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Abstract
This paper presents Reef, a system for generating publicly ver-
ifiable succinct non-interactive zero-knowledge proofs that
a committed document matches or does not match a reg-
ular expression. We describe applications such as proving
the strength of passwords, the provenance of email despite
redactions, the validity of oblivious DNS queries, and the
existence of mutations in DNA. Reef supports the Perl Com-
patible Regular Expression syntax, including wildcards, al-
ternation, ranges, capture groups, Kleene star, negations, and
lookarounds. Reef introduces a new type of automata, Skip-
ping Alternating Finite Automata (SAFA), that skips irrel-
evant parts of a document when producing proofs without
undermining soundness, and instantiates SAFA with a lookup
argument. Our experimental evaluation confirms that Reef
can generate proofs for documents with 32M characters; the
proofs are small and cheap to verify (under a second).

1 Introduction
Regular expressions (regex) are used to represent and match
patterns in text documents in a variety of applications: content
moderation, input validation, firewalls, biology, and more.
Existing use cases assume that the regex and the document
are both readily available to the querier so they can match the
regex on their own with standard algorithms. But what about
situations where the document is actually held by someone
else who does not wish to disclose to the querier anything
about the document besides the fact that it matches or does not
match a particular regex? While slightly unusual, the ability
to prove such facts enables interesting new applications:
• Proving strong passwords. Asymmetric or Augmented Pass-
word Authenticated Key Exchange (aPAKE) [43, 70, 73, 78]
allow clients to register and authenticate to a server without
disclosing their password to the server. However, aPAKE
protocols have no mechanism for the server to confirm that
the client chose a “strong password”. This feature is crucial
in corporate settings where password policies help prevent
account compromise. Clients could convince the server of
this fact with a proof that their secret password satisfies a
password strength regex chosen by the server (e.g., at least 10
alphanumeric and one special character).
• Disclosing content with redactions. DomainKeys Identi-
fied Email (DKIM) [41] is a protocol whereby a sending
mail server signs the header and payload of an email so that
recipients can verify its authenticity. Journalists use DKIM

signatures to establish the veracity of leaked emails. It might
often be desirable to release a redacted version of an email
(e.g., an email without a name) while allowing the public to
confirm, via DKIM, the authenticity of the redacted email.
By creating a regex that expresses the public content of the
email, with redactions being expressed as wildcards with
Kleene star, it is possible to show that the redacted email is
derived from an email whose DKIM signature verifies under
the sending mail server’s public key. A similar idea is that
of selectively disclosing fields in JSON web tokens [45] or
verifiable credentials [10, 57] by “redacting” all other entries.
• ODoH blocklisting. Oblivious DNS over HTTPS [49] al-
low clients to obtain a domain’s IP address without revealing
which domain they are accessing. This technology improves
privacy for users, but network administrators within organi-
zations lose the ability to block certain sites (e.g., known
malware domains) as they can no longer see which domains
users query. One can reintroduce this functionality by asking
clients to generate ZKPs showing that their DNS queries do
not match a set of forbidden regexes before those packets are
allowed through to the ODoH proxy. The same idea applies
more generally to TLS traffic through middleboxes [40].
• Proofs about genes. DNA is used to establish ancestry or
the presence of particular mutations. If sequencing companies
(e.g., 23andme) were to provide users a signed commitment
to their sequenced genome, users would be able to prove prop-
erties of their DNA (expressed as a regex) without having to
disclose it in full. For instance, users could prove the presence
of a certain genetic mutation when they order personalized
medicine online or sign up to clinical trials.

In theory, the above applications can be designed with some
suitable combination of encryption, commitments, signatures,
and zero-knowledge proofs. In practice, creating efficient
proofs over arbitrary unstructured text is far from trivial.

This is precisely the problem we tackle with Reef, a com-
piler and runtime system that allows an entity to commit to a
secret document and then subsequently prove that the docu-
ment matches or does not match one or more public regexes
without revealing anything else about the document. Building
Reef requires answering the following research questions:

1. How should one commit to a text document D?

2. Given a commitment to a document D, how can one arith-
metize (i.e., express as some type of circuit) the statements
“D matches/does not match a regex R”?



3. What regex features are needed to enable realistic applica-
tions (e.g., quantifiers, alternation, lookarounds, etc.) and
what is the best way to arithmetize these features?

4. What kind of zero-knowledge proof systems work well
with the chosen commitment and arithmetization schemes?

To answer these questions, Reef marries new theoretical
ideas and low-level techniques into a compiler that automati-
cally arithmetizes arbitrary regexes. In particular, Reef:

Exploits NP checkers. Reef uses the common observation
that checking the answer of a computation is often cheaper
than finding the answer in the first place (either asymptotically
or concretely). As a result, Reef does not arithmetize algo-
rithms for finding regex matches/non-matches (e.g., Thomp-
son’s NFA [74], recursive backtracking). Instead, the prover
in Reef computes the answer (i.e., finds the match and the
relevant locations within the document, or establishes that
there is no match) with a fast regex engine we built, and then
proves that this answer satisfies criteria that implies the docu-
ment has a match (or no match). Only this NP checker needs
to be arithmetized and proven with a ZK proof system.

Reef’s NP checker supports a wider class of regexes than
all prior works, while also producing smaller arithmetizations.
In particular, some works [11, 32] transform the regex into
a DFA or NFA, and then prove that if one feeds the entire
document into the automaton the final state is accepting/non-
accepting. This approach results in O(|D| · |QDFA| · |Σ|)
constraints (or gates in some arithmetic or boolean circuit)
to prove that there is a match, where D is the secret doc-
ument, QDFA is the set of states in the DFA, and Σ is
the alphabet. Three recent proposals, ZK-Regex [56], Zom-
bie [79], and zkreg [64] reduce these costs: ZK-Regex
and Zombie leverage Thompson’s NFA (TNFA) and pro-
duce O(|D| · |QTNFA|) constraints, while zkreg’s use of Aho-
Corasick DFA (ADFA) leads to O(|D|+ |QADFA|) constraints.

Reef’s NP checker is fundamentally different from the
above approaches: it does not require feeding the entire doc-
ument into the automata, only the relevant characters. This
allows the prover to skip vast amounts of unnecessary work.

Introduces skipping automata. Above we allude to the idea
of “skipping” irrelevant characters whenever possible. But
how do we rigorously define this notion and what does “when-
ever possible” mean? To answer these questions, we introduce
a new type of finite automata for regexes that we call Skipping
Alternating Finite Automata (SAFA). SAFA generalize NFA
to include the ability to change the cursor (i.e., the index of
the next character to read in the input) following certain rules.
SAFA allow Reef’s prover to skip processing entire chunks
of a document when the regex contains wildcard ranges such
as “.*” or “.{4,100}” and let Reef handle lookarounds,
which are common in password strength regexes and which
no prior work supports.

Compared to prior works, Reef’s NP checker can be ex-
pressed in O(α log(|D| + |QSAFA| · |Σ|)) constraints, where

|QSAFA| ≤ |QTNFA| ≤ |QADFA| and α = O(|D| · L), where L is
the number of lookarounds in the regex. There are two points
worth emphasizing about the complexity of Reef’s checker.
First, SAFA have exponentially fewer states than TNFA and
ADFA for many common regexes (§3.2). Second, α is much
smaller than the above worst-case upper bound whenever
Reef can skip characters. For instance, if Σ = {a, b, c}, the
regex R = “a.*b” (meaning D has “a” eventually followed
by “b”) results in α = 2 regardless of the size of D be-
cause Reef can skip all the wildcard characters. In contrast,
R = “^[a-b]*$” (meaning D can contain any number of
“a” or “b” characters but no “c”) results in α = |D| because we
fundamentally have to check every character in the document
to make sure it is not “c”.

Leverages recursion. We observe that Reef’s NP checker
essentially performs the same high-level operations (looking
up a character in the document and then transitioning to a
new state) over and over. Such repeated structure is suitable
for recursive zkSNARKs such as Nova [52], where the prover
establishes that it ran some step function F, each time on a
different input, until some terminating condition holds. Reef’s
termination condition is designed to allow the prover to safely
stop proving as soon as the SAFA reaches an accepting state
and the cursor points to the last character. This frees the
prover from having to process the entire document (since in
many SAFA the prover can skip to the last character without
changing states) while hiding how many times F executes.

Commits to the document. Before Reef can be used, the
document D needs to be committed in a form that allows
Reef’s NP checker to cheaply read arbitrary entries in D. Who
generates the commitment depends on the application. In
the gene example, the commitment is generated and signed
by a trusted party (23andme). In the other applications, the
commitment is generated by the user who must also supply
a proof that ties the underlying document to the data in the
application (e.g., the DKIM signature).

Reef uses a polynomial commitment [13, 23, 37, 54, 76, 80]
for multilinear polynomials to commit to D, and a lookup
argument [51] compatible with recursive proof systems. A
lookup argument is a cryptographic protocol for proving that
some entry exists in a public or committed table (polynomial)
without revealing the entry. When the lookup argument is
integrated into the step function F, it allows F to access any
entries in D without revealing them to the verifier.

