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Abstract
Transport Layer Security (TLS) establishes an authenticated
and confidential channel to deliver data for almost all Internet
applications. A recent work (Zhang et al., CCS’20) proposed
a protocol to prove the TLS payload to a third party, without
any modification of TLS servers, while ensuring the privacy
and originality of the data in the presence of malicious ad-
versaries. However, it required maliciously secure Two-Party
Computation (2PC) for generic circuits, leading to significant
computational and communication overhead.

This paper proposes the garble-then-prove technique to
achieve the same security requirement without using any
heavy mechanism like generic malicious 2PC. Our end-to-end
implementation shows 14× improvement in communication
and an order of magnitude improvement in computation over
the state-of-the-art protocol. We also show worldwide per-
formance when using our protocol to authenticate payload
data from Coinbase and Twitter APIs. Finally, we propose an
efficient gadget to privately convert the above authenticated
TLS payload to additively homomorphic commitments so that
the properties of the payload can be proven efficiently using
zkSNARKs.

1 Introduction

Transport Layer Security (TLS) [26, 55] is the most widely
deployed cryptographic protocol for secure communication
on the Internet. It provides end-to-end security against ac-
tive attackers between a client, namely C and a TLS server,
namely S . However, if the client wants to use the TLS payload
data in a different application, TLS does not guarantee the
originality of the data. In particular, a malicious client could
come up with a valid TLS transcript for any payload of its
choice. The issue stems from the fact that the TLS protocol
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assumes that both client C and server S are honest, but in this
new setting, the client can be malicious. For most websites,
this is solved by having a user authenticate one website in
connection with the other website that needs the data. Doing
so under the client’s authorization allows the two websites to
share data directly and thus ensures no malicious client can
break integrity. However, such a solution is not perfect. First,
users are often forced to share more information than needed,
e.g., to prove that their credit score is higher than a threshold,
they need to share the score entirely. Second, this solution
requires adding new web infrastructures, which could hinder
the deployment, especially when connecting Web2 data to
Web3 applications.

A recent work, DECO [71], proposed a solution that does
not require any change on the TLS server side. From a high-
level view, they ask a prover P (i.e., a user that intends to
prove the originality of the data) and a verifier V (i.e., a third
party) to jointly emulate the computation of the TLS client
C who interacts with S . Since neither P nor V ever holds
TLS session keys, their capability is the same as man-in-the-
middle attackers and thus cannot forge a valid TLS transcript
for unauthorized data. In DECO, most of C ’s computation
is emulated using a maliciously secure Two-Party Computa-
tion (2PC) protocol, which ensures that no derivation from
the protocol can help the malicious party break the privacy
or integrity requirement when interacting with S . To prove
statements on the TLS payload, P proves to V the correct
decryption of the ciphertext (to obtain a plaintext) and desired
statements on the plaintext using zkSNARKs [8, 10, 30, 33].

Generic 2PC protocols in the malicious setting have been
studied extensively in the past decade (e.g., [15,50,51,53,59]).
DECO used an implementation of the authenticated gar-
bling [36,43,62,67], the state-of-the-art malicious 2PC frame-
work that significantly reduces the overhead compared to
the semi-honest counterparts. However, even based on the
latest advances [23, 27], the computation and communica-
tion cost of maliciously secure 2PC is still much higher than
its semi-honest counterparts. Moreover, these protocols with
malicious security often require storing preprocessed authen-
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ticated triples, thus incurring a huge memory overhead. The
complexity of the maliciously secure protocol also makes it
difficult to implement and deploy such a protocol. As a result,
the DECO protocol still requires 475 MB of communication
to authenticate a 2KB-sized payload via TLS and more than
50 seconds to finish under a WAN network.

1.1 Our Contribution
In this paper, we design a new protocol for web-data authenti-
cation to third parties with improved efficiency. We propose
the garble-then-prove technique that can realize a special class
of two-party computation functionalities against malicious
adversaries, with almost no overhead compared to their semi-
honest counterparts. We elaborate on our key concepts and
contributions below and refer to Section 3 for an overview of
our core techniques.

Eliminating malicious 2PC via garble-then-prove. We
avoid the use of maliciously secure 2PC, as a result of deeply
understanding the features of authenticating web data in TLS.
We observe that since V is the verifier, the security require-
ments for V and the prover P differ in many ways. During
the secure TLS emulation, a corrupted V shall not learn the
session keys as it immediately reveals P ’s private input; how-
ever, we can tolerate a corrupted P learning some information
about the session keys: since V does not have long-term se-
crets, the damage is remediable. We only require P ’s cheating
behavior to be identifiable by V later. After the completion
of the joint TLS emulation, all of V ’s shares of the TLS se-
crets can be opened to P since P can no longer alter the TLS
protocol. Simply put, our security requirement is as below:
P and V start with inputs xP and xV respectively and shall
get outputs yP ,yV such that (yP ,yV ) = f (xP ,xV ) for some
two-output function f . If P cheats, it can replace the function
to one of its own choice but V cannot cheat in any way. Dur-
ing the checking phase, P will be given xV and V should be
notified if P cheated during the evaluation phase.

To accomplish this task, P first sends V a garbled circuit
for f ; they also use an OT with malicious security to let V get
garbled labels on its input. Two parties then can obtain their
outputs but there is no way to ensure correctness. For that, we
ask P to commit to V its input xP and output yP . Now, V has
shares xV ,yV and commitments of xP ,yP . After P gets xV ,
thus also yV , P can use a Zero-Knowledge (ZK) protocol to
prove that (yP ,yV ) = f (xP ,xV ) w.r.t. the committed values.
P could launch a selective failure attack on xV (leaking one-
bit of information), but it is meaningless since xV is always
given to P in the proving phase. For obvious reasons, we refer
to this technique as garble-then-prove. This technique can be
also applied in, e.g., QUIC [24, 39], OAuth [35] and OpenID
Connect [58], to authenticate web data.

TLS-specific protocol optimization. Building on the above
idea, we further optimize other TLS building blocks in various

ways. For example, we show how to carefully select values
to reveal, without providing any party an extra capacity, dur-
ing the derivation of TLS session keys, leading to a more
than 2-fold reduction in handshake circuit size. We also pull
the computation of the Galois Message Authentication Code
(GMAC) tags out of circuits and instead use Oblivious Linear
Evaluation with errors (OLEe) 1 to compute additive sharings
of the powers of a random element needed for GMAC, reduc-
ing the cost of GMAC computation by more than two orders
of magnitude. Doing so would allow the adversary to gain
one bit of information of the TLS session key, but that would
not reduce the overall concrete security, for a reason similar
to prior works, e.g., [44, 67].

Efficient commitment conversion. To prove statements on
the TLS data using zkSNARKs, DECO embeds the TLS
ciphertext into the statements and then proves in ZK the
correctness of decryption. For our protocol, we use the re-
cent vector OLE (VOLE) based interactive zero-knowledge
proofs [7, 28, 63, 66] during the garble-then-prove execution.
This means that at the end of the protocol, two parties hold
information-theoretic MACs (IT-MACs) on each bit of the
query and response involved in the TLS. One could prove
statements using VOLE-based ZK proofs or, alternatively,
convert them to commitments friendly to zkSNARKs. First,
we convert IT-MACs over F2 to IT-MACs over Fq, ensur-
ing the values are consistent. This protocol can be viewed
as a special version of zero-knowledge via garbled-circuit
protocol [41] over garbling of Boolean-to-arithmetic identity
gates [6]. This makes the cost conversion in the malicious
case almost the same as the semi-honest setting. Then we
convert arithmetic IT-MACs to zkSNARK-friendly commit-
ments, which can be achieved with high efficiency, since both
representations are additive-homomorphic. In this way, with-
out using zkSNARKs, we can convert the plaintext query and
response to additively homomorphic commitments, which can
then be connected to various zkSNARKs, e.g., [17, 18, 20].

Full-fledged implementation. We implemented our protocol
and report detailed performance in Section 5. Our protocol
outperforms DECO by more than an order of magnitude: 14×
improvement in communication and 7.5× to 15× improve-
ments in running time. We also push through the last mile to
connect our implementation with real-world APIs connected
via TLS. In Section 5.3, we include two examples of using
our protocol to authenticate API results from Coinbase and
Twitter. We report the performance when the prover is located
in 18 cities worldwide with various network conditions. We
also show a summary of the performance in Table 1, where we
can see that the whole protocol only takes around 7 seconds
(4 seconds of online time) when a user in Tokyo proving to a
verifier in California about its Coinbase/Twitter API payload.

1OLEe provides a weaker security in which the malicious party can intro-
duce an error into the OLE output, but it can be generated more efficiently.



