any point that overlaps with a query made by an hon-
est server, ensuring that these random oracle outputs cannot
help the adversary.

Theorem 3.3. If we assume that G is a secure PRG and model
H as a random oracle, then our shared franking scheme (Con-
struction 3.2) satisfies sharing confidentiality (Definition A.1).

In particular, for every confidentiality adversary A that
attacks Π and makes at most QRO random oracle queries to
H, there exists a PRG distinguishing adversary B such that
for every λ,N,Q, and NM < N,

CONFadv(A ,Π,λ,N,Q,NM)

≤ 4Q ·PRGadv(B,G,λ)+2Q · (N−NM) · QRO

2λ′
.

Accountability and unforgeability. The accountability of
our scheme follows from the sender binding of the ccAE
scheme and the hardness of forging a correct tag σc. Sender
binding requires that an adversary cannot send a message
(m,r) that successfully decrypts but does not pass ccAE.Ver.
Modeling H ′ as a random oracle, an information-theoretic
argument can be made that an adversary forges a valid σc
with at most negligible probability in λ.

Unforgeability is ensured by the MAC σ and the ccAE
verification checks in Verify. In order for a forged message to
pass MAC verification, the adversary must either forge a new
MAC tag, or find a collision in H, because an output of H is
part of the message being MACed. If the adversary instead
finds a new opening for the ccAE ciphertext, this would break
the receiver binding of the ccAE scheme.

Theorem 3.4. Assuming we model H ′ as a random ora-
cle, that MAC is a correct MAC where MAC.Sign is also
a PRF, and that ccAE satisfies sender binding, our shared

franking scheme Π (Construction 3.2) has accountability
(Definition A.2).

In particular, for every accountability adversary A that at-
tacks our protocol Π, there exists collision-finding adversary
B , a PRF adversary C , and sender binding adversary D such
that for every λ,N,Q

ACCTadv(A ,Π,λ,N,Q)

≤ CRadv(B,H ′,λ)+PRFadv(C ,MAC.Sign,λ)

+SBadv(D,ccAE,λ)+negl(λ).

Theorem 3.5. Assuming that MAC is an existentially un-
forgeable MAC, that H is a collision-resistant hash function,
and that ccAE satisfies receiver binding, our shared frank-
ing scheme Π (Construction 3.2) has unforgeability (Defini-
tion A.3).

In particular, for every unforgeability adversary A that
attacks our protocol Π, there exist unforgeability, collision-
finding, and receiver binding adversaries B , C , and D such
that for every λ,N

FORGadv(A ,Π,λ,N)≤
MACadv(B,MAC,λ)+CRadv(C ,H,λ)+RBadv(D,ccAE,λ).

Deniability. As mentioned in Section 2.2, our scheme must
achieve three kinds of deniability: universal deniability, re-
ceiver compromise deniability, and moderator compromise
deniability. Since we do not formalize these notions in our
setting, we sketch the forgery algorithms required to satisfy
each definition. All three forms of deniability rely only on the
deniability of the underlying ccAE encryption scheme and
MAC to an adversary who does not know their secret keys.
In particular, a formal proof would rely on an anonymity
property of our encryption and MAC schemes – that two ci-
phertexts or MACs produced by different random keys should
appear indistinguishable to an adversary who does not know
the keys. Our implementation uses schemes (AES-GCM and
HMAC-SHA256) that satisfy a pseudorandomness property
that implies the required anonymity definition.

To produce a universal forgery – one that appears valid
to a distinguisher who does not have the key kU used to en-
crypt/read a message or the moderator key kS – the forger
can sample random keys k′U and k′S and use them to run the
Send and Process, and ModProcess operations. The outputs
of these operations will appear indistinguishable from the
results of the same process using the real keys kU and kS to an
adversary who does not know the keys. Receiver compromise
deniability requires a forgery algorithm that has access to the
key kU used to send/receive a message but not the moderator
key kS. The forger for this definition behaves just like the
universal forgery forger, but it uses the keys kU ,k′S instead
of generating a random kU . Finally, the forger for moderator
compromise deniability, who has access to kS but not kU , uses
a random k′U but the real kS in generating its forgery.

4 Integration with Metadata-Hiding Commu-
nication Schemes

This section discusses how our protocol from Section 3 can
be integrated into various kinds of metadata-hiding communi-
cation platforms that rely on secret sharing.

4.1 Schemes based on MPC
Our shared franking protocol integrates directly with
metadata-hiding communication schemes based on MPC that
use additive secret sharing. In an MPC-based scheme, users
send shares of messages to the servers. The servers use MPC
to shuffle the shares and prepare them for delivery to their
intended recipients. To integrate shared franking into these
schemes, users send messages to the servers via the Send
algorithm of the shared franking scheme, incorporating any
client-side preprocessing of the messages before secret shar-
ing. Then the servers run the shared franking protocol before
they run the underlying message processing and delivery al-
gorithm. After a message’s shares are made available to users,
a message recipient retrieves the relevant shares according
to the underlying messaging protocol and then recovers the
message via our read algorithm. The report algorithm does
not make use of the metadata-hiding communication func-
tionality and therefore does not need to be integrated directly
into the underlying messaging system. Recent schemes in this
category that use additive secret sharing include MCMix [8],
Ruffle [4], and Clarion [27], which is based on the secret
shared shuffle work of Chase et al. [16].