Supports table projections. Reef modifies the nlookup ar-
gument [51] to support lookup operations on table projections.
Given a commitment to a table such as the document D, a
projection is a smaller table Dproj derived from one or more
contiguous chunks of D (the choice of which chunks of D
are projected is public information). Reef then runs nlookup
on Dproj, which incurs costs that are proportional to |Dproj|.
The verifier can still check that all lookups to Dproj were done
correctly by using the original commitment to D.



r, s ::= α α ∈ Σ
| ^ / $ document start / end
| . wildcard character
| rs concatenation
| r | s alternation
| r? / r * / r+ quantifiers
| [αi − αj] character classes
| [^αi . . . αj] negation of characters αi . . . αj
| r{m} / r{m,} / r{m,n} repetition ranges
| (?=r) / (?<=r) lookahead / lookbehind

FIGURE 1—Reef supports the entire PCRE syntax [7] except for
backreferences and subroutine references.

Table projections are a powerful construct in Reef and
might be of independent interest. For example, a DNA chro-
mosome results in a document D with tens of millions of
entries. However, regexes on DNA usually have the form:
R = “.{1000}TT(T|C).{5000}CT(T|C|A|G).*”,
which says that the first thousand entries are irrelevant, but
right after we should see TTT or TTC, and 5000 entries later
we should see CTT , CTC, CTA, or CTG; beyond that is ir-
relevant. SAFA allows Reef to skip all the irrelevant entries.
However, in each step of the recursive proof system, nlookup
internally invokes the sum-check protocol [55] which incurs
costs linear in |D| (millions of entries) in order to prove the ta-
ble accesses. With projections, nlookup runs the sum-check
protocol over Dproj (under 10 entries).

Combines private and public tables. To efficiently express
the state transitions and complex skipping rules in SAFA,
Reef again uses a lookup argument. In particular, Reef stores
SAFA’s states, transitions, and skipping rules in a public table
that both the prover and the verifier can derive from the regex.
Given this table, the prover can, with one lookup, prove that
it transitioned to the next state in the SAFA and advanced the
cursor following the prescribed rules.

Having both a private table and a separate public table is
undesirable because lookup arguments amortize their costs
over many lookups (i.e., the more lookups to a table, the
cheaper the per-lookup cost). If one has two tables, then
queries to one table do not apply towards the amortization
of queries to the other table. To remedy this situation, Reef
shows how to combine both private and public tables into a
single hybrid table (without leaking the contents of the private
table) so that all lookups can be done on this combined table,
improving amortization and eliminating repeated fixed costs.

We evaluate Reef on the applications described earlier and
find that it can generate small proofs (tens of KB) in a few sec-
onds, even for large documents such as DNA chromosomes.

2 Background
This section reviews regex matching, rank-1 constraint satis-
fiability (R1CS), NP checkers, and zero knowledge succinct
non-interactive arguments of knowledge (zkSNARKs).

2.1 Regular Expression Matching

Given an alphabet Σ, a regex R is a pattern matching a set
of strings, called the language of R or LJRK ⊆ Σ∗. Figure 1
outlines the basic syntax for the creation and combination of
regexes that Reef supports.

Regexes are converted to deterministic finite automata
(DFA) with known techniques [16, 22, 38, 46, 60, 72]. One
can determine if a document matches a regex R by starting
with the initial state and transitioning states on each character
of the document until reaching a final state. If the final state
an accepting states in the DFA, the document matches R.

A common extension to regexes that Reef supports is
lookarounds (e.g., positive or negative lookaheads and
lookbehinds), a way to only match a pattern if is lead
(or followed) by another pattern. For example, a pass-
word strength regex with two lookaheads might look like
^(?=.*[A-Z])(?=.*[!@#$&^*]).{10,}, meaning
it contains an upper case letter ([A-Z]), a special charac-
ter from {!,@,#,$,&,^,*}, and has length at least 10
characters. The way to think about a lookaround such as
“^(?=R)” for some regex R is that R should be matched
against the input string in the usual way, but once the match
has been found, the cursor (i.e., the next position to process
in the input string) should be reset back to what it was before
the lookaround was processed. DFA/NFA have no notion of
“resetting the cursor” and hence must simulate it by increasing
the number of states exponentially [31].

2.2 zkSNARKs

A zero-knowledge succinct non-interactive argument of
knowledge (zkSNARK) is a cryptographic protocol where
a prover P , convinces a verifier V , that it knows a satisfying
witness to some NP statement without revealing the witness.
zkSNARKs typically target some variant of the NP complete
problem of circuit satisfiability (e.g., R1CS [36, 67], Plonk-
ish [35], AIR [17], CCS [68]), as one can represent arbitrary
computations in this form. Informally, zkSNARKs are:
1. Zero-knowledge: The proof reveals no information to V

beyond the fact that P knows a satisfying witness.
2. Succinct: The size of the proof and its verification is sub-

linear in the size of the satisfiability instance.
3. Non-interactive: No interaction between P and V besides

the transferring of the computation’s output and proof.
4. Argument of knowledge: P must convince V that it

knows a witness that satisfies the instance. This argument
is complete and computationally sound.

• Perfect completeness: If P knows a satisfying witness, P
can always generate a proof that convinces V .

• Knowledge Soundness: If P does not know a satisfying
witness, it cannot produce a proof that V will accept, except
with negligible probability.



2.3 Rank-1 Constraint Satisfiability (R1CS)

We focus on rank-1 constraint satisfiability (R1CS) as this is
the arithmetization supported by the particular implementa-
tion of the zkSNARK we use [52], but all of our ideas apply
to more general arithmetizations (e.g., CCS [68]). R1CS gen-
eralizes arithmetic circuit satisfiability, and an R1CS instance
is given by a tuple (F , A, B, C, io, rows, cols), where F is a
finite field, io is the public input and output of the instance,
A, B, C ∈ F rows×cols are matrices, and cols ≥ |io| + 1. The
instance is satisfiable if and only if there exists a witness
w ∈ F cols−|io|−1 that makes up a solution vector z = (io, 1, w)
such that (A · z)◦ (B · z) = (C · z), where · is the matrix-vector
product and ◦ is the Hadamard product. The entry of z fixed
at 1 allows constants to be encoded.

R1CS Arithmetization. Here we briefly explain how to turn
a simple program into R1CS. Other works [14, 67, 69] have
more complex examples. Suppose that P holds two elements
x0, x1 ∈ F and wishes to convince V that y is the output of the
following computation without leaking anything about x0 or
x1 beyond what is implied by the result.

field foo(field x0, field x1) {
field y;
if (x0 == 30) { y = x1; } else { y = x0/x1; }
return y;

}

To do so, we first express this function as a set of con-
straints (or equations) over elements in F that contain addi-
tions, subtractions, multiplications by constants, and at most
one multiplication between variables. The result is:

guard × (x0 − 30) = 0

guard × (y − x1) = 0

(1 − guard)× (y − prod) = 0

x0 × inv − prod = 0

x1 × inv − 1 = 0

To see why this represents the original computation, ob-
serve that we introduced auxiliary variables called guard, inv,
and prod. Here, P is allowed to assign any values it wishes to
y and the auxiliary variables, but let us assume that P provides
the right values for x0 and x1 (this is usually enforced through
the use of commitments). The only way that all six constraints
are simultaneously satisfied is when: (1) x0 = 30, y = x1, and
guard = 1 (there are many suitable values for the remaining
variables); or (2) x0 ̸= 30, guard = 0, y = prod = x0 × inv,
and inv = x−1

1 . As a result, if P claims that the output is y,
and P can convince V that it knows a satisfying assignment
for variables in the constraints given y, then V is assured that
y is correct.

Our tech report [15] shows how to convert these constraints
into matrices A, B, and C. The solution vector z is (y, 1, w),
where w = (x0, x1, guard, prod, inv) is P’s secret witness.

2.4 NP checkers

While the above example is relatively simple it employs some
clever tricks. In particular, it leverages non-determinism to
transform expensive computations (branches and inverses)
into cheap checkers that merely confirm the answers. For
instance, if F = Zp, computing 1/x with only additions and
multiplications requires log(p) constraints via Fermat’s little
theorem (basically computing xp−2). But in R1CS, we can just
ask P to supply the inverse of x, inv, and simply check that inv
is indeed the multiplicative inverse of x with one constraint:
“inv×x−1 = 0”. This is an example of an NP checker. There
are many others used in SNARKs [14, 21, 44, 69, 77, 81].

In this work, we construct a novel NP checker for regex
matching/non-matching based on a new type of automata.

3 Goals and standard approach
In Reef there are three parties: a committer G, a prover P , and
a verifier V (in many cases G and P are the same entity). G
generates a commitment comm for document D using random
blind r, and provides (comm, D, r) to P , and comm to V .
Later, P wishes to prove that D either does or does not match
a regex R that is public and known to both P and V . Given
this setting, Reef has the following goals:

• Completeness, Soundness, Succinctness, ZK. These are
analogs of the definitions given for zkSNARKs (§2.2) for
the concrete R1CS instance that represents the statement
“I know an opening of comm, and it matches R” (or not).

• Public verifiability: The proof should be verifiable by
anyone who has a commitment of the document and R.

• Expressiveness: Reef should be able to support any regex
written in PCRE syntax [7].

Additionally, our implementation of Reef achieves the fol-
lowing goal, though some settings might not need this and
could use more efficient cryptographic primitives.