Region of prover P Oregon Virginia Milan Singapore Tokyo

Coinbase 1.66 (2.43) 2.85 (4.98) 6.47 (11.9) 6.05 (11.7) 3.94 (7.35)
Twitter 0.94 (1.71) 2.08 (4.10) 5.21 (10.8) 5.78 (11.7) 3.56 (7.12)

Table 1: Performance summary of our protocol. All numbers are reported in seconds, based on the Coinbase API to query
account balance (426-byte query and 5701-byte response) and the Twitter API to query the number of followers (587-byte query
and 894-byte response). Both online time and total time (in parentheses) are reported. Verifier V is always located at California.

2 Preliminaries

We describe the TLS building blocks and model the security
of authenticating web data. The cryptographic preliminaries
to comprehend our protocol are described in Section A.

Notation. We use λ to denote the computational security pa-
rameter. We use x← S to denote that sampling x uniformly
at random from a finite set S. For an algorithm A, we use
y← A(x) to denote the operation of running A on input x and
setting y as the output. We will use bold lower-case letters
like xxx for column vectors, and denote by xi the i-th com-
ponent of xxx with x1 the first entry. For a,b ∈ N, we write
[a,b] = {a, . . . ,b}. We write F2λ

∼= F2[X ]/ f (X) for some
monic, irreducible polynomial f (X) of degree λ. Depending
on the context, we use {0,1}λ, (F2)

λ and F2λ interchangeably,
and thus addition in (F2)

λ and F2λ corresponds to XOR in
{0,1}λ and a string a ∈ {0,1}λ is also a vector in (F2)

λ. For
a bit-string x, we use lsb(x) to denote the least significant bit
of x. For a prime p, we denote by Zp a finite field.

We use [x]p = (xP ,xV ) to denote an additive secret sharing
of x overZp between P and V holding xP and xV respectively.
When the field is F2128 , we denote by [x]2128 . For details of ad-
ditive secret sharings, we refer to the reader for Section A. Let
[[x]] = (x,M[x],K[x]) be an Information-Theoretic Message
Authentication Code (IT-MAC) such that M[x] = K[x]+ x ·∆,
where the message x and MAC tag M[x] are held by a party
P , and keys K[x],∆ are obtained by another party V . We give
more details of IT-MACs in the full version [65, Section A].

2.1 TLS Building Blocks
Transport Layer Security (TLS) is a family of protocols that
guarantee privacy and integrity of data between a client C
and a server S . It consists of two protocols: (a) the handshake
protocol in which handshake secrets are established and the
secrets are in turn used to generate application keys; (b) the
record protocol where data is transmitted with confidentiality
and integrity via encrypting and authenticating the data with
the application keys. Our protocol focuses on authenticating
web data for TLS 1.2 [26], and is able to be extended to TLS
1.3 [55] that is shown in Section 4.3, where both of TLS 1.2
and TLS 1.3 adopt HMAC to derive secrets and keys. 2 While

2For now, about 77%∼79% websites use TLS 1.2, while about 9%∼20%
websites adopt TLS 1.3 [1].

TLS provides different modes, we focus on the following
most popular modes:

ECDHE_RSA_AES128_GCM_SHA256
ECDHE_ECDSA_AES128_GCM_SHA256,

where the hash function H is instantiated by SHA256, and
a stateful Authenticated Encryption with Associated Data
(AEAD) scheme is instantiated by AES128 in the GCM mode.
ECDHE adopts the elliptic-curve Diffie-Hellman (DH) key
exchange protocol to establish ephemeral secrets.

Our protocol is easy to be extended to support that AEAD
scheme is instantiated by AES256_GCM and H is replaced
with SHA384, and also allows one to use other digital sig-
nature (e.g., DSA). Besides, our protocol can be straightfor-
wardly extended to support ECDH in which the server uses
a static DH value (rather than an ephemeral DH value). We
did not optimize our protocol to realize the CBC mode in
TLS 1.2, since this mode has been demonstrated to be vul-
nerable to the timing attack against several TLS implemen-
tations [5], and the GCM mode is preferred over CBC [2]. In
addition, TLS 1.3 did not support the CBC mode any more.
Our garble-then-prove approach can be also generalized to
other modes such as CHACHA20_POLY1305_SHA256 and
AES128_CCM_SHA256. In the full version [65], we describe
the TLS 1.2 protocol in detail. Below, we describe several key
building blocks used in the TLS protocol.

HMAC. Given a key k and a message m as input, the well-
known pseudo-random function HMAC is defined as follows:

HMAC(k,m) = H(k⊕opad,H(k⊕ ipad,m)),

where opad and ipad are two public strings with length of 512
bits (i.e., the repeated bytes of 0x36 and 0x5C respectively).
Here we always assume that k has at most 512 bits, which is
the case for TLS. When the bit-length of k is less than 512,
it will be padded with 0 to achieve 512 bits. As described
above, we focus on considering that H is instantiated by
SHA256. In particular, SHA256 adopts the Merkle-Damgård
structure with block size of 512 bits, and uses fH as the one-
way compression function with output length of 256 bits.
For example, H(m1,m2) is computed as fH( fH(IV0,m1),m2)
where m1,m2 ∈ {0,1}512 and IV0 is a fixed initial vector.

Key derivation. Here we focus on the Pseudo-Random Func-
tion (PRF) in TLS 1.2 [26], where the PRF is used to derive



handshake secrets and application keys and adopts HMAC as
its core. TLS 1.3 [55] adopts the HKDF function [46, 47] as
its key derivation function, where this function is also based
on HMAC. We refer the reader to Section 4.3 for the details
of HKDF. Specifically, the PRF function with output length
ℓ in TLS 1.2 is defined below:

PRFℓ(k, label,msg) = HMAC(k,M1∥label∥msg)∥ . . .∥HMAC

(k,Mn−1∥label∥msg)∥Truncm(HMAC(k,Mn∥label∥msg)),

where n = ⌈ℓ/256⌉, m = ℓ− 256 · (n− 1), M1 = HMAC
(k, label∥msg) and Mi+1 = HMAC(k,Mi) for i ∈ [1,n− 1].
For a bit-string x, Truncm(x) denotes truncating x to the left-
est m bits.

Stateful AEAD scheme. The TLS protocol adopts a stateful
AEAD scheme (stE.Enc,stE.Dec) to encrypt/decrypt mes-
sages in the handshake and record layers. The encryption
algorithm stE.Enc(key, ℓC,H,M,ste) takes as input a secret
key key, a target ciphertext length ℓC, a header H, a message M
and a state ste, and outputs a ciphertext CT. The decryption al-
gorithm stE.Dec(key,H,CT,std) takes as input key, a header
H, a ciphertext CT and a state std , and outputs a plaintext M
or a special symbol ⊥ indicating that the ciphertext is invalid.
When the AEAD scheme is instantiated by AES128_GCM,
stE.Enc(key, ℓC,H,M,ste) has the following steps:

1. Compute Z0 := AES(key,ste) and update ste := ste +1.

2. Suppose M is padded as (M1, . . . ,Mn) with Mi ∈ {0,1}128.
From i = 1 to n, compute Zi := AES(key,ste) and Ci :=
Zi⊕Mi and update ste := ste +1. Set C := (C1, . . . ,Cn).

3. Suppose that the header H has been padded as an element
in F2128 . Let ℓH be the bit length of H. Given a vector X ∈
(F2128)m, the GHASH polynomial ΦX :F2128→F2128 is de-
fined as ΦX(h) = ∑

m
i=1 Xi ·hm−i+1 ∈ F2128 . Compute h :=

AES(key,0) and a GMAC tag σ := Z0⊕Φ(H,C,ℓH ,ℓC)(h).

4. Output CT = (C,σ).

Algorithm stE.Dec(key,H,CT,std) has the same steps as
stE.Enc, except for the following differences:

• Parse CT as (C,σ) and C as (C1, . . . ,Cn). Compute Mi :=
Zi⊕ Ci for i ∈ [1,n] and set M = (M1, . . . ,Mn).

• Compute a tag σ′ as described above and check σ = σ′.

• If the check passes, output M. Otherwise, output ⊥.

2.2 Security Model and Functionalities
We use the standard ideal/real security model (shown as be-
low) to prove security of our protocol. We describe the defini-
tions of ideal functionalities for Oblivious Transfer (OT) and
OLEe in Section A. The functionalities for additively homo-
morphic commitments, standard commitments and Interactive

Functionality FAuthData

This functionality interacts with a prover P , a verifier V ,
a server S and an adversary.

• Upon receiving (sid,Query,α,S) from P and (sid,
Query) from V , where sid is a session identifier,Query
is a query template and α is a private input for Query,

1. Compute a query Q := Query(α), and then send a
pair (sid,Q) to S .

2. Receive a response (sid,R) from S and then store a
tuple (sid,Q,R).

3. Send (sid, |Q|, |R|,S) to the adversary.

• Upon receiving (commit,sid,cid) from P , where cid
is a fresh commitment identifier, if a tuple (sid,Q,R)
was previously stored, update it as (sid,cid,Q,R), and
send (committed,sid,cid) to V and the adversary.