Schemes based on threshold secret sharing. Our approach
can be integrated with schemes that use threshold secret shar-
ing [42], such as Asynchromix [36] or RPM [35], in a limited
way. If a fixed subset of the servers processes each batch
of messages, and this subset is known to the moderator and
the message receiver, our scheme can be used. However, this
means using shared franking would require giving up some of
the security and robustness properties of these schemes. For
example, Asynchromix aims to achieve robustness against
malicious servers who may stop responding to messages or
go offline during protocol execution. On the other hand, we
assume that servers are trusted for availability but not for
privacy. This means that while shared franking as described
here can be useful for protocols that use threshold sharing
to allow a subset of a potentially large number of servers to
process user messages, further work is needed to strengthen
the security guarantees of shared franking to handle robust-
ness against malicious servers for availability in addition to
privacy.

4.2 Schemes Based on DC-nets
A number of recent schemes combine a DC-net approach [17,
21, 47, 22], or a DC-net augmented with distributed point func-

tions (DPFs) [30, 14, 15] to improve scalability [20, 28, 39, 6].
Our shared franking scheme does not apply to these schemes
directly, but we can adapt the scheme to work in this setting
too. This results in higher computation and communication
costs between servers, but not between users and the servers.

Background: Private writing with DC-nets and DPFs. Be-
fore describing our scheme, we briefly summarize aspects of
DC-nets and DPFs that will be relevant for our purposes. We
will be focusing on the setting where the work of the DC-net
is outsourced to a small number of servers rather than the
original DC-net setting where a number of clients run the
DC-net among themselves [17]. Since the most widely-used
and efficient DPF construction only applies for two servers,
we focus on the two-server setting.

This family of schemes generally has servers maintain
shares DA and DB of a database D = DA +DB, where the
database is a vector of n elements of some finite abelian group
G, i.e., D ∈Gn. To privately write a message m to an entry j
in the database, a client prepares secret shared vectors xA,xB
such that x = xA + xB = m · e j, where e j represents the jth
standard basis vector: a length-n vector of all zeros except for
a 1 in the jth position. To process a write, the servers compute

DA← DA + xA DB← DB + xB.

Since the shares xA,xB appear random to the servers, they
cannot tell which entry of the shared database D is modi-
fied by a given write. After processing many messages, the
servers merge their shares DA and DB to recover the modified
database. This allows a number of clients to write messages
into the database without the servers learning who wrote
which message. To protect against denial of service attacks by
malicious users, clients generally include lightweight proofs
alongside their shares xA,xB to convince the servers that they
are sending shares of a vector with only one non-zero en-
try [22, 20, 28].

The approach above is not efficient because it requires a
client to send n group elements to each server to write a mes-
sage. DPFs are a mechanism that “compress” the vectors xA
and xB into a much more concise representation that takes ad-
vantage of the fact that most entries of these vectors are really
shares of zero. A DPF allows a client to create two small func-
tion shares fA and fB : {1, ...,n}→G such that fA(j) = xA, j
and fB(j) = xB, j. Now clients can send a small function share
to each server, and the servers can recover xA,xB on their own
by evaluating fA(j), fB(j) for j ∈ {1, ...,n}. Importantly, the
representations of the function shares fA and fB are concise,
i.e., they require fewer bits to represent than xA and xB. Ob-
serve that this operation slightly increases computation costs
on the servers, but it dramatically lowers the communication
cost on the client, which is more likely to be a bottleneck in a
communication-constrained setting.

Integration challenges. Let us see why we cannot integrate
shared franking into DC-net schemes the same way we did

with MPC. Shared franking involves a step where the servers
append a share of additional data c3 to the messages sent by
users. But in a DC-net scheme, the servers do not know which
entry of a database a user has modified. If the servers append
shares of c3 to every entry in the database every time a user
sends a message, they will end up increasing the length of
each entry until it is linear in the number of messages sent.
This is clearly impermissible from a performance perspective,
as it dramatically increases server storage costs and requires
clients to download gigantic message shares when recovering
a message.

In order to make shared franking compatible with a DC-
net scheme, we need a way for the servers to blindly append
shares of c3 to the correct entry in D, while adding shares of 0
to other entries. We achieve this with a slight modification to
the structure of messages sent by users and with the addition
of a small MPC. In particular, the servers will compute a
multiplication on secret-shared values for each entry in D.

Shared franking for DC-nets. First, if we are to use shared
franking in the DC-net setting, we need to modify the behavior
of Send so that instead of creating additive shares of c1,c2, it
creates shares of an n-entry vector x such that every entry of x
has the form (c1,c2,c3) where c1 ∈ {0,1}ℓ+ν1 , c2 ∈ {0,1}ν2 ,
and c3 ∈ Fq where Fq is a prime order finite field. When the
user wishes to write a message into the j∗th entry on the
servers, the jth entry of x contains

(c1,c2,1 ∈ Fq) if j = j∗, and

(0ℓ+ν1 ,0ν2 ,0 ∈ Fq) otherwise.