• Transparency: All cryptographic parameters for Reef
should be generated without requiring a trusted setup.

3.1 A standard approach

As mentioned in Section 2.1, one can convert a regex into a
DFA and then arithmetize its transition function δ. It boils
down to a chain of if statements that takes as input the current
state and current character in the document (both represented
as field elements) and outputs the next state. For example, if
the alphabet is Σ = {a, b}, and the regex is R = “a+b.*”,
the corresponding DFA would be:

0 1 2

b

a

a

b

{a, b}



Assuming that “a” maps to the field element 0, and “b” to
1, the corresponding δ transition is given by:
field delta(field state, field cur_char) {

if (state == 0 && cur_char == 0) return 1;
if (state == 0 && cur_char == 1) return 0;
if (state == 1 && cur_char == 0) return 1;
if (state == 1 && cur_char == 1) return 2;
if (state == 2 && cur_char == 0) return 2;
if (state == 2 && cur_char == 1) return 2;
return −1; // invalid state or character

}

To express the computation of finding whether a commit-
ted document matches the regex, one would then: (1) open
the commitment to obtain the document (an array of field
elements); (2) call δ once for every character in the document
in order; and (3) add a check at the end to see if the final state
is one of the accepting states (another chain of if statements).
The resulting match function is:
field match(field commit, field blind) {
// commit is public input, blind is secret
field[SIZE] document = open(commit, blind);
field state = 0; // initial state

for (i = 0; i < SIZE; i++) {
state = delta(state, document[i]);

}

if (state == 2) { // accepting state in example
return 1; // match

} else {
return 0; // no match

}
}

One would then arithmetize this match function like in the
example in Section 2.3. Indeed, this what some prior works
do [11, 32]. Two recent works [56, 79] improve upon this de-
sign by converting the regex to a Thompson NFA (TNFA) [74]
and performing additional optimizations.

3.2 Limitations of the standard approach

The previous standard approach has many drawbacks. We list
the most salient ones here.

Insufficient Regex Expressiveness. Directly arithmetizing
traditional finite state machines such as DFA, TNFA or Aho-
Corasick DFA (AC-DFA) [12] fails to meet Reef’s expressive-
ness goals. The most recent works in this area lack support
for several common regex features.

For example, Zombie [79] lacks support for lookarounds.
ZK-Regex [56] does not handle lookarounds, negations in
character classes such as “a[^[:space:]b”, or nega-
tions of entire matches (i.e., proving a non-match). Finally,
zkreg [64], which is based on AC-DFA, only supports
matching on a fixed set of strings. Unbounded repetition
such as “ab*c” is unsupported, and negation of character
classes, negation of entire matches, or wildcard ranges such as
“a.{100}b” lead to an exponential number of states (2100).
Poor scalability. The number of R1CS constraints produced
by the standard approach for proving that a document D

matches is O(|D| · |QDFA| · |Σ|), where |QDFA| is the number of
states of the corresponding DFA. Zombie [79] improves this
to O(|D|·|QTNFA|). But for applications where the document is
millions of characters this still results in billions of constraints,
even when the regex is small. In contrast, Reef’s NP checker—
based on SAFA (§5)—has O(α log(|D|+ |QSAFA| · |Σ|)) con-
straints, where |QSAFA| ≤ |QTNFA|. As we discuss in Sec-
tion 6.2, in the worst case α = O(|D| · L), where L is the
number of lookarounds in the regex; but in practice α is small
(under 100 for even our largest document).

4 Improving the standard approach
One way to improve on the standard approach is to observe
that the match function is well suited for a recursive proof
system (this observation has been made many times in the
context of other state machines such as blockchain rollups).
In a recursive zkSNARK [18–20, 24–26, 50, 51], instead of
arithmetizing the entire match function, we arithmetize one
step of it. The result is:

field[3] match_step(field[] commit, field[] blind,
field state, field cursor) {

field cur_char = open_at(commit, blind, cursor);

// accepting state and end of document (EOD)
if (cur_char == EOD && state == 2) {

return {0, 0, 1}; // match
}

state = delta(state, cur_char);
return {state, cursor + 1, 0}; // not yet

}

The above match_step function takes as input a public
polynomial [13, 23, 37, 47, 54, 76, 80] or vector [59] commit-
ment (which could consist of multiple field elements) and the
corresponding secret blind(s). These types of commitments
have the nice property that they allow opening a particular
entry within the commitment rather than having to open the
entire document at once. match_step additionally takes the
current state and the current cursor. If the current state is ac-
cepting and the cursor points to the end of D (“$” in PCRE
syntax, denoted by a special field element that the committer
G appends to D to mark the end), D is a match and the return
value is [0, 0, 1]. Else, match_step executes the DFA’s δ
function and returns the tuple [state, cursor + 1, 0].

A prover P in a recursive zkSNARK would then take the
R1CS instance representing the match_step function, and
produce a proof π0 that establishes that running match_step
correctly on a public commitment, private blinds, state = 0,
and cursor = 0, produces the output out. Of course, proving a
single step is not very useful (we could have done this without
recursion); the key benefit is that a recursive proof system
allows P to prove that it verified a prior proof (π0 in this
context) in addition to proving another match_step on the
same public commitment, but the state and cursor returned



0 : ∀

1 : ∃

2 : ∃

3 : ∃ 4 : ∃

5 : ∃

6 : ∃7 : ∃8 : ∃

9 : ∃ 10 : ∃ 11 : ∃

ϵ ϵ ϵ

a

b

•

b

a

•

•

••

•

• • •

FIGURE 2—AFA for regex R = ^(?=.*a)(?=.*b).{2,6}$.

by the prior step (out) which are bound by π0. In this way,
P can prove that, starting with state = 0 and cursor = 0,
if P runs match_step some number of times, eventually
out = [0, 0, 1]. The verifier V only learns this final value of
out (and none of the intermediate values), in addition to a
proof πfinal that establishes that P checked all prior proofs
and the last step was executed correctly.

This approach has four benefits. First, there is no need to
unroll the loop and therefore the number of R1CS constraints
is no longer fundamentally tied to the size of the document.
This enables the second benefit: P can stop proving as soon
as match_step outputs [0, 0, 1]. While in the construction
presented so far P can only “stop” once it has gone through
the entire document sequentially (so as to reach the EOD
special character), Reef has the ability to skip many characters
(possibly all the way to the end)—allowing the prover to stop
without accessing the entire document. Third, breaking up the
proof into small steps means that P can work on one step at a
time, significantly reducing the amount of memory needed.
Last, with recursive zkSNARKs like Nova [52], if P wants to
prove the same step function many times (which is the case
with match_step), there are significant performance gains.

5 Skipping Alternating Finite Automata
The use of recursion is a necessary first step in Reef, but it
still falls short of our goals of expressiveness and efficiency.

In this section we introduce a new type of finite automaton
called SAFA. The motivation for SAFA is twofold; avoid the
state explosion problem for regex with lookarounds (§2.1)
and capture the smallest set of characters within a document
that must be checked in order to confirm that it matches a
regex. We start by reviewing Alternating Finite Automata
(AFA) which are a generalization of NFA. SAFA extend AFA
to include the notion of skips.

5.1 Alternating Finite Automata (AFA)

AFA [27] are finite automata that generalize NFA by labeling
states with an existential (∃) or a universal (∀) quantifier. An
∃ state is identical to a state in an NFA; the AFA merely reads
the character at the current cursor, advances the cursor, and
then transitions to any one of its possible next states. A ∀
state is very different. First, the AFA creates a copy of the
remaining characters in the input string (starting at the current
cursor until the end of the string) for each of its transitions
(i.e., if there are 10 transitions it will create 10 copies of the
input string). Then, in parallel, it transitions to every next state,
and feeds each of those states their own independent copy of
the input. For the AFA to accept an input string, all of the
parallel branches need to end in accepting states. Intuitively,
∀ states capture the conjunction of multiple sub-automata,
each of which operates independently on the provided input.

Formally, an AFA [27] is a 6-tuple (Q,Σ, q0,λq, δ, F),
where Q is the set of all states; Σ is the alphabet; q0 ∈ Q is
the initial state; λq : Q → {∀, ∃} is a labeling that assigns
each state q either ∀ or ∃; δ ⊆ Q × Σ × Q is a transition
relation that defines final states with respect to initial states
and input characters; F ⊆ Q is the set of accepting states.

Example. Suppose we want to match documents of
length between 2–6 that contain “a” and “b” defined
over Σ = {a, b, c}. This is given by the regex R =
“^(?=.*a)(?=.*b).{2,6}$”. Representing R as an
NFA requires creating an automaton that accepts the alter-
nation of all strings that contain both “a” and “b” and have
length between 2 to 6 (“ab”, “.ab”, “a..b”, “.a.b.”,
etc.). The minimal NFA for this has 17 states (the 16 shown
here [9] plus a sink state for all invalid characters). In contrast,
one can match R with the 11-state AFA given in Figure 2.

To understand this AFA, first recall epsilon transitions,
which AFA inherit from NFA and which mean that the au-
tomaton can take any transition with an ϵ label without advanc-
ing the cursor or reading any character from the document.
Second, notice the state at the top is labeled ∀, which means
that after processing the document, all of its transitions (the
3 vertical branches) should end in an accepting state. The
transitions of ∀ states are special in that each creates a private
copy of the cursor initialized to the value of the cursor when
the ∀ state is reached. As a result, states 1, 3, and 5 will all
have their own cursors (i.e., advancing the cursor of the left
branch does not affect the cursor of the right branch).

