
EVOKE: Efficient Revocation of Verifiable Credentials in IoT Networks

Carlo Mazzocca1, Abbas Acar2, Selcuk Uluagac2, Rebecca Montanari1

1University of Bologna, Bologna, Italy
2Cyber-Physical Systems Security Lab, Florida International University, Miami, Florida, USA

{carlo.mazzocca, rebecca.montanari}@unibo.it, {aacar001, suluagac}@fiu.edu

Abstract

The lack of trust is one of the major factors that hinder collab-
oration among Internet of Things (IoT) devices and harness
the usage of the vast amount of data generated. Traditional
methods rely on Public Key Infrastructure (PKI), managed by
centralized certification authorities (CAs), which suffer from
scalability issues, single points of failure, and limited interop-
erability. To address these concerns, Decentralized Identifiers
(DIDs) and Verifiable Credentials (VCs) have been proposed
by the World Wide Web Consortium (W3C) and the European
Union as viable solutions for promoting decentralization and
"electronic IDentification, Authentication, and trust Services"
(eIDAS). Nevertheless, at the state-of-the-art, there are no effi-
cient revocation mechanisms for VCs specifically tailored for
IoT devices, which are characterized by limited connectivity,
storage, and computational power.

This paper presents EVOKE, an efficient revocation mech-
anism of VCs in IoT networks. EVOKE leverages an ECC-
based accumulator to manage VCs with minimal comput-
ing and storage overhead while offering additional features
like mass and offline revocation. We designed, implemented,
and evaluated a prototype of EVOKE across various deploy-
ment scenarios. Our experiments on commodity IoT devices
demonstrate that each device only requires minimal storage
(i.e., approximately 1.5 KB) to maintain verification infor-
mation, and most notably half the storage required by the
most efficient PKI certificates. Moreover, our experiments
on hybrid networks, representing typical IoT protocols (e.g.,
Zigbee), also show minimal latency in the order of millisec-
onds. Finally, our large-scale analysis demonstrates that even
when 50% of devices missed updates, approximately 96% of
devices in the entire network were updated within the first
hour, proving the scalability of EVOKE in offline updates.

1 Introduction

Today, there are 15 billion Internet of Things (IoT) devices
connected worldwide [46], generating an enormous amount

of data that paves the way for novel applications. In such
settings, the lack of trust [35] is one of the major concerns that
limit the full usage of data and collaboration among different
entities. Third-party organizations do not rely on external
data for decision-making and devices do not trust each other.
Therefore, increasing trust in IoT networks would remarkably
contribute to leveraging a larger amount of data, leading to
the development of next-generation services [43].
Centralized Approaches. At the state-of-the-art, Public
Key Infrastructure (PKI) is the most widespread technology
adopted to identify devices and establish mutual trust [22,23].
In this, digital identities are traditionally issued and managed
by centralized certification authorities (CAs). However, cen-
tralized approaches present several concerns and limitations,
including scalability, lack of control over own information,
single point of failure, and limited interoperability.
Decentralized Approaches. To address these concerns, de-
centralized approaches are increasingly attracting the interest
of the industry and academia. In this direction, the World Wide
Web Consortium (W3C) has formalized and standardized De-
centralized Identifiers (DIDs) [54] and Verifiable Credentials
(VCs) [55] as viable solutions for promoting decentralized
identification. A DID is a unique identifier that resolves to
a DID Document containing public keys, enabling the proof
of ownership over specific data. On the other hand, a VC
is a statement about an entity that can be cryptographically
verified by a third party. VCs offer an alternative to tradi-
tional digital certificates for establishing trust and verifying
the authenticity of attributes. Indeed, interest in DIDs and
VCs has seen remarkable growth in recent years as they have
laid the groundwork for innovative identity solutions like
digital healthcare passports [15]. Such a trend can also be
observed in several initiatives that are emerging worldwide
with many countries that are starting to use these technolo-
gies [26, 40, 51].

For instance, VCs are considered a key technology by the
European regulation for "electronic IDentification, Authen-
tication, and trust Services" (eIDAS) to ensure secure and
remote identity proofing [38]. Furthermore, DIDs and VCs



have the potential to efficiently implement the concept of
Identity of Things (IDoT) [25] introduced by the Kantara
Initiative. Each device is assigned a DID that enables proving
certain capabilities, through VCs, to other devices.
Problem Definition. A critical operation for the trust of the
whole network depends on the efficient revocation of VCs
for malfunctioning or compromised devices. A notable ex-
ample is the chip vulnerability on RSA key generation, as
highlighted in CCS’17 by Namec et al. [37], which resulted in
the revocation of more than 700K certificates for devices us-
ing that chip. In IoT networks, the presence of heterogeneous
devices, some with limited computing and storage capabili-
ties, adds complexity to the revocation process. Additionally,
an IoT setting can be constrained as well and characterized by
limited bandwidth, low transmission range, dynamic topology,
and unreliable connectivity. These factors pose challenges to
the adoption of traditional revocation mechanisms like the
Online Certificate Status Protocol (OCSP) [42] and Certifi-
cate Revocation Lists (CRLs) [10], which respectively assume
reliable connections and large amounts of memory. Despite
the growing interest in DID and VCs [20, 33], the develop-
ment of efficient approaches for VC revocation remains in
its early stages as evidenced by the lack of a dedicated W3C
standard [53].
EVOKE. Motivated by the growing interest in DID and VCs,
coupled with the inherent challenges posed by IoT devices, in
this paper, we introduce EVOKE, a novel solution to address
the efficient VC revocation in IoT settings. Our approach
allows devices to establish trusted interactions while minimiz-
ing computing and storing overhead. To achieve this, EVOKE
leverages an Elliptic Curve Cryptography (ECC)-based ac-
cumulator [52], which efficiently aggregates multiple data
into a unique element called accumulator value, whose size
remains constant regardless of the number of accumulated ele-
ments. An additional significant characteristic is that proving
membership in the accumulator value also demands constant
verification time. These characteristics ensure that EVOKE
maintains efficiency even when the number of credentials and
devices within the network grows.
Implementation and Evaluation of EVOKE. We imple-
mented and evaluated a prototype of EVOKE, assessing its
effectiveness and applicability across various scenarios. First,
to validate its feasibility in real-world environments, we eval-
uated EVOKE on commodity IoT devices. To the best of our
knowledge, it is the first tool to enable using VCs on IoT
devices. However, due to the restrictions imposed by vendors,
as end-users, we were not allowed to run our code directly on
them. Thus, to broaden the scope of our analysis and encom-
pass a wider range of scenarios, we extended our evaluation
to include hybrid networks that combine both IoT devices
and Raspberry Pis. This setup allowed us to create the typ-
ical IoT deployment scenarios like star or mesh topologies
that require the IoT devices’ interaction with each other. Last
but not least, we conducted scalability tests by simulating a