Note that c1,c2 remain bit strings, whereas the 0/1 val-
ues appended to each row are interpreted as elements of
a finite field and are secret shared as elements of the field,
not bit strings. Thus the shares of the jth entry in the secret
shared vector x that are sent to the ith server have the form
[c1, j]i, [c2, j]i, [b j]i, where ([c1, j]i, [c2, j]i) ∈ {0,1}ℓ+ν1+ν2 and
[b j]i ∈ Fq is a share of zero or one. As is the case in the stan-
dard shared franking scheme, all servers except the moderator
can receive a single seed si. Seed si can in turn be expanded
into seeds si j, j ∈ {1, ...,n}, one for each entry x j ∈ x.

Putting aside distinctions between bit strings and field
elements for a moment, when servers process messages,
they run Process and ModProcess separately for each en-
try x j, j ∈ {1, ...,n}. That is, ignoring the role of [b j] for now,
the non-moderator servers run

Process(N, i,si j) for each j ∈ {1, ...,n},

and the moderator runs

ModProcess(N,kS,s1 j,ctx,(w′2 j, ...,w
′
N j))

for each j ∈ {1, ...,n}.

The only change we need to make in the computation of
these functions is that we expect the components the servers

append to the end of the shares of the ccAE ciphertext, which
merge to form c3 in Read, are an element of Fq instead of
{0,1}|ctx|+ν3+λ′′ . This means that some portion of the output
of the PRG G needs to be interpreted as an element of Fq,
as does the tuple (ctx,σ,σc). This is easily accomplished if
we set q close to a power of 2, as these values are random or
random-looking values (ctx is not necessarily random but can
be encrypted by the platform). This means both the relevant
PRG outputs and (ctx,σ,σc) will already be a valid represen-
tation of an integer mod q with all but negligible probability.
If the string (ctx,σ,σc) is too long for a single element of
Fq, we can either use a larger choice of q or, for performance
reasons, represent it as multiple elements of Fq.

Blindly appending shares. After processing each row in x as
described above, the servers will hold shares

([c1, j], [c2, j], [c3, j]) for each j ∈ {1, ...,n}.

Since most of the entries of x are all zeros, we will have that

(c1, j,c2, j) = 0ℓ+ν1+ν2 for j ̸= j∗.

In order to append the correct tag c3, j∗ at the end of the j∗th
entry and to not interfere with the tag at the end of other
rows when updating the database D, we need to replace [c3, j]
with [c′3, j], where c′3, j = c3, j when j = j∗ and c′3, j = 0 ∈ Fq
otherwise. This is where we will use the shares [b j].

For each entry j, the servers will do a small MPC to com-
pute the product [c′3, j]← [b j] · [c3, j], using Beaver triples [9]
to multiply secret-shared values. Since b j = 1 if and only if
j = j∗, the products c′3, j will satisfy the requirement that
c′3, j = c3, j when j = j∗ and c′3, j = 0 otherwise. After a
message-independent preprocessing phase among the servers,
each Beaver multiplication requires a small amount of com-
munication and computation among the servers. The commu-
nication and computation for all the multiplications can be
done in parallel. This increases costs on the servers but has
no effect on client-side performance. We do not describe the
widely-used Beaver multiplication technique here, but it is
summarized in many excellent online resources, e.g., [43, 48].

5 Implementation and Evaluation

We implemented the shared franking construction described
in Section 3. Our implementation is written in C and uses
OpenSSL for standard cryptographic primitives.

We instantiate our PRG G with AES in CTR mode, and
our MAC scheme with HMAC-SHA256. Our ccAE scheme,
following the CtE1 scheme of Grubbs et al. [32], requires
an AEAD scheme and a commitment scheme. We use AES-
GCM for the AEAD scheme and HMAC-SHA256 for the
commitment, where the commitment randomness serves as
the HMAC key. Field operations are computed modulo
2256−189, the largest 256-bit prime [3]. OpenSSL supports

hardware acceleration for evaluating AES, so our implemen-
tation benefits from this feature by default. Finally, we instan-
tiate our hash functions H,H ′ with SHA256. Since all the
metadata-hiding communication systems we have discussed
require sending fixed-length messages to avoid leaking size
information about messages, SHA256 will be indifferentiable
from a random oracle in this restricted setting [37, 18].

We evaluated our implementation using a machine with a
11th Gen Intel(R) Core(TM) i7-11700K @ 3.60G processor
running Ubuntu 20.04. We evaluated our scheme on message
lengths of up to 1,020 Bytes in 20 Byte increments, and we
varied the number of servers from 2 to 10 for each message
length. We fixed the length of the ctx string used by the mod-
erator at 32 bytes for all our experiments. All reported results
for our scheme are averages taken over 1,000 runs.

Appendix B briefly reports the results from repeating our
evaluation on GCP to get performance numbers for a lower-
end server. There, we also use GCP to confirm that the perfor-
mance characteristics of our scheme remain similar when run
in a networked setting.