• Output (sid,cid,Q,R) to P and (sid,cid,S) to V .

Figure 1: Functionality for authenticating web data.

Zero-Knowledge (IZK) proofs along with their instantiations
can be found in the full version [65, Section A].

Ideal/real security model. We use the standard ideal/real
paradigm [19, 32] to prove security of our protocol in the
presence of a malicious, static adversary. In the ideal-world
execution, the parties interact with a functionality F, and some
of them may be corrupted by an ideal-world adversary (a.k.a.,
simulator) S. In the real-world execution, the parties interact
with each other in an execution of protocol Π, and some of
them may be corrupted by a real-world adversary A (that is
often called an adversary for simplicity). We say that protocol
Π securely realizes functionality F, if the output of the honest
parties and A in the real-world execution is computationally
indistinguishable from the output of the honest parties and S
in the ideal-world execution. We consider security with abort,
and thus allow the ideal-world/real-world adversary to abort
the functionality/protocol execution at some point. We prove
security of our protocol in the G-hybrid model in which the
parties execute a protocol with real messages and also have
access to a sub-functionality G .

Use case. Similar to DECO [71], our protocol involves three
parties: a prover P , a verifier V and a TLS server S , where P
and V jointly play the role of the client to interact with the
server S . Prover P has data stored on S , and intends to prove
to V about properties of the data, without any modification to
the TLS server. For example, a Coinbase user (i.e., P ) wants to
prove to a loan agency (i.e., V ) that his wallet balance satisfies
an agreed-upon predicate (e.g., it is greater than a threshold).



Ideally, the user wants to prove it without revealing any other
information (e.g., transaction details or the exact balance).
Our protocol enables this: (1) P interacts with S via TLS to
get the balance; (2) P can prove to V that the balance sent
over the TLS protocol satisfies the predicate. The protocol
ensures that V learns nothing except for that the predicate is
true, and that P cannot use an inconsistent balance. We refer
the reader to [71] for more application examples.

Functionality for authenticating web data. We model the
security of authenticating web data by giving an ideal func-
tionality. At a high level, the protocols to authenticate web
data will involve the following steps performed in a secure
and distributed way:

1. P and V (on behalf of the client) run the TLS protocol with
S to establish an authenticated and confidential channel.

2. Under the secure channel, P sends a query Q to S and
receives a response R from S .

3. P sends the commitment of (Q,R) to V , and convinces V
that the commitment is correct on a valid pair (Q,R).

4. Given (Q,R) and its commitment, P can prove in zero
knowledge to V that (Q,R) satisfies some statement.

In this paper, we focus on constructing a secure protocol
to realize the first three steps. The final step can be real-
ized using a variety of zero-knowledge proofs such as zk-
SNARKs [10, 30, 33]. In this setting, the server S is always
honest to run the protocol, 3 and so the security only needs
to be guaranteed when either P or V is corrupted. For ad-
versarial model, we consider a static, malicious adversary
A who can corrupt one of P and V and may deviate the
protocol arbitrarily. The ideal functionality for authenticat-
ing web data is defined in Figure 1, and builds upon the
definition of the oracle functionality in [71]. Following an
example in [71], a query template could be Query(α) =
“stock price of GOOG on June 1st, 2023 with API key = α”.

Functionality FAuthData (shown in Figure 1) implies the
following security properties, where similar properties were
described in DECO [71].

• Prover-integrity : A malicious prover P cannot cause the
query and response, whose commitments are sent to an
honest verifier V , to be inconsistent from that received or
sent by the server S .

• Verifier-integrity : A malicious verifier V cannot cause P
to receive an incorrect response, i.e., if P outputs (Q,R), R
must be S ’s response to the query Q sent by P .

• Privacy : A malicious verifier V cannot learn any informa-
tion on query Q and response R, except for the public infor-
mation (|Q|, |R|,Query) and which server S is accessed.

3We do not require any server-side modification or cooperation.

In the ideal world, all channels between honest parties and
functionality FAuthData are confidential and authenticated.
This guarantees the privacy of secret values Q,R. As in [71],
we always consider that the length of a query |Q|, the length of
a response |R| and the name of a server S are known by the ad-
versary. We use an identifier cid to represent a commitment on
the query Q and response R. From the definition of FAuthData,
we have that the query-response pair (Q,R) committed by
FAuthData are always consistent. The adversary who corrupts
P can only get an identifier cid and has no way to tamper
the values committed, which guarantees the prover-integrity.
The honest prover P will always output a response R from
FAuthData, which is consistent with Q. Thus, the adversary
who corrupts V cannot make the honest prover receive an
inconsistent response, which guarantees the verifier-integrity.

3 Technical Overview

Third-party authentication of TLS payload could be achieved
using a malicious 2PC protocol with a high overhead [71].
Our key technique is to first garble and evaluate circuits, and
then prove the correctness of the resulting outputs in zero-
knowledge. This enables us to use lightweight MPC building
blocks, i.e., plain Two-Party Computation protocols based on
Garbled Circuits (GC-2PC) that are the same as semi-honest
protocols [56,69,70] except for using malicious OT instead of
semi-honest OT, and the recent VOLE-based interactive zero-
knowledge (IZK) proofs [7, 28, 63]. Our garble-then-prove
technique can be used to authenticate web data for TLS, and
may also be of independent interest for other applications in
which all secrets are able to be known by a prover at the end,
e.g., authenticating data from protocols like QUIC [24, 39],
OAuth [35] and OpenID Connect [58].

We also present a technique to convert from IT-MACs to
additively homomorphic commitments that are friendly to zk-
SNARKs. This technique could also be used in other applica-
tions such as zero-knowledge machine learning [64]. Through
the TLS application, we give an overview of these techniques.
Furthermore, we provide several tailored optimizations to fur-
ther improve the efficiency, based on the details of the TLS
protocol. To help better understand our protocol, we first give
a detailed overview of the TLS protocol.

3.1 An Overview of the TLS Protocol
In Figure 2, we provide a pictorial overview, and show com-
plete details in the full version [65]. The protocol is executed
between a TLS client (C ) and a TLS server (S ). It can be
roughly divided into 4 phases:

• Phase 1: pre-master secret. C samples a random nonce
rC ← {0,1}256, and then sends REQC = rC to S . Then, S
samples a random nonce rS ∈ {0,1}256, a random element
tS ∈ Zq, and computes a group element TS := tS ·G. S sends



Handshake Protocol

rC←{0,1}256, REQC := rC
REQC rS←{0,1}256, tS← Zq

TS := tS ·G
σS← Sign(skS,rC∥rS∥TS)

Verify certS and σS
RESS RESS := (rS,TS,certS,σS)

tC← Zq

TC := tC ·G

pms := Fx(tC ·TS)
RESC := TC pms := Fx(tS ·TC)

(ms,keyC,stC,keyS,stS)← Derive(pms)

τC := H(REQC,RESS,RESC)

UFINC := PRF96(ms,PublicStr∥τC)

FINC← stE.Enc(keyC,UFINC,stC)
(HC, FINC) UFINC← stE.Dec(keyC, FINC,stC)

Check UFINC

τS := H(REQC,RESS,RESC,UFINC)

UFINS := PRF96(ms,PublicStr∥τS)

UFINS← stE.Dec(keyS, FINS,stS)
(HS, FINS) FINS← stE.Enc(keyS,UFINS,stS)

Check UFINS

Record Protocol

ENCQ← stE.Enc(keyC,Q,stC)
(HQ,ENCQ) Q← stE.Dec(keyC,ENCQ,stC)

R← stE.Dec(keyS,ENCR,stS)
(HR,ENCR) ENCR← stE.Enc(keyS,R,stS)

Figure 2: Graphical depiction of TLS. PublicStr refers to strings defined in the TLS specification. HC, HS, HQ and HR are
public metadata headers defined by the TLS specification. Some details are omitted.

back RESS = (rS, tS,certS,σS), where certS is a certifica-
tion and σS is a signature on (rC,rS,TS). To finish the key-
exchange protocol, C sends back a random group element
TC := tC ·G. Now both parties agree on a pre-master se-
cret pms= Fx(tC ·TS) = Fx(tS ·TC), where Fx is a function
mapping an elliptic-curve point to its x-coordinate.

• Phase 2: TLS session keys. With pms, C and S compute
a master secret ms :=PRF384(pms,“master secret”,rC∥rS).
Then, both parties compute a tuple (keyC, IVC,keyS, IVS) :=
PRF448(ms,“key expansion”,rS∥rC), where keyC,keyS ∈
{0,1}128 are two application keys and IVC, IVS ∈ {0,1}96

are the initial states stC,stS of AEAD encryption. In Fig-
ure 2, we refer to the whole process as Derive.