Consider for example the document D = acbcc which is
accepted since the three branches out of state 0 run in parallel
and each branch terminates in an accepting state. If instead
D = bccbb, the middle and right branches both terminate in
accepting states, but the left branch does not.

The above example immediately shows that AFA could
provide savings over the automata considered by prior works.
Indeed, if a regex requires n states to be represented in an
AFA, the same regex may require 22n

states in a DFA [31].
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FIGURE 3—SAFA for regex R = ^(?=.*a)(?=.*b).{2,6}$
over alphabet Σ = {a, b, c}. Skip(∗) means the skip {[0,+∞)}.

5.2 SAFA: Supporting Skips

AFA are a great way for Reef to increase the expressiveness
of the supported regexes without incurring exponential costs,
but AFA—just like DFAs and NFAs—are designed from the
lens of “computation” rather than the lens of “verification”.
This fundamental distinction between compute and checking
leaves a lot of opportunities unexplored.

As a concrete example, consider the regex R =“.*ab$”
and the document D =“aaab”. AFA (much like NFA) rep-
resent “.*” by a single, non-accepting state, with the option
to loop or progress forward with an ϵ transition. Finding the
solution to the question “is D ∈ LJRK”? (meaning is D in
the language defined by R) requires computing both the case
in which the first “a” in D matches the “.*” in R and the
case in which it matches the “a” in R. Confirming a match is
simpler: given a path through the AFA for D, we just need to
check that the path leads to an accepting state.

We can even take this concept further. When computing,
bounded wildcard matching has to be explicitly unrolled.
“.{m,n}”, “.{n}”, and “.{n,}” all require at least n tran-
sitions in an NFA or AFA. We see this in the right branch of
the AFA in Figure 2 (states 4 through 10), where each state
in “.{2,6}” has to be included explicitly.

But when checking, what if we could simply move the
cursor forward by a number between 2–6 (inclusive), and
carry on? Since “.{2,6}” is a wildcard, the content does
not matter; what matters is that a wildcard region of the
appropriate length exists. To express wildcard regions, we
introduce skips. A skip is a finite set of non-overlaping in-
tervals, s = {i1, . . . , in}, where each interval is of the form
i = [start, end] or i = [start,∞). Both start and end are non-
negative integers and start ≤ end; for [start,∞), the interval
is unbounded on the right.

The idea is that when we reach a state that has a skip tran-
sition defined by some skip s, instead of reading a character
from the input and transitioning to the next state based on the
read value, the automaton advances the cursor by any amount
within the intervals in s, and then moves to the next state.

Note that we need s to be a set rather than a single interval
because of regexes such as “(.{2,6}|.{8,10})a” that
have multiple acceptable disjoint wildcard regions. Also, ob-
serve that skips generalize epsilon transitions: we can simply

define skip ϵ = {[0, 0]}. Third, we can support Kleene-star
wildcard regions with Skip(∗) = {[0,∞)}, meaning any cur-
sor less-than the length of the document works. The use of the
∞ symbol allows the separation of SAFA from the document
to which it is applied.

SAFA. With the above notion of skips we can then de-
fineSkipping Alternating Finite Automaton (SAFA) as the 8-
tuple (Q, E,Σ, q0,λq,λe, δ,F), where Q is the set of all states
(nodes); E is the set of all transitions (edges); Σ is the alpha-
bet; q0 ∈ Q is the initial state; λq : Q → {∀, ∃} defines the
label for each node q to be either ∀ or ∃; λe : E → Skip ⊎ Σ
sets the label for each edge e as either a skip s or α ∈ Σ;
δ ⊆ Q × E × Q is the transition relation; and F ⊆ Q is the
set of accepting states. The symbol ⊎ is the set disjoint union.

Much of this definition should look similar to the AFA
in Section 5.1. The only difference is the addition of two
new fields: E and λe. E is simply the set of all transitions.
λe can be thought of as an analog of λq, but over transitions
instead of states. It labels each transition e ∈ E as taking a
single step via a character (as is the case in AFA and NFA),
or as a skip, which does not consume any characters from the
document but increases the cursor non-deterministically by
some amount in s.

Example. We defer the formal definition of skips and the
various transitions to our tech report [15]. In Figure 3 we
show the SAFA that corresponds to the AFA from Figure 2.
The SAFA replaces the long chain of states (4–10) in the

AFA with Skip{[2, 6]}. This compression is possible because
ϵ (the identity element) followed by skip s is just s.

The examples in Figures 2 and 3 provide the intuition
for why SAFA might be cheaper to represent in an NP
checker than AFA, while also being computationally equiv-
alent (though SAFA requires the automaton to “know” how
much to skip ahead of time). We formalize the equivalence
between SAFA and AFA by direct translation.

Theorem 5.1. Let S denote a SAFA. There exists an AFA A
such that the language LJSK = LJAK is regular.

The proof is in our tech report [15].

5.3 Designing the SAFA match_step Function

Section 4 introduces a match_step function that is appro-
priate for recursive proof systems. Reef modifies this step
function to support SAFA. Reef’s match_step takes in two
additional arguments: cursor_move, which is the quantity
by which P plans on advancing the cursor in the next transi-
tion, and a stack. One can represent a stack very cheaply with
a simple hash chain (a single field element). A new stack is
simply the value stack = 0. To push a value val just append it
to the hash chain stack = H(stack||val). To pop a value from
stack, P must supply a preimage of stack; the first part of the
pre-image will be the new stack, the other part is the popped
value. That said, in our specific setting we can implement an



field[4] match_step(field[] commit, field[] blind,
field state, field cursor, field cursor_move,
field stack) {

field cur_char = open_at(commit, blind, cursor);

if (cur_char == EOD) { // end of the document
if !is_accept(state) {

return {0, 0, 0, 0}; // no match
}

if (is_empty(stack)) {
return {0, 0, 0, 1}; // match

} else {
// reached accepting state in one branch
// but there are other branches.
// process next branch
stack, (state, cursor) = pop(stack);
return {state, cursor, stack, 0};

}
}
// special handling for forall state
if (is_forall(state)) {
for child in children(state) {

stack = push(stack, (child, cursor));
}
stack, (state, cursor) = pop(stack);
return {state, cursor, stack, 0};

}
// perform character or skip transition
state, cursor = delta(state, cursor, cur_char,

cursor_move);
return {state, cursor, stack, 0};

}

FIGURE 4—Reef’s step function using SAFA.

even more efficient version since we know ahead of time the
maximum depth of the stack (which depends on the number
of nested forall states and the number of transitions). The
details are provided in our tech report [15].

Reef’s match_step function is given in Figure 4. A key
attribute for SAFA is that for a document D to be considered a
match for regex R, all children of a forall state must reach
accepting states. Additionally, all of these children must start
from the same cursor position, which is private. In Reef’s
match_step function, when a forall node is reached a
copy of the cursor and the state ID is pushed onto the stack for
each of the node’s children. When one of the child branches
terminates in an accepting state, its sibling and the original
cursor position are popped from the stack.

Reef’s delta function is then:
field[2] delta(field state, field cursor,

field cur_char, field cursor_move) {
field state, min, max = lookup(state, cur_char);
assert(min <= cursor_move <= max);
assert(cursor <= cursor + cursor_move);
cursor = cursor + cursor_move;
return {state, cursor};

}

Reef relies on lookup tables for determining whether a tran-
sition is valid. This is discussed more in-depth in Section 6,

but in the context of our delta function, they work as fol-
lows: given a current state, character, and proposed quantity
by which to move the cursor, we use a lookup table to validate
the next state, as well as the minimum and maximum quantity
the cursor is allowed to move, based on the type of skip. For
example, if the transition is a skip “{[n,m]}”, then min= n
and max= m. If the transition is Skip(*), then min= 0 and
max= |F | − 1. In addition, we check that the new cursor po-
sition is greater than or equal to the current cursor position
(i.e., that the prover did not decrement the cursor through an
arithmetic overflow). In all other cases max=min= 1.

6 SAFA and Document Lookup Tables
Reef uses two lookup tables. One lookup table is public and
represents the SAFA character and skip transitions; V can
derive this public table from the regex. The other lookup
table represents the document and is private (i.e., its contents
cannot be revealed to the verifier). In each invocation of Reef’s
match_step (§5.3), the document table is accessed to read
the character at the current cursor, and then the transition
table is accessed to determine the next state.

This section reviews lookup arguments (§6.1), how Reef
organizes the SAFA transitions table (§6.2); how it commits
to the private table representing the document (§6.3); how it
supports table projections that help filter which entries in the
private table are relevant to a particular regex (§6.4); and how
it combines both the public and private tables into one hybrid
table that reduces the fixed costs of the lookup argument and
improves its amortization (§6.5).

