
iHunter: Hunting Privacy Violations at Scale in the Software Supply Chain on iOS

Dexin Liu1,2∗, Yue Xiao3∗, Chaoqi Zhang3, Kaitao Xie2, Xiaolong Bai2†, Shikun Zhang1, Luyi Xing3†

1National Engineering Research Center for Software Engineering, Peking University,
{dxliu,zhangsk}@pku.edu.cn,

2Alibaba Group, {easylyou.xkt,bxl1989}@gmail.com,
3Indiana University Bloomington, {xiaoyue,cz42,luyixing}@iu.edu

Abstract

Privacy violations and compliance issues in mobile apps are
serious concerns for users, developers, and regulators. With
many off-the-shelf tools on Android, prior works extensively
studied various privacy issues for Android apps. Privacy
risks and compliance issues can be equally expected in iOS
apps, but have been little studied. In particular, a prominent
recent privacy concern was due to diverse third-party libraries
widely integrated into mobile apps whose privacy practices
are non-transparent. Such a critical supply chain problem,
however, was never systematically studied for iOS apps, at
least partially due to the lack of the necessary tools.

This paper presents the first large-scale study, based on our
new taint analysis system named iHunter, to analyze privacy
violations in the iOS software supply chain. iHunter per-
forms static taint analysis on iOS SDKs to extract taint traces
representing privacy data collection and leakage practices.
It is characterized by an innovative iOS-oriented symbolic
execution that tackles dynamic features of Objective-C and
Swift and an NLP-powered generator for taint sources and
taint rules. iHunter identified non-compliance in 2,585 SDKs
(accounting for 40.4%) out of 6,401 iOS SDKs, signifying
a substantial presence of SDKs that fail to adhere to compli-
ance standards. We further found a high proportion (47.2% in
32,478) of popular iOS apps using these SDKs, with practi-
cal non-compliance risks violating Apple policies and major
privacy laws. These results shed light on the pervasiveness
and severity of privacy violations in iOS apps’ supply chain.
iHunter is thoroughly evaluated for its high effectiveness and
efficiency. We are responsibly reporting the results to relevant
stakeholders.

*The first two authors contributed equally to this work and are ordered
alphabetically. Dexin Liu’s contribution was made during his research intern-
ship at Alibaba Group. Yue Xiao was a Ph.D. student at Indiana University.

†Xiaolong Bai and Luyi Xing are corresponding authors.

1 Introduction

Privacy violations and compliance issues in mobile applica-
tions pose serious concerns for users, developers, and regu-
latory bodies. Prominent issues include those related to data
collection transparency and fairness, the right to be forgotten,
or various other privacy rights defined by legislation. Com-
prehensive analyses of these issues have been predominantly
Android-focused, utilizing various available tools as demon-
strated in prior studies [39, 40, 45, 67, 73, 81, 88]. Conversely,
privacy research in iOS applications remains underexplored,
despite its stature as a leading mobile platform and Apple’s
efforts to enforce privacy safeguards, such as mandatory pri-
vacy policies [2] and App Store privacy labels [6]. This re-
search gap stems from Apple’s closed ecosystem and the
absence of off-the-shelf analysis tools. Existing literature
has exposed considerable privacy risks within iOS applica-
tions [37, 48, 50, 63, 83, 84, 90], including recent findings on
widespread non-adherence to privacy labels [84] and reports
of extensive app suspensions by Apple for privacy violations
in 2021 [4]. Notably, these studies primarily target app-level
privacy violations, with less attention given to the influential
role of third-party SDKs in perpetuating these issues—a crit-
ical aspect that merits deeper investigation in the realm of
privacy research.

Modern programs, like mobile applications, heavily rely
on third-party software development kits (SDKs) to ease de-
velopment, reduce costs, and keep up with trends. While
enjoying the convenience they bring, apps also have to bear
the privacy risk incurred by the SDKs. [17, 47, 70, 74, 77, 80]
have demonstrated that SDKs can introduce extra privacy
problems to apps. Previous work [46, 47, 57, 67, 70, 71, 74,
77, 78, 79, 80] focused on analyzing and defending against
privacy hazards in Android third-party SDKs, including a new
kind of privacy violation called Cross Library Data Harvest-
ing (XLDH in short) [80] among Android SDKs. However,
no one has studied the problem in iOS SDKs.
Challenges. Several obstacles make it difficult to analyze
privacy violations in iOS SDKs:

mailto:dxliu@pku.edu.cn
mailto:zhangsk@pku.edu.cn
mailto:easylyou.xkt@gmail.com
mailto:bxl989@gmail.com
mailto:xiaoyue@iu.edu
mailto:cz42@iu.edu
mailto:luyixing@iu.edu


• Lack of dataflow analysis tools. Compared to apps, SDKs
are unsuitable for dynamic analysis because they have no
entries and cannot be dynamically executed like apps. Exist-
ing tools for iOS binaries, such as PiOS [50] and iRiS [48],
are limited in their static analysis capabilities, particularly in
terms of sophisticated data flow analysis like taint tracking,
which is crucial for examining the transmission of privacy
data. On the other hand, traditional static dataflow analysis
tools [14, 33, 56, 58, 72] for binaries on other platforms can-
not handle the semantics of Apple’s unique Objective-C and
Swift languages. As a result, a static dataflow analysis tool
for iOS binaries, which can properly handle Objective-C and
Swift semantics, is required to analyze iOS SDKs.
• Unclear mapping between iOS system APIs and privacy-
related data. System APIs are fundamental sources of user
privacy on devices. Yet, a comprehensive and precise list of
iOS system APIs that yield privacy-sensitive data, as gov-
erned by privacy laws or regulatory frameworks, remains
unavailable.
Methodology. We developed an automated static analysis
system, iHunter, dedicated to performing taint analysis on
iOS binaries with flow-sensitive, context-sensitive, and field-
sensitive granularity by tackling obstacles imposed by Apple’s
unique languages. As the foundation of iHunter, an innova-
tive iOS-oriented extension to symbolic execution is proposed
to handle the dynamic features of Objective-C and Swift
and perform taint propagation. Prior works [48, 49, 50, 82]
manually defined a limited set of system APIs that return
privacy-related data (e.g., device identifier, location, contacts,
etc), in which coverage and accuracy cannot be guaranteed.
Moreover, the invocation of system APIs, like string opera-
tions and array/dictionary manipulation, heavily affect taint
propagation, which commonly requires a time-costing cross-
binary analysis into the system libraries. To tackle these two
challenges and ensure high coverage and efficiency, iHunter
proposes a fully automatic method to extract sources of pri-
vacy data and rules of taint propagation from Apple’s high-
level system APIs without the need to perform cross-binary
analysis. In particular, our system adopts natural language
processing (NLP) on Apple’s developer documents to auto-
matically extract sources and taint rules from the description
of APIs. With taint sources, sinks, and rules, iHunter gener-
ates taint traces that represent the privacy collection behaviors
of SDKs. Our thorough evaluation shows that iHunter can
extract taint traces effectively and efficiently.
Large-scale analysis and findings. Our approach involves
comparing the taint traces, as identified by iHunter, against
the privacy policies of iOS SDKs procured from their respec-
tive websites to scrutinize the adequacy of disclosure regard-
ing their data practices. iHunter identified non-compliance in
2,585 SDKs (accounting for 40.4%) out of 6,401 iOS SDKs,
signifying a substantial presence of SDKs that fail to ad-
here to compliance standards. Specifically, we categorized
non-compliant SDKs as follows: 2,436 were marked as non-

compliance type I, exhibiting data processing activities with-
out any privacy policies; 58 were classified as non-compliance
type II, having privacy policies that either neglect to mention
or incorrectly represent their data processing activities; and
45 were recognized as non-compliance type III, these SDKs
were engaged in data harvesting from other SDKs, violating
the Terms of Use of the victim SDKs. We further examined
the prevalence of these SDKs in real apps and assessed how
these non-compliant SDKs affect the privacy compliance of
the apps. We found that 15,336 (47.2%) apps have integrated
at least one of the problematic SDKs. Due to non-transparent
data practices and improper disclosures of the SDKs, those
real apps come with practical risks of privacy noncompliance
based on the Apple app store policy. Specifically, Apple
app store [6] requires that app vendors should conspicuously
disclose (using a privacy policy) all data practices (e.g., collec-
tion, sharing) occurring in the app, including those performed
by third-party libraries. We characterize the findings with
case studies, including the occurrence of XLDH [80], an
emerging type of privacy violation previously reported on
Android. This has been found in highly popular SDKs such
as AppsFlyer [7]. The results of our first large-scale study
indicate the prevalence and severity of privacy violations in
the iOS apps’ supply chain.
Contributions. We summarize key contributions as follows.
• We performed a systematic study on privacy violations in
the iOS SDKs. Our results shed light on the prevalence, and
seriousness of privacy violations in iOS SDKs.
• We introduced iHunter, a comprehensive system designed
to systematically scrutinize privacy compliance among iOS
SDKs and detect potential violations.
• We conducted a large-scale study of 6,401 iOS SDKs and
discovered a high portion (40.4%) of privacy violation be-
haviors. Moreover, we provide detailed case studies of vio-
lations of privacy policies and cross-library data harvesting
SDKs affecting real-world iOS apps. This sheds light on the
prevalence and severity of privacy violations in the iOS apps’
supply chain.
• We plan to release the source code of iHunter [36] to fa-
cilitate future research on iOS and related datasets in this
study.

2 Background

2.1 Programming Languages in iOS
Objective-C [19], the fundamental programming language of
iOS apps, offers features such as dynamic typing, messaging,
and reflection, enhancing its usability and adaptability. Yet, its
unique dynamic features and runtime mechanisms introduce
complexities in taint tracking, especially concerning runtime
method calls and dynamic types. Objective-C invokes meth-
ods by passing function names (selectors) and objects to a
standard objc_msgSend function. This function dynamically



determines the method implementation at runtime, enhancing
program flexibility. However, this dynamism, managed by
the Objective-C runtime, complicates taint tracking and data
flow analysis, as runtime behavior modifications can alter data
flows. Existing literature [48, 50, 82, 84] has explored these
challenges in the context of Objective-C binary analysis.
Swift is Apple’s new programming language designed for
iOS development. It is primarily a statically typed language,
known for its emphasis on safety, performance, and user-
friendliness. Swift primarily uses static dispatch for function
calls, yet it can employ dynamic dispatch by specifically mark-
ing a function as ‘dynamic.’ This change allows the system
to decide at runtime which overridden method to execute,
rather than making this determination at compile time. In
addition, the Swift compiler utilizes name-mangling [60] to
generate unique identifiers for each function to be called.
Name-mangling is a technique used to produce a distinctive
identifier for an object based on its language-level name and
type, which can be leveraged by the linker to reference the
object. When performing a static taint analysis on Swift bina-
ries, the dynamic dispatch mechanism and the name-mangling
scheme used for function names can present significant ob-
stacles in determining which functions in the Swift SDK are
being called. This necessitates an in-depth analysis of the run-
time behavior of Swift binaries to ascertain the object types
and resolve function calls dynamically.

2.2 Taint Analysis and Challenges
Taint analysis can be defined as a graph reachability prob-
lem on the program’s data flow graph (DFG in short). Given
a binary, our goal is to detect the paths from source nodes
Nso, where privacy data is collected, to sink nodes Nsi, where
privacy data is leaked, within the data flow graph Gd . Com-
monly, static taint analysis can be summaries with steps as
follows:
➀ Construct the data flow graph Gd = (Nd ,Ed) of the whole

program. Nd is the node set consisting of registers and
memory locations. Ed is the edge set that contains the data
flow edges ed = (n1,n2), where data value in n2 depends
on n1.

➁ Define and identify source/sink nodes in Nd , and use them
to construct Nso as the set of initial nodes and Nsi as the
set of terminated nodes.