• Phase 3: Finished messages. Two parties exchange test
messages, which have already been known by them, over the
established AEAD-encrypted channel. The client’s message
is UFINC = PRF96(ms,“client finished”,τC), where τC is
the hash of the TLS transcripts so far. C sends the AEAD
ciphertext FINC of this message, which is encrypted with
keyC and stC, to S . The server decrypts FINC and checks if
UFINC is correct based on the same session key and values.

Then S sends back a similarly encrypted message, and C
checks its correctness.

• Phase 4: Exchange payload. Finally, two parties exchange
their application payload. The exact process is essentially
the same as Phase 3, with updated states for AEAD (based
on AES-GCM), except that now the underlying payload is
provided by the client and server based on the application.
This phase could exchange several rounds of payload, de-
pending on the application. In Figure 2, we only show one
round of payload for simplicity. The following technical
overview focuses on the one-round case, and our protocol
can be extended to support multiple rounds of payload (see
Section 4.2 for details).

3.2 Our Protocol Design

Now we introduce high-level ideas of our protocol based on
the key observations described in Section 1.1. When describ-
ing our protocol, we use a prover P and a verifier V , who
jointly emulate C , the TLS client.



3.2.1 Phase 1: Generating pre-master secret

The process of generating pre-master secret pms in TLS is
essentially a Diffie-Hellman (DH) key exchange. Since nei-
ther P nor V can know the outcome, they need to jointly
emulate the TLS client. The first round of interaction of mes-
sages (REQC,RESS) can be done by P alone without V . The
message RESC and DH secret needs to be distributively com-
puted by P and V . In more detail, P and V pick tP ← Zq,
and tV ← Zq respectively; V sends tV ·G to P , who defines
RESC := (tP + tV ) ·G and sends it to the server. In particu-
lar, P and V have an additive secret sharing (i.e., tP ·TS and
tV ·TS) of the DH secret (tP + tV ) ·TS. The above step is sim-
ilar to the previous protocols [60, 71], who then use a fully
secure multiplicative-to-additive conversion protocol, a.k.a,
Oblivious Linear Evaluation (OLE), to convert an additive
sharing of the EC point (tP + tV ) ·TS to an additive sharing
of its x-coordinate (i.e., pms).

Obtaining fully secure OLE is often expensive and requires
tailored zero-knowledge proofs or excessive communication.
However, in this particular setting, we show that an OLE with
error (OLEe), where the error could even depend on parties’
inputs, is already sufficient. Such an OLEe can be efficiently
computed using logq correlated OTs without the need of
any extra checks. This would lead to one-bit information
leakage about pms to the adversary who corrupts the prover
P . However, due to the TLS protocol, pms is of high entropy
and we can show that such leakage does not help the adversary
in guessing the whole secret pms. Intuitively, such an error
could only lead to the selective-failure attack, which allows
the adversary to guess c bits of the secret with probability 2−c,
but if the guess is incorrect the protocol execution aborts. Such
an attack does not reduce concrete security since the adversary
could bet on c bits of the secret too. A similar analysis has
already been used in designing maliciously secure protocols
(e.g., [22, 44, 67]).

3.2.2 Phase 2: Deriving TLS session keys

Now P and V hold an additive secret sharing of pms and
need to derive additive sharings of TLS session keys using
PRF based on HMAC-SHA256. This is the most expensive
part for TLS handshake in DECO, who implemented this step
using a fully malicious 2PC protocol to compute a circuit
containing 779,213 AND gates. We show how to achieve a
16× improvement in communication.

Eliminating malicious 2PC via garble-then-prove. We ob-
serve that using a fully malicious 2PC is a complete overkill
for applications that allow a verifier to reveal all its secrets to
a prover later (e.g., authenticating web data for TLS). In our
protocol, we use a plain GC-2PC protocol with malicious OT
between P and V to jointly derive session keys. In more de-
tail, P is the circuit garbler and V is the circuit evaluator. Any
value that needs to be revealed to both parties is revealed to V

first (by letting P send the decoding information to V ), who
sends back the value to P . In this way, V cannot break the
privacy requirement of the function being computed (but can
still change the output, which can be detected later). However,
a malicious P can cheat in a seemingly catastrophic way: a
malicious P could change a Garbled Circuit (GC) to control
the output to be anything (could even be pms or something
that can help P recover pms).

As we discussed in the main philosophy, instead of prevent-
ing P from cheating, we ensure that P ’s cheating behavior
can be caught by V in hindsight. In more detail, we ask P to
also commit to V its input, i.e., P ’s share of pms. Since we re-
veal the value to two parties by V getting it first, P ’s cheating
behavior is “well-defined”: V has its own share of pms, the
commitment of the other share of pms, and the output of the
GC that P garbled. If we later reveal V ’s secret to P after the
TLS protocol terminates, P has all secrets (in particular, P
knows V ’s share of pms) and can use a ZK protocol to prove
that all outputs obtained by V are correct. We emphasize
that P does not prove the correctness of the GC, and thus we
are using GC in a black-box way. In conclusion, although V
does not have a guarantee on P ’s honesty during the protocol
execution, V can detect any cheating in hindsight as long as
the GC output is first revealed to V .

This optimization alone significantly reduces the overhead
of the protocol as it eliminates the need of a malicious 2PC
protocol, which is expensive in computation/communication
but also requires memory linear to the circuit size to store
the preprocessing triples. We formally model the 2PC with
garble-then-prove approach as an ideal functionality FGP2PC

shown in the full version [65, Section 4.1], and show how to in-
stantiate FGP2PC using plain GC-2PC with malicious OT and
interactive ZK, which is described in the full version [65, Sec-
tion 4.2]. The 2PC protocol with garble-then-prove approach
may be of independent interest, and may be applied in other
scenarios such that all V ’s secrets are allowed to be revealed
to P at the end.

TLS-specific circuit optimization. Our second optimization
is to minimize the circuit to be computed in the protocol
above. By using unique features of how session keys are
derived in TLS, we are able to reduce the circuit size from
779,213 to 289,827 AND gates, a 2.7× improvement. Let’s
look at master secret ms as an example, which has a 384-bit
output. The exact derivation formula is as follows:

V = “master secret”∥rC∥rS ∈ {0,1}592,

M1 = HMAC(pms,V ) ∈ {0,1}256,

M2 = HMAC(pms,M1) ∈ {0,1}256,

ms= HMAC(pms,M1∥V )∥Trunc128
(
HMAC(pms,M2∥V )

)
.

In the above equation, HMAC(k,m) = SHA256(k⊕ opad,
SHA256(k ⊕ ipad,m)), and that SHA256(m1,m2,m3) =
fH( fH( fH(IV0, m1),m2),m3) where mi’s are 512-bit strings.



To compute an HMAC-SHA256, we need at least 4 SHA256
compress calls: 2 calls to compute the outer hash and at least
2 calls to compute the inner hash; if m is longer than 447 bits,
the inner hash requires even more calls.

Although there are totally 19 SHA256 compression calls
to derive ms, we found that only 6 of them need to be
computed in GC-2PC. First, IV1 = fH(IV0,pms⊕ ipad) and
IV2 = fH(IV0,pms⊕opad) only need to be computed once in
GC-2PC and they can be kept as garbled labels to be reused in
all HMAC computation. Second, the messages to all HMAC
are public, which can be used for optimization: we reveal
the value IV1 while keeping IV2 secret, so that subsequent
computation taking IV1 and the message can be done locally.
We show the exact computation as follows:

M1 = fH
(

fH(IV0,pms⊕opad), fH( fH( fH(IV0,pms⊕ ipad),

m1),m2)
)

M2 = fH
(

fH(IV0,pms⊕opad), fH( fH(IV0,pms⊕ ipad),M1)
)

ms= fH
(

fH(IV0,pms⊕opad), fH( fH( fH(IV0,pms⊕ ipad),

M1∥V1),V2)
)
∥Trunc128

(
fH
(

fH(IV0,pms⊕opad),

fH( fH( fH(IV0,pms⊕ ipad),M2∥V1),V2)
))
,

where red refers to computation in GC-2PC, green refers
to local computation, and blue refers to reused values. In
the above equations, (m1,m2) and (V1,V2) are the bit-strings
about V when suitably padding V to specific bits. The process
of deriving (keyC, IVC,keyS, IVS) is very similar to the above
and also takes 6 SHA256 compression calls. Later, computing
UFINC takes another 2 compression calls in GC-2PC. As a
result, the whole circuit computing all needed HMAC takes
289,827 AND gates. This optimization is secure in the random
oracle model (see the full version [65, Section E] for details).