Evaluation results. Figure 3 shows the running time of each
operation in our shared franking scheme as the message size
increases from 40 Bytes to 1,020 Bytes. All operations take
under ten microseconds, with the Send and Read exhibiting
the most rapid increase in computation time as the message
length increases. Their cost comes primarily from producing
the ccAE encryption of the message, which includes both
encrypting the message and computing a commitment over
it, both of which depend on the entire length of the message.
Verification of messages also depends on the entire message
length because the verifier needs to verify the ccAE tag on the
message. Finally, the cost of processing a message, either for
the moderator or for any other server, is extremely low and
does not require any cryptographic or arithmetic operations
that depend on the length of the message, other than expand-
ing a PRG seed to the required length, which benefits from
hardware acceleration.

Increasing the number of servers results in behavior similar
to increasing the message length, as seen in Figure 4. Once
again, Send and Read exhibit the highest costs and increase in
costs because they primarily consist of operations that depend
on the message length as well as the number of servers. Since
processing a message on a non-moderating server is identical
as the number of servers increases and processing a message
as the moderator is almost identical (it only involves MACing
a message 32 bytes longer for each server), these operations
are largely unaffected by an increase in the number of servers.

We conclude that shared franking adds very little computa-
tional overhead to metadata-hiding communication schemes,
with the majority of the cost incurred by clients or in the report
verification process, neither of which affect the critical path
of message delivery on the server side. The communication
overhead is also small, increasing the data sent from the client
to the moderator server by 124 Bytes, and requiring only 16

0 200 400 600 800 1,000
0

2

4

6

Message Length (Bytes)

Ti
m

e
[µ

se
c]

Message Length vs Running Time
2 Servers

Send Process Moderator
Read Verify

Figure 3: Running time as message length in-
creases. Server-side operations on the critical
path for message delivery run the fastest and
do not noticeably increase in cost as message
lengths increase.

2 4 6 8 10
0

10

20

Number of Servers

Ti
m

e
[µ

se
c]

Number of Servers vs Running Time
1 KB Messages

Send Process Moderator
Read Verify

Figure 4: Running time of each operation as
number of servers increases. Server-side oper-
ations on the critical path for message delivery
run the fastest and do not noticeably increase
in cost with the number of servers.

Send Read Verify

AMF 489B 489B 489B
Hecate 380B 484B 380B
Our Work 124B 204B 144B
Plain Franking 92B 156B 128B

Figure 5: Comparison of communication costs
for clients in AMF [44], Hecate [33], shared
franking (our work), and plain message frank-
ing [29]. Communication costs are the over-
head beyond the cost of sending the message
itself. Costs for send/read in shared franking
are the cost per server and do not include
the additional 32 Byte hash sent from each
processing server to the moderator. The addi-
tional communication cost for Send for each
additional server in shared franking is 16B.

bytes sent to each other server, regardless of message length.
The data retrieved from each server to read a message is the
message length plus 204 Bytes, and a report consists of 144
Bytes in addition to the message itself.

We conclude the evaluation of our scheme by estimating
the cost of the extension to DC-nets discussed in Section 4.2.
This scheme adds a Beaver multiplication for each of the n
elements of the DC-net. The Beaver multiplication adds one
communication round to the protocol, as well as a preprocess-
ing phase to generate the Beaver triples to aid in fast online
multiplication. On our test machine, online evaluation of a
single Beaver multiplication for 128 bits of data, which is
more than sufficient for our scheme, takes 0.75µs (average
of 1M runs, written in Go). Our scheme requires the cost of
the Beaver multiplication and the normal processing protocol
to be repeated n times to process each message. The small
additional per-multiplication cost means that while shared
franking remains an excellent choice for DC-net deployments
with small anonymity sets – e.g., anonymous chat for partici-
pants in a class, seminar, or online community of limited size
– large, general-purpose messaging platforms may opt for a
different solution.

Comparison to prior work. We are aware of two prior works
that extend message franking to the metadata-hiding setting:
the asymmetric message franking (AMF) of Tyagi et al. [44],
and the Hecate scheme of Issa et al. [33]. AMF can be added
as a drop-in solution on top of any metadata-hiding messag-
ing scheme where message delivery/retrieval only requires a
single message from the client to the server(s), but it uses ex-
pensive proofs of knowledge to achieve this. Hecate achieves
significantly improved performance, but requires an additional
message-independent round trip between a user and the mod-
erator before sending a message. AMF and Hecate both also
allow for third-party moderation, which our scheme and plain
message franking do not support. In the setting of secret-

Hecate Shared Franking Plain Franking

Preprocess 29.5µs N/A N/A
Send 16.4µs 6.4µs 3.7µs
Process 15.7µs 1.6µs 1.1µs

or 0.4µs
Read 100.1µs 5.2µs 2.1µs
Verify 102.8µs 3.3µs 2.6µs

Figure 6: Computation time for various operations in Hecate [33],
shared franking (our work), and plain message franking [29] on 1 KB
messages. We report numbers for shared franking with two servers,
and include the times for both the moderator and non-moderator
servers to process messages.

sharing based schemes, our solution is a drop-in approach
similar to AMF, but it also outperforms both AMF and Hecate.
We view the three works as exploring different areas in the de-
sign space of message franking, and quantitative comparisons
between them are not necessarily apples-to-apples. AMF is
the most general and the most costly. Hecate matches the
generality of AMF and significantly improves performance
while changing the model to add another round trip (which
can be run in a message-independent preprocessing phase).
Our performance improves on both prior schemes, but it is
restricted to schemes based on secret sharing. We believe this
is a valuable point in the design space given the large body of
work that uses secret sharing approaches to hide metadata.