➂ Extract all paths from nodes in Nso to nodes in Nsi within
the directed graph Gd , which can be formulated as a graph
reachability problem R = (Dd ,Nso,Nsi).

Challenges. Performing a thorough static taint analysis on
iOS app binaries poses several challenges.
• Dynamic features of unique languages. As we introduced
in § 2.1, the default method invocation mechanism in iOS
development is a dynamic dispatch. This mechanism is stan-
dard in binaries written in Objective-C and Swift, the two
primary programming languages used in iOS development.

Resolving the actual targets of dynamic calls serves as the
foundation for constructing inter-procedural DFG and en-
ables further taint analysis. To this end, static analysis needs
to abstract the high-level semantics of dynamic dispatching
functions (e.g., objc_msgSend and dispatch_async), and
analyze along control flow to find out clues deciding the fi-
nal targets of such dynamic calls. Backward slicing [48, 50],
forward propagation [52, 82], and their combination [49] are
the most widely adopted approaches to solving this problem
in prior works. However, with the rapid and massive growth
of the binary size, we need a more efficient method to both
solve dynamic calls and perform taint analysis. In iHunter,
we develop an iOS-oriented symbolic execution engine to
tackle the dynamic features of languages, build an accurate
DFG, and eventually facilitate taint analysis. This engine,
together with other tactics, will be described in § 4.3.
• Broadly utilized system APIs. Symbolic execution and re-
lated techniques can only help us handle instruction-level taint
analysis issues. However, the data flow could be truncated
when binaries call external functions implemented outside
of the binary, due to the lack of high-level semantics of the
external functions. Cross-binary function calls are mainly
caused by the invocation of system APIs since iOS SDK ven-
dors seldom compile code into multiple binaries to avoid high
integration costs for developers. If we do not handle these
API calls properly, the data flow will not be complete. An in-
tuitive method would be performing cross-binary analysis on
iOS framework binaries to complement the apps’ data flow.
However, all iOS system APIs are compiled into a single
enormous binary (about 3GB) called dyld_shared_cache,
which is nearly impossible for a thorough static data flow
analysis. In fact, it is not feasible to fully load the binary
using static analysis tools (e.g., IDA Pro, Ghidra, Hopper)
on commodity hardware (with 32 GB memory and 8-core
CPU). To effectively and efficiently address the challenges,
we develop an NLP-powered taint rule generation technique
for iOS system APIs, to extract and abstract taint propagation
semantics from iOS API documentation. Our methodology
will be presented in § 4.2.

3 Compliance Criteria for Third-Party SDKs

This section elaborates on the criteria used to consider SDKs
as non-compliant, based on their adherence, or lack thereof,
to prevalent privacy laws such as the General Data Protection
Regulation (GDPR) [35] and the California Consumer Privacy
Act (CCPA) [34], or Terms of Service (ToS), as enumerated
in Table 5. While adhering to GDPR and related regulations,
we consider personal data based on state-of-the-art privacy-
data ontologies [39, 40], including categories like “device
information”, “tracking information”, “contact information”,
“location information”, etc. We define data collection prac-
tices of SDKs as any data flow that accumulates personal data
through sensitive source APIs and then transfers this data



to network or storage APIs. SDKs that conduct data collec-
tion practices, including storing, collecting, or transmitting,
personal data and meet any of the following conditions are
considered non-compliant:

• Non-Compliance Type I: Absence of a Privacy Policy.
SDKs, when processing personal data through actions like
collection, sharing, storage, or access under their own means
and purpose, act as data controllers. As articulated in Article
12 of the GDPR: “The controller shall take appropriate mea-
sures to provide any information referred to in Articles 13 and
14 and any communication under Articles 15 to 22 and 34
relating to processing to the data subject in a concise, trans-
parent, intelligible and easily accessible form, using clear and
plain language.” Failing to provide a privacy policy detailing
this information is a violation of GDPR (i.e., Article 12) and
CCPA (i.e., Section 1798.100(b)). In our study, SDKs that en-
gage in data processing activities without providing a privacy
policy are categorized as Non-Compliance Type I.

• Non-Compliance Type II: Inappropriate Disclosure in
Privacy Policies. Compliance with privacy laws requires not
just providing a privacy policy, but also need to provide a
correct and comprehensive declaration of data processing
practices in the privacy policy. For example, GDPR (Article
5(1)(a)) requires “Personal data shall be processed lawfully,
fairly and in a transparent manner (‘lawfulness, fairness, and
transparency’).” Any inconsistencies between actual practices
in code behaviors and those stated in the privacy policy are
deemed a violation. We employed the flow-to-policy con-
sistency model as detailed in [40]. Our analysis focuses on
two key inconsistencies: omit disclosure and incorrect dis-
closure, both of which are regarded as violations in previous
works [81, 87, 92]: (1) Omit Disclosure arises when data is
collected, but there are no statements in the privacy policy
that disclose or mention this collection. (2) Incorrect Disclo-
sure is present when data is indeed collected, but the privacy
policy conversely states that such a data collection does not
occur. We classify the SDKs as Non-Compliance Type II if
any above violations are detected.

• Non-Compliance Type III: Transgression of ToS Provi-
sions. For an SDK that accesses user data from other third-
party SDKs, we check whether it violates the ToS policy of
the latter. The ToS policy of an SDK may impose different
restrictions when another SDK tries to access its specific data,
in particular “no third-party access”, “requiring user consent”,
and “complying with regulations” [80]. A violation of the
SDK ToS policies is considered Non-Compliance Type III.

4 Design and Implementation of iHunter

4.1 Overview

Architecture. Our approach relies on extracting data flow
statically from SDK binaries and assessing compliance with

Raw API Pages API Specification

Sources & 
Sinks

Extraction
Taint Rules
Generation

GitHubCocoaPods

Symbolic Execution-Based
Taint Analysis

Privacy Policy / ToS

Compliance
Check

Parse

1 Semantic Knowledge Extraction Taint Analysis2

3 Compliance Check

AppFigures

Non-Compliant SDKs 
Type I, II, III

SDKs

Taint Traces

Figure 1: Overview of iHunter

their respective privacy disclosures to identify non-compliant
SDKs. In particular, the design of iHunter includes three
major components: Semantic Knowledge Extraction, Taint
Analysis, and Compliance check, as outlined in Figure 1.
Component ➊: Semantic Knowledge Extraction § 4.2 Our
approach employs NLP techniques to extract semantic knowl-
edge from API documentation, yielding two key elements: (1)
taint sources, identified as sensitive APIs that return privacy
data, and (2) taint rules applicable among system APIs. Those
semantic knowledge are crucial for constructing a data flow
graph in subsequent taint analysis. Note that this process is a
one-time preparation step, necessitating execution only once
for the entire system.
Component ➋: Taint Analysis § 4.3 Armed with seman-
tic knowledge outlined in § 4.2, iHunter employed under-
constrained symbolic execution to construct data flow graph
(DFG) and further extract taint traces from sources to sinks
within this DFG. Each identified taint trace represents a
unique data flow, indicating specific data processing activity,
such as accessing, storing, or transmitting privacy data.
Component ➌: Compliance Check § 4.4 After extracting the
taint traces, we further compare them with the corresponding
privacy disclosures. To achieve this, we employed a set of
consistencies model in [40, 80] to detect different types of
non-compliance SDKs.

4.2 Semantic Knowledge Extraction

Taint sources, sinks, and rules are crucial for constructing the
data flow graph during taint analysis. Previous research de-
pended on manually-curated taint sources (10 in [50] and 150
in [48]), which were neither comprehensive nor scalable, espe-
cially considering the existence of nearly 60,000 documented
public APIs. Traditional methods, focusing on instruction-
level analysis, often miss system-level API taint rules, leading
to incomplete call graphs and data flow graphs. Our method-
ology addresses these gaps by automatically formulating taint



sources and taint rules that span system APIs.
Collect API information. We utilized a crawler to extract
semantic data from 60,372 pages of Apple developer docu-
ments [29], yielding detailed information on 60,153 public
API specifications. This data, encompassing aspects like API
names, descriptions, parameters, and return value, enriches
our subsequent NLP analysis
Source extraction. To detect data flows involving private
data , we initially establish a set of sensitive system APIs to
serve as taint sources. Our methodology classifies an API
as privacy-sensitive if its return value corresponds to privacy
terms within a privacy data ontology as mentioned in [39, 40],
which constitutes a graph data structure of privacy terms in
legal documentation (e.g., privacy policy/terms of use). To
this end, we semantically align the data objects in the API
specification to privacy data ontology, facilitated by vector
computations using an embedding technique. Specifically,
we enhance the skip-gram-based word2vec model in [80], in-
corporating 60,372 Apple iOS documentation. We classify a
system API as a sensitive API if the similarity score between
its return value and the privacy terms within the privacy data
ontology exceeds 0.885. This similarity threshold was empiri-
cally determined by manual examination of a random sample
of 500 APIs from the Apple documentation (see evaluation
details in § 5.2).
Sink collection. We categorized the potential privacy vio-
lation behaviors into two major types: (1) privacy leakage,
which involves transmitting private data out of devices and
storing private data in the file system, and (2) privacy collec-
tion which contains other activities about related to privacy
while not being privacy leakage, e.g., logging by the “NSLog”
function. The sink APIs associated with these behaviors are
typically defined in the official Foundation framework and
C-type functions, such as "connect" and "send" in POSIX
socket programming. Hence, we conduct a manual inves-
tigation of the Foundaiton framework and various popular
third-party network SDKs. Through this process, we collect
372 APIs from the framework and POSIX, along with 26
APIs from third-party libraries. These included 198 network
APIs that handle data transmission out of the device, 138
storage APIs that deal with data stored on the device, and 62
other data-collecting APIs.
Taint rule generation. Taint rules serve as a fundamental
component in data taint analysis, providing guidance
for tracking the flow of sensitive data as it propagates
from system APIs to network or file system APIs. Apple
provides detailed specifications for each system API in
its document website for developers [29], encompassing
elements such as function description, signatures, parameters,
and return types. That information can be utilized to infer
the trajectory of taint propagation between the parameters
and the returned data. For example, consider the API void
NSDecimalCopy(NSDecimal *destination, const
NSDecimal *source), whose function description is “Copy

Table 1: Adpositions associated with propagation direction

.
Direction Adpositions List Example
To in, into, onto, towards
From with, by, for, at, by, via, through

the value in source to destination”. From the description, we
can infer that the taint rule is from NSDecimal *destination
to const NSDecimal *source. Apple’s software ecosystem
comprises an extensive 259 frameworks, including over
60,000 APIs. Manual inference of taint rules from such
a significant quantity of APIs is undoubtedly a laborious
and time-consuming undertaking. To generate taint rules
automatically, in our study, we implement a series of Natural
Language Processing (NLP) techniques to retrieve semantic
information of API in the Apple API documentation.
Taint rules between parameters. API descriptions often use
patterns to depict the relationship between parameters and
their propagation. For example, the description “Adds data
to a compression context” uses the adposition “to”, marking
“data” as the taint source and “compression context” as the
taint sink. Conversely, the adposition “from” reverses these
roles: in “read the source graph from a specified file”, the taint
source is “a specified file”, and the taint sink is “the source
graph”. We employed the SpaCy dependency parser [23] for
automated extraction of taint rules, identifying the VERB and
Adposition to locate the direct object and adposition object
respectively. The direction of propagation was determined
by constructing two lists of adpositions signifying distinct
directions of propagation, derived from a manual examination
of the 650 API documentation, as shown in Table 1. This
keyword list guided our determination of whether the direct
object or the adposition object functioned as the taint source.
Taint rules from parameters to return value. Regarding
propagation from parameters to the return value, our base
assumption is that any input parameter propagates to the final
return value, given that the API’s return value is non-void.
This is because iOS SDK APIs often process and transform
input parameters, thereby incorporating them into the return
value. An exception to this rule arises when dealing with
instance methods that do not return a value (void return type),
but induce a field change in the instance object. This effect is
often a result of taint sources (parameters) influencing the ob-
ject’s fields. In such scenarios, the instance object is treated as
the taint sink, and the parameters are considered taint sources.