large-scale network consisting of thousands of devices.

The experimental results demonstrate that EVOKE can
be supported by off-the-shelf IoT devices easily, demanding
only minimal requirements in terms of storage and computing
resources. Remarkably, each device only needs to allocate
approximately 1.5 KB of space for storing verification in-
formation, i.e., the accumulator value and proof of inclusion
(witness). The constant size of the accumulator value, com-
bined with the low latency introduced by the verification op-
erations, significantly enhances the scalability of EVOKE and
it enables mass revocation. Our mechanism also offers offline
revocation, whereby devices that fail to receive revocation
updates can still be updated by trustworthy devices that have
received the updates. Even in the extreme case where 50%
of devices miss updates in a network of one million devices,
EVOKE is capable of updating almost the entire network
through a limited number of interactions.

Contributions. The main contributions of the paper can be
summarized as follows:

• We present a novel and efficient revocation mechanism
for VCs in IoT networks. Our approach offers a direct ap-
plication to device-to-device trust establishment, signif-
icantly enhancing revocation efficiency while enabling
the capability for mass revocation of VCs.

• EVOKE supports offline revocation and effectively re-
duces network overhead. In cases where a device misses
updates (i.e., accumulator value and witness), EVOKE
allows for the updating of the device by leveraging inter-
actions with other devices in the network.

• EVOKE ensures that each device stores only a mini-
mal amount of data necessary for validating other VCs
and establishing trusted communications. This design
minimizes storage requirements while maintaining the
integrity of the system.

• To comprehensively evaluate the effectiveness and per-
formance of our approach, we conducted a series of ex-
periments that include direct evaluations of EVOKE also
on several commodity IoT devices. To the best of our
knowledge, this work represents the first solution and
design of a VC revocation scheme specifically tailored
for IoT technologies.

Organization. The remainder of this paper is structured as
follows: Section 2 provides the background for DID, VCs, and
cryptographic accumulators. Section 3 presents the EVOKE
system model and threats. Section 4 describes the revocation
mechanism. Section 5 analyzes the security of our proposal.
Section 6 evaluates our revocation mechanism and presents
experimental results. Section 7 compares EVOKE to other
approaches. Section 8 covers related work, and Section 9
concludes the paper.



Issuer VerifierHolder

Verifiable Data
Registry

Issue VC Send VP

Verify Identifiers
and use Schemas

Register Identifiers
and use Schemas

Verifiy Identifiers
and Schemas

3 4

12 5

Figure 1: Overview of VC main actors.

2 Background

In this section, we provide the needed background to under-
stand the data structure that enables revoking VCs in our
proposal.

2.1 Decentralized Identifiers (DIDs) and Veri-
fiable Credentials (VCs)

DIDs have revolutionized identification in decentralized iden-
tity frameworks [34]. A DID uniquely identifies a DID Sub-
ject, whether human or non-human entities. It comprises three
elements: the Uniform Resource Identifier (URI), the spe-
cific DID method identifier, and the method-specific DID
identifier. Additionally, a DID URL extends the basic DID
by incorporating additional URI components for precise re-
source location. Each DID resolves to a machine-readable
JSON-LD document called DID Document, containing cryp-
tographic public keys, service endpoints, authentication pa-
rameters, timestamps, and metadata. DIDs eliminate the need
for identity providers and centralized authorities, allowing en-
tities to prove ownership through private keys corresponding
to the embedded public keys in the DID Document. Verifi-
cation is facilitated by accessing the public DID Document,
shared via a verifiable data registry usually implemented using
distributed ledger technologies (DLTs).

VCs are another W3C specification, providing an inter-
operable data structure for representing cryptographically
verifiable and tamper-proof claims. VCs play a significant
role in an ecosystem that includes holders, issuers, verifiers,
and a verifiable data registry. Holders are entities with con-
trol over one or more VCs, while issuers create new VCs.
In an IoT environment, issuers may be the manufacturer of
devices. Verifiers obtain VCs for establishing trust, e.g., smart
locks requesting trusted data from smoke detectors to facili-
tate building evacuation. The verifiable data registry mediates
the creation and verification of identifiers, keys, credential
schemas, and other relevant data. A VC comprises elements
such as the subject URI, the issuer’s URI, unique credential
identifiers, claim expiration conditions, and cryptographic sig-
natures. Moreover, the W3C VC Working Group introduced
Verifiable Presentations (VPs), defining methods for signing
and presenting VCs by holders. Figure 1 sketches the main
actors within the ecosystem of VCs.