3.2.3 Phase 3: Finished messages

Using a similar protocol, we compute (UFINC, UFINS) and
reveal them to both parties. 4 Now the main task is to perform
AEAD encryption/decryption on public plaintext/ciphertext
and secretly shared AEAD keys. Our focus in this paper is
AES-GCM (see Section 2.1 for a quick recall of the scheme),
which is the main scheme used over the Internet right now.
We take distributedly performing AEAD encryption as an
example, and performing AEAD decryption is totally similar.
Note that DECO mainly supports CBC-HMAC and could
support AES-GCM by computing in a Boolean circuit all
ciphertext blocks Ci’s and powers hi’s using a fully malicious
2PC, where Ci = AES(key,st+ i)⊕Mi for a state st and a
plaintext Mi, h = AES(key,0) and key ∈ {keyC,keyS} is an
application key. By revealing Ci to both parties while only
revealing an additive sharing of hi, P and V can compute an

4 We could postpone the verification of UFINS to the phase in which
P obtains all secrets and then can locally check UFINS. This optimization
removes the GC-2PC to compute UFINS (see Section 4.2 for more details).

additive sharing of the GMAC tag locally. This method can
be very costly since it requires securely computing a number
of finite field multiplications equal to the number of AES
calls. What’s more, the circuit to compute a multiplication
over F2128 has at least 8,765 AND gates, even larger than the
AES circuit itself!

AES-GCM computation consists of two tasks: computing
the ciphertext and computing the GMAC tag. The first task is
relatively easy as we can use the garble-then-prove approach
again to avoid malicious 2PC, where the plaintext is known
by both parties in this phase. However, computing the GMAC
tag is more complicated. Roughly speaking, the GMAC tag
is an inner product between a public vector over F2128 and
a private vector (Z0,h1, . . . ,hn) where Z0 = AES(key,st) is
shared by both parties. Revealing any term in the second vec-
tor would allow the adversary to forge a GMAC tag on any
message of its choice. Computing Z0 can be done in GC-2PC;
however, since we reveal the additive shares of Z0, meaning
that the output is not well defined from V ’s perspective, the
garble-then-prove approach does not immediately work. To
solve this issue, we ask P to commit to its share of Z0. After
the completion of the TLS protocol, when P knows all secrets,
P will prove the computation with respect to the above com-
mitment. To avoid computing hi in circuits, we also reveal
the additive shares of h together with Z0. Then two parties
use an OLEe over F2128 to compute additive sharings on all
powers of h. This way, each term only needs 2KB communi-
cation, 100× smaller than computing in GC-2PC! Similar to
the use of OLEe in phase 1, this also introduces a chance of a
selective failure attack; however, it can be easily shown that
providing multiple chances of selective failure attacks does
not provide any more power to the adversary.

3.2.4 Phase 4: Payload

This phase is the first time P provides a private input (namely
the query string) that is not part of the TLS execution. The
overall protocol is similar to phase 3 how we compute the
finished messages, except that the plaintext to AES-GCM-
based AEAD is not public anymore. Therefore, we can mostly
follow the phase-3 protocol except that P XOR its query to
the additive share of AES output, and then sends the resulting
value to V . In this way, V can obtain the ciphertext directly
by XORing the resulting value with its additive share.

After obtaining the AEAD cihertexts ENCQ and ENCR on
the query Q and response R from P , V opens tV ∈ Zq to P ,
who can replay the whole TLS protocol to obtain all values
computed in GC-2PC. At this point, V holds 1) the commit-
ment to P ’s share of pms; 2) the commitments to all values
revealed from GC-2PC as XOR shares of AES outputs; 3)
the values revealed from GC-2PC to both parties. Now P can
prove to V in zero-knowledge that the whole computation is
correct with respect to the commitments and values that V
has. The circuit proven in ZK includes 1) the circuit computed



in GC-2PC and 2) the decryption of the ciphertext to the re-
sponse. However, the cost of ZK is significantly smaller than
GC-2PC: when using the latest VOLE-based ZK [66], the
communication of ZK is only 1 bit per AND gate, compared
to 256 bits per AND gate required by the GC-2PC proto-
col [70]. During the process of ZK, P also needs to commit
to the plaintext of the query and response to prove AEAD
computation. They will be converted to a ZK-friendly format
in the next phase.

3.2.5 Converting to ZK-Friendly Commitments

Now V has commitments of the query Q and response R that
P knows. Their correctness has been verified by V through
VOLE-based ZK. Such commitments are instantiated by IT-
MACs and denoted by [[uuu]] = ([[u1]], . . . , [[uℓ]]), where for each
i ∈ [1, ℓ], ui ∈ {0,1}, (ui,M[ui]) is obtained by P , (K[ui],∆)
is held by V , and M[ui] = K[ui]⊕ui∆.

We first convert the IT-MACs from binary field F2λ to a
large field Zq for a prime q. Let H : {0,1}λ→Zq be a random
oracle. For each component ui, V computes K̃[ui] :=H(K[ui])
and sends Wi :=H(K[ui])−H(K[ui]⊕∆)+Γ ∈ Zq to P , who
computes M̃[ui] := H(M[ui])+ui ·Wi = K̃[ui]+ui ·Γ, where
Γ ∈ Zq is a uniform global key known to V . We also ask P
to commit to (Q,R) using an additively homomorphic com-
mitment (e.g., Pedersen [54] and KZG [42]) that is friendly
to zkSNARKs. To check consistency between IT-MACs over
Zq and additively homomorphic commitments, we reveal a
random linear combination of the values committed in two
formats, where the random challenges are chosen by V .

There are several extra considerations. First, the random
linear combination would lead to some leakage, so both par-
ties need to generate one more random value committed in
both formats to mask the linear combination before it is re-
vealed. Two commitments of the random value only need to
be consistent in the honest case. Second, the values {Wi} may
not be computed correctly and thus after P opens the linear
combination, V needs to open the values {Wi} by revealing
∆ and Γ, so that P can check that all values are computed cor-
rectly. Finally, the final check does not need to be done over
bits but any packing of the values. This could significantly
reduce the number of additively homomorphic commitments.
In addition, two additional checks need to be performed to pre-
vent the possible privacy leakage on uuu by using inconsistent
∆ and Γ. See the full version [65, Section C] for details.

3.3 Protocol Summary

Previous discussions provide a high-level intuition on how we
design the protocol. However, partially due to the complexity
of TLS, the whole protocol is very complicated. Below, we
provide a summary of the whole protocol omitting the details
when considering the optimization shown in Footnote 4. The

exact details of our protocol, along with the proof of security,
can be found in Section 4 and related appendices.

1. P samples and sends REQC to S and gets back RESS.

2. P forwards (REQC,RESS) to V , who sends tV ·G to P .
Then P picks tP and sends (tP + tV ) ·G to S . Then P and
V run the conversion from an elliptic-curve point to its
x-coordinate, based on OLE with errors, so that two parties
obtain an additive sharing of pms.

3. Two parties run the GC-2PC protocol with the garble-then-
prove technique to derive the key material and client fin-
ished message. In particular, they obtain: 1) XOR shares
of hC = AES(keyC,0) and ZC = AES(keyC,stC); 2) ini-
tial vectors IVC, IVS, intermediate public values revealed
in HMAC-based PRF, UFINC and its AES encryption; 3)
pms,ms,keyS,keyC in the form of garbled labels.

4. Based on OLEe over F2128 , P and V compute the GMAC
tag with these XOR shares on (hC,ZC) in the offline-online
mode. Then P assembles FINC and sends it to the server
S . After receiving FINS from S , P forwards it to V .

5. P and V execute the GC-2PC protocol with the garble-
then-prove approach to generate the AES ciphertext that
encrypts P ’s query and XOR shares of an AES output
ZQ = AES(keyC,stC +2). Both parties use OLEe and the
XOR shares on (hC,ZQ) to compute the GMAC tag, and
then P sends the AEAD ciphertext ENCQ on the query Q
to S . Then, S returns the AEAD ciphertext ENCR on the
response R to P , who forwards it to V .

6. P reveals its XOR shares of hC,ZC,ZQ to V , who can re-
cover hC,ZC,ZQ and then use them to locally verify the
correctness of AEAD ciphertexts FINC and ENCQ. Besides,
ENCR can also be locally verified by revealing the corre-
sponding AES outputs to V .

7. V sends tV to P who checks that it is consistent with tV ·G
received earlier. P then computes tP + tV , and recovers
all values in the execution of TLS, including all values
revealed previously. If any value is incorrect, P aborts.

8. V now holds commitments to P ’s share of pms and values
revealed as XOR shares earlier. P proves to V in zero-
knowledge that these commitments are consistent with the
values revealed to V based on the TLS specification.

9. Two parties run a protocol to convert the commitments on
Q and R based on IT-MACs to additively homomorphic
commitments like Pedersen on the same values.

4 Authenticating Web Data for TLS

In the full version [65, Section 4], we define an ideal func-
tionality FGP2PC for 2PC in the garble-then-prove framework,



and then show an efficient protocol securely realizing FGP2PC

by using a plain GC-2PC protocol with malicious OT and
the recent interactive ZK proof based on IT-MACs. Based on
FGP2PC we provide a complete description of our protocol (de-
noted by ΠAuthData) that authenticates web data for TLS 1.2 in
Section 4.1. Then, we show how to extend protocol ΠAuthData

to support multi-round query-response sessions and describe
further optimizations in Section 4.2. While ΠAuthData focuses
on the case of reading user data, we also extend it to support
for writing user data in Section 4.2. In Section 4.3, we also
show how to extend our protocol to support TLS 1.3.