4.3 Taint Analysis
To tackle the challenges associated with analyzing Mach-O
binaries on iOS, particularly their dynamic dispatching fea-
ture, iHunter employs under-constrained symbolic execution.
This allows iHunter to accurately resolve the targets of dy-
namic dispatching functions and construct Data Flow Graphs
(DFGs), which serve as the basis for taint analysis. The taint



(c) Under-
Constrained SE

(a) Class
Structure Recovery

(b) Control Flow
Reconstruction

(d) Dynamic
Call Resolving(e) Taint Propagation

Inter-DFG

SDK

Taint Rules of
System APIs

Semantic Knowledge

High P-Code

Taint Traces

Raw P-Code

Disassembling

Class Structures

CFGs

Function &
Loop Summaries

Decompiling

Sources & Sinks

Figure 2: Taint analysis process in iHunter

analysis framework in iHunter comprises five essential steps,
as depicted in Figure 2. These steps are as follows:
(a) Class Structure Recovery. This step is essential for static
field-sensitive analysis on binaries compiled from object-
oriented languages like Objective-C and Swift. iHunter
adopts an approach similar to PiOS [50] to parse the header
and __OBJC segment in the binaries and recover information
of classes defined in the binary. The information includes (1)
the class inheritance tree, (2) the name, prototype, and address
of class methods (3) the name and type of class properties.
Additionally, We gather information on dynamically linked
libraries in this step to facilitate searching taint sources, i.e.,
only sensitive APIs defined in linked libraries will be searched
before the final taint propagation step.
(b) Control Flow Reconstruction. In iHunter, intra-
procedural Control Flow Graphs (intra-CFGs) are constructed
using basic blocks produced by lifting tools such as Ghidra.
These basic blocks are then split at each call site to ensure
accurate analysis. Loops will present challenges to symbolic
execution and type inference in the subsequent analysis. To
overcome these challenges, we employ a stack-based topolog-
ical sorting algorithm during the control flow reconstruction
step to identify nested loops and extract essential loop infor-
mation, including entry points, exit points, and loop levels,
which serves as the foundation for generating loop summaries
later. Furthermore, in Swift binaries, function names are man-
gled, which presents a challenge when trying to match these
function calls to the APIs in the iOS system SDKs. To over-
come this issue, we have developed a demangling tool that
can convert these mangled names back into their original func-
tion names. The demangling tool achieves this by parsing the
mangled names using a finite-state automaton and recovering
the encoded type names. The extracted type information is
then utilized by iHunter to perform an accurate taint analysis
in Swift.
(c) Under-Constrained Symbolic Execution. We have devel-

oped an under-constrained symbolic execution engine specifi-
cally designed for generating Data Flow Graphs (DFGs) in
iOS Mach-O binaries. This engine operates under the under-
constrained setting, inspired by the approaches in [69, 72], to
prevent state exposition during the SE process. The engine
is designed to handle various types of variables, including
those stored in the stack, registers, or stored in the heap as
global variables. In addition, it also collects comprehensive
type information to assist in dynamic call resolving during
subsequent analysis steps. The SE engine consists of four
main stages, including:
Stage ➊: Symbol Initialization. iHunter symbolizes all func-
tion parameters, stack variables, and heap-allocated variables.
This allows us to obtain a more accurate representation of the
program’s data dependencies and understand the full range of
data values used throughout the program.
Stage ➋: Symbolic Execution on Raw p-code In iHunter, the
symbolic execution process is conducted based on Ghidra’s
raw p-code Intermediate Representation (IR) [13]. Raw p-
code represents a low-level IR that preserves the original
semantics of instructions. To tackle the challenge of context-
sensitive taint analysis, we introduce a data structure called
the context-switch table to record the call trace of each func-
tion encountered during the symbolic execution process. By
maintaining this call trace information, iHunter can accurately
track the flow of tainted data across function boundaries and
maintain context sensitivity. Additionally, in iHunter, the
iOS-oriented symbolic execution engine goes beyond calcu-
lating symbolic or concrete values for registers and memory
locations. It also propagates type information associated with
these values, enabling accurate resolution of the targets of
msgSend calls. This approach enhances the efficiency of
iHunter by constructing DFG and collecting information for
type resolution in a single pass.
Stage ➌: Loop Summary and Function Summary. Loops
and function calls can significantly impact the efficiency of
symbolic execution, leading to state explosion and recursive
resolving challenges in data flow analysis. To tackle this,
iHunter generates function and loop summaries by employ-
ing symbolic execution within the function or loop during the
initial encounter, and subsequently reuses these summaries
when encountering them again. Specifically, these summaries
include key information such as data flow transmission and
symbolic variable type information. When generating func-
tion summaries, iHunter symbolizes function arguments and
explores each path within the function to identify data flows
represented as symbolic expressions and variable types. This
process accounts for specific side-effects like API calls de-
pendent on particular inputs, discerning specific paths within
the function. Similarly, loop summaries are generated by
leveraging symbolic execution during the first iteration of
the loop, analyzing and tracking symbolic variables within
it. Subsequently, during re-entry into the loop (2nd iteration),
the symbolic execution finalizes results by identifying any



discrepancies compared to the initial iteration.

Stage ➍: Block Function Processing. Objective-C sup-
ports function closure which is compiled into function point-
ers in designated structures (NSConcreteGlobalBlock and
NSConcreteStackBlock). These structures are frequently
used in dispatch functions or as callback parameters of sys-
tem APIs. iHunter traces the data flow associated with the
closures, identifies the structures during symbolic execution,
and generates a function summary in a specialized format to
document the data flow and the type propagation rules for
each closure. When the closure structure is transmitted to
a dispatcher function, iHunter links its context information
with the call site and adjusts the symbolic data flow in the
generated summaries.

Through symbolic execution, we generate summaries for
each function, which can be considered as intra-procedural
Data Flow Graphs (intra-DFGs), and form the basis for
the subsequent context-sensitivity, flow-sensitivity, and field-
sensitivity inter-procedural taint analysis [66].

(d) Resolving Dynamic Calls. iHunter resolves the targets of
msgSend dynamic calls by resolving the type of objects and
selector names passed into msgSend during this step. As the
dynamic dispatching calls are resolved, iHunter constructs
the data flow in the whole program as the inter-DFG. To
this end, iHunter employs a two-pass approach. During the
first pass, iHunter leverage the context-sensitive intra-DFGs
generated by SE and taint rules of system APIs extracted from
documents. By a rapid backward slicing approach leveraging
these data flow summaries, iHunter identifies all message-
sending sites and endeavors to infer the class type of the
message sender, which demonstrates efficiency compared to
prior approaches [48, 50, 52]. In the second pass, iHunter
focuses on refining the resolved dynamic call targets. A work-
list algorithm is employed that iteratively updates and refines
the dynamic call targets. The refining terminates until both
the control flow and data flow stabilize, reaching a fix-point,
meaning that the resolving has been carried out to a quite
complete level. For other indirect calls in Swift, which can
be C++ like function pointers, iHunter utilizes dataflow in
summaries and tracks addresses stored in memory, as well as
the memory block referenced by function pointers. It estab-
lishes matching between function pointers and addresses to
function to determine the targets of C++ style indirect calls
in Swift code.

(e) Taint Propagation. In this final analysis step, iHunter
extracts all taint traces from the inter-DFG. Considering the
propagation efficiency, iHunter first simplifies the DFG into a
taint graph, which exclusively includes data flows connecting
to a source or a sink. Subsequently, it traverses this taint
graph using a flooding algorithm to determine reachability
from sources to sinks, thus generating the taint trace results.

4.4 Compliance Check

This section details the methodology iHunter uses to identify
the three types of privacy violations referenced in §§ 3.

Non-Compliance Type I. SDKs processing personal data
without an available privacy policy are labeled as Non-
Compliance Type I. To determine the privacy policy of an
SDK, we leverage the polisis [55] tool, which fetches privacy
policies using an SDK’s official website URL. Retrieving
these official websites varies based on the SDK’s source plat-
form: AppFigures, CocoaPods, or GitHub. For SDKs from
AppFigures, the platform directly provides the official web-
site URL for each top-ranked SDK listed. CocoaPods-hosted
SDKs come with specifications. We analyze these specifica-
tions to derive the SDKs’ homepage URLs. GitHub, on the
other hand, poses a challenge due to the absence of direct
links to official websites. To circumvent this issue and prevent
overlooking any official websites, we use a semi-automatic
approach. First, we extract all URLs located in the SDK’s
README file. Subsequently, we manually discern the URL
that represents the SDK’s official website. If no URL is dis-
covered, the SDK is considered as not providing a privacy
policy. Given the low frequency of URLs in README files
(see details in §§ 6), conducting a manual examination is
feasible.

Non-Compliance Type II. SDKs displaying inconsistencies
between their code’s data collection practices and disclosures
in their privacy policy are categorized as Non-Compliance
Type II. Specifically, we employed PoliCheck [40] to ex-
tract data-action tuples from their policy statements in the
privacy policy. Then we utilized the flow-to-policy model of
PoliCheck [40] to compare the dataflows that were detected
from code with data-action tuples in privacy policy to detect
any omit and incorrect disclosure.

Non-Compliance Type III. SDKs that illicitly obtain data
from other “victim” SDKs, thereby breaching the Terms of
Use (ToS) of these victim SDKs, are designated as Non-
Compliance Type III. For any suspected unauthorized data
retrieval from a victim SDK, it’s imperative to ascertain if
the caller SDK breaches the victim SDK’s ToS. Using the
approach outlined in [80], we extract the conditions under
which individual data items are restricted by the ToS and then
check whether caller SDK satisfies those requirements. There
are two main conditions: (1) No Access Allowed: Under
this condition, any access to the data by caller SDKs from
victim SDKs is a violation. (2) Regulation Compliance Re-
quired: Violations arise if SDKs inadequately or incorrectly
disclose data practices in their privacy policies that contradict
regulatory mandates. To validate compliance, similarly, we
analyze the caller SDK’s privacy policy, ensuring accurate
data collection practice disclosures.



4.5 Implementation

The iHunter system is implemented based on the Ghidra [14]
reverse engineering platform as an analysis plugin, specifi-
cally implemented under Ghidra v10.3.1. The entire system
is written in Java, Python, and Swift, with a total of about
29,000 lines of code. For the static taint analysis part, iHunter
leverages two types of IR in Ghidra: raw p-code generated
from disassembling for symbolic execution and high p-code
generated by the Sleigh [22] lifter/decompiler for control flow
reconstruction. For multiple binaries within a single SDK,
iHunter treats all of them as components of the SDK and
conducts independent analysis on each binary.

5 Evaluation of iHunter

In this section, we perform comprehensive evaluations of both
the overall system of iHunter and the individual components.
We aim to assess the effectiveness of each component as well
as their combined impact and performance on the system. All
evaluations of iHunter were conducted on three MacBooks
with 16/32 GB memory. Our implementation ensures that the
results remain consistent across various MacOS devices.
Evaluation dataset. We established a ground truth dataset
named Dg to evaluate the effectiveness of iHunter. First, we
randomly selected 50, 40, and 40 SDKs from AppFigures,
Cocoapods, and GitHub respectively, ensuring the general-
ity of our results. We further employed IDA Pro [56] and
Ghidra [14] to reverse-engineer those SDKs, manually trac-
ing the path of privacy data from source APIs to sink APIs
(e.g., network transmission or file system storage). In total,
we identified 325 taint traces that process privacy data.