To measure how shared franking compares quantitatively
to prior work, we re-ran the benchmarks for Hecate and AMF
(using the original Hecate implementation and a faster Rust
implementation of AMF [38]) on our evaluation machine. We
also implemented an instantiation of Facebook-style “plain”
message franking [29] using the same cryptographic primi-
tives and implementations as our scheme so we can compare
to techniques deployed in practice.

Our instantiation of shared franking reduces the client com-
munication overhead to process a message and report it com-
pared to both AMF and Hecate, and approaches the report size
of messages reported in a plain franking scheme. Figure 5
summarizes the communication costs of each scheme.

Figure 6 compares the performance of shared franking with
Hecate and plain franking. Compared to Hecate, shared frank-
ing reduces the computation cost to send a message by 2.6×
and the cost to read a message or verify a reported message
by 19× and 31.0× respectively. The reduction in total time
to process a message on the server, including time on both
the servers in our implementation, is 22.6×. If we instantiate
Hecate with a separate message-independent preprocessing
phase per message, the online performance improvement of
using our scheme is 7.9×. Our performance numbers are also
more than an order of magnitude faster than those reported for
AMF, which took about 230µs for each of sending, reading,
and verifying a message.

Our performance improvements come from the fact that
shared franking does not use any public key cryptography,
whereas Hecate makes use of signatures and AMF uses zero
knowledge proofs of knowledge. We can avoid these more
expensive tools by taking advantage of the fact that, in the set-
ting of secret-shared messages, the servers know the identity
of message senders when they send a shared message. Thus
we can use lightweight techniques more akin to those of stan-
dard message franking for E2EE messaging rather than the
public key tools previously used in metadata-hiding schemes.

6 Conclusion and Future Work

We have shown how to add lightweight abuse reporting on top
of metadata-hiding communication platforms based on secret
sharing. Our scheme only requires symmetric cryptographic
primitives and can be adapted to a broad family of communi-
cation platforms that use diverse underlying techniques. Our
results show that relying on some existing structure provided
by a communication platform – in this case the presence of
secret sharing – can dramatically reduce the cost of adding
support for abuse reporting functionality.

While this work focuses on building shared franking
schemes to enable reporting abusive messages, the same tech-
nique can potentially be applied to build related private mod-
eration capabilities as well. Recent works aimed at combating
misinformation and disinformation on private messaging plat-
forms have studied the problem of message traceback or
source tracking [45, 40, 34, 33]. In these works, the goal of a
report is not to identify the immediate sender of a message,
but rather to find the the user who originated a piece of widely
forwarded misinformation. An interesting opportunity for fu-
ture work lies in extending our ideas to these kinds of schemes.
In principle, our approach seems applicable to a broad class
of protocols where the platform does not need to know the
identity of the message recipient at the time it is processing a

message. The path traceback scheme of Tyagi et al. [45] and
the tree-linkable source tracking of Peale et al. [40] fall into
this category, so it may be possible to efficiently extend these
schemes to work in the secret shared setting as well.

Acknowledgments

I would like to thank the anonymous reviewers and shepherd
for their helpful comments and suggestions that strengthened
the results in this paper.

This material is based upon work supported by the National
Science Foundation under Grant No. 2234408, as well as gifts
from Google and Cisco. GCP provided credits used to perform
part of the evaluation. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

[1] Analytics in exposure notifications express: Faq. https:
//github.com/google/exposure-notifications-
android/blob/master/doc/enexpress-analytics-
faq.md, 2021. Accessed 5/1/2023.

[2] Exposure notification privacy-preserving analytics (enpa)
white paper. https://covid19-static.cdn-apple.
com/applications/covid19/current/static/contact-
tracing/pdf/ENPA_White_Paper.pdf, 2021. Accessed
5/1/2023.

[3] Primes just less than a power of two.
https://t5k.org/lists/2small/, 2021.

[4] Pranav Shriram A, Nishat Koti, Varsha Bhat Kukkala, Arpita
Patra, Bhavish Raj Gopal, and Somya Sangal. Ruffle: Rapid
3-party shuffle protocols. PoPETs, 2023.

[5] Josh Aas and Time Geoghegan. Introducing isrg
prio services for privacy respecting metrics. https:
//www.abetterinternet.org/post/introducing-prio-
services/, 2020.

[6] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder:
MPC based scalable and robust anonymous committed broad-
cast. 2020.

[7] Shweta Agrawal and Dan Boneh. Homomorphic macs: Mac-
based integrity for network coding. In Applied Cryptography
and Network Security, ACNS, 2009.

[8] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and
Thomas Zacharias. Mcmix: Anonymous messaging via secure
multiparty computation. In USENIX Security, 2017.

[9] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In CRYPTO, 1991.