2.2 Cryptographic Accumulators

The academic interest in cryptographic accumulators dates
back to 1994 when they were initially proposed as solutions
for eliminating trusted central authorities [3]. Accumulators
are used to cryptographically produce a short binding commit-
ment to a set of elements called accumulator value, proving
the membership of data in the dataset through short proofs.
An accumulator is defined as a family of one-way hash func-
tions that satisfy the capability of being quasi-commutative.
A one-way hash function h is a function that takes an input
value v of arbitrary length and produces a fixed-size output
named hash value h(v). The one-way property of the hash
function means that given h(v), it is computationally infea-
sible to recover the original input. The quasi-commutative
property makes the accumulator independent from the order
of values accumulated. These properties allow accumulators
to be used for condensed representing a set of elements and
efficiently verify membership. To test if a vi is included in the
accumulator value, one needs to calculate its corresponding
witness wi, which is obtained by accumulating all the values
except vi. Accumulators that enable verifying the inclusion of
elements via membership witnesses are called positive, while
those that allow verifying if elements are not accumulated
through non-membership witnesses are referred to as negative.
Accumulators that support both functionalities are known as
universal.

Different types of accumulators have been proposed over
the years. Extensive studies [29, 50, 56] have demonstrated
that ECC-based accumulators outperform alternative solu-
tions such as RSA-based accumulators and Merkle Trees
(MTs) [47]. ECC-based accumulators offer several advan-
tages, including smaller proofs of membership (witnesses)
and efficient verification, thanks to the reduced number of
mathematical operations needed.

In this paper, we leverage the features of a positive ECC-
based accumulator [52] that supports batch operations, includ-
ing witness generation. In contrast, the size of the accumulator
value in an RSA-based accumulator is determined by the size
of the modulus used in the RSA encryption scheme. The
modulus size is directly related to the security level of the
RSA accumulator. Thus, RSA demands larger module sizes
to achieve the same security level as ECC. In MTs, the proof
size increases logarithmically with the size of the committed
data, which can make it grow considerably when consider-
ing a large set of data. This can be a disadvantage regarding
storage space and computation time when dealing with large
amounts of data.

3 System and Threat Model

In this paper, we consider IoT networks N that comprise is-
suers I , accumulators ACC , a distributed ledger b, and IoT
devices D. In real-world scenarios, devices interact within



WITNESSES ACCUMULATOR RECORD

ISSUER

IoT NETWORK

WITNESS VC ACCUMULATOR

IoT DEVICE

DLT
NODE

DISTRIBUTED
LEDGER TECHNOLOGY

Figure 2: EVOKE architecture. The dotted lines represent a closer examination of revocation information shared on the DLT and
data maintained by each IoT device.

Table 1: EVOKE Notation.

Symbol Description

N Set of IoT Networks
I Set of issuers

ACC Set of accumulators
j Geographical area

A j Single accumulator
a j Single accumulator value
i j Single issuer
D j Set of IoT devices in j
di Single IoT device
Wj Set of witnesses in j
wi Witness of device di
b DLT

specific geographical areas, whose boundary depends on sev-
eral factors such as administrative divisions, technological
infrastructure, or network coverage (e.g., Wi-Fi networks).
For instance, a geographical area can be mapped into a 5th-
generation network cell.

Without loss of generality, we assume that a geographical
location j represents an IoT network n j ∈ N . Each IoT de-
vice di ∈ D j ⊂D in n j has a VC issued by the issuer i j ∈ I .
To manage VCs, i j accumulates all the valid VCs of j, i j
accumulates them in a j ∈ A j ∈ ACC . Table 1 summarizes
the notation used in the EVOKE system model and security
analysis. In the design of EVOKE, we make the following
assumptions:

1. The issuer i j possesses sufficient computing capabilities,
including an adequate level of processing power, mem-
ory, and necessary software/tools and mechanisms, to
successfully build the accumulator value a j, remove VCs,
generate witnesses Wj for all di ∈ D j, and disseminate
updates (i.e., accumulator and witnesses) through the
DLT. i j provides VCs only to authenticated and properly
functioning devices that have not been compromised.

2. Each device di is initially provided with a valid VC, a j,
wi, its cryptographic material and the public key of i j,

which has issued the VC. Through the public key of i j, dk
can establish secure and authenticated communications.

3. There are devices in n j that have full connectivity, in-
tended as a reliable connection to the DLT to receive the
updates. Updated revocation information is disseminated
in n j through a publish/subscribe paradigm.

3.1 Components

In this section, we provide a detailed explanation of EVOKE’s
components, whose architecture is depicted in Figure 2.

• Issuer: The issuer i j is responsible for issuing and revok-
ing VCs. It records all issued VCs and IoT devices within
the network. The issuer operates independently from the
rest of the network and only communicates through the
DLT. We assume it possesses sufficient computing capa-
bilities for managing VCs, including the generation and
update of the accumulator value a j and witnesses Wj.