5.1 Evaluation of the Entire iHunter System

Overall effectiveness of iHunter. iHunter analyzes SDKs
along with their relevant privacy policies or Terms of Service
(ToS), identifying and categorizing SDKs into three distinct
non-compliance types. To evaluate the overall effectiveness
of iHunter, we first built a ground-truth SDK dataset (Dg) and
conducted a manual check to identify taint traces of privacy
data. Subsequently, we assessed the non-compliance of these
data practices by (➊) manually searching the SDK’s privacy
policy, flagging its absence as Non-Compliance Type I; (➋)
if a privacy policy was present, manually verifying whether
these data practices are appropriately disclosed; and (➌) if
the data is harvested from another victim SDK, evaluating
whether such practices violate the victim SDK’s ToS.

Ultimately, 59 (45.4% in 130) SDKs were deemed
non-compliant, with classifications of 49 (83.1%) as
Non-Compliance Type I, 10 (16.9%) as Type II, and 4 (6.8%)
as Type III, while 3 (5.1%) as both Type I & III and 1 (1.7%)
as both Type II & III. On the ground-truth dataset, iHunter

Table 2: Overall effectiveness of iHunter. “#SDKs” refers to
the number of non-compliant SDKs detected by iHunter.

Non-Compliance
Type #SDKs Precision Recall F1

Type I 49 83.7% 74.5% 78.8%
Type II 10 60.0% 66.7% 63.2%
Type III 4 75.0% 100% 85.7%
All types 59 81.4% 75.0% 78.1%

identified 209 taint traces and classified 179, 25, and 5 as
Non-Compliance Type I, II, and III, respectively.
• Results. iHunter achieve an average F1 score of 78.1%,
marked by 81.4% precision and 75.0% recall. As detailed
in Table 2, iHunter demonstrated a precision of 83.7% and
a recall of 74.5% for Non-Compliance Type I, a precision of
60.0% and a recall of 66.7% for Type II, and a precision of
75.0% and a recall of 100% for Type III. iHunter exhibits su-
perior detection accuracy for Non-Compliance Type I and III
compared to Type II. This discrepancy can be attributed to the
incomplete extraction of private data declarations using ex-
isting NLP tools (PoliCheck [40] and Polisis [55]), resulting
in relatively low precision and recall. To mitigate the poten-
tial instability associated with using prior tools, we manually
checked and confirmed the results for Non-Compliant SDKs
Type II detected by iHunter and their corresponding privacy
policies, which helps ensure the accuracy and reliability of
our measurements (§ 6.1).
• False positives and negatives analysis. In addition to the
accuracy of the privacy policy extraction tool affecting the re-
sults, the rest false positives were mainly caused by inaccurate
data flow propagation, such as data transmission in Objective-
C collection classes (e.g., NSArray, NSDictionary). This
confusion in data flow introduced wrong crossings between
instances and pointers in the containers, which resulted in the
generation of non-existing taint traces. On the other hand,
false negatives were mostly caused by the limitations in re-
solving dynamic calls of templated classes and containers,
which affected iHunter’s ability to identify source API calls.
Performance overhead. The average time consumed to ana-
lyze a binary in our datasets with the average size (2.2 MB) is
7.5 min, consisting of 4 minutes of loading and pre-analysis
time by Ghidra and 3.5 minutes of analysis performed by
iHunter. To analyze 6,401 SDKs in our three measurement
datasets, it took almost two weeks to complete the analysis
on our three testing devices. This analysis is efficient consid-
ering the measured time starts from when the binary is being
loaded into Ghidra (which was commonly considered to be
time-consuming) to when iHunter generates all taint traces.
Such high performance is the consequence of a combination
of hand-picked techniques like on-demand type inference,
one-pass symbolic execution, loop summary, function sum-
mary, etc. In our evaluation of iHunter, we observed that



the maximum memory usage during the analysis reached
19GB. This was mainly due to the decompilation process
performed by the Sleigh lifter [22], which requires signifi-
cant memory resources to execute. Since all of the analyzing
stages in iHunter are parallelizable, the analyzing process can
be significantly accelerated by running iHunter on a server
parallelly.

5.2 Effectiveness of Individual Components

Effectiveness of source API extraction. To evaluate the per-
formance of source API extraction, we took a random sample
of 500 APIs out of the total APIs incorporated from Apple
iOS documentation. Through careful examination of the API
specifications, we assigned each API a label of being either
privacy-sensitive or non-privacy-sensitive. Utilizing our en-
hanced skip-gram-based word2vec model and a similarity
threshold of 0.825 (which was empirically determined), we
classified APIs as sensitive or not. This threshold was set
to capture the similarity between the return value of an API
and the privacy terms within the privacy data ontology. Our
methodology proved to be highly effective since it success-
fully distinguished privacy-sensitive APIs with a precision
rate of 88.5% and a recall rate of 92.4% on the manually an-
notated dataset. In general, our model flagged 2,340 sensitive
APIs from the total pool of APIs. Following independent
manual verification by two researchers, 1,951 APIs were con-
firmed as true positives and subsequently incorporated into
iHunter’s analysis.
Effectiveness of taint rule generation. To gauge the effec-
tiveness of our approach for taint rule extraction, we randomly
sampled 500 APIs from a total of over 60,000 APIs that span
across Apple’s 259 frameworks. These APIs underwent man-
ual analysis to establish ➀ propagation rules between param-
eters and ➁ rules between parameters and return values, serv-
ing as the ground truth. Under evaluation, iHunter achieved
precision/recall rates of 85.9%/79.1% on ➀ and 89.6%/94.0%
on ➁ respectively. Cumulatively, our methodology identi-
fied 1,395 propagation rules between parameters and 21,077
propagation rules between parameters and return values. This
assessment further underscores the accuracy and precision of
our automated approach in identifying taint propagation rules.
Effectiveness of data flow analysis. To assess the capability
of iHunter in conducting static data flow analysis on iOS
binaries, an evaluation was conducted to evaluate its accuracy
and effectiveness in resolving dynamic calls. Specifically, we
conducted comparative experiments using IDA Pro v8.3.2 as a
baseline. We used IDA Pro and iHunter to parse the 41 SDKs
in the subset of the ground truth SDK dataset Dg and analyzed
the results of resolving dynamic calls using both tools. Of the
calls dispatched by message, there were a total of 524,839 call
sites for the objc_msgSend function or the dispatch_async
function. Through the two-phase approach described in § 4.3,
iHunter was able to resolve 480,091 dynamic calls (91.5%),

including both object types and selector names. This shows
an improvement compared to the static analysis component
in PiOS [50] (82%) and iRiS [48] (85%). Compared to the
SoTA commercial reverse engineering tool, IDA Pro [56] was
able to resolve 393,899 (75.1%) message-sending call sites.
In addition, 352,784 (95.2%) of the call sites that could be
resolved by both IDA Pro and iHunter produced the same
resolving results.

As for the dynamic calls that iHunter can’t resolve, several
limitations contribute to this situation: (a) Tracking pointers
stored in container instances like NSArray or NSDictionary
can be challenging, and inferring their types is not straightfor-
ward. (b) There are numerous APIs exposed to external apps
that are not called within the SDK. It becomes much harder
to resolve message sending in these functions when the calls
come from a parameter of these functions.

Additionally, we found that there were 20 SDKs written
in Swift or partly written in Swift. The recall rate for resolv-
ing indirect calls in Swift code is 74.4%, notably lower than
in Objective-C programs (91.5%). In Swift, some complex
mangled function names and indirect calls through function
pointers may not be fully resolved through symbolic execu-
tion, leading to this discrepancy. Utilizing iHunter’s ability,
we were able to identify 7,819 Swift calls of dynamic dis-
patch to Apple’s iOS SDKs. Until this point, other iOS binary
analysis tools still lack this feature and Swift support.
Effectiveness of taint propagation. To separately evaluate
the accuracy of taint propagation performed on the DFG, we
constructed a dataset consisting of 325 manually identified
taint traces in Dg. During the evaluation process, the source
points and sink points of taint propagation were fixed to the
termination points of these manually identified taint traces.
Under the evaluation setting described, iHunter achieved
a successful tracking rate of 85.8%, meaning it accurately
traced the propagation of tainted data in 279 out of the to-
tal taint traces. The precision of the analysis was measured
at 77.7%, so the F1 score was calculated to be 82.4%, af-
firming the effectiveness of our data flow analysis and taint
propagation process.

6 iOS SDK Non-Compliance in the Wild

Running iHunter on 6,401 iOS SDKs, we show that the
non-compliance of iOS SDKs is prevalent. We conducted a
measurement study to understand the landscape of the non-
compliant iOS SDKs and assess their real-world privacy im-
plications for end-users and compliance risks of iOS apps that
integrated the SDKs.
Measurement dataset. We made a broad collection and sam-
pling from SDK repositories and built several datasets to
study the situation of non-compliance privacy collection in
the iOS apps’ supply chain. As shown in Table 3, our collec-
tion comprises (1) 140 SDKs from DAppFigures, 2,038 SDKs
from DGitHub, and 4,356 SDKs from DCocoaPods, specifically



Table 3: Summary of datasets and corpora
Name Size Source Timestamp Usage
Capi 60,372 well-formed document pages Apple Developer Documentation [29] 202305 Detection

DAppFigures 140 SDKs top SDKs in AppFigures [3] 202305 Detection
DGitHub 2,038 SDKs top-starred in Github 202306 Detection

DCocoaPods 4,356 SDKs sampled from CocoaPods [10] 202306 Detection
Dsp 244 SDKs’ privacy policies websites and repositories 202306 Detection
DToS 52 SDKs’ Terms of Service websites and repositories 202306 Detection
Da 32,478 iOS apps App Store top-popular list 2020-2022 Measurement
Dap 1,358 apps’ privacy policies privacy links in App Store 202307 Measurement
Dal 1,040 apps’ privacy labels privacy labels in App Store 202307 Measurement
Dg 130 SDKs randomly selected SDKs 202303 Evaluation

earmarked for detecting privacy violation behaviors, (2) pri-
vacy policies associated with 244 SDKs*, and (3) terms of
service (ToS) for 52 designated victim SDKs. Further, to
assess their real-world impact within the app ecosystem, we
constructed a dataset of 32,478 apps collected from the App
Store, denoted as Dapp. These apps were collected from the
App Store in July 2022 and were selected based on their in-
clusion in the top popular list or the top new list of the App
Store or the AppFigures website. Among 32,478 apps, 15,336
(47.2%) of them integrated non-compliant SDKs. To assess
how non-compliant SDKs lead to apps’ privacy violations,
we collected 1,358 privacy policies and 1,040 privacy labels
from App Store pages.

6.1 Landscape

iHunter detected 2,585 (40.4%) non-compliant SDKs among
a total of 6,401 iOS SDKs, revealing the prevalence of non-
compliance. In this section, we perform an in-depth analysis
of those non-compliant SDKs, examining their types of non-
compliant, distribution sources, and categories.

6.1.1 SDKs of Different Non-Compliance Types

Using the compliance criteria defined in §§ 3, iHunter
identified 2,436 SDKs with Non-Compliance Type I, 58 with
Type II, and 45 with Type III†.
Non-Compliance Type I. In accordance with privacy laws,
SDKs that process personal data without a privacy policy are
considered Non-Compliance Type I. In our measurement,
we extract the official websites of these SDKs and utilize
polisis [55] to retrieve their privacy policies. We obtained
41, 110, and 93 privacy policies of SDKs with data collec-
tion practices (i.e., the SDKs get data through sensitive APIs,
then send the data to the Internet through sink APIs (e.g.,
network APIs). in DAppFigures, DGitHub, and DCocoaPods respec-
tively. Consequently, we identified 27 non-compliant SDKs

*We obtained privacy policies for 2,680 SDKs found to engage in privacy
collection activities. However, only 244 were found, while the remaining
2,436 SDKs lacked privacy policies.

†Some SDKs may come with multiple non-compliance types.