6.1 Lookup arguments

There are cases where one would want to check that a value
v in an R1CS instance is contained in some table T of size n.
A way to do this when T is public is to “hardcode” T in the
R1CS instance by expressing it as a cascade of if statements
similar to how we arithmetized the DFA’s δ function (§3.1).
Then, we check that v matches one of these if statements and
not the final return. This requires O(|T|) constraints per
lookup. An asymptotically cheaper (but sometimes concretely
more expensive) solution is to use a Merkle Tree where the
leaves represent T . One passes the root of the tree as a public
input and a secret Merkle proof; the R1CS instance computes
log(n) hashes to confirm there is a path to the root given v.

Lookup arguments [30, 34, 51, 71] generalize this idea:
given m values {v0, . . . , vm−1} each in F , lookup arguments
check that all m values are entries in a table T ∈ F n. Crucially,
lookup arguments amortize the costs over the m checks such
that as m increases, the per-lookup cost decreases.

nlookup [51]. We briefly describe nlookup, which is de-
signed for recursive proof systems such as the one we use (§4).
For now, assume that the table is public. Section 6.3 describes
additional techniques to handle private tables.

Let T be a table with n = 2ℓ elements and let T̃ be a multi-
linear polynomial in ℓ variables such that for all i ∈ {0, 1}ℓ,



T̃(i) = T[to-int(i)], where to-int : {0, 1}ℓ → {0, 1, . . . , n−1}
is a function that maps ℓ-sized bit strings to ℓ-bit integers in
a natural manner. Given T̃ , one can then prove that a value
v ∈ T by producing a point q ∈ {0, 1}ℓ such that T̃(q) = v.
nlookup’s core idea is to reduce the task of checking m of
these lookup proofs to evaluating T̃ at a single point. To do
this, the nlookup prover proves:∑

i=1...m

ρi · vi =
∑

i=1...m

ρi ·
∑

j∈{0,1}ℓ

ẽq(qi, j) · T̃(j)

where vi ∈ F is the i-th value claimed by the prover to be in T ,
ρ ∈ F is a random challenge chosen by the nlookup verifier,
and ẽq is a designated multilinear polynomial for performing
Boolean equality checks. This equality can be proven using
the sum-check protocol [55].

On its own, this is sufficient for proving membership of
a set of elements in T . However, nlookup is particularly
beneficial in the case where we would want to look up m
elements multiple times (e.g., during different iterations of the
step function of a recursive proof system). Readers familiar
with the sum-check protocol can recall that in the above
description, the verifier has to evaluate T̃ at a random point at
the end of the sum-check protocol.

In the case where we want to lookup m elements, k sepa-
rate times, nlookup leverages a folding scheme to fold all k
evaluations of T̃ into a single one. It does this by initializing a
running claim vr = T̃(qr) where qr, vr ∈ F ℓ, and qr is chosen
arbitrarily. To incorporate new lookup claims (i.e., polyno-
mial evaluations) into this running claim, nlookup makes a
slight modification to the polynomial above. In particular, the
sum-check protocol is now run over the polynomial:

vr +
∑

i=1...m

ρi · vi =∑
j∈{0,1}ℓ

ẽq(qr, j) · T̃(j) +
∑

i=1...m

ρi ·
∑

j∈{0,1}ℓ

ẽq(qi, j) · T̃(j)

which incorporates the running claim over foldings.

Integrating nlookup into Nova. To use nlookup with
Nova, we encode nlookup’s verifier as an R1CS NP checker.
This involves implementing the sum-check verifier and the as-
sociated Fiat-Shamir transform involving hash computations
as R1CS. We then invoke this NP checker inside Reef’s step
function whenever we want to enforce that a group of R1CS
variables are set to values contained in a table.

The cost to represent the above NP checker is as follows. To
look up m entries in a table of size n within a step function, the
number of constraints depends on the above two components:
(1) sumcheck verifier and variable assignment, which requires
O(m · log n) constraints with small constant; and (2) Fiat-
Shamir transform which requires representing O(log n) hash
function evaluations in constraints, and each hash function
requires hundreds of constraints.

Since expressing the hash functions is the dominant cost,
lookup arguments are designed to amortize this component

over the batch of m lookups. This is in contrast to using
Merkle Trees which requires O(m log n) hash functions rep-
resented as constraints to handle m lookups.

Since the nlookup verifier is encoded as an NP checker in
R1CS, the Nova prover actually needs to know the witness
for this checker so that it can prove the satisfiability of the
statement. To compute this witness, the Nova prover has to
do O(n) finite field operations per series of m lookups. Also,
outside of R1CS (after the Nova verifier has checked the
proof), the verifier performs an additional O(n) finite field
operations at the very end of the protocol. A more detailed
explanation of the protocol can be found in [51, §7] and in
our tech report [15].

6.2 SAFA Lookup table

The lookup table T that Reef uses to encode the SAFA has a
row for each transition in the SAFA and 5 columns—current
state, character, next state, minimum cursor move, and max-
imum cursor move. The function of each of these columns
is covered in Section 5.3. To convert this into the multilinear
polynomial T̃ needed for nlookup we manifest T as a vector
of elements; each element represents an entire row and is
computed by hashing the corresponding 5 columns to pro-
duce a value in F . After a lookup takes place in Reef’s step
function, the result is therefore a single hash digest. To obtain
the columns, the step function has constraints that allow the
prover to supply the five values of the column entries, fol-
lowed by a check that confirms that the hash of these values
matches the looked up digest.

Constraints for SAFA lookups. As we discuss in Sec-
tion 6.1, the number of constraints required for m lookups in
a table of size n using nlookup is O(m · log n) constraints
plus O(log n) hash functions expressed as constraints. Each
of the m lookups represents one SAFA transition. The SAFA
table is of size O(|QSAFA| · |Σ|) in the worst case—a transi-
tion for every character from every state. If the step function
processes one SAFA transition at a time then m = 1 and
the number of constraints to represent the single lookup is
O(log(|QSAFA| · |Σ|)) plus O(log(|QSAFA| · |Σ|)) hashes.

Constraints across all steps. While it may seem that the
total number of transitions (and therefore steps) should be at
most O(|D|), that is not always the case. With no lookarounds,
the total number of transitions is ≤ |D|. However, because
SAFA may have multiple branches for lookarounds, certain
parts of D may be looked up more than once. We thus upper
bound the number of transitions by α = O(|D| · L), where
L is the number of lookarounds in the regex. The number
of constraints needed to check all of the transitions is thus
O(α log(|QSAFA| · |Σ|)) plus O(α log(|QSAFA · |Σ|)) hashes.

Of course, the whole point of using a lookup argument is
to benefit from its amortization, which is why Reef places
multiple SAFA transitions within a single step function based



on the results of our optimizing compiler (§7). As a result,
m ≥ 1, so each step function has m transitions but Reef needs
to run m times fewer steps. In this case, the total number
of constraints across all steps is O(α log(|QSAFA| · |Σ|)) plus
O(αm log(|QSAFA · |Σ|)) hash functions. One might think that
the optimal case is to have all lookups in a single step (which
maximizes the amortization), but this is not so because there
are other considerations as we explain in our tech report [15].

6.3 Committing to a document

To commit to a document D over an alphabet Σ, the committer
G first maps each character in Σ to an element in F . Then,
G simply treats D as a vector in F n. At this point, G can
commit to D using any vector or polynomial commitment [23,
54, 62, 76]. That said, we choose a polynomial commitment
since Reef uses a lookup argument to access SAFA transitions
anyway, so using a lookup argument to access D allows us to
combine both lookup tables to get lower costs (§6.5).

Note that if the optional transparency goal is desired, then
the commitment scheme must be transparent (§3).

Polynomial commitment. G treats the vector D as a multilin-
ear polynomial T̃ in evaluation form and commits to T̃ with
a polynomial commitment. A polynomial commitment is a
tuple of algorithms (Setup, Commit, ProveEval, VerifyEval).
Informally, Setup outputs public parameters pp; Commit takes
pp, a polynomial T̃ , and outputs a hiding and binding com-
mitment to T̃ , CT̃ ; ProveEval takes pp, T̃ , a point q, value v,
and outputs a proof πpoly that T̃(q) = v; VerifyEval takes pp,
CT̃ , q, πpoly, and v and outputs whether T̃(q) = v.

In our implementation we use the Hyrax polynomial com-
mitment (Hyrax-PC) [76, §6.1], but one could make other
choices to get different tradeoffs (e.g., Dory [54] has smaller
commitments but its ProveEval algorithm results in larger
proofs and is more expensive).

Let the Pedersen commitment for a vector x ∈ F n be:

Pedersen(x, b) = hb ·
n∏

i=1

gxi
i

where g1, . . . , gn and h are public random generators of the
group over which the zkSNARK is defined (Pallas elliptic
curve [42] in our case) and b ∈ F is a secret random blind.
Hyrax-PC treats T as the column-major order of a

√
n-by-

√
n

matrix M, and commits to each row of M using a Perdersen
vector commitment. This means that the commitment in Reef
is
√

n group elements, and there are
√

n random blinds.

Making nlookup zero-knowledge. nlookup [51] does not
explicitly discuss a way to guarantee zero-knowledge during
lookups. Here we give a concrete proposal, based on standard
techniques [29, 66, 76]. As we describe in Section 6.1, the
output of the recursive proof system will include an nlookup
running value vr purported to be the evaluation of the multi-
linear polynomial T̃ at a public random point qr ∈ F specified
by the Fiat-Shamir transform. When T is public, V can simply

compute T̃(qr) and check if it equals vr. This is what we do
with the SAFA table (§6.2). However, when T is private, there
are two issues: (1) P cannot give V the claim vr in the clear,
as vr is a weighted sum of the contents of T and would leak
information; and (2) V does not have access to T and hence
cannot compute T̃(qr) on its own.