• DLT: b serves as a secure, distributed data source for
exchanging updates (i.e., a j and Wj), between the i j and
D j. DLTs are secure due to the use of cryptographic
techniques like digital signatures and hash functions,
along with the resilience to single points of failure and
the adoption of consensus mechanisms. In the highly
improbable case of being compromised, the availability
of updates may be affected, but the updates’ integrity
remains intact. Updates are included in VCs signed by
i j, thus only the issuer can generate them. Each n j has at
least one DLT node equipped with adequate resources to
maintain a consistent and up-to-date version of b. In our
work, we utilized a directed acrylic graph (DAG)-based
ledger, DAG for brevity. The adoption of a DAG offers
transparency and immutability of shared data while ex-
hibiting enhanced performance in terms of latency and
energy consumption that make it ideal for IoT environ-
ments [17].

• IoT Device: di ∈ D j vary in computational power, re-
source consumption, storage capacity, and networking
capabilities. Each IoT device di is equipped with suffi-
cient storage for essential components such as the a j,



di, a VC, DID, and associated information. Additionally,
each di possesses the minimum cryptographic functions
necessary to establish trust within the IoT network n j.
Devices communicate with each other through their net-
working technologies, while only devices with sufficient
networking capabilities can interact with b.

3.2 Threat Model
The security of our scheme relies heavily on the secure im-
plementation of the proposed system. We assume that the a j
has been computed securely, ensuring its collision resistance.
To assess the security of our system, we employ the Dolev-
Yao model adversary [14], who possesses the capability to
eavesdrop on, intercept, or inject an arbitrary number of mes-
sages. Furthermore, we also consider that the attacker can
compromise the entities composing n j. The primary objective
of the adversary is to acquire a valid VC, thereby gaining
the ability to establish trusted communications. This goal can
be accomplished by compromising i j, D j, or communication
links. In the following, we highlight the primary threats of a
scenario where an issuer furnishes VCs for IoT devices:

• Compromised Issuers: Gaining control over the issuer
i j gives the adversary the capability to arbitrarily issue
valid VCs as well as revoke valid ones. The attacker can
generate VCs with false or misleading claims, improp-
erly granting permission to entities within the system.
Furthermore, the adversary may invalidate legitimately
issued VCs, resulting in a denial of services (DoS) or
disruption of the established trust relationship.

• Compromised IoT Devices: IoT devices D j act as the
entry point to IoT networks and can be vulnerable to a
range of attacks if compromised by adversaries. The at-
tacker may identify vulnerabilities in the firmware of IoT
devices to gain unauthorized access or control over other
devices. Devices can be compromised in a variety of
ways, such as malware distribution through firmware up-
dates or the devices may have already been manufactured
with compromised hardware or software components in
case the adversary has direct access.

• Compromised Communication: In n j, D j are not ob-
ligated to implement encryption mechanisms, making
it relatively easy for the adversary to eavesdrop on the
traffic. For example, the attacker may use the intercepted
VC to spoof the identity of the device and establish trust
on its behalf.

4 EVOKE Protocol

The proposed approach allows IoT devices D j to securely
communicate with minimal overhead. Specifically, each de-
vice di maintains the accumulator value a j, which comprises
all the valid VCs, and a witness wi that demonstrates the va-
lidity of its credential. a j and the witnesses Wj are computed

by the issuer i j and initially provided to all di ∈ D j. However,
when a VC is revoked both a j and Wj have to be updated.
Using just two values, which require only a few bytes, re-
markably reduces the revocation management overhead both
in terms of storage and distribution. The remainder of this
section provides the full details of our method.

4.1 Preliminaries

The accumulator value a j is the key element of our proposal
that enables efficient management of VCs. In this subsection,
we provide all the details related to its usage in EVOKE.

Proof of membership: When using a revocation list, two
devices di and dk that have to authenticate each other present
their VCs and verify whether the received one is included in
the list. Similarly, to use a j to revoke VCs, di needs to present
proof of membership named witness. In this way, the receiver
applies a verification function that allows it to state whether
the VC has been included in a j.

Inputs of the accumulator: Values in a j are derived from
the hash conversion of the valid VCs. Therefore, the security
of a j relies heavily on the chosen hash function. In our case,
we use the widely adopted SHA-256 hash function, which is
considered to be secure and collision-resistant.

Functions: The following functions are used to implement
the proposed approach:

• ain f o← Setup(K): setups the parameters of aj by taking
a set of public values K, which represent the random
generators of the elliptic curve.

• a j←ComputeAccumulator(ainfo,V): accumulates a set
of valid verifiable credentials V by mapping them onto
the curve. This function is also executed to update a j
when V is modified, as VCs can be revoked and newly
valid ones can be issued.

• at
j ← RevomeFromAccumulator(ainfo,a

t−1
j ,V): re-

moves a set of invalid verifiable credentials V. This
function is also executed to update a j.

• w ← ComputeWitness(aj,vci): generates a witness
value wi for a valid verifiable credential vci, providing
proof of its membership within aj.

• 0,1←Verify(aj,vci,wi,pki): di presents vci by signing it
with its secret key ski. The verifier executes this function
to authenticate di. It verifies whether wi provided by di is
accumulated in aj. The verifier uses the device’s public
key pki to ensure that vci is associated with di.

• at
j ← UpdateAccumulator(ainfo,a

t−1
j ,V): removes a

set of invalid verifiable credentials V through the
RevomeFromAccumulator() function. In case, a new
set of valid verifiable credentials V is released, they are
included in a j using the ComputeAccumulator() func-
tion.

• wt ← UpdateWitness(atj ,vci): updates the witness cor-
responding to a valid verifiable credential vci. When aj is



updated, previously disseminated Wt−1
j become invalid.