UBiXMediationSDK

AppsFlyer

Qonversion

aerserv

Teak
AdTrace
Mobiburn

DiDiPrism

EventIOSDK

APDAppsFlyerAdapter

ZJCoopFramework

AdMopubSDK
SparkXAdSDK
SupereraSDK

TNSocialNetWorkLogin

YRYuntxIMLib

ZMS

Facebook

Facebook Ad

Google

Sigmob

Splash Ad

FlurryAd
Vungle

PrismProtocol
QCloud
BQMM

Figure 3: ToS Non-Compliant Flows: Non-Compliant SDKs
Type III (left) fetching data from victimized SDKs (right)

in DAppFigures, 454 non-compliant SDKs in DGitHub, and 1,943
non-compliant SDKs in DCocoaPods.
Non-Compliance Type II. iHunter initially identified 74
SDKs with Non-Compliance Type II. However, due to the
potential imprecision resulting from the adoption of prior NLP
tools for data disclosure extraction in the privacy policies of
these SDKs (see § 5.1), we conducted a manual verification
of the results before using the results for measurement. As a
result, we confirmed 58 SDKs with Non-Compliance of Type
II across two sub-categories:
• Omitted Disclosure. A data flow has an omitted disclosure
when there are no policy statements that disclose it. We
found 53 SDKs that failed to disclose an average of 102 data
harvesting practices. The most commonly omitted data types
included system running status, cellular service provider, and
apps’ active time.
• Incorrect Disclosure. A data flow has an incorrect disclosure
if a policy statement indicates that the flow will not occur (i.e.,
a negative sentiment sharing or collection statement) and there
is no contradicting positive sentiment statement. On average,
7 SDKs were found to provide incorrect disclosures about
their data practices.
Non-Compliance Type III. SDKs that harvest user data from
other third-party SDKs are considered with Non-Compliance

https://developer.apple.com/documentation/technologies
https://appfigures.com/top-sdks
https://cocoapods.org


Ads

Ana
lyt

ic

Auth
en

tic
ati

on

Com
mun

ica
tio

n

Dee
p L

ink
ing

Dev
elo

pm
en

t 

Lo
ca

tio
n

Noti
fic

ati
on

Pay
men

t

Perf
orm

an
ce

Utili
tie

s

Usin
g S

wift
0

5

10

15

20

25

30

P
ro

po
rti

on
 (%

)

ground truth AppFigures GitHub CocoaPods

Figure 4: Distribution of non-compliant SDKs across differ-
ent usage categories

Type III. Our analysis identified 45 SDKs with such non-
compliance, which were integrated into 469 apps, targeting
15 victim SDKs. Figure 3 illustrates the victim SDKs and the
corresponding number of Non-Compliance Type III that target
them. The top 20 non-compliant SDKs, based on the number
of apps affected, are considered. It should be noted that over
half of these victimized SDKs are categorized as online social
networks (OSN) and advertising, indicating that well-known
OSN platforms and advertising providers are valuable sources
of private user data for harvesting. Our study also uncovers
the stealthy collection of advertising tracking tokens and ac-
cess tokens from Facebook, Google, and WeChat by certain
analytic SDKs. These tokens can potentially be exploited to
gain unauthorized access to semantically rich personal data.

6.1.2 Distribution Source of Non-Compliant SDKs

During our measurement analysis, iHunter detected a total of
2,585 non-compliant SDKs across the three datasets. Specif-
ically, 54 non-compliant SDKs were identified in DAppFigures,
482 in DGitHub, and 2,049 in DCocoaPods. To understand po-
tential differences in data collection practices among SDK
sources, we calculated the average frequency of privacy vi-
olations for each dataset. As shown in Figure 6, there is
a noticeable variation in the rate of privacy data collection
across the datasets. Non-compliant SDKs collected from
AppFigures based on AppFigures’ statistics have an aver-
age of 9.9 practices of non-compliant privacy collection per
SDK. In contrast, the top-starred SDKs from GitHub have an
average of 2.9 non-compliant practices, while the SDKs ran-
domly sampled from CocoaPods have an average of 4.2 non-
compliant practices. Notably, the SDKs with high rankings
in AppFigures are usually being widely adopted and favored
by app developers — posing potentially high privacy risks.

Table 4: Severity Breakdown for the violations. “No.” refers
to the number of privacy violations.

Data
Sensitivity

Data
Examples

Non-Compliance
Type No.

Sensitive PII
Biometric Data,

Health,
Precise Location

Type I 322
Type II 5
Type III 22

PII
Email Address,

Coarse Location,
User ID

Type I 2,826
Type II 67
Type III 32

Non-PII
Crash Data,

Performance Data,
Diagnostic Data

Type I 2,388
Type II 70
Type III 7

6.1.3 SDK Categories

As shown in Figure 4, the predominant non-compliant SDKs
serve purposes related to advertisement & monetization, ana-
lytics, and communication. Those SDKs have inherent moti-
vations to amass a wealth of user data. Their data harvesting
behavior is driven not only by their need to facilitate user
analytics and cater to various commercial services but also by
their significant reliance on advertising revenue and practices
of monetizing user data, potentially selling data to external en-
tities such as data brokers. Conversely, the open-source SDKs
on GitHub are typically designed to assist with development,
such as the Charts SDK [9] for plotting charts in apps. These
types of utility SDKs typically may tend not to collect much
user data leading to noncompliance.

6.1.4 Severity Breakdown for the Violations

To better characterize the severity of the violations we found,
we further categorize data types into three groups: Sensitive
PII, PII, and non-PII (based on definitions by the Department
of Homeland Security [12]), with each group’s relative sever-
ity regarding a privacy violation ranging from high to low.
In our study, among the overall 5,739 non-compliance viola-
tions, we find 349 in Sensitive PII, 2,925 in PII, and 2,465
in non-PII. A detailed breakdown of each non-compliance
type, along with their respective sensitivity levels, is presented
in Table 4.

6.2 Real-World Impact of Non-Compliant
SDKs

iHunter detected 2,585 SDKs as non-compliant, of which
694 (27.9%) contained data transmission out of the device.
These SDKs have been integrated into 15,336 apps, which
corresponds to 47.2% of our analyzed top-tier apps across 25
categories in the Apple App Store. This highlights substantial
privacy risks for end-users. In this section, we study the real-
world privacy impact of the non-compliant SDKs by examin-
ing their popularity and assessing how their non-compliance
leads to non-compliance of iOS apps that integrate the SDKs.



0 100 and less 101 to 622 623 to 1,626 1,627 and up
0

250

500

750

1000

1250

1500

1750

2000

#N
on

-C
om

pl
ia

nt
 S

D
K

s

stars forks watched

Figure 5: Distribution of GitHub stars, forks, and watches of
non-compliant SDKs

6.2.1 Popularity of Non-Compliant SDKs

Assessing the popularity of non-compliant SDKs is crucial
as it sheds light on their widespread adoption and potential
ramifications in the broader iOS ecosystem. For this assess-
ment, we consider two metrics: (1) engagement metrics on
GitHub: stars, forks, and watches; (2) number of real-world
integrations of the SDKs in real-world iOS apps.
Engagement on GitHub. For the non-compliant SDKs
hosted on GitHub (2,291 in total), we evaluated user inter-
actions by counting primary engagement actions: watching,
forking, and starring. These actions elucidate the varying de-
grees and kinds of user engagement. As shown in Figure 5, a
large proportion of non-compliant SDKs, specifically 38.8%,
have received more than 100 stars, indicating a relatively high
user preference for these SDKs.

Integration within apps. To measure the integration of the
non-compliant SDKs in real-world scenarios, we employed
a class structure matching algorithm (details in Appendix A)
to scrutinize SDK presence within apps, which allows us to
understand the prevalence of their adoption and distribution
pattern. We found that 47.2% of apps integrated at least one
non-compliant SDK.

6.2.2 Propagation of Non-Compliance into iOS Apps

App developers, based on privacy regulations such as the
GDPR and Apple app store policies, are obligated to trans-
parently disclose all data handling behaviors, including those
performed by third-party libraries. From our dataset, we
discerned 14,811 instances of non-compliant data collection
across 339 SDKs integrated into 15,336 apps. Among these
apps, only 1,358 apps provided links to privacy policies, and
1,040 apps provided privacy labels on the app’s Apple app
store pages. This section assesses the extent to which non-
compliant SDKs integrated into apps led to the app’s non-

compliance (i.e., the apps’ privacy policies or privacy labels
did not disclose the data practices of the SDKs).

Non-Compliant privacy policy in apps. When app devel-
opers integrate third-party libraries that collect personal data,
they remain the primary controller and are thus responsible
for ensuring that users are comprehensively informed in the
privacy policy, as stipulated by GDPR’s Article 13 (i.e., Ar-
ticle 13‡). However, data practices performed by SDKs are
often opaque to app developers. Without meticulous examina-
tion of these practices, non-compliant behaviors from SDKs
might inadvertently propagate into apps, posing significant
privacy risks to end-users. To evaluate the adequacy of privacy
policy disclosures for data practices by SDKs, we collated
apps’ privacy policies and employed PoliCheck [40] to extract
data items and their associated actions from these policies.
Subsequently, PoliCheck’s consistency model was utilized to
verify the comprehensiveness and correctness of these disclo-
sures. In our analysis, iHunter identified 6,393 non-compliant
data practices across 106 SDKs, encompassing 1,358 apps.
Notably, 1,827 (28.6%) of these practices were reflected in
apps, inducing non-compliance of apps. Specifically, 279
(20.5%) apps omit to disclose 1,352 data items, most com-
monly omitting details like location, operating system, and
device information. While 105 (7.7%) apps inaccurately
claim 475 data collection actions do not occur. The most
frequently incorrectly disclosed data items are user identifiers,
phone numbers, and purchase history.

Non-Compliant privacy labels in apps. Furthermore, our
study explored how non-compliant data practices of SDKs
might affect the accuracy of the privacy labels in apps that
incorporate them. Apple mandated that app developers must
transparently disclose data collection practices throughout
their applications, including those carried out by third-party
affiliates. Failure to disclose these practices in integrated
SDKs would be a violation of Apple’s guidelines [32]. Since
privacy labels specifically require the disclosure of data that
is transmitted off the device, we only focus on non-compliant
data transmission practices in SDKs. To examine whether
such non-compliant data transmissions in SDKs are propa-
gated to the app’s privacy label, we check whether the data is
in the app’s privacy label, if it is, we regard the app’s privacy
label as non-compliant. To ascertain their disclosure compli-
ance, we examined 1040 apps’ privacy labels and scrutinized
the representation of these non-compliant transmissions. We
observed that 469 apps omit 593 data in their privacy label
disclosure, indicating a significant The data items most fre-
quently omitted include product interaction, payment info,
and location.

‡When personal data is procured from the data subject (e.g., app user),
the controller (app developer/owner) must provide, at the time when personal
data is obtained, detailed information about the data processing.