We address these issues as follows. First, instead of out-
putting vr in the clear, we have the match_step function
output d, where d = H(vr||s1) and s1 is a random secret value
that P chooses. P can make d available to V without revealing
anything about v assuming H heuristically instantiates a ran-
dom oracle. P then computes another proof, πconsistency, with
a separate non-recursive zkSNARK (we use Spartan [66])
for the statement: “given commitment c and public input d,
I know a vr such that d = H(vr||s1) and c = gvr hs2 for some
s1 and s2”, where g and h are appropriate generators of the
polynomial commitment. In effect, πconsistency establishes that
P correctly transformed one type of commitment (d) that is
cheap to compute in R1CS but is not useful to verify poly-
nomial evaluations, into another type of commitment (c) for
the same value vr that can be used to verify polynomial eval-
uations. Furthermore, πconsistency is very cheap to compute
(≈ 300 constraints) as we make c an outer commitment [28]
(i.e., a commitment that is native to the underlying proof
system) and does not need to be expressed in R1CS at all.

Second, recall that V has access to a polynomial com-
mitment of T̃ , CT̃ . P can then give V a proof πpoly =

ProveEval(T̃ , qr, vr), which V can use alongside qr, c, and CT̃

to confirm that T̃(qr) = vr. The key idea is to realize that,
in Hyrax [76] and similar polynomial commitments [23, 54],
the first step of VerifyEval(CT̃ , qr,πpoly, vr) is for V to turn
the claim vr into the Pedersen commitment gvr hs3 for some
s3. However, V already has c = gvr hs2 and a proof πconsistency

that establishes that c is a valid Pedersen commitment for vr.
Hence, V can simply use c instead.

Security. Observe that the verifier sees d, c, CT̃ , qr, πconsistency

and πpoly. From this information, the verifier learns nothing
about vr beyond the fact that d and c commit to the same
value, and that c is a commitment to a correct evaluation
of a polynomial underneath the commitment CT̃ at point qr.
This is because πconsistency and πpoly are both zero-knowledge
arguments, and the three commitments d, c, and CT̃ are hiding.

6.4 Table projections

For proving m lookups over a committed document of size n,
nlookup’s prover incurs O(n) operations over F . Although
these are not expensive group operations, when n is large
(e.g., billions), this can be expensive. On the other hand, in
some applications, it is public information that lookups will
be made to particular portion of the document (though the
actual content within that portion of the document is private).
For example, a study may just care about DNA regions that
start at publicly known offsets.



To address this, we describe an approach to run nlookup
on a projected table (one that contains one or more “chunks”
of an original table) such that the prover incurs costs pro-
portional to the size of the projected table. Furthermore, the
verifier still only needs a commitment to the original table.
The core idea is to leverage certain basic facts about multilin-
ear polynomials to reduce claims about a projected table to
claims about the original table.

We begin with an overview, which we then generalize. Let
T be the original table with n = 2ℓ elements, and T̃ be its
multilinear extension as described in Section 6.1. Suppose
we project T into a smaller table T ′; T̃ ′ is then a multilinear
polynomial in ℓ′ < ℓ variables. It turns out that T̃ ′ and T̃ are
related in a fundamental way. This is what enables us to run
nlookup on T ′. At the end of nlookup, the verifier is left
with a claim about T ′, of the form T̃ ′(qr) = vr. However, the
verifier only has a commitment to the original table T . To
address this, we transform this claim to an equivalent claim
about an evaluation of T̃ , allowing the verifier to check the
claim about T̃ using a commitment to T . We now elaborate.

We use a concrete example, to provide intuition. Suppose
that T = [a, b, c, d, e, f , g, h], so T̃ is a multilinear polynomial
in ℓ = 3 variables. Suppose the projected table is T ′ = [c, d],
so ℓ′ = 1. For this example, it follows that for all qr ∈ F ℓ′

T̃ ′(qr) = T̃(s, qr), where s = 01 ∈ {0, 1}2 = {0, 1}ℓ−ℓ′ .
In the context of nlookup, to check that T̃ ′(qr) = vr, the
verifier can instead check T̃(s, qr) = vr, where s = 01. A
key take-away here is that for 0 ≤ ℓ′ ≤ ℓ, observe that a
specified prefix s ∈ {0, 1}ℓ−ℓ′ “selects” a unique chunk of T
and specifies a particular projection of size 2ℓ

′
.

Note that this approach generalizes to project non-
contiguous chunks of T . For simplicity, suppose that we
want to project two chunks of T , specified with two selectors
s1 ∈ {0, 1}ℓ′ and s2 ∈ {0, 1}ℓ′ , where 0 ≤ ℓ′ ≤ ℓ. The pro-
jected table T ′ = (L, R) is a vector of size 2ℓ−ℓ′+1 and L and
R are vectors of size 2ℓ−ℓ′ , so T̃ ′ is a multilinear polynomial in
ℓ−ℓ′+1 variables. When we run nlookup with the projected
table T ′, the verifier ends up with a claim about the projected
table of the form T̃ ′(qr) = vr, where qr ∈ F ℓ−ℓ′+1. Again,
derived from the properties of multilinear polynomials,

T̃ ′(qr) = (1 − qr[0]) · L̃(qr[1..]) + qr[0] · R̃(qr[1..])

= (1 − qr[0]) · T̃(s1, qr[1..]) + qr[0] · T̃(s2, qr[1..])

Thus to check if T̃ ′(qr) = vr, the verifier can instead check
if (1− qr[0]) · T̃(s1, qr[1..])+ qr[0] · T̃(s2, qr[1..]) = vr, which
makes two evaluation queries to T̃ . Note that this idea gener-
alizes to projecting k > 2 non-contiguous chunks of T .

Low-cost padding to hide document size. In many settings,
one would like to hide not just the content of D, but also
its size. For example, if D is a password, revealing its size
reveals the password’s length. Projections allow the commit-
ment generator G to pad the document to some upper bound
(essentially for free) while allowing P to perform operations

proportional to the unpadded document and without having to
reveal the selector s to V . Our tech report [15] has the details.

6.5 Hybrid private/public lookup argument

Reef’s step function (§5.3) looks up values from two tables:
the public SAFA table (S) and the private document table
(D). We can do this with two separate instances of nlookup,
one for each table. However, this requires m log(|D| · |S|) +
OH(log(|D| · |S|)) constraints where m is the number of
lookups to each table per step.

Instead, we combine both tables into a single hybrid table,
all while preserving the privacy requirements of the document
table. Accessing this hybrid table requires only 2m log(|D|+
|S|)+OH(log(|D|+ |S|)) constraints. This optimization does
not pay off only when one of the tables is multiple orders of
magnitude larger than the other. But we never encountered
an imbalance between |D| and |S| large enough to nullify the
benefits in any of our experiments.

P has access to S and D and can merge the tables by pre-
tending they are two halves of a large table T and running
the nlookup prover. At the end, V will end up with a single
claim about the multilinear extension of T: T̃(qr) = vr, where
qr ∈ F ℓ and ℓ = log(2 · max(|D|, |S|)). Since T in this case
includes private data, V should not see vr in the clear, and
instead receives: d = H(vr||s1), Cvr (a Pedersen commitment
to vr), and a proof πconsistency as we discuss in Section 6.3.

To verify T̃(qr) = vr, V must treat the public and private
parts of the large table as separate “indexable” chunks, similar
to the way projections work. We define T̃(qr) as:

T̃(qr) = (1 − qr[0]) · S̃(qr[1..]) + qr[0] · D̃(qr[1..]) = vr

Notice that this means we need to arrange T such that it
can be divided equally into a public half (indexed by qr[0] =
0) and a private half (qr[0] = 1). The smaller of the two
tables will be padded to the size of the other, which is why
ℓ = log(2 · max(|D|, |S|)) above, and why the hybrid table
becomes inefficient if one table is extremely larger than the
other. Lookups to the public half of the table use exactly the
same indices as before. Lookups to the private half will use
the same indices as before added to 2 · max(|D|, |S|).

Given this structure, P evaluates D̃ at the point qr[1..] and
obtains a value vd ∈ F . P then generates a commitment
Cvd to vd, and a proof πpoly = ProveEval(D̃, qr[1..], vd) that
establishes that D̃(qr[1..]) = vd. For its part, V computes
S̃(qr[1..]) = vs on its own, and runs VerifyEval on πpoly using
the document commitment, CD̃, and Cvd .

So far, we have proceeded very similarly to the verification
of the running claim in the non-hybrid model. But notice that
V must still relate vs and Cvd to Cvr in the following way:

(1 − qr[0]) · vs + qr[0] · vd = vr

This is done as follows. V computes CL, which is a Ped-
ersen commitment to the value on the left-hand-side of the



above equation using vs and Cvd (this requires only linear
operations on Pedersen commitments, which are linearly ho-
momorphic). P then proves that CL and Cvr commit to the
same value using a Schnorr [65] zero-knowledge proof of
equality πeq.