This function takes the updated value atj , a verifiable cre-
dential vci, and returns a valid witness wt

i corresponding
to vci.

4.2 Protocol
This subsection describes the main phases of our protocol,
which uses the features of the positive accumulator presented
in [52]. These capabilities are leveraged by EVOKE to verify
whether a VC has been revoked or not, i.e., checking if the
corresponding witness is included in the accumulator value.
Given two IoT devices di and dk, they can validate each other
as long as the accumulator value a j and their respective wit-
nesses, wi and wk, are updated. To securely share a j among
all di ∈ D j, i j includes the accumulator value a j, as well as
the witnesses Wj, in self-signed VCs and publishes them on
b. This approach enables D j to verify the authenticity before
updating. Furthermore, if di is outdated and cannot directly
download the freshly issued a j and wi, the updated dk can
share the refreshed VCs needed to establish mutual trust. The
proposed protocol supports mass and offline revocation, which
are defined as follows:

Definition 1 (Mass Revocation) Mass revocation is the ca-
pability of efficiently revoking a large number of VCs without
impacting the issuer and device overhead. A protocol de-
signed for mass revocation ensures that the memory size of
the underlying data structure to manage VCs as well as the
verification time remain unaffected by the number of revoked
VCs.

Definition 2 (Offline Revocation) Offline revocation refers
to the capability of devices to receive and apply updates even
when they have been disconnected from the network, with-
out burden on network resources. A protocol that supports
offline revocation is designed to minimize the amount of data
transmission overhead required to facilitate these updates.

Setup. In the setup phase, i j securely generates the accumula-
tor’s parameter K and initializes a j by executing the Setup()
function. Valid VCs are accumulated into a j through the
ComputeAccumulator() function. For each valid VC, i j gen-
erates a hash value, which serves as a unique identifier, which
is then used to obtain the corresponding representation on the
curve. After computing the final a j, i j generates the witnesses
wi ∈Wj for each valid VC by using the ComputeWitness()
function. Wj provides cryptographic proof of the inclusion
of the VC in a j. Initially, each di receives a j, a valid VC,
and its corresponding wi. These components are essential for
subsequent operations.

Authentication. During the authentication, di initiates the
communication with dk by sending the timestamp of a j. The
issuer associates a timestamp with the accumulator value that

UPDATED ACC.

UPDATED

OUTDATED

ISSUER

ACCUMULATOR

WITNESS

LEGEND

ISSUER

ISSUER

IoT DEVICES

Figure 3: Updating accumulator value and witnesses.

serves as a means to synchronize the devices and ensure
consistency. Device dk compares the received timestamp with
that of its accumulator value. Matching timestamps indicate
that both di and dk are operating with the same version of a j,
and they can proceed with the authentication. However, if the
timestamps differ, it implies that one of the devices has an
outdated a j. In this case, the device with the older timestamp
updates its a j to the latest version.

Once synchronized, di and dk exchange signed VCs and
the corresponding witnesses, namely wi and wk. Both devices
verify that the received VC has been issued by i j, if the veri-
fication is successful they hash them and utilize the Verify()
function to check if the VC belongs to that device and if the
hash has been included in a j.This verification step ensures
that the VCs are valid and have not been tampered with. If
both VCs are found within a j, it indicates their membership
and authenticity. Consequently, the devices can trust each
other and establish a secure and trusted communication chan-
nel.

Update. Over time, the issuer i j may need to revoke certain
VCs due to device compromise or faults. Revoking VCs en-
tails updating the accumulator value a j and the corresponding
witnesses Wj for the IoT devices that are still functioning cor-
rectly. Figure 3 offers a high-level overview of our protocol
while updating an IoT network. To revoke VCs, i j executes
the UpdateAccumulator() function that removes invalid cre-
dentials from a j.Once the updated a j is obtained, i j uses the
novel version to generate a new Wj for the remaining valid
VC. The UpdateWitness() function is employed to calculate
the updated witnesses based on the modified a j. Subsequently,
i j embeds the updated information, including the newly gen-
erated Wj, within VCs signed by i j to ensure their authenticity.
These modified VCs, containing the refreshed witnesses, are



then shared through a DAG b. By distributing the updated
VCs with their corresponding witnesses, other devices in the
network can be informed about the revoked credentials and
have access to the latest valid set. This mechanism ensures
that all devices have an up-to-date view of the trusted cre-
dentials within the system, promoting secure and reliable
communication.

In an IoT network n j, offline updates are essential for de-
vices with intermittent connectivity or power-saving hiber-
nation. EVOKE leverages VCs to share a j and W , enabling
devices to update even when not directly connected. When
an updated device di encounters an outdated device dk, it can
facilitate the update process by sharing a VC that contains
a more recent version of a j. Depending on the networking
capability of dk, there are two possible approaches: direct
retrieval and indirect retrieval. If dk supports direct retrieval,
it has sufficient networking capabilities to directly retrieve
the corresponding wk from b. Otherwise, it obtains wk from
di or another device with satisfactory network connectivity.
This indirect retrieval process ensures that dk receives the
necessary wk to accompany the updated a j. Once dk acknowl-
edges having an outdated version of new a j, it disables trusted
communications until it will not receive updates. This precau-
tionary measure prevents the authentication of other devices
that may attempt to leverage an outdated version of a j. Im-
portantly, both a j and wk should be included within a VC to
facilitate the sharing process. By utilizing VCs to share a j
and W , the EVOKE system ensures that updates are always
trusted, even if not directly provided by i j. Algorithm 1 shows
how updates are handled in n j.