0 5 10 15 20 25 30 35 40
#Non-Complianct Practices per SDK

D
Ap

pF
ig
ur
es

D
Co

co
aP

od
s

D
G
itH

ub

SDK with NPC SDK with NPL

Figure 6: Distribution of Non-Compliant Privacy Collection
(NPC) or Leakage (NPL) practices per SDK

6.3 Case Study

Non-Compliance Type I. iHunter identified a substantial
number of widely used SDKs engaging in the processing of
user privacy data without offering a corresponding privacy
policy. Notable examples include high-profile SDKs such as
SuperPlayer [24], KSPhotoBrowser [15], and LBLaunchIm-
ageAd [16], all of which accessed device model and system
version information without providing privacy policies. An
in-depth examination of the real-world ramifications of these
three non-compliant SDKs revealed their presence in 564,
1,147, and 1,560 apps within dataset Da, respectively. More-
over, we assess the degree to which these SDKs contribute
to non-compliance in apps’ privacy labels. Our findings re-
vealed that 282, 519, and 741 applications exhibited non-
conformity with their privacy labels due to the integration of
SuperPlayer [24], KSPhotoBrowser [15], and LBLaunchIm-
ageAd [16], respectively, indicating a significant privacy risk
posted to end-users by non-compliant SDKs.
Non-Compliance Type II. OpenMediation [18] is a pop-
ular SDK that is widely integrated into mobile games for
advertising analytics and notifications. According to Open-
Mediation’s privacy policy, the SDK is intended to collect
only device information, such as the device model and screen
size, solely for user identification purposes. However despite
OpenMediation’s stated privacy policy, iHunter uncovered
that the SDK secretly collects additional sensitive data about
the phone’s running status. This includes information on
RAM/storage usage, CPU thermal level, battery level, and
precise system boot and app usage times. What is even more
concerning is that this collected data is transmitted to Open-
Mediation’s server without the knowledge or consent of the
user. Another example of SDKs with discrepancies in their
stated data collection practices is Sentry [21] and Buglift [8].
Both SDKs claim to collect only non-personal device informa-

tion for identification purposes. iHunter revealed that Buglift
secretly collects location data, which goes beyond the scope
of non-personal device information mentioned in its privacy
policy. Similarly, Sentry was found to collect data about users’
activities, such as CPU time and storage write counts, which
again exceeds the explicitly stated data collection purpose.
Non-Compliance Type III. In our case study, we present an
example of Cross-Library Data Harvesting on iOS, involving
a malicious third-party SDK called Teak [28]. To execute
this illicit data harvesting, Teak employs reflection methods
to intercept the Facebook user’s access token after the login
process, and these unlawfully obtained tokens are then sent to
a remote server located at https://gocarrot.com/games/
XXX/users.json. Notably, Teak fails to provide a transpar-
ent privacy policy that explicitly outlines this unauthorized
data collection and transmission. Significantly, Facebook’s
terms of use regard access tokens as restricted data items,
barring their sharing or transfer to a third party under any
circumstances. Compounding the issue, Teak lacks a privacy
policy that discloses this data collection behavior. Alarm-
ingly, this SDK is embedded in numerous iOS applications,
including those that rank high in popularity in the App Store,
posing a significant privacy risk to Facebook users.

7 Discussion

Responsible disclosure. We have reported all our discovered
privacy violations to related vendors or developers, including
Apple, developers of non-compliant SDKs, and vendors of
victim SDKs. The Apple security team told us they are con-
ducting an investigation based on our reports. Some vendors
of non-compliant SDKs have confirmed that they are investi-
gating the issues based on our reports, such as Adyen [1], vk-
ios-sdk [30], and Countly [11]. For instance, the development
team behind the Adyen SDK [1] has informed us that they are
in the process of implementing improvements to comply with
the regulation requirements set to take effect in Spring 2024.
Furthermore, for Type-III violations, some of the victim SDKs
have acknowledged our results including Facebook and Twit-
ter; for example, Facebook has taken actions against violating
SDKs including Mobiburn [27], Teak [28] and RevMob [20]
that collect user data from the Facebook SDK in real iOS
apps and send data to their remote servers. Facebook told
us that the actions include blocking Facebook Login for iOS
apps that integrate the malicious SDKs, which could urge the
affected iOS apps to get rid of the violating SDKs. With more
vendor responses expected on the way, we will keep updating
the results on our website [36].
Usage scenario of iHunter. Recently, Apple announced the
development of a new mechanism called privacy manifests,
aimed at addressing privacy concerns in third-party SDKs. Pri-
vacy manifests are files designed to detail the privacy practices
of third-party code. Privacy manifests are files that outline the
privacy practices of the third-party code. When an app is pre-

https://gocarrot.com/games/XXX/users.json
https://gocarrot.com/games/XXX/users.json


pared to be distributed, Apple’s official IDE, Xcode [31], will
synthesize privacy manifests from all third-party SDKs used
by the app into a single report. This comprehensive report
can help developers to create privacy labels and complement
privacy policies. Privacy collection and leakage behaviors
identified by iHunter’s taint analysis can greatly help SDK
vendors create accurate privacy manifests, which will eventu-
ally benefit app developers and users.

8 Related Work

Privacy issues on iOS apps. PiOS [50] examined privacy
leakage in iOS apps with a static analysis tool solving the
unique indirect objc_msgSend calls of Objective-C. iRis [48]
then studied the usage of private APIs in iOS apps with a
combination of both static and dynamic analysis to improve
the ability to resolve objc_msgSend. Other works [63, 90]
surveyed the usage of private APIs or pursued a source-to-
sink analysis using static and dynamic methods on the iOS
platform. A crowdsourcing study in [37] indicated that access
to users’ privacy on devices is widespread in iOS Apps. [83]
proposed a fine-grained, application-specific, and user-driven
sandboxing for iOS apps to protect user privacy at runtime.
Recent studies [59, 84] focused on the impact and compliance
of Apple’s newly introduced privacy labels. Compared to
prior works, iHunter is the first to systematically study privacy
issues in iOS Apps’ supply chain.
Security analysis on iOS apps. Other than privacy analysis
in iOS apps, prior works [44, 48, 49, 50, 52, 54, 61, 75, 82]
also focused on analyzing the security of iOS apps with static
or dynamic approaches, including efforts [48, 50, 52] to deal
with dynamic features of Objective-C binaries. Different
from PiOS [50] and iRiS [48] leveraging the IR of IDA
Pro [56], [52] decompiled and lifted binaries into LLVM
IR by the reverse-engineering tool dagger [38], and then per-
formed slicing on the LLVM IR to detect vulnerabilities in
iOS. [75] examined vulnerabilities in iOS apps’ network ser-
vices through dynamic vetting in a large number of app col-
lections. Kobold [49] studied the security of IPC channels
on iOS with a combination of a static analysis that extracts
IPC service interfaces and a dynamic analysis that tests the
security of the interfaces. iService [82] performed a top-down
static analysis to detect and evaluate the impact of confused
deputy problems in macOS Objective-C frameworks. Com-
pared to prior works on iOS, iHunter is the first static analysis
tool, to the best of our knowledge, to generally handle both
Objective-C and Swift binaries.
Privacy issues on Android apps and supply chain. Taint-
droid [51] is a system-wide dynamic taint tracking and anal-
ysis system capable of tracking privacy leakage on Android.
Flowdroid [41] is a static taint analysis framework for An-
droid apps that can be used to examine privacy leakage and
security hazards. [86] analyzed transmission of sensitive data
in Android apps to privacy leakage that is not related to GUI

events. [73] examined privacy policy violations on Android
apps and discovered a high portion (341 in 477) of violations.

With these off-the-shelf tools on Android, [39, 40, 45, 67,
73, 81, 88] extensively studied various privacy issues on An-
droid apps. PoliCheck [40] introduces an entity-sensitive
consistency model that considers the nature of personal data.
PurPliance [43] presents an innovative consistency model,
building upon the foundation of PoliCheck [40].

Recent studies [47, 70, 74, 77] have highlighted the
alarming prospect of malicious SDKs gaining unauthorized
access to users’ sensitive data through both host apps and
mobile devices. To tackle this issue, researchers conducted
both static [67] and dynamic [46, 70] analysis techniques in
the measurements of the Android apps’ supply chain. This
rampant integration and adoption of these SDKs by popular
mobile apps have raised serious concerns about potential pri-
vacy breaches and data leaks in Android apps’ supply chain.
To defend or mitigate this threat, prior studies conducted
isolation or interdiction approaches [57, 71, 78, 79] on these
malicious SDKs.

9 Conclusion

We introduced iHunter, a comprehensive system designed
to systematically scrutinize privacy compliance among iOS
SDKs and detect potential violations. iHunter stands out
with its unique methodology, utilizing symbolic execution
to perform data flow analysis, skillfully analyzing binaries
compiled from both Objective-C and Swift. Additionally, it
leverages the power of NLP for semantic knowledge extrac-
tion, automatically identifying privacy-related taint sources
and generating taint rules for iOS system APIs. The system
culminates with a compliance check module specifically de-
signed to identify three unique types of non-compliant SDKs.
Running on 6,401 iOS SDKs, iHunter identified a signifi-
cant number of non-compliance SDKs (40.4%). Those non-
compliant SDKs led to the 15,336 non-compliance apps that
integrated them. These results shed light on the pervasiveness
and severity of privacy violations in the iOS software supply
chain.

Acknowledgment

We would like to thank our shepherd and the anonymous re-
viewers for their valuable comments on this paper. Dexin
Liu is supported in part by the National Key Research and
Development Program of China (No.2021YFB3101802) and
the Beijing Municipal Science & Technology Commission
(No.Z231100010323002). The IU authors are supported
in part by Indiana University’s IAS Collaborative Research
Award and by NSF CNS-2330265.



References

[1] Adyen. https://www.adyen.com.
[2] App store review guidelines. https://

developer.apple.com/app-store/review/guidelines/
#data-collection-and-storage.

[3] Appfigures. https://appfigures.com/top-sdks.
[4] Apple blocked apps for privacy violations. https://shorturl.at/

aftw5.
[5] Apple privacy manifest. https://developer.apple.com/

documentation/bundleresources/privacy_manifest_files?
language=objc.

[6] Apple store app privacy details. https://developer.apple.com/
app-store/app-privacy-details.

[7] Appsflyer. https://www.appsflyer.com.
[8] Buglife. https://www.buglife.com.
[9] Charts sdk. https://github.com/danielgindi/Charts.

[10] Cocoapods. https://cocoapods.org.
[11] Countly. https://countly.com.
[12] DHS definition of data. https://shorturl.at/ceSVW.
[13] Ghidra p-code reference manual. https://shorturl.at/cdKO2.
[14] Ghidra software reverse engineering framework. https://github.

com/NationalSecurityAgency/ghidra.
[15] Ksphotobrowser. https://github.com/skx926/KSPhotoBrowser.
[16] Lblaunchimagead. https://github.com/AllLuckly/

LBLaunchImageAd.
[17] Malicious ios sdk breaches user privacy for millions. https://www.

helpnetsecurity.com/2020/08/24/malicious-ios-sdk.
[18] Openmediation. https://www.openmediation.com/en.
[19] Programming with objective-c. https://shorturl.at/puEV9.
[20] react-native-revmob. https://github.com/RevMob/

react-native-revmob.
[21] Sentry. https://sentry.io/welcome.
[22] Sleigh: A language for rapid processor specification. https://

shorturl.at/fHIY0.
[23] Spacy dependency parser. https://spacy.io/api/

dependencyparser.
[24] Superplayer. https://github.com/LiteAVSDK/Player_iOS/

blob/master/README-EN.md.
[25] The swift call convention. https://github.com/apple/swift/

blob/main/docs/ABI/CallingConvention.rst.
[26] The swift language. https://developer.apple.com/swift.
[27] Taking legal action against those who abuse our platform. https:

//shorturl.at/nvzP5.
[28] Teak. https://docs.teak.io/home/index.html.
[29] Technologies in apple’ technologies documentation for developers.

https://developer.apple.com/documentation/technologies.
[30] vk-ios-sdk. https://github.com/VKCOM/vk-ios-sdk.
[31] Xcode. https://developer.apple.com/xcode.
[32] App privacy details on the App Store, 2021. https://developer.

apple.com/app-store/app-privacy-details.
[33] ktoo: Macho/objc analysis + editing toolkit. https://github.com/

cxnder/ktool, 2022.
[34] CCPA, 2023. https://oag.ca.gov/privacy/ccpa.
[35] GDPR, 2023. https://gdpr-info.eu/chapter-1.
[36] iHunter, 2023. https://sites.google.com/view/ihunterios.
[37] Yuvraj Agarwal and Malcolm Hall. Protectmyprivacy: detecting

and mitigating privacy leaks on ios devices using crowdsourcing.
In Proceeding of the 11th annual international conference on Mobile
systems, applications, and services, pages 97–110, 2013.

[38] ahmedbougacha. dagger: Binary translator to llvm ir. https://
github.com/ahmedbougacha/dagger.