Security. When the verifier computes the commitment CL,
it does not learn any additional information about vd as the
operations are done using Cvd (Cvd is a commitment that
hides the underlying value vd). Furthermore, πeq proves that
the values under the commitments CL and Cvr are the same
without revealing any additional information.

7 Implementation
Reef is implemented in 14K lines of Rust and is open
source [8]. We discuss the main components here and op-
timizations in our tech report [15].

7.1 Compilation: from regex to R1CS

Reef has two levels of compilation. First, Reef compiles
regexes written in standard PCRE syntax [7] (Figure 1)
and produces a SAFA. From this SAFA, Reef generates the
SAFA’s transition lookup table and the match_step func-
tion discussed in Section 5.3. Since the match_step function
uses lookups it also contains the checks that the nlookup
verifier [51] must perform in each step. In particular, it con-
tains a series of Fiat-Shamir challenges that we generate with
the Poseidon hash function [39] using the Neptune library [3].
Finally, Reef uses the CirC [61] compiler to output R1CS
instances that we convert to Bellman [1] instances.

7.2 Solving: finding the satisfying witness

Reef, given a document D, finds the witness to the R1CS
instance representing match_step in two parts. First, Reef
derives which paths in the SAFA to take, the skip values, the
entries in D to read, and the rows in the transition table to
look up. Reef’s solver might be of independent interest and
we discuss it in our tech report [15]. This solver only needs
to run once and tells P how many steps to prove.

Second, for each step, Reef runs the nlookup prover,
which we implement as there was no prior implementation, to
generate the values that will satisfy the nlookup checks that
were inserted in the corresponding match_step. The result
of this and the SAFA solver are sufficient to construct the
entire solution vector zi = (yi, 1, wi) where wi is the witness
and yi is the output of step i.

7.3 Proving knowledge of the witness

For the proving and verifying, we use Nova [4], which we
modify to make it zero-knowledge (the existing implementa-
tion was only succinct). This required changing 1.6K lines of
Rust to hide the number of steps executed, and making the
commitments hiding, and the folding scheme, sumcheck pro-
tocol, inner product argument, and SNARK zero-knowledge.
Our modified version of Nova is open source [5].

8 Costs and Complexity analysis
In this section we discuss the asymptotic costs of all of the
components of Reef. The analysis below considers the case
where Nova [52] uses Pedersen commitments to commit to
vectors, and Spartan [66] uses an IPA-based polynomial com-
mitment scheme to compress incrementally generated proofs.
Furthermore, for nlookup [51], the analysis considers the
case where documents are committed with Hyrax’s poly-
nomial commitment scheme [76]. Finally, one of the basic
operations of the above proof systems are multiexponentia-
tions: given generators g1, . . . , gn, and exponents e1, . . . , en,
compute ge1

1 · ge2
2 · · · gen

n . These are also called multi-scalar
multiplications (MSM). These proof systems typically use
Pippenger’s algorithm [63] which can compute a size-n MSM
in O(nλ/ log(nλ)) group operations. We will ignore the secu-
rity parameter λ and just treat a size-n MSM as O(n/ log n)
group operations.

For simplicity, let T = |D|+ |QSAFA| be the sum of the size
of both the document and the SAFA lookup tables.

Committer’s costs. Committing to a document D with
Hyrax’s polynomial commitment [76] requires the committer
G to perform O(|D|/ log

√
|D|) group operations.

Prover’s costs. Ignoring the distinction between the arith-
metization of hash functions and other operations, the
contribution of the lookup argument towards Reef’s step
function is O(m log T) R1CS constraints; Reef requires
a total of O(α/m) steps to finish processing a docu-
ment. Nova performs O(m log(T)/ log(m log T)) group op-
erations per step. This results in P performing a total of
O(α log(T)/ log(m log T)) group operations. The resulting
proof π is of size O(log(m log T)).

In addition, during each step, Reef needs to run the
nlookup prover in order to generate the relevant portion
of the satisfying witness for the R1CS instance. This re-
quires computing the sumcheck protocol over the hybrid table,
which necessitates O(T) field operations. If projections are
used, then D is substituted with Dproj in the definition of T .

At the end of the protocol P needs to compute ProveEval
in order to generate πpoly so that V can verify the private
component of the hybrid table. This requires P to perform
O(

√
|D|/ log

√
|D|) group operations. The proof, πpoly, is of

size O(log |D|).
Finally, our zero-knowledge extension to the lookup argu-

ment for D requires generating the proof πconsistency, which is
done with a constant-size R1CS instance, and therefore O(1)
group operations in Spartan [66].

P performs O(α log(T)/ log(m log T)+
√
|D|/ log

√
|D|)

group and O(T) finite field operations in total.

Verifier’s costs. The cost to the verifier V is
O(m log(T)/ log(m log T)) group operations in Nova
to verify π. Further, V must invoke Hyrax’s VerifyEval
to check πpoly, which requires O(

√
|D|/ log

√
|D|) group



Application Document Size SAFA States SAFA
Transitions

Redactions
Small Email 415 331 42,318
Large Email 1,000 908 116,751

ODoH 128 36 4,012

Passwords
Match 12 21 1,188
Non-Match 9 21 1,188

DNA
Match 32.3 × 106 976 4,861
Non-Match 32.3 × 106 976 4,861

FIGURE 5—Document and SAFA size for evaluated applications

operations. Lastly, the verifier needs to evaluate the public
component of the hybrid table which requires O(|QSAFA|)
finite field operations.

V performs O(m log(T)/ log(m log T)+
√
|D|/ log

√
|D|)

group and O(|QSAFA|) finite field operations in total.

9 Evaluation
This section answers Reef’s motivating questions: is prov-
ing general regular expression matching in zero knowledge
practical for various applications and do Reef’s optimizations
meaningfully reduce the costs? Our results indicate that this
is indeed the case.

9.1 Experimental Setup

Reef runs fine on a laptop (Intel Core i7 1.9 GHz, 16GB
RAM) since its use of recursion means that P proves one step
at a time and therefore uses little memory; at most 5.1 GB in
our largest experiment. However, in order to run the baselines
which require more memory, we run all of our experiments
(including Reef) on a 16-core Intel Xeon Platinum 8253 CPU
(2.20GHz) with 764 GB of RAM. We evaluate Reef over
the applications discussed in Section 1: proving password
strength, disclosing redacted emails, ODoH blocklisting, and
genetic proving. For each of our use cases we evaluate doc-
uments and regexes of varying sizes. Figures 5 and 6 report
the document sizes, SAFA sizes, and results for the largest
instances based on SAFA size. However, full results, all doc-
ument sizes, and a list of all regexes can be found in our tech
report [15].

9.2 Overall Performance

We start by showing the end-to-end results of Reef on our
applications, averaged over 10 runs, and then later break down
some of these costs to show the benefits of each of Reef’s
optimizations.

Compilation. Compiling a regex to R1CS is the most time
consuming part since it requires parsing the regex and gen-
erating the SAFA, lookup tables, and R1CS matrices. This
includes the generation of the document commitment. How-
ever, this is typically a one-time cost and can be done in

advance since the regex is public.

Solving (witness generation). Reef’s witness generation in-
cludes the time to find the regex match, the right values for
all the skips in SAFA, running the nlookup prover (whose
output becomes a witness value to the step function), and
finding the satisfying assignment to all R1CS variables. In
most cases, all of this can be done in a few milliseconds; the
exceptions are large documents (e.g., DNA or large emails)
which require considerable time.

Proving. Proving time depends on document length, the
regex complexity, how many steps the prover needs to run,
and the size of each step. It includes the time to generate all
the proofs, including the consistency and equality proofs of
the hybrid table (§6.5). In our tech report [15] we discuss
how Reef often batches many character and skip transitions
into one step (leading to a larger step function but fewer total
steps). Reef generally performs worse on regexes where the
regex is similar to the document, as it gives Reef’s prover
fewer opportunities to skip and stop early. For example, the
email redaction regexes are very similar to the original doc-
ument, and hence result in more proving steps than some of
the other regexes, and consequently larger proving time.

Reef’s benefits are best exemplified with the DNA match-
ing application, in which the document has over 32 million
characters. Reef is able to generate succinct proofs for DNA
in under 30 seconds (including both solving and proving)
because it can avoid processing most of the document, thanks
to its use of skips and projections.

Verification. The verifier’s costs depend on the number of
R1CS constraints for a single step (since Nova folds all steps
into one), as well as the cost to evaluate the SAFA polynomial
at a random point, and check the consistency polynomial eval-
uation, and the equality proof. Nova’s current implementation
uses Bulletproofs’s [23] linear-time inner product argument
on the folded instance (which we made zero-knowledge in
our evaluation); so while it has logarithmic proofs it still has
verification linear in the size of one step. This could be expen-
sive when the step function is large, but our step functions are
relatively small (under 100K constraints). As a result, verifica-
tion in Reef takes less than 1 second in all of our applications
and workloads.

Proof size. The proof column includes all materials needed
for the verifier to check the prover’s claim. This includes all
commitments and auxiliary proofs (e.g., πconsistency,πpoly,πeq).
Reef is succinct so all proof sizes are sublinear (logarithmic)
in the size of the statement being proven. However, Reef’s
use of Hyrax means that document commitments consist of√
|D| group elements. When the document is very large, such

as in DNA, this can be sizable.