Discussion. EVOKE’s ability to handle intermittent connec-
tivity and hibernation ensures that IoT devices D j can remain
up-to-date with a minimal delay, thereby maintaining the sys-
tem’s integrity and security. However, when two previously
offline devices, di and dk, interact, it is important to consider
two possible scenarios that require further attention.

• Consistent Accumulator Value Version: If both devices di
and dk share the same version of the accumulator value
a j, which happens to be outdated, they are unable to de-
tect any missed updates. In this case, devices may incur
misbehaved authentication if one of them has a revoked
VC. As soon as these devices encounter a device with a
fresher accumulator version and one of them supports
direct retrieval, updates are applied, and their correct be-
havior is re-established. Let us note that this situation
is unlikely to occur. Additionally, it is worth noting that
this undesired condition has a time limitation. As shown
in Subsection 6.4, the majority of the devices are updated
within the first hour, reducing this risk.

• Mismatching Accumulator Value Version: When both
the devices have a mismatching version of a j, additional
steps are required. Let us assume that dk has the older
version of a j. If dk can implement direct retrieval, it re-
trieves wk and recognizes that it corresponds to a fresher

Algorithm 1 HandleUpdates: Function executed to update
di ∈D j. If di becomes outdated, it can still receive revocation
information from updated devices.

1: Input: D j,b
2: Output: Updated D j
3: for each di ∈ D j do
4: di interacts with some dk ∈ D j with i ̸= k
5: if ai

j is older than ak
j then

6: ai
j← ak

j
7: if di has sufficient connectivity then
8: wi← DirectRetrieval(b,di)
9: else if dk has sufficient connectivity then

10: wi← IndirectRetrieval(b,dk,di)
11: else
12: disable trusted communications for di
13: end if
14: else if ak

j is older than ai
j then

15: ak
j ← ai

j
16: if dk has sufficient connectivity then
17: wk← DirectRetrieval(b,dk)
18: else if di has sufficient connectivity then
19: wk← IndirectRetrieval(b,di,dk)
20: else
21: disable trusted communications for dk
22: end if
23: end if
24: end for

version of a j than what was exchanged. As a result, dk
obtains the associated novel version of a j and updates
itself accordingly. On the other hand, if indirect retrieval
is necessary, di collects wk and performs a similar verifi-
cation process. Eventually, di acquires the latest version
of a j and the corresponding witnesses and updates dk
accordingly. If both devices lack direct retrieval, they
temporarily disable their trusted communications while
waiting for updates in subsequent iterations. In Subsec-
tion 6.4, we demonstrate that nearly the entire network
is updated within the first hour, even if 50% of devices
missed updates.. By following this procedure, devices
ensure that their accumulator values and witnesses are
synchronized, allowing for consistent and trusted com-
munication.

These scenarios highlight EVOKE’s adaptability, allowing
D j to reconcile differences in accumulator value versions and
update each other for consistency. Through these mechanisms,
EVOKE promotes seamless communication and guarantees
the overall security and reliability of the IoT network n j.



5 Security Analysis

In this section, we consider the threats introduced in Subsec-
tion 3.2 and analyze how they are mitigated in an environment
where EVOKE is employed as a revocation mechanism. It is
worth noting that threats linked with the issuer (e.g., secure
private key storage), generally refer to any trusted entity re-
sponsible for managing VCs or certificates. Therefore, they
are not directly mitigated by revocation mechanisms, includ-
ing EVOKE. Additionally, revocation mechanisms are not
responsible for detecting compromised devices while they
have to manage their revocation upon a device being marked
as compromised.

5.1 Security of Issuer

The issuer i j is the primary target of the adversary as it man-
ages the accumulator, which is the key data structure for
handling VCs. We examine three potential attack scenarios
and corresponding countermeasures:

Securing the Issuer’s Environment. i j is deployed in a se-
cure environment that imposes restrictions on direct external
communication. Valid VCs are accumulated within the is-
suer’s secure perimeter, and a j is shared with n j through a
DAG b. This setup makes it significantly challenging for the
attacker to gain unauthorized access a j from external sources.

Compromise of Accumulator Security Measures. Despite
robust defense mechanisms in place, the adversary may still
attempt to compromise the security measures protecting a j
and acquire the setting parameters ainfo. However, even if
the adversary gains access to these parameters, it does not
provide them with an advantage in attacking the revocation
management process. To undermine our approach, attackers
would need to obtain the key pair associated with the issuer
DID and use it to sign fraudulent VCs that comprise the
accumulator value a j and witnesses Wj.

Key Pair Compromise. If an adversary successfully obtains
the issuer’s key pair, immediate action must be taken to miti-
gate the risk. This includes migrating i j to a new server and
providing it with a fresh DID and key pair. By replacing the
compromised key pair, the system maintains the integrity and
security of VCs, preventing unauthorized access and fraudu-
lent activities.

5.2 Security of IoT Devices

The adversary can compromise an IoT device di ∈ D j, en-
abling them to launch various attacks within the IoT net-
work n j. di provided with a valid VC and wi can establish
trusted communications with other entities that place trust in
i j. Therefore, i j is responsible for identifying and detecting
malicious activities, ensuring that VCs associated with com-
promised devices are removed from a j. Several approaches

have been proposed to detect compromised devices and ma-
licious activities [8, 32]. However, the detection of compro-
mised devices lies beyond the scope of this paper. We assume
that the issuer can employ different methods and tools avail-
able in the literature for these purposes. i j updates Wj and
a j, distributing them to D j. As a result, malicious di ∈ D j
will not be provided with valid witnesses, thereby prevent-
ing the attacker from successfully bypassing the revocation
mechanism using a compromised di or its stolen VC.