[10] Mihir Bellare. New proofs for NMAC and HMAC: security
without collision-resistance. In CRYPTO, 2006.

[11] Mihir Bellare. New proofs for NMAC and HMAC: security
without collision resistance. J. Cryptol., 28(4):844–878, 2015.

https://github.com/google/exposure-notifications-android/blob/master/doc/enexpress-analytics-faq.md
https://github.com/google/exposure-notifications-android/blob/master/doc/enexpress-analytics-faq.md
https://github.com/google/exposure-notifications-android/blob/master/doc/enexpress-analytics-faq.md
https://github.com/google/exposure-notifications-android/blob/master/doc/enexpress-analytics-faq.md
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://www.abetterinternet.org/post/introducing-prio-services/
https://www.abetterinternet.org/post/introducing-prio-services/
https://www.abetterinternet.org/post/introducing-prio-services/

[12] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash
functions for message authentication. In CRYPTO, 1996.

[13] Dan Boneh and Victor Shoup. A Graduate Course in Ap-
plied Cryptography (version 0.5, Chapter 9). 2017. https:
//cryptobook.us.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing. In EUROCRYPT, 2015.

[15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing: Improvements and extensions. In ACM CCS, 2016.

[16] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret
shared shuffle. 2020.

[17] David Chaum. The dining cryptographers problem: Uncon-
ditional sender and recipient untraceability. J. Cryptology,
1(1):65–75, 1988.

[18] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and
Prashant Puniya. Merkle-damgård revisited: How to construct
a hash function. In CRYPTO, 2005.

[19] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust,
and scalable computation of aggregate statistics. In NSDI,
2017.

[20] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Ri-
poste: An anonymous messaging system handling millions of
users. In IEEE Symposium on Security and Privacy, 2015.

[21] Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable
anonymous group messaging. In ACM CCS, 2010.

[22] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford.
Proactively accountable anonymous messaging in verdict. In
USENIX Security, 2013.

[23] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro,
Peter Scholl, and Nigel P. Smart. Practical covertly secure
MPC for dishonest majority - or: Breaking the SPDZ limits.
In ESORICS, 2013.

[24] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Za-
karias. Multiparty computation from somewhat homomorphic
encryption. In CRYPTO, 2012.

[25] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne
Woodage. Fast message franking: From invisible salamanders
to encryptment. In CRYPTO, 2018.

[26] Steve Englehardt. Next steps in privacy-preserving teleme-
try with prio. https://blog.mozilla.org/security/
2019/06/06/next-steps-in-privacy-preserving-
telemetry-with-prio/, 2019.

[27] Saba Eskandarian and Dan Boneh. Clarion: Anonymous com-
munication from multiparty shuffling protocols. 2022.

[28] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and
Dan Boneh. Express: Lowering the cost of metadata-hiding
communication with cryptographic privacy. 2021.

[29] Facebook. Messenger secret conversations tech-
nical whitepaper. https://about.fb.com/wp-
content/uploads/2016/07/messenger-secret-
conversations-technical-whitepaper.pdf, July
2016.

[30] Niv Gilboa and Yuval Ishai. Distributed point functions and
their applications. In EUROCRYPT, 2014.

[31] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
play any mental game or A completeness theorem for protocols
with honest majority. In STOC, 1987.

[32] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message
franking via committing authenticated encryption. In CRYPTO,
2017.

[33] Rawane Issa, Nicolas Alhaddad, and Mayank Varia. Hecate:
Abuse reporting in secure messengers with sealed sender. IACR
Cryptol. ePrint Arch., 2021.

[34] Linsheng Liu, Daniel S. Roche, Austin Theriault, and Arkady
Yerukhimovich. Fighting fake news in encrypted messaging
with the fuzzy anonymous complaint tally system (FACTS).
IACR Cryptol. ePrint Arch., 2021.

[35] Donghang Lu and Aniket Kate. RPM: Robust anonymity at
scale. IACR Cryptol. ePrint Arch., 2022.

[36] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul
Govind, Aniket Kate, and Andrew K. Miller. Honeybadgermpc
and asynchromix: Practical asynchronous MPC and its appli-
cation to anonymous communication. In ACM CCS, 2019.

[37] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. In-
differentiability, impossibility results on reductions, and appli-
cations to the random oracle methodology. In TCC, 2004.

[38] Sanketh Menda and Michael Rosenberg. amaze. https://
github.com/sgmenda/amaze, 2022.

[39] Zachary Newman, Sacha Servan-Schreiber, and Srinivas De-
vadas. Spectrum: High-bandwidth anonymous broadcast. In
NSDI, 2022.

[40] Charlotte Peale, Saba Eskandarian, and Dan Boneh. Secure
complaint-enabled source-tracking for encrypted messaging.
In ACM CCS, 2021.

[41] Phillip Rogaway. Authenticated-encryption with associated-
data. In ACM CCS, 2002.

[42] Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[43] Nigel Smart and Peter Scholl. FHE-MPC notes.
https://homes.esat.kuleuven.be/~nsmart/FHE-
MPC/Lecture8.pdf, November 2011.