4.1 Detailed Protocol for Authenticating Data
Our protocol ΠAuthData is divided into four phases, where the
last three phases are jointly called online phase.

• Preprocessing: A prover P and a verifier V generate cor-
related randomness before the TLS connection.

• Handshake: P and V call FGP2PC to perform client opera-
tions. This phase establishes the connection with S while
neither of P and V know any secrets or application keys.

• Record: P and V call FGP2PC to encrypt a query Q, and
then P locally decrypts the ciphertext on a response R.

• Post-record: In this phase, the TLS protocol has terminated.
Now, P is allowed to know all secret values in the TLS ses-
sion. Then P and V call FGP2PC to prove the correctness
of all values revealed to V . Finally, both parties transform
IT-MACs of Q and R into their additive-homomorphic com-
mitments, which are connected to a variety of zk-SNARKs.

ΠAuthData invokes the following three sub-protocols, whose
details are described in the full version [65, Section B.4].

• Sub-protocol ΠE2F (shown in the full version [65, Section
B.1]) converts additive sharings of elliptic-curve points
into that of x-coordinates, and will be used to generate an
additive sharing [pms]p of pre-master secret.

• Sub-protocol ΠPRF (shown in the full version [65, Sec-
tion B.2]) calls FGP2PC to compute HMAC-based PRF in
the handshake phase. Then, it proves correctness of all
opened values by calling FGP2PC in the post-record phase.
Protocol ΠPRF will be used to generate the master secret
ms, application keys keyC,keyS, initial vectors IVC, IVS and
UFINC,UFINS.

• Sub-protocol ΠAEAD (shown in the full version [65, Sec-
tion B.3]) calls FGP2PC to compute AES blocks used for
encryption/decryption of AEAD, and uses OLEe to com-
pute GMAC tags, in the handshake and record phases. In
the post-record phase, ΠAEAD calls FGP2PC to prove cor-
rectness of all AES blocks, and invokes FIZK to generate
IT-MACs [[Q]] on a query Q. Sub-protocol ΠAEAD is used

to encrypt UFINC,Q to obtain the ciphertexts FINC,ENCQ
and decrypt FINS to get UFINS.

P and V generate authenticated bits [[Q]] and [[R]] in the post-
record phase by calling an ideal functionality FIZK for ZK
proofs based on IT-MACs. Functionality FIZK (shown in the
full version [65, Section A.4]) is a simple extension of the
ideal functionality defined in [64], and can be securely real-
ized using the recent VOLE-based ZK protocols [7,28,63,66].
Besides, P and V call an ideal functionality FConv (shown
in the full version [65, Section C]) to convert [[Q]] and [[R]]
into their additively homomorphic commitments in the post-
record phase. In the full version [65, Section C], we present
an efficient protocol to securely realize FConv.

We postpone the details of protocol ΠAuthData to the full ver-
sion [65, Section B.4]. As in DECO [71], protocol ΠAuthData

focuses on the case of one-round query-response session, i.e.,
a prover P and a verifier V jointly generate and send the
AEAD ciphertext of a single query Q to a server S who re-
turns the AEAD ciphertext of a single response R to P . Note
that one-round session is enough for a lot of applications [71].
For one-round session, P is unnecessary to decrypt the AEAD
ciphertext ENCR on the response R and verify its GMAC tag
by running sub-protocol ΠAEAD with V . These operations can
be performed locally by P after it knows the server-to-client
key keyS, where the TLS session terminates after ENCR was
received by P and forwarded to V . Nevertheless, P and V
still need to generate [[ZR]] and [[R]] by calling functionality
FIZK. V also needs to check the correctness of the GMAC
tag in ciphertext ENCR via getting hS = AES(keyS,0) and
ZR = AES(keyS,st

C
d ).

The security of protocol ΠAuthData depends on the PRF-
Oracle-Diffie-Hellman (PRF-ODH) assumption, which has
been used for proving the security of TLS 1.2 [40,48] and is re-
called in the full version [65, Section E]. Besides, we assume
that the underlying signature scheme satisfies Existential Un-
Forgeability under Chosen-Message Attack (EUF-CMA).

Theorem 1. If the PRF-ODH assumption holds and the un-
derlying signature scheme is EUF-CMA secure, then proto-
col ΠAuthData securely realizes functionality FAuthData in the
(FOLEe,FGP2PC,FCom,FIZK,FConv)-hybrid model, assuming
that the compression function fH underlying PRF is a random
oracle and AES is an ideal cipher.

We provide a formal proof of Theorem 1 in the full ver-
sion [65, Section E].

4.2 Extensions and Optimizations
Extend to multi-round query-response sessions. We are
able to extend the protocol ΠAuthData to support multiple
rounds of payload. Specifically, P and V can execute sub-
protocol ΠAEAD (shown in the full version [65, Section B.3])
multiple times to encrypt multiple queries, where the additive



sharings of powers of hC = AES(keyC,0) need to be com-
puted only once and are reused among these sub-protocol
executions. Note that the state stC is always increased for
computing multiple AEAD ciphertexts following the TLS
specification. This prevents P or V to forge GMAC tags by
using the same state for different ciphertexts.

If every query is independent of previous responses (Case
1), P can locally decrypt the AEAD ciphertexts of all re-
sponses, after the TLS session terminates and it obtains the
server-to-client application key keyS. If every query relies on
previous responses (Case 2), P has to decrypt the ciphertexts
of all responses via interacting with V . This can be done by
running sub-protocol ΠAEAD with type1 = “decryption” and
type2 = “secret”, where ΠAEAD was designed for supporting
decryption of AEAD ciphertexts in the record phase. During
the protocol execution, ΠAEAD also allows P and V to ver-
ify the correctness of GMAC tags in AEAD ciphertexts of
responses. Therefore, in both cases, P can check the correct-
ness of AEAD ciphertext on every response via sending the
ciphertext to V and then running sub-protocol ΠAEAD with V ,
before generating the ciphertext on the next query. In fact, this
is unnecessary and the GMAC tags of AEAD ciphertexts on
all responses can be verified locally by P after it knows keyS
(see below for discussion of this optimization). In Case 2, the
decryption of the response’s ciphertext sent in the final-round
session can still be performed locally with keyS.

In the case of multi-round sessions, both P and V can
use the same approach implied in the post-record phase of
main protocol ΠAuthData (shown in the full version [65, Sec-
tion B.4]) to check the correctness of all AEAD ciphertexts
on multiple queries and responses. In Case 2, we note that
P needs to decrypt the AEAD ciphertexts on responses us-
ing keyS, and then compares the resulting plaintexts with
that obtained during the execution of sub-protocol ΠAEAD,
when it performs the local verification with keyS in the post-
record phase. This verification aims to check that no error
is introduced to the responses computed via the distributed
decryption in sub-protocol ΠAEAD. Both parties are also able
to obtain the IT-MACs on all responses in a way totally simi-
lar to main protocol ΠAuthData. Note that the IT-MACs on all
queries have already been obtained during multiple executions
of sub-protocol ΠAEAD.

Optimization. We can further optimize the efficiency of pro-
tocol ΠAuthData by delaying the check of UFINS and AEAD
ciphertext FINS from the handshake phase to the post-record
phase. That is, P and V do not execute sub-protocol ΠAEAD

to generate UFINS and the GMAC tag used to check FINS.
Instead, P can locally check their correctness after it obtains
master secret ms. Verifier V checks the correctness of UFINS
by calling the (prove) command of functionality FGP2PC with
P , and then checks the correctness of FINS = (C,σ) in the
following two steps:

1. P sends Z1 to V , and then proves Z1 =AES(key∗S, IVS+1)

by calling the (prove) command ofFGP2PC, where key∗S
and IVS are the server-to-client application key and ini-
tial vector whose correctness has been proved in the post-
record phase. Then, V checks that UFINS⊕ Z1 = C.

2. V checks the correctness of GMAC tag σ in the way
shown in the post-record phase of protocol ΠAuthData.

This has no impact on privacy and integrity, as this optimiza-
tion only delays the check. If one of these values is incorrect,
P or V aborts. Note that this optimization is supported by the
TLS implementation. Furthermore, this optimization can be
applied in the case of multi-round sessions. That is, P and V
can delay the correctness check of all AEAD ciphertexts on
responses from the record phase into the post-record phase
by checking the correctness of GMAC tags via the approach
shown in main protocol ΠAuthData. Recall that P also checks
that the responses output by sub-protocol ΠAEAD are identical
to that via the local decryption with keyS, when it performs
the local verification in the post-record phase. This optimiza-
tion allows us to reduce communication rounds and improve
the whole performance.