5.3 Security of Communication
In n j, the traffic may not be encrypted, thus, further broad-
ening the attack surface. We consider two possible attack
scenarios and corresponding countermeasures occurring dur-
ing the update phase:
Selective VC Forwarding. One attack scenario involves the
attacker intentionally not forwarding the VC containing the
updated version of the accumulator value a j to outdated de-
vices. As a result, outdated devices may continue to trust
devices whose VCs are no longer valid. However, it is im-
portant to note that an outdated device can still be updated
by an honest device during communication initiation. Addi-
tionally, to address the concern of the adversary providing
an outdated version of a j, devices only update the value of
a j if the associated timestamp is fresher than the previous
one. By incorporating timestamp-based checks, devices can
ensure that updates are only applied when newer information
is available, mitigating the risk of relying on outdated VCs.

Furthermore, compromised devices instead of sharing the
latest version of a j with benign devices, which includes their
revoked VC, may provide another outdated version that does
not include their revoked VC but is still fresher than the one
held by the benign device. As described previously, given the
mismatch between the version of the accumulator value, if
the benign device supports direct retrieval, it can detect de-
ceptive attacks when collecting the updated witness directly.
However, in cases where direct retrieval is not supported, the
device will accept the witnesses corresponding to that version
of a j, establishing mutual trust. It is important to note that
while this scenario poses a significant threat, which also af-
fects other approaches like CRL that lack real-time revocation
freshness, the risk posed is time-limited. This is evidenced
by the observation that most devices are updated within the
first hour, as highlighted in Subsection 6.4. Once devices
receive the updated accumulator, they become immune to
deception, as the revoked VC will no longer be included in
the accumulator value.
VC Theft and Masquerading. The attacker can steal the VC
comprising the updated wi of di, attempting to masquerade as
the legitimate device. However, since the adversary does not
possess the key pair associated with di, they cannot prove the
ownership of the VC and establish trusted communication.
Furthermore, in case of transmissions that involve sensitive



information, data can be encrypted using the public key of
the receiving device.

6 Evaluation

In this section, we present a detailed evaluation of our ap-
proach. We designed a series of experiments to thoroughly
assess the effectiveness and applicability of EVOKE. In par-
ticular, we considered the following scenarios:

• Commodity IoT Devices: To gauge the practicality of
implementing EVOKE in real-world scenarios, we con-
ducted experiments on various off-the-shelf IoT devices.

• Hybrid Network Settings: Since not all commodity
devices support running customized code directly, we
performed a set of experiments on an IoT network that
comprises both off-the-shelf devices and Raspberry Pis
to explore more customizable and broader scenarios.

• Large-scale Analysis: As it would be impractical to
evaluate our proposed approach on thousands of devices,
we devised a set of experiments to simulate a large-scale
IoT network and evaluate the scalability of EVOKE.

The results of these experiments, along with detailed expla-
nations, are provided in the subsequent subsections. Through
this comprehensive evaluation, we aim to demonstrate the ef-
fectiveness, feasibility, scalability, and versatility of EVOKE
in various IoT deployment scenarios.

6.1 Implementation Setup

We developed a prototype of EVOKE to evaluate its run-
time performance and test its core functionalities. We uti-
lized JavaScript and WebAssembly (WASM) [4] for the im-
plementation in commodity IoT devices. To ensure consis-
tency across all experiments, the same functions were also
employed in all scenarios. To enable cryptographic opera-
tions, we leveraged the crypto-wasm-ts library developed
by docknetwork [13]. This library provides a comprehensive
set of cryptographic primitives and algorithms implemented
using WASM. It ensures efficient and performant execution
of cryptographic tasks within EVOKE. For managing DIDs
and VCs, we utilized the identity-wasm/web library from
IOTA [24]. This library offers robust functionality for creating,
managing, and verifying DIDs and VCs. Finally, to handle
the DLT, we employed the IOTA Tangle [41], a DAG that is
specifically designed to cater to the unique requirements of
IoT applications [57, 58]. All the results have been averaged
over 1K runs. To ensure transparency and reproducibility, we
have made our prototype implementation, along with all the
experiments, available on GitHub1.

1https://github.com/evokevc/EVOKE

Table 2: Commodity IoT devices used in the experiments and
their specifications.

Device Type Processor Memory Operating
System

LG
Smart TV Smart TV LG Quad Core Processor 1.5GB RAM WebOS

Amazon
Echo Show 5 Home Assistant MediaTek MT8163 1 GB RAM Linux

Apple
iPhone 12 Smartphone Apple A14 Bionic 4GB RAM iOS 16

Oculus
Quest 2 Virtual Reality Headset Qualcomm Snapdragon XR2 6GB RAM Oculus OS

Table 3: Performance evaluation of EVOKE operations on
commodity IoT devices.

Operation LG Smart TV Amazon Echo Show Apple iPhone 12 Oculus Quest 2
Verify

valid VC 477.44 ms 499.70 ms 12.62 ms 48.69 ms

Verify
revoked VC 476.89 ms 498.67 ms 12.58 ms 47.89 ms

6.2 Commodity IoT Devices

In these experiments, we aim to evaluate the feasibility of
using EVOKE on commodity IoT devices. For this, we set up
an IoT network, which represents a modern smart home com-
prising different types of off-the-shelf IoT devices. Table 2
reports the specifications of the considered devices, which
feature varying resources and operating systems. In our study,
we considered devices capable of running EVOKE’s code
directly. Specifically, all the devices support JavaScript and
WASM. To ensure compatibility with various devices, we real-
ized different approaches. For instance, we developed a basic
application using the LG WebOS developer framework [1,48]
for the LG Smart TV. For other devices, the code was provided
through a Python web server.