[39] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin
Whitaker, William Enck, Bradley Reaves, Kapil Singh, and Tao Xie.
{PolicyLint}: investigating internal privacy policy contradictions on
google play. In 28th USENIX security symposium (USENIX security
19), pages 585–602, 2019.

[40] Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William
Enck, Bradley Reaves, Kapil Singh, and Serge Egelman. Actions speak
louder than words:{Entity-Sensitive} privacy policy and data flow
analysis with {PoliCheck}. In 29th USENIX Security Symposium
(USENIX Security 20), pages 985–1002, 2020.

[41] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm Sigplan Notices,
49(6):259–269, 2014.

[42] Xiaolong Bai, Luyi Xing, Min Zheng, and Fuping Qu. idea: Static
analysis on the security of apple kernel drivers. In Jay Ligatti, Xin-
ming Ou, Jonathan Katz, and Giovanni Vigna, editors, CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, pages 1185–
1202. ACM, 2020.

[43] Duc Bui, Yuan Yao, Kang G Shin, Jong-Min Choi, and Junbum Shin.
Consistency analysis of data-usage purposes in mobile apps. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 2824–2843, 2021.

[44] Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang, Yeonjoon Lee, Xi-
aoFeng Wang, Bin Ma, Aohui Wang, Yingjun Zhang, and Wei Zou.
Following devil’s footprints: Cross-platform analysis of potentially
harmful libraries on android and ios. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 357–376. IEEE, 2016.

[45] Yi Chen, Mingming Zha, Nan Zhang, Dandan Xu, Qianqian Zhao,
Xuan Feng, Kan Yuan, Fnu Suya, Yuan Tian, and Kai Chen. Demystify-
ing hidden privacy settings in mobile apps. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 570–586. IEEE, 2019.

[46] Jonathan Crussell, Ryan Stevens, and Hao Chen. Madfraud: in-
vestigating ad fraud in android applications. In Andrew T. Camp-
bell, David Kotz, Landon P. Cox, and Zhuoqing Morley Mao, edi-
tors, The 12th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys’14, Bretton Woods, NH, USA,
June 16-19, 2014, pages 123–134. ACM, 2014.

[47] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston Zhang, and
Carl A. Gunter. Free for all! assessing user data exposure to advertis-
ing libraries on android. In 23rd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego, California,
USA, February 21-24, 2016. The Internet Society, 2016.

[48] Zhui Deng, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan
Xu. iris: Vetting private API abuse in ios applications. In Indrajit
Ray, Ninghui Li, and Christopher Kruegel, editors, Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, pages 44–56. ACM,
2015.

[49] Luke Deshotels, Costin Carabas, Jordan Beichler, Răzvan Deaconescu,
and William Enck. Kobold: Evaluating decentralized access control for
remote nsxpc methods on ios. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1056–1070. IEEE, 2020.

[50] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna.
Pios: Detecting privacy leaks in ios applications. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2011,
San Diego, California, USA, 6th February - 9th February 2011. The
Internet Society, 2011.

[51] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-
Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N Sheth. Taintdroid: an information-flow tracking system for

https://www.adyen.com
https://developer.apple.com/app-store/review/guidelines/#data-collection-and-storage
https://developer.apple.com/app-store/review/guidelines/#data-collection-and-storage
https://developer.apple.com/app-store/review/guidelines/#data-collection-and-storage
https://appfigures.com/top-sdks
https://shorturl.at/aftw5
https://shorturl.at/aftw5
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files?language=objc
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files?language=objc
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files?language=objc
https://developer.apple.com/app-store/app-privacy-details
https://developer.apple.com/app-store/app-privacy-details
https://www.appsflyer.com
https://www.buglife.com
https://github.com/danielgindi/Charts
https://cocoapods.org
https://countly.com
https://shorturl.at/ceSVW
https://shorturl.at/cdKO2
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://github.com/skx926/KSPhotoBrowser
https://github.com/AllLuckly/LBLaunchImageAd
https://github.com/AllLuckly/LBLaunchImageAd
https://www.helpnetsecurity.com/2020/08/24/malicious-ios-sdk
https://www.helpnetsecurity.com/2020/08/24/malicious-ios-sdk
https://www.openmediation.com/en
https://shorturl.at/puEV9
https://github.com/RevMob/react-native-revmob
https://github.com/RevMob/react-native-revmob
https://sentry.io/welcome
https://shorturl.at/fHIY0
https://shorturl.at/fHIY0
https://spacy.io/api/dependencyparser
https://spacy.io/api/dependencyparser
https://github.com/LiteAVSDK/Player_iOS/blob/master/README-EN.md
https://github.com/LiteAVSDK/Player_iOS/blob/master/README-EN.md
https://github.com/apple/swift/blob/main/docs/ABI/CallingConvention.rst
https://github.com/apple/swift/blob/main/docs/ABI/CallingConvention.rst
https://developer.apple.com/swift
https://shorturl.at/nvzP5
https://shorturl.at/nvzP5
https://docs.teak.io/home/index.html
https://developer.apple.com/documentation/technologies
https://github.com/VKCOM/vk-ios-sdk
https://developer.apple.com/xcode
https://developer.apple.com/app-store/app-privacy-details
https://developer.apple.com/app-store/app-privacy-details
https://github.com/cxnder/ktool
https://github.com/cxnder/ktool
https://oag.ca.gov/privacy/ccpa
https://gdpr-info.eu/chapter-1
https://sites.google.com/view/ihunterios
https://github.com/ahmedbougacha/dagger
https://github.com/ahmedbougacha/dagger


realtime privacy monitoring on smartphones. ACM Transactions on
Computer Systems (TOCS), 32(2):1–29, 2014.

[52] Johannes Feichtner, David Missmann, and Raphael Spreitzer. Auto-
mated binary analysis on ios: A case study on cryptographic misuse
in ios applications. In Proceedings of the 11th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, WiSec 2018,
Stockholm, Sweden, June 18-20, 2018, pages 236–247. ACM, 2018.

[53] Denzil Ferreira, Vassilis Kostakos, Alastair R Beresford, Janne
Lindqvist, and Anind K Dey. Securacy: an empirical investigation
of android applications’ network usage, privacy and security. In
Proceedings of the 8th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, pages 1–11, 2015.

[54] Jingyi Guo, Min Zheng, Yajin Zhou, Haoyu Wang, Lei Wu, Xiapu Luo,
and Kui Ren. ilibscope: Reliable third-party library detection for ios
mobile apps. arXiv preprint arXiv:2207.01837, 2022.

[55] Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian Schaub, Kang G
Shin, and Karl Aberer. Polisis: Automated analysis and presentation
of privacy policies using deep learning. In 27th USENIX Security
Symposium (USENIX Security 18), pages 531–548, 2018.

[56] Hex-Rays. Ida pro: The best-of-breed binary code analysis tool.
https://hex-rays.com/IDA-pro.

[57] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael Backes. The
ART of app compartmentalization: Compiler-based library privilege
separation on stock android. In Bhavani Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, pages 1037–1049. ACM, 2017.

[58] Johannes Kinder and Helmut Veith. Precise static analysis of un-
trusted driver binaries. In Roderick Bloem and Natasha Sharygina, edi-
tors, Proceedings of 10th International Conference on Formal Methods
in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland,
October 20-23, pages 43–50. IEEE, 2010.

[59] Konrad Kollnig, Anastasia Shuba, Max Van Kleek, Reuben Binns,
and Nigel Shadbolt. Goodbye tracking? impact of ios app tracking
transparency and privacy labels. In Proceedings of the 2022 ACM
Conference on Fairness, Accountability, and Transparency, pages 508–
520, 2022.

[60] Malte Kraus and Vincent Haupert. The swift language from a reverse
engineering perspective. In Proceedings of the 2nd Reversing and
Offensive-oriented Trends Symposium, pages 1–12, 2018.

[61] Yeonjoon Lee, Xueqiang Wang, Kwangwuk Lee, Xiaojing Liao, Xi-
aoFeng Wang, Tongxin Li, and Xianghang Mi. Understanding {iOS-
based} crowdturfing through hidden {UI} analysis. In 28th USENIX
Security Symposium (USENIX Security 19), pages 765–781, 2019.

[62] Tianshi Li, Kayla Reiman, Yuvraj Agarwal, Lorrie Faith Cranor, and
Jason I. Hong. Understanding challenges for developers to create
accurate privacy nutrition labels. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems, CHI ’22, New
York, NY, USA, 2022. Association for Computing Machinery.

[63] Yong Li, Yuanyuan Zhang, Juanru Li, and Dawu Gu. icryptotracer:
Dynamic analysis on misuse of cryptography functions in ios appli-
cations. In Man Ho Au, Barbara Carminati, and C.-C. Jay Kuo,
editors, Network and System Security - 8th International Conference,
NSS 2014, Xi’an, China, October 15-17, 2014, Proceedings, volume
8792 of Lecture Notes in Computer Science, pages 349–362. Springer,
2014.

[64] Yucheng Li, Deyuan Chen, Tianshi Li, Yuvraj Agarwal, Lorrie Faith
Cranor, and Jason I. Hong. Understanding ios privacy nutrition
labels: An exploratory large-scale analysis of app store data. In
Extended Abstracts of the 2022 CHI Conference on Human Factors
in Computing Systems, CHI EA ’22, New York, NY, USA, 2022.
Association for Computing Machinery.

[65] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. DECAF: de-
tecting and characterizing ad fraud in mobile apps. In Proceedings

of the 11th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014,
pages 57–70. USENIX Association, 2014.

[66] Kangjie Lu. Practical program modularization with type-based de-
pendence analysis. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 1256–1270. IEEE, 2023.

[67] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan Zhang, Donglai
Zhu, and Min Yang. Finding clues for your secrets: Semantics-driven,
learning-based privacy discovery in mobile apps. In NDSS, 2018.

[68] Minh Hai Nguyen, Thien Binh Nguyen, Thanh Tho Quan, and Mizuhito
Ogawa. A hybrid approach for control flow graph construction from bi-
nary code. In Pornsiri Muenchaisri and Gregg Rothermel, editors,
20th Asia-Pacific Software Engineering Conference, APSEC 2013,
Ratchathewi, Bangkok, Thailand, December 2-5, 2013 - Volume 2,
pages 159–164. IEEE Computer Society, 2013.

[69] David A. Ramos and Dawson R. Engler. Under-constrained sym-
bolic execution: Correctness checking for real code. In Ajay Gulati
and Hakim Weatherspoon, editors, 2016 USENIX Annual Technical
Conference, USENIX ATC 2016, Denver, CO, USA, June 22-24,
2016. USENIX Association, 2016.

[70] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez,
Srikanth Sundaresan, Mark Allman, ChrisÏtian Kreibich, and Phillipa
Gill. Apps, trackers, privacy, and regulators: A global study of the mo-
bile tracking ecosystem. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018, 2018.

[71] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin, and Taesoo
Kim. FLEXDROID: enforcing in-app privilege separation in android.
In 23rd Annual Network and Distributed System Security Symposium,
NDSS 2016, San Diego, California, USA, February 21-24, 2016. The
Internet Society, 2016.

[72] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of)
The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy, 2016.

[73] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester,
Ram Krishnan, Jaspreet Bhatia, Travis D Breaux, and Jianwei Niu.
Toward a framework for detecting privacy policy violations in android
application code. In Proceedings of the 38th International Conference
on Software Engineering, pages 25–36, 2016.

[74] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What mobile ads
know about mobile users. In 23rd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego, California,
USA, February 21-24, 2016, 2016.

[75] Zhushou Tang, Ke Tang, Minhui Xue, Yuan Tian, Sen Chen, Muham-
mad Ikram, Tielei Wang, and Haojin Zhu. {iOS}, your {OS}, every-
body’s {OS}: Vetting and analyzing network services of {iOS} ap-
plications. In 29th USENIX Security Symposium (USENIX Security
20), pages 2415–2432, 2020.