Extend to support for writing user data. Our protocol
ΠAuthData focuses on reading user data from a website acting
as the TLS server. For most of Web2 and Web3 applications,
it is sufficient. Nevertheless, for a few applications, a user
(i.e., prover) may be desirable to write its data on the website
(e.g., updating personal information) during the protocol exe-
cution of ΠAuthData. In this case, a malicious verifier V may
tamper the queries sent from a prover P to the TLS server
by adding some errors into the AES ciphertexts on queries.
The attack would be detected by P after it obtains all secrets.
However, the user data on the website has already been tam-
pered. To prevent such attacks, we need to extend functionality
FGP2PC to an ideal functionality F noerr

GP2PC (defined in the full
version [65, Section 4.1]) that does not allow V to introduce
any errors. In the full version [65, Section 4.2], we show how
to extend the protocol instantiating FGP2PC to securely real-
ize F noerr

GP2PC with no extra communication. When replacing
FGP2PC with F noerr

GP2PC, protocol ΠAuthData would allow P to
securely write user data.

This holds for multi-round sessions. For the multi-round
session extension as described above, we point out a caveat. If
the writing queries relying on previous responses, then P and
V need to execute sub-protocol ΠAEAD to check the correct-
ness of the AEAD ciphertext on each response except for the
final response, before sending the AEAD ciphertext on the
next query to the server. Otherwise, the above optimization,
which locally checks the AEAD ciphertexts on all responses
after obtaining keyS, can still be used.

4.3 Extending Our Protocol for TLS 1.3
While the protocol ΠAuthData (shown in the full version [65,
Section B.4]) focuses on the case of TLS 1.2, we are also able



to extend it for TLS 1.3, and will implement the protocol to
authenticate web data for TLS 1.3 in the future work. The
main differences between TLS 1.2 and TLS 1.3 are the key
derivation function (KDF) and the handshake phase. In this
section, we focus on the handshake mode of full 1-RTT, where
the optional mode of 0-RTT based on a pre-shared key can be
securely computed in a similar way.

The key derivation in TLS 1.3 adopts the HMAC-based
key derivation function (HKDF) [46, 47], which consists
of two sub-functions: HKDF.Extract and HKDF.Expand.
Specifically, prk← HKDF.Extract(salt, ikm) takes as input
a non-secret random salt and a secret input key material
ikm, and then extracts a pseudorandom key prk, i.e., prk =
HMAC(salt, ikm). Note that salt is the HMAC key, and ikm
is the HMAC input. In this case, we can securely compute
HKDF.Extract in the following manner:

prk= fH
(

fH(IV0,salt⊕opad), fH( fH(IV0,salt⊕ ipad), ikm)
)
,

where red refers to computation in GC, and green refers to
local computation. Then prk is expanded to an output keying
material okm with a specified length. Specifically, okm←
HKDF.Expandℓ(prk, info) takes as input prk, a public context-
specific information info and an output length ℓ, and outputs

okm= T1 ∥ . . . ∥Tn−1 ∥Truncm(Tn),

where Ti = HMAC(prk,Ti−1∥info∥i) for each i ∈ [1,n], T0 is
an empty string, n = ⌈ℓ/256⌉ and m = ℓ−256 · (n−1). It is
easy to see that the sub-protocol ΠPRF (shown in the full ver-
sion [65, Section B.2]) for TLS 1.2 can be directly extended
to securely compute HKDF.Expandℓ(prk, info) for TLS 1.3.
In particular, the circuit optimization for PRF in TLS 1.2 is
able to be applied for HKDF.Expand in TLS 1.3.

In the handshake phase of TLS 1.3, the client and server
run the Diffie-Hellman key exchange protocol without au-
thentication to establish a pre-master secret pms, which can
be executed similar to protocol ΠAuthData. Then pms is de-
rived to a handshake secret hs via HKDF.Extract, and then
hs is derived to the client handshake traffic secret chts and
server handshake traffic secret shts via HKDF.Expand. The
secrets chts,shts are used to generate the client handshake
key chk and server handshake key shk via HKDF.Expand.
Then, hs is also used to derive a mater secret ms via invoking
HKDF.Extract and HKDF.Expand respective once. Next, ms
is used to drive four secrets with HKDF.Expand: the client
application traffic secret cats, server application traffic secret
sats, exporter master secret ems and resumption master secret
rms. Using HKDF.Expand, the secrets cats,sats are derived
to the client application key cak and server application key
sak. The derivation of all secrets and keys can be securely
computed by P and V by executing a protocol similar to
sub-protocol ΠPRF.

While chk and shk are used to encrypt/decrypt the sub-
sequent messages (e.g., client/server finished messages, sig-
natures and certifications) in the handshake phase, cak and

sak are independent and used to encrypt/decrypt application
data in the record phase. Therefore, we can open chk and shk
to the prover P , and then P is able to locally perform the
encryption/decryption in the handshake phase. 5 That is, it
is unnecessary to run sub-protocol ΠAEAD (shown in the full
version [65, Section B.3]) to compute stateful AEAD in the
handshake phase. Besides, handshake traffic secrets chts and
shts are used to produce client and server finished messages,
and are independent from application traffic secrets cats and
sats. In this case, we can open chts and shts to P , and then
P can locally generate the finished messages. Furthermore,
ems can be computed locally by P after it knows all secrets in
the post-record phase, as ems is an exporter master secret and
not used in the record phase. The secret rms is also able to be
computed locally by P after it knows all secrets in the post-
record phase, if P and V will not jointly execute a session
resumption with rms. The optimizations would significantly
reduce the cost in the handshake phase. Overall, 21 invoca-
tions of SHA256 compression functions need to be executed
in GC-2PC, compared to that 14 invocations in TLS 1.2 for
our protocol and 30 invocations in TLS 1.3 for DECO [71].
As for our protocols, the communication in the handshake
phase of TLS 1.3 is about 1.5× larger than that in TLS 1.2.

5 Performance Evaluation

5.1 Implementation and Experimental Setup

We implemented our protocol in C++, including 4000 lines
of code of protocol development and 3000 lines of testing
code. Our implementation is complete and can interact with
real-world APIs. We use the EMP toolkit [61] for the imple-
mentation of the following building blocks: KOS OT [44],
Ferret OT [68], half-gates-based GC with optimization of
concrete security [34, 70] and interactive ZK (called Quick-
Silver) [66]. We leave it as the future work to incorporate the
recent three-halves GC construction [56] to further reduce the
communication cost of our protocol.

All benchmarks are performed over AWS m5.large in-
stances, with 2 vCPUs and 8 GB of memory. Note that our
protocol only needs about 150 MB of memory for 2KB query
and response. Every experiment involves three parties: the
TLS server S , the prover P and the verifier V . Except for
the global-scale experiment based on real-world APIs in Sec-
tion 5.3, we place S and P on the same machine and V on a
different machine with changing network condition, where
the communication between S and P is negligible compared
to that between P and V . We use one thread for all running
time, and adopt tc to manually control the network bandwidth
and roundtrip latency to desired levels. The running time and
communication reported in this section are the end-to-end
performance, including the preprocessing and setup costs.

5This observation has been found in DECO [71].



Figure 3: Performance of our protocol under different
network bandwidths and latency. The length of query and
response is 2 KB.

5.2 Scalability of Our Protocol
Performance of protocol ΠAuthData. In Figure 3, we show
the performance of our protocol ΠAuthData (shown in the full
version [65, Section B.4]) under different bandwidths and
latency, while fixing the query and response to 2KB. We
show both the offline cost (which can be done before the
TLS connection) and the online cost (which can only be done
during the TLS connection). Overall, our protocol is highly
efficient. For example, under a realistic network with 200
Mbps bandwidth and 50 ms latency, the end-to-end running
time is under four seconds while the runtime in the online
phase is less than two seconds.

We can also see that the online performance is highly de-
pendent on the latency: it is less than 50 ms when the latency
is low, but could be up to 3 seconds when the latency is
as high as 100 ms. This matches the roundtrip complexity
that we measured from our implementation, which needs 31
roundtrips of communication. The offline cost is less affected
by the latency but more on the network bandwidth; this is
because the transmission of garbled circuits, which is majority
of the communication of our protocol, is in the offline phase.

Comparison with prior work. We compare the performance
of our protocol with DECO [71]. Since the code of DECO
is not open sourced and that the performance of malicious
2PC has been constantly improving, we benchmark the per-
formance based on the latest implementation of authenticated
garbling. We also incorporate the Ferret OT [68] to the im-
plementation to further reduce the communication cost. This
is the most practically efficient malicious 2PC implementa-
tion so far. We only included the time needed in malicious
2PC, which includes computing the TLS session keys and 4
AES-GCM ciphertexts. When computing the GMAC tag, we
assume that one field multiplication over F2128 takes 8,765
AND gates, including 8,192 ANDs to compute the multipli-
cation and 573 ANDs to compute the reduction. Note that

there exists more efficient garbling for binary extension field
multiplication [38] but only in the semi-honest setting. This
is a lower bound as the DECO protocol also includes other
components. All performance numbers are measured using
the same type of AWS instances. The result of the comparison
is shown in Table 2, where we can observe roughly 14× im-
provement in communication and 7.5× to 15× improvement
in running time over LAN and WAN.