9.3 Comparative Performance

To contextualize the benefits of Reef, we compare it against
several alternatives:



Application Constraints
per step

# of Steps Compiler
Time (s)

Solver Time
(s)

Prover Time
(s)

Verifier
Time (s)

Proof Size
(KB)

Commitment
Size (KB)

Redactions
Small Email 46,655 4 36.947 0.760 3.169 0.553 32.609 0.512
Large Email 65,727 7 217.628 3.221 5.923 0.701 33.361 1.024

ODoH 22,692 2 19.650 0.213 1.709 0.435 31.889 0.512

Passwords
Match 19,982 5 17.960 0.067 2.573 0.418 31.665 0.128
Non-Match 20,728 6 18.636 0.357 2.963 0.416 31.761 0.128

DNA
Match 81,722 8 62.351 12.830 17.708 0.908 34.417 131.072
Non-Match 81,722 1 62.357 3.006 10.838 0.915 34.417 131.072

FIGURE 6—Summary of all costs for the largest instance of each application evaluated in Reef. R1CS Constraints are for one step in Nova.
Proof sizes include all the Nova zkSNARK proof as well as all auxiliary proofs (e.g., πconsistency). Commitment size measures the size of
the document commitment. Reported times are the mean across 10 runs, and the standard deviation was less than 5% of the mean for all
components and applications.

Application DFA DFA +
Recursion

SAFA +
nlookup

Reef

Redactions
Small Email 76.300 1.721 0.760 0.733
Large Email — 5.848 1.067 1.051

ODoH 2.064 0.640 0.409 0.362

Passwords
Match — — 0.351 0.347
Non-Match — — 0.343 0.330

DNA
Match — — 9.392 5.091
Non-Match — — 8.389 5.032

FIGURE 7—Maximum memory used (GB) by the Prover in Reef
and baselines for our applications. Verifier’s memory use is lower.

• DFA. This is the standard approach articulated in Sec-
tion 3.1. To our knowledge, this is also the approach taken
by the ZK-Email project [11]. We use Circom [2] to com-
pile the match function and solve the corresponding R1CS
instance since CirC [61] is not presently capable of com-
piling such large statements due to memory issues.

• DFA + recursion. This is the approach described in Sec-
tion 4, which adds recursion and processes one character at
a time. It uses a hash-chain as a vector commitment, which
we believe is optimal (exactly one hash invocation) when
accessing entries in the committed document sequentially.
We use Circom and NovaScotia [6] to compile the step
function and connect it with our zero-knowledge version
of Nova (§7.3). Again, we are unable to compile these
R1CS instances with CirC since they require expressing
the (large) DFA delta function in constraints.

• SAFA + lookup. This is our implementation of Reef (§7)
with SAFA and nlookup, but without projections (§6.4)
or the hybrid table optimization (§6.5).

The metrics that we will consider in this section are mem-
ory usage and end-to-end completion time for the Prover,

which includes both the time to solve and generate all wit-
ness values, and prove the satisfiability of the R1CS instance.
Our tech report [15] has additional graphs for these same
experiments but separates the time for solving and proving
for readers interested in understanding the contribution of
each component towards the end-to-end time. One thing to
consider is that Reef pipelines the generation of a proof for
step i with the generation of the witness for step i + 1 in
parallel, as we discuss in our tech report [15]. As a result, the
end-to-end time can sometimes be lower than the sum of the
corresponding proving and solving times.

Results. Figure 7 shows the maximum memory use of Reef
and the baselines for the same documents and regexes found
in Figure 6. We are unable to run the password matching
application with either of the DFA baselines due to its use
of lookaheads, and the DNA application due to the massive
R1CS instances (or number of steps) that are required. There
are two observations: (1) using a recursive proof system has
significant benefit in keeping the amount of memory required
by the prover small since the prover only needs to prove one
step at a time; and (2) the use of table projections in the DNA
application means that the prover does not need to compute
an expensive and memory-intensive sumcheck over the entire
document, but rather works only over the projected table. This
is why Reef uses less memory than SAFA + nlookup.

Figure 8 shows the end-to-end performance results. Across
the board, SAFA +nlookup and Reef both dramatically out-
perform the DFA and DFA+Recursion approaches. Take for
example Redactions Small. SAFA +nlookup and Reef took
3.55 and 3.51 seconds generate witnesses and prove, while the
DFA baselines took over an hour. This suggests that Reef’s
ability to skip irrelevant parts of the document and the use of
our zero-knowledge version of nlookup provides benefits.

One might notice that DFA + recursion actually performs
worse than just DFA in the case of small email redactions.
There are a few reasons for this. First, while each step can
process multiple characters, because the circuit still relies
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(d) Proof that a committed DNA document matches/does not match a
DNA regex. Neither DFA nor DFA+recursion can handle this application.

FIGURE 8—Mean end-to-end completion time (which includes witness and proof generation) across 10 runs for proving that some committed
document matches/does not match a regex with Reef and various alternatives. Standard deviations were less than 5% of the mean. Each
subfigure describes a different application (regex) and type of document. The corresponding document sizes are found in Figure 6.

on for loops, it can only process a few characters per step
before the circuit becomes too large. Second, in each step,
there is some non-trivial work that is performed to check if
the document is a match (§3.1). Third, each step of Nova adds
a check to ensure foldings are correct (≈20,000 constraints).

Note that Reef also suffers from the latter two overheads
(though the specific invariants for checking a match in a SAFA
are different than in a DFA). However, Reef’s use of lookup
tables allow it to efficiently process large numbers of charac-
ters per step, which amortizes the latter two overheads over
a batch of characters. Indeed, one of our optimizations (tech
report [15]) is to process the optimal number of characters
per step for a given regex in the SAFA’s match_step, which
amortizes these costs over the batch. We find this optimal
value with a cost model that we have implemented in Reef’s
compiler.

The final impact to consider is that of Reef’s additional
optimizations. As discussed in Section 6.5, using hybrid tables
reduces the number of constraints needed. This reduction is
usually 1K–3K fewer constraints in the step function; full
results are in our tech report [15]. This reduction in the size
of the step function results in some small performance gains.

More significant is the impact of document projections
in our DNA applications. Because common variants in the
genome occur at known, fixed locations, by using projections
(§6.4) Reef can skip over large parts of the genome directly to
the start of the variant of interest. In the case of DNA match-
ing, this results in a 50% reduction in proving time, and an
over 99% reduction in solving time. While SAFA +nlookup
can avoid the costs of a large document when it comes to
proving, it still has to evaluate the sum-check protocol on
the entire document for each step. When working with a

document as large as DNA, this rapidly becomes prohibitive.

Takeaway. Reef handles a wide class of regexes at reason-
able cost while producing succinct proofs. Each of Reef’s
optimizations provide benefits: SAFA allows expressing com-
plicated regexes and skipping irrelevant parts of the docu-
ment; recursion unleashes the power of SAFA by allowing
the prover to prove only for as long as needed, and requiring
much fewer memory; Reef’s compiler picks the optimal num-
ber of characters to process per step for a regex to reduce the
penalty of non-uniformity during recursion; hybrid lookup
tables reduce the size of the step function; and projections
make it possible for the prover to solve more efficiently when
the location of relevance within the document is public.

10 Related Works
Reef relates to a series of very recent works on building proof
systems for regexes [11, 56, 64, 79]. Reef aims to be as gen-
eral as possible—targeting complex PCRE expressions and
arbitrarily long documents. Reef achieves this by introducing
SAFA, a brand new automata. In contrast, these other works
target particular applications (middlebox packet inspection,
malware hash membership tests) and use existing automata
(DFAs or NFAs) enhanced with various encoding optimiza-
tions for their application domains. Reef can also handle these
applications (and many others). It is unclear whether Reef
would achieve better performance on these applications over
these tailored proposals as we have not yet done an empiri-
cal comparison (they were all developed concurrently with
Reef). One exception is ZK Regex from the ZK Email Verify
project [11], which is in effect the “standard” approach in our
evaluation, and which Reef outperforms in all applications.

Another related area is that of secure regex evaluation [33,



48, 53, 56, 58, 75]. Here the goal is for one party to supply the
regex R and another party the document D, and to determine
whether D ∈ LJRK without revealing their inputs. This is
a multi-party computation, and the techniques used in this
domain aim to express computation rather than verification,
which is the main theme in our work (via NP checkers).

11 Discussion and Future Work
Reef is the most expressive zero-knowledge proof system for
regexes to date. It excels in situations where the document is
large and the match is small, or when the regex gives Reef
many opportunities to skip unnecessary work. In contrast,
works like Zombie [79] excel in the opposite regime (small
documents or when the document closely matches the regex).
We think there are opportunities to combine the techniques in
these two approaches to obtain the best of both worlds.

Reef has the ability to prove regex matches (and non-
matches), but an interesting extension is to support “search
and replace”. In such a setting, the prover would prove not
whether there is a match for some regex but rather that some
committed document is the result of performing a regex
search and replace transformation on some other commit-
ted document. Another extension to Reef is to support context
free grammars. We think a similar approach of developing a
custom automata would work there, and Reef already uses a
stack for SAFA, which we show is quite efficient.

Source Code
Our code is available at:
https://github.com/eniac/Reef.
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