[44] Nirvan Tyagi, Paul Grubbs, Julia Len, Ian Miers, and Thomas
Ristenpart. Asymmetric message franking: Content modera-
tion for metadata-private end-to-end encryption. In CRYPTO,
2019.

[45] Nirvan Tyagi, Ian Miers, and Thomas Ristenpart. Traceback
for end-to-end encrypted messaging. In ACM CCS, 2019.

[46] Mark N. Wegman and Larry Carter. New hash functions and
their use in authentication and set equality. J. Comput. Syst.
Sci., 22(3):265–279, 1981.

[47] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and
Aaron Johnson. Dissent in numbers: Making strong anonymity
scale. In OSDI, 2012.

[48] David Wu. Lecture notes on secret sharing and Beaver
triples. https://crypto.stanford.edu/cs355/18sp/
lec7.pdf, 2018.

https://cryptobook.us
https://cryptobook.us
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://github.com/sgmenda/amaze
https://github.com/sgmenda/amaze
https://homes.esat.kuleuven.be/~nsmart/FHE-MPC/Lecture8.pdf
https://homes.esat.kuleuven.be/~nsmart/FHE-MPC/Lecture8.pdf
https://crypto.stanford.edu/cs355/18sp/lec7.pdf
https://crypto.stanford.edu/cs355/18sp/lec7.pdf

A Formal Security Definitions

Definition A.1 (Sharing Confidentiality). We define the
shared franking confidentiality experiment

CONF[A ,Π,λ,N,Q,NM,b]

with respect to a stateful adversary A who makes at most Q
queries to an oracle OhonProcess, shared franking scheme Π,
security parameter λ, number of servers N ∈ N, number of
malicious servers NM such that NM < N, and a bit b ∈ {0,1}.
The experiment proceeds as follows. We will use M to denote
the message space for Send.

CONF[A ,Π,λ,N,Q,NM,b] :

M← A(λ,N,NM)

where M ⊂ {1, ...,N}, |M|= NM(else output 0)

b′← AOhonProcess(λ,N,M)

if b′ = b : output 1; else : output 0
OhonProcess(kU ,m0,m1) :

if b = 0 : (w1, ...,wN)← Send(kU ,m0,N)

else : (w1, ...,wN)← Send(kU ,m1,N)

malw← (wi)i∈M

if 1 /∈M : output (malw,⊥)
else :
vi,w′i← Process(N, i,wi) for i ∈ {2, ...,N}\M

honw′← (w′i)i∈{2,...,N}\M

output (malw,honw′)

We define the confidentiality advantage of A as

CONFadv(A ,Π,λ,N,Q,NM)

=
∣∣∣Pr[CONF[A ,Π,λ,N,Q,NM,0] = 1

]
−Pr

[
CONF[A ,Π,λ,N,Q,NM,1] = 1

]∣∣∣.
We say that a shared franking scheme Π satisfies εconf -
confidentiality if for all efficient adversaries A , security pa-
rameters λ ∈ N,and N ∈ N, it holds that

CONFadv(A ,Π,λ,N,Q,NM)≤ εconf(λ).

We say that Π has confidentiality if εconf(λ)≤ negl(λ).

Definition A.2 (Accountability). We define the accountability
experiment ACCT[A ,Π,λ,N,Q] with respect to an adversary
A who makes at most Q queries to an oracle Overification,
shared franking scheme Π, security parameter λ, and number
of servers N ∈ N. The experiment is defined as follows.

ACCT[A ,Π,λ,N,Q] :

win← 0

kS←R KS

AOfrank,OVerification(λ,N)

output win

Ofrank(w1,w′2, ...,w
′
N ,ctx) :

v1←ModProcess(N,kS,w1,ctx,(w′2, ...,w
′
N))

output v1

Overification(k∗U ,w
∗
1,v
∗
2, ...,v

∗
N ,w

′
2, ...,w

′
N ,ctx

∗) :

v∗1←ModProcess(N,kS,w∗1,ctx
∗,(w′2, ...,w

′
N))

res← Read(k∗U ,N,(v∗1, ...,v
∗
N))

output 0 if res=⊥
(m∗, t∗)← res

ctx∗∗← Verify(kS,m∗, t∗)

win← 1 if ctx∗∗ =⊥ ∨ ctx∗∗ ̸= ctx∗

output win, res

We define the accountability advantage of A as

ACCTadv(A ,Π,λ,N,Q) = Pr
[
ACCT[A ,Π,λ,N,Q] = 1

]
,

and we say that the shared franking scheme Π satisfies
εacct−accountability if for all efficient adversaries A , secu-
rity parameters λ ∈ N, and N ∈ N, it holds that

ACCTadv(A ,Π,λ,N,Q)≤ εacct(λ).

We say that Π has accountability if εacct(λ)≤ negl(λ).

Definition A.3 (Unforgeability). We define the unforgeability
experiment FORG[A ,Π,λ,N] with respect to an adversary A ,
shared franking scheme Π, security parameter λ, and number
of servers N ∈ N. The experiment is defined as follows.