[76] Zhushou Tang, Ke Tang, Minhui Xue, Yuan Tian, Sen Chen, Muham-
mad Ikram, Tielei Wang, and Haojin Zhu. Ios, your os, everybody’s
os: Vetting and analyzing network services of ios applications. In
Proceedings of the 29th USENIX Conference on Security Symposium,
SEC’20, USA, 2020. USENIX Association.

[77] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jagpal,
Alexandros Kapravelos, Damon McCoy, Antonio Nappa, Vern Paxson,
Paul Pearce, Niels Provos, and Moheeb Abu Rajab. Ad injection at
scale: Assessing deceptive advertisement modifications. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, pages 151–167. IEEE Computer Society, 2015.

[78] Eran Tromer and Roei Schuster. Droiddisintegrator: Intra-application
information flow control in android apps. In Xiaofeng Chen, XiaoFeng
Wang, and Xinyi Huang, editors, Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security, AsiaCCS

https://hex-rays.com/IDA-pro


2016, Xi’an, China, May 30 - June 3, 2016, pages 401–412. ACM,
2016.

[79] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, An-
dré DeHon, and Jonathan M. Smith. Breakapp: Automated, flex-
ible application compartmentalization. In 25th Annual Network
and Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018. The Internet Society, 2018.

[80] Jice Wang, Yue Xiao, Xueqiang Wang, Yuhong Nan, Luyi Xing, Xiao-
jing Liao, Jinwei Dong, Nicolás Serrano, Haoran Lu, XiaoFeng Wang,
and Yuqing Zhang. Understanding malicious cross-library data har-
vesting on android. In Michael Bailey and Rachel Greenstadt, editors,
30th USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021, pages 4133–4150. USENIX Association, 2021.

[81] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin,
Travis D Breaux, and Jianwei Niu. Guileak: Tracing privacy pol-
icy claims on user input data for android applications. In Proceedings
of the 40th International Conference on Software Engineering, pages
37–47, 2018.

[82] Yizhuo Wang, Yikun Hu, Xuangan Xiao, and Dawu Gu. iservice:
Detecting and evaluating the impact of confused deputy problem in
appleos. In Annual Computer Security Applications Conference,
ACSAC 2022, Austin, TX, USA, December 5-9, 2022, pages 964–977.
ACM, 2022.

[83] Tim Werthmann, Ralf Hund, Lucas Davi, Ahmad-Reza Sadeghi, and
Thorsten Holz. Psios: bring your own privacy & security to ios devices.
In Proceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security, pages 13–24, 2013.

[84] Yue Xiao, Zhengyi Li, Yue Qin, Xiaolong Bai, Jiale Guan, Xiaojing
Liao, and Luyi Xing. Lalaine: Measuring and characterizing non-
compliance of apple privacy labels at scale. In 32nd USENIX Security
Symposium, USENIX Security 2023, Anaheim Marriott, CA, USA,
August 9-11, 2023. USENIX Association, 2023.

[85] Luyi Xing, Xiaolong Bai, Tongxin Li, XiaoFeng Wang, Kai Chen,
Xiaojing Liao, Shi-Min Hu, and Xinhui Han. Cracking app isolation
on apple: Unauthorized cross-app resource access on mac os x and ios.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, page 31–43, New York, NY,
USA, 2015. Association for Computing Machinery.

[86] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and
X Sean Wang. Appintent: Analyzing sensitive data transmission in
android for privacy leakage detection. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security,
pages 1043–1054, 2013.

[87] Le Yu, Xiapu Luo, Jiachi Chen, Hao Zhou, Tao Zhang, Henry Chang,
and Hareton KN Leung. Ppchecker: Towards accessing the trustworthi-
ness of android apps’ privacy policies. IEEE Transactions on Software
Engineering, 47(2):221–242, 2018.

[88] Le Yu, Xiapu Luo, Xule Liu, and Tao Zhang. Can we trust the privacy
policies of android apps? In 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 538–
549. IEEE, 2016.

[89] Xiaokuan Zhang, Xueqiang Wang, Xiaolong Bai, Yinqian Zhang, and
Xiaofeng Wang. OS-level side channels without procfs: Exploring
cross-app information leakage on iOS. In Proceedings 2018 Network
and Distributed System Security Symposium. Internet Society, 2022.

[90] Min Zheng, Hui Xue, Yulong Zhang, Tao Wei, and John C. S. Lui. En-
public apps: Security threats using ios enterprise and developer certifi-
cates. In Feng Bao, Steven Miller, Jianying Zhou, and Gail-Joon Ahn,
editors, Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’15, Singapore,
April 14-17, 2015, pages 463–474. ACM, 2015.

[91] Sebastian Zimmeck, Rafael Goldstein, and David Baraka. Privacyflash
pro: Automating privacy policy generation for mobile apps. In NDSS,
2021.

[92] Sebastian Zimmeck, Peter Story, et al. Maps: Scaling privacy com-

pliance analysis to a million apps. Proceedings on Privacy Enhancing
Technologies, 2019(3):66–86, 2019.

Appendix A Setup of Evaluation and Measure-
ment

Building SDK test-bed apps. To perform a taint analysis on
the SDKs, we integrated each SDK into an initially empty app
to create a test bed, from which we subsequently extracted
the compiled binaries. To expedite this process and facili-
tate batch building, we developed a script that utilizes the
pod install command to integrate SDKs into the empty
app and the XcodeBuild command to compile the project.
Additionally, we added the -ObjC and -all_load linker op-
tions as compiler parameters to load all code and symbols
within the SDKs into the built app:
Analysis of SDK integration. In general, SDKs are com-
monly integrated into apps through two primary methods: (a)
static integration into the app’s binary or (b) dynamic library
integration as a .dylib file, which is stored in the Frameworks
folder of the .ipa file. To identify the SDKs used in the apps,
we propose a rapid approach that involves analyzing the bi-
nary and .dylib files of the apps. Step ➊: We first performed
class-dump on all apps and SDKs to obtain information about
the classes in the binaries, which is similar to the process
used in the class structure recovery stage. Step ➋: Then we
generated a hash for every class and recorded the classes de-
fined and used in every binary to an SQLite database. Step ➌:
Finally, we conducted a matching process between the classes
in each app and the classes in the SDKs and calculated how
many classes of each SDK were found in each app. If most
of the classes of an SDK were found in an app, we concluded
that this app used the SDK. In our evaluation, the threshold
ratio for SDK matching could be set to 0.75 since the classes
could change with SDK updates.
Compliance criteria. Table 5 lists the pertinent sections to
which iHunter refers when conducting compliance checks
under prominent privacy laws, including GDP, CCAP, as well
as Terms of Service (ToS).

Appendix B Other Details of Taint Analysis

Loop extraction. We have implemented a loop detection
algorithm based on topological sorting. This algorithm oper-
ates on the CFG of every function and employs a stack-based
approach to identify nested loops. The topological sorting
algorithm sorts the nodes of the CFG in topological order,
which means that if node A is before node B in the ordering,
then there is no path from B to A in the CFG. This enables
the algorithm to identify the loops by detecting back edges
in the CFG. To detect nested loops, we use a stack-based
approach that helps to maintain the loop hierarchy. Nested



Table 5: Classification of Non-compliances
Non-Compliance Type Examples of Laws, Regulations or Terms of Use

Absence of Privacy Policy

Article 12 - GDPR- Transparent information, communication, and modalities for the
exercise of the rights of the data subject: The controller shall take appropriate measures
to provide any information referred to in Articles 13 and 14 and any communication
under Articles 15 to 22 and 34 relating to processing to the data subject in a concise,
transparent, intelligible and easily accessible form, using clear and plain language.
Article 13 - GDPR- Information to be provided where personal data are collected from
the data subject: Where personal data relating to a data subject are collected from the
data subject, the controller shall, at the time when personal data are obtained, provide
the data subject with all of the following information...
Section 1798.100(b) - CCPA - Right to Know About Personal Information Collected,
Disclosed, or Sold: A business that collects a consumer’s personal information shall, at
or before the point of collection, inform consumers as to the categories of personal infor-
mation to be collected and the purposes for which the categories of personal information
shall be used. A business shall not collect additional categories of personal information
or use personal information collected for additional purposes without providing the
consumer with notice consistent with this section.
Section 1798.130(a)(5) - CCPA - Initial Notice to Consumers: A business that collects
personal information about a consumer shall inform consumers as to the categories of
personal information to be collected and the purposes for which the categories of personal
information shall be used, which shall be provided at or before the point of collection.

Inappropriate Disclosure in Privacy Policy

Article 5(1)(a) - GDPR: “Personal data shall be processed lawfully, fairly and in a
transparent manner (‘lawfulness, fairness, and transparency’).”
Section 1798.100(b) - CCPA “A business shall not collect additional categories of per-
sonal information or use personal information collected for additional purposes without
providing the consumer with notice consistent with this section.”

Transgression of ToS Provisions

Facebook Terms(3)(2): “Prohibition of proxying, requesting, collecting Product user-
names, passwords, or misappropriation of access tokens.”
Facebook Terms(2)(1) “Obtain consent from people before publishing content or taking
any other action on their behalf.”

loops are pushed to the top of the stack and popped when the
algorithm finishes analyzing a loop.

Recovery of Swift mangled calls. In Swift binaries, function
call names are mangled into unique and indecipherable
strings. For example, when initializing a Data instance
using the Foundation.Data.init(referencing:NSData)
function within the Swift Foundation Framework, the
corresponding call in the compiled binary is transformed into
s10Foundation4DataV11referencingACSo6NSDataCh_
tcfC after being mangled. To overcome this issue, we
developed a Swift function demangling tool capable
of extracting all the relevant information about a Swift
function call, such as the function name, the indexing
path of the function (i.e., module and class name), pa-
rameter names, and parameter and return value types. By
demangling the name of the Data initializer function,
we obtained Foundation.Data.init(referencing:
__shared __C.NSData)-> Foundation.Data, which
provides more information than the Objective-C type
message-send calling. Furthermore, we can utilize the
additional information on the return and parameter types
to enhance type inference and assist in resolving message

sending in the program.
Taint propagation. During the under-constrained symbolic
execution stage, we extract and retain intra-procedural data
flow in the summaries. Consequently, propagating taint across
the entire iOS binary no longer poses significant challenges.
Our approach involves identifying all call sites of each source
and sink, marking them as the starting and ending points of
taint propagation, and subsequently traversing to construct a
taint graph. From this graph, we can extract taint traces by
addressing a classical graph reachability problem.

To generate the taint graph, iHunter conducts forward prop-
agation within the virtual inter-DFG. This means that propa-
gation occurs within each function’s intra-DFG, with context
switching when encountering control flow branches or func-
tion calls/returns. Propagation starts from the call sites of
sources and terminates at the call sites of sinks. To expedite
the process, we record all traversed paths and mark them as
terminated nodes when traversal concludes. To extract all
paths from the taint graph, we employ the flooding algorithm,
recording which sources can reach every point and generating
all traces for each (nsource,nsink) pair.


	Introduction
	Background
	Programming Languages in iOS
	Taint Analysis and Challenges

	Compliance Criteria for Third-Party SDKs
	Design and Implementation of iHunter
	Overview
	Semantic Knowledge Extraction
	Taint Analysis
	Compliance Check
	Implementation

	Evaluation of iHunter
	Evaluation of the Entire iHunter System
	Effectiveness of Individual Components

	iOS SDK Non-Compliance in the Wild
	Landscape
	SDKs of Different Non-Compliance Types
	Distribution Source of Non-Compliant SDKs
	SDK Categories
	Severity Breakdown for the Violations

	Real-World Impact of Non-Compliant SDKs
	Popularity of Non-Compliant SDKs
	Propagation of Non-Compliance into iOS Apps

	Case Study

	Discussion
	Related Work
	Conclusion
	Setup of Evaluation and Measurement
	Other Details of Taint Analysis