We record the peak memory usage of both protocols. Un-
der 2KB query and response, the malicious 2PC needed in
DECO requires a peak memory of 3 GB while our protocol
only needs about 150 MB of memory. The huge difference
is mainly due to the fact that authenticated garbling requires
storing preprocessed triples for all AND gates in the circuit
before the execution (to achieve constant roundtrips), while
all building blocks that we use can be streamed without the
need to store them all at once.

Performance of conversion. We also benchmarked the per-
formance of commitment conversion of our protocol in dif-
ferent network settings, which is shown in Table 3. The IT-
MAC-based commitments on payload is converted to Peder-
sen commitments [54]. We observe that in both WAN and
LAN settings, the conversion protocol is very cheap compared
to the overall web authentication protocol, and the cost of con-
version is linear to the payload size. It takes roughly 37 ms
to convert an additional kilobyte of payload to Pedersen com-
mitments under LAN and roughly 67 ms per KB under WAN.
The basetime in WAN is higher due to the higher latency.

5.3 Global-Scale Benchmarks
We integrate our protocol to access real-world web servers and
test the performance, as shown in Figure 4. Specifically, we
utilize provided APIs to query Coinbase and Twitter servers.

• Coinbase API: We benchmark fetching the balance of
BTC using the prover’s API secret [3]. It has a query of size
426 bytes and response of size 5701 bytes. Our protocol
communicates 17.6 MB in the offline phase and 0.9 MB in
the online phase.

• Twitter API: We benchmark using the prover’s credential
token to retrieve the number of followers [4]. This API has
a query size of 587 bytes and response size of 894 bytes.
Our protocol communicates 18.9 MB in the offline phase
and 0.4 MB in the online phase.

In all experiments, the verifier V is deployed in the US West
(represented by the purple circle), while the provers (repre-
sented by the blue circles) are distributed across 18 cities
worldwide. All prover and verifier machines are hosted in
AWS while the TLS server is hosted by Coinbase/Twitter,
which may have nodes close to the prover. The online time
required for the process ranges from 0.3 seconds to 10 sec-
onds, depending on the round-trip time between the prover



Communication cost WAN (100 Mbps, RTT = 50 ms) LAN (1 Gbps, RTT = 0 ms)

Payload 256 B 512 B 1 KB 2 KB 256 B 512 B 1 KB 2 KB 256 B 512 B 1 KB 2 KB

DECO [71] 206 MB 255 MB 345 MB 475.7 MB 24 s 27.2 s 36.3 s 51.6 s 5.91 s 6.46 s 8.9 s 11.21 s
This work 15.2 MB 17.8 MB 22.9 MB 33.3 MB 3.19 s 3.43 s 3.96 s 4.9 s 0.46 s 0.51 s 0.61 s 0.72 s

Table 2: Comparing the performance of DECO [71] and our protocol under LAN and WAN.

WAN (100 Mbps, RTT = 50 ms) LAN (1 Gbps, RTT = 0 ms)

Payload 256 B 512 B 1 KB 2 KB 256 B 512 B 1 KB 2 KB

Conversion 161 ms 173 ms 202 ms 278 ms 11 ms 20 ms 38 ms 76 ms

Table 3: Performance of commitment conversion with different payload length under LAN and WAN.
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Figure 4: Online and total performance of accessing Coinbase and Twitter servers with globally distributed provers. All
numbers are reported in seconds in the form of “online time (total time)”. The verifier is fixed at California. The server is hosted
by Coinbase/Twitter, which may have mirrors in various locations.

and verifier, which aligns with our expectation. From the ex-
perimental results shown in Figure 4, we conclude that our
protocol is concretely efficient for real-world applications.

The performance of our protocol only depends on the band-
width and latency in different network settings, and is inde-
pendent of the concrete city in which the verifier locates. In
practical scenarios, one could deploy multiple verifiers in
proximity to the provers. This deployment strategy serves
to minimize the round-trip time and significantly boost the
overall performance of the system.
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Functionality FOT

Upon receiving (ot,(m0,m1)) from a sender P and
(ot,b) from a receiver V , where m0,m1 ∈ {0,1}ℓ and
b ∈ {0,1}, this functionality outputs mb to V .

Figure 5: Functionality for oblivious transfer.
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A More Preliminaries

OT. Oblivious Transfer (OT) allows a sender to transmit one
of two messages (m0,m1) to a receiver, who inputs a choice
bit b and obtains mb. For security, b is kept secret against
the malicious sender, and m1−b is unknown for the malicious
receiver. The standard OT functionality is recalled in Figure 5.
Correlated OT (COT) is an important variant of OT where two
messages m0 and m1 satisfy a fixed correlation, i.e., m0⊕m1 =
∆. Both OT and COT correlations can be generated in the
malicious setting using either the IKNP-like protocols [44,57]
or the PCG-like protocols [12, 13, 68].

OLE with errors. Oblivious Linear Evaluation (OLE) can
be viewed as an arithmetic generalization of OT, and allows
two parties to obtain an additive sharing of multiplication of
two field elements. When applying OLE into our protocol,
we show that OLE with errors (OLEe) is sufficient, where
the privacy is guaranteed against malicious adversaries but
a malicious sender can introduce an error into the resulting
OLE correlation.

Functionality for OLE with errors is shown in Figure 6.
Without loss of generality, we focus on a finite field either
F=Zp for a prime p or F= F2λ . We define a “gadget” vector
ggg = (1,g, . . . ,gm−1) for m = ⌈log |F|⌉, where g = 2 if F =
Zp for a prime p and g = X if F = F2λ . For a vector xxx ∈
{0,1}m, we have ⟨ggg,xxx⟩ = ∑

m
i=1 xi ·gi−1 ∈ F. We also denote

by ggg−1 : F→ {0,1}m the bit-decomposition function that
maps a field element x ∈ F to a bit vector xxx ∈ {0,1}m, such
that ⟨ggg,ggg−1(x)⟩ = x. Following previous work (e.g., [14]),
we allow a corrupted party to choose its output. If a sender
P is corrupted, then it can introduce an error vector eee into
functionality FOLEe. Then, FOLEe computes an error e′ relying

Functionality FOLEe

This functionality operates over a finite field F. Let m =
⌈log |F|⌉. This functionality interacts with a sender P , a
receiver V and an adversary.

• Upon receiving (ole,x) from a sender P and (ole,y)
from a receiver V where x,y ∈ F, execute as follows:

1. If P is honest, sample z1← F. Otherwise, receive
z1 ∈ F from the adversary.

2. If P is malicious, receive a vector eee∈ (F)m from the
adversary, and compute an error e′ := ⟨ggg∗ eee,yyy⟩ ∈ F
where yyy = ggg−1(y) is the bit-decomposition of y∈ F,
∗ is a component-wise product and ⟨aaa,bbb⟩ denotes
the inner product of two vectors aaa,bbb.

3. If V is honest, compute z2 := x · y− z1 + e′ ∈ F
(where e′ is set as 0 if P is also honest). Otherwise,
receive z2 ∈ F from the adversary, and recompute
z1 := x · y− z2 ∈ F.

• Output z1 to P and z2 to V .

Figure 6: Functionality for OLE with errors.

on the input y of a receiver V . Finally, the error e′ is added into
the output z2 of V . The introduction of errors is asymmetric,
i.e., V is not allowed to add an error into the output of P . This
model the asymmetric security of the COT-based protocol [31,
45] that securely realizes functionality FOLEe.

Additive secret sharings over fields. Our protocol will adopt
additive secret sharings between P and V over a finite field F.
For a field element x ∈ F, we write [x] = (xP ,xV ) such that
xP + xV = x ∈ F, where one of xP ,xV is random in F. For an
element a ∈ F only known by a party V , two parties V and
P can locally define an additive sharing [a]p = (a,0). It is
well-known that additive secret sharings are additively homo-
morphic. In particular, give public constants c0,c1, . . . ,cℓ and
additive sharings [x1], . . . , [xℓ], P and V can locally compute
[y] := c0 +∑

ℓ
i=1 ci · [xi]. For an additive sharing [x], we define

its opening procedure:

• x← Open([x]): P sends xP to V , and V sends xV to P in
parallel. Then, both parties compute x := xP + xV ∈ F.

For a field element x only known by P (resp., V ), both par-
ties can locally define its additive sharing [x] = (x,0) (resp.,
[x] = (0,x)). When applying additive secret sharings into our
protocol, we only need two types of finite fields: one is Zp for
a large prime p and the other is F2128 . The additive sharing of
x is denoted by [x]p for former and [x]2128 for latter.
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