FORG[A ,Π,λ,N] :

win← 0
kS←R KS

T ←{}
AOsend,Overification(λ,N)

output win

Osend(kU ,w1,v2, ...,vN ,w′2, ...,w
′
N ,ctx) :

v1←ModProcess(N,kS,w1,ctx,(w′2, ...,w
′
N))

(m′, t)← Read(kU ,N,(v1, ...,vN))

if (m′, t) =⊥ : output ⊥
ctx′← Verify(kS,m′, t))

if ctx′ =⊥ : output ⊥
T ← T ∪{(m′,ctx′, t)}
output v1

Overification(m∗, t∗) :

ctx∗← Verify(kS,m∗, t∗)

Hecate Shared Franking Plain Franking

Preprocess 61.3µs N/A N/A
Send 36.1µs 30.1µs 21.6µs
Process 32.0µs 15.7µs 12.9µs

or 2.2µs
Read 215.8µs 27.7µs 17.6µs
Verify 222.9µs 31.2µs 27.8µs

Figure 7: Computation time for various operations in Hecate [33],
shared franking (our work), and plain message franking [29] on 1 KB
messages. We report numbers for shared franking with two servers,
and include the times for both the moderator and non-moderator
servers to process messages.

win← 1 if ctx∗ ̸=⊥ ∧ (m∗,ctx∗, t∗) /∈ T

output win,ctx∗

We define the unforgeability advantage of A as

FORGadv(A ,Π,λ,N) = Pr
[
FORG[A ,Π,λ,N] = 1

]
,

and we say that the shared franking scheme Π satisfies
εforg−unforgeability if for all efficient adversaries A , security
parameters λ ∈ N, and N ∈ N, it holds that

FORGadv(A ,Π,λ,N)≤ εforg(λ).

We say that Π has unforgeability if εforg(λ)≤ negl(λ).

B Additional Evaluation Data

We repeated our evaluation on GCP, and Figure 7 shows a
version of Figure 6 with data from the GCP evaluation. The
GCP evaluation was run on a e2-standard-4 instance using
Ubuntu 22.04.

On this instance, the cost of shared franking approaches
that of plain franking, with all aspects of the protocol taking
less than 1.6× the time of the corresponding plain franking
operations. Repeating the evaluation on a lower-end server
shows that, while the performance gap between the systems
is reduced, a large gap remains between the time it takes for
our scheme and Hecate to (pre-)process a message and verify
reports to the moderator – the main server-side operations.
Client-side sending time is much closer between the two
schemes, but the gap in time to read messages remains large
as well.

To verify that the performance characteristics of our scheme
remain consistent when deployed in a networked setting, we
also ran the processing phase of our scheme between servers
located on the east and west coast. The server code for this
evaluation is written in Go but uses our C implementation for
the shared franking operations.

2 4 6 8 10
0

100

200

Number of Servers

Ti
m

e
[m

s]

Number of Servers vs Running Time
1 KB Messages Over Network

Server Processing Time
Client End-to-End Time

Figure 8: Processing time, including network costs, as number of
servers increases. Since the primary latency bottleneck in this setting
is the network, the server processing time is mostly flat around the
ping time between the servers. The overall processing time from
the client’s perspective – including time spent setting up a TLS
connection to the moderator, waiting for the servers to receive and
process the message, and reading the result – are about 4.1-4.2× the
ping time, reflecting the number of east/west network round trips in
our evaluation setup. Times are averages of 10 runs of the protocol.

Our setup consists of one server on the east coast behaving
as the moderator, a number of servers on the west coast (sim-
ulated by a single larger server) playing the role of the other
servers, and another server on the west coast playing the role
of the client. All messages from or to the client are sent to
the moderator with the message encrypted under the receiv-
ing party’s public key. This ensures that all the servers can
receive their shares in the same order and also maximizes the
communication cost between servers because all messages
are sent between the east and west servers. There is no direct
communication between the servers and client simulated on
the west coast.

We had our e2-standard-4 GCP instance running in the
us-east-4b zone simulating the moderator, an e2-standard-16
GCP instance running in the us-west1-c zone playing the role
of the other servers, and an e2-standard-2 GCP instance in the
us-west1-c zone playing the role of the client. The ping time
between the east and west servers was 55.7ms. To isolate the
performance characteristics of the shared franking scheme
itself, our evaluation does not shuffle, mix, or otherwise run an
anonymous message delivery process on the message shares
sent to the servers. The servers only compute the processing
stage of the shared franking protocol and send back the results
to the moderator, who then runs the modProcess algorithm
and returns the resulting shares to the client.

The results of this experiment, shown in Figure 8, demon-
strate that, for unloaded servers, our scheme does not incur
notable additional costs as the number of servers increases.
The cost to the client increases very slightly due to the re-
quirement that the client decrypt the messages it has received
from each of the servers.

	Introduction
	Design Goals
	Formalizing Shared Franking
	Defining Security

	Franking for Secret-Shared Messages
	Background: Message Franking and Compactly Committing Encryption
	Our Shared Franking Protocol
	Formal Protocol Description
	Security

	Integration with Metadata-Hiding Communication Schemes
	Schemes based on MPC
	Schemes Based on DC-nets

	Implementation and Evaluation
	Conclusion and Future Work
	Formal Security Definitions
	Additional Evaluation Data