Table 3 presents the results. In particular, we highlighted
the performance of key operations across a range of commod-
ity IoT devices. The results show that the iPhone 12 runs at
about 13ms, while the Amazon Echo Show and LG Smart
TV exhibit relatively slower performance. Nonetheless, all
the devices verify VCs in under half a second. It is important
to note that the size of the information is independent of the
specific device used. The storage requirements for maintain-
ing the accumulator value and the witness are approximately
1.5 KB. Notably, these values, along with the execution time
of the main operations, remain consistent regardless of the
number of VCs involved. This demonstrates the scalability
and efficiency of EVOKE across different commodity devices
in terms of resource utilization and execution time.

6.3 Hybrid Network Settings

In most cases, commodity devices do not provide direct ac-
cess for running custom code. However, they often offer APIs
that allow developers to control and interact with them. In this
scenario, we considered a hybrid IoT network within a smart
home, consisting of both off-the-shelf devices and Raspberry



(a) Star network topology (b) Mesh network topology

Figure 4: Topologies used in our hybrid network experiments.

Pi, serving as controllers for the devices that only provide
APIs. By leveraging the capabilities of Raspberry Pi, we were
able to perform EVOKE’s other operations. The Raspberry
Pi devices act as intermediaries, enabling the execution of
EVOKE functionalities on behalf of the devices. This ap-
proach allowed us to overcome the limitations imposed by
the off-the-shelf devices’ restricted programmability and har-
ness the power of EVOKE’s features. Moreover, this setup
ensured the seamless integration of EVOKE operations across
a range of devices, expanding the potential applications and
scalability of the system. In modern smart homes, advanced
integration and connectivity between devices enable enhanced
safety and convenience features. For instance, consider a sce-
nario where a smart lock is intelligently linked with a smoke
detector. EVOKE allows establishing trust among the devices,
enabling it to automatically unlock the door to facilitate the
evacuation of occupants during a fire emergency.

In our experiments, we evaluated the performance of
EVOKE in two popular network topologies for IoT protocols
(i.e., Zigbee and Z-Wave) and scenarios [59]. Specifically, we
considered star network topology and mesh network topology,
whose deployments are depicted in Figure 4. These scenarios
represent real-world use cases and provide valuable insights
into the effectiveness and applicability of EVOKE in real
IoT environments. The star topology (Figure 4a) consists of
a central hub or controller connected to multiple peripheral
devices. In a smart home scenario, it is usually represented by
a home assistant (e.g., Amazon Alexa or Google Home). All
communication flows through the central hub, which acts as
a centralized point of control and coordination. This topology
offers simplicity in management and facilitates efficient com-
munication between devices and the central hub. However, it
can pose limitations in terms of scalability and fault tolerance,
as the entire network relies on the central component.

The mesh topology (Figure 4b) involves interconnecting
multiple devices in a decentralized manner. Specifically, we
considered a fully connected network, a particular case of a
mesh network where each device can communicate directly
with all the other devices. This topology provides robustness
and redundancy, as there are multiple paths for data transmis-
sion. It can adapt well to dynamic environments and enables
better fault tolerance. However, the complexity of managing

Table 4: Performance evaluation of EVOKE operations on
commodity IoT devices with different network topologies.

Topology Approach Total Latency (Verify + Transfer) E2E Latency

Star Network
EVOKE 1152.7 ms 948.3 ms

Baseline 967.7 ms 705.5 ms

Mesh Network
EVOKE 545.2 ms 307.5 ms

Baseline 97.4 ms 91.7 ms

and coordinating communication among numerous devices
increases with the size of the network. By considering both
the star and mesh topologies in our experiments, we aimed to
assess the performance and suitability of EVOKE in different
network configurations.

To evaluate the performance of the two network topologies,
we implemented them using a local cluster consisting of five
Raspberry Pi4 provided with 8GB RAM. All Raspberry Pis
were connected to the same Wi-Fi network, ensuring a con-
trolled environment for our experiments. This setup allowed
us to observe the network configurations and measure latency
with precision. However, due to the inherent variations in
clock accuracy among different devices, it was essential to
synchronize their timestamps accurately to obtain reliable
metrics in our experiments. To achieve this, we utilized the
Network Time Protocol (NTP) [36], a widely adopted net-
working protocol specifically designed for clock synchroniza-
tion in distributed networks.

In Table 4, we present the results for the two network
topologies examined in our study. We focus on the key met-
rics: total latency and end-to-end (E2E) latency. The total
latency encompasses the overall delay in establishing trust
between two updated devices. On the other hand, E2E latency
specifically captures the time taken for the verification data
to traverse between devices. As expected, the star network
exhibits latency more than double that of the mesh network.
This discrepancy arises due to the higher number of devices
involved in interactions within the star network. Notably, net-
work overhead, including synchronization delay introduced
by NTP, is the main factor that affects the overall latency. To
evaluate the EVOKE’s overhead, we compared it to a baseline,
which represents latencies when sending a minimal amount of
data across the same network configurations without perform-



10K 50K 500K 1M
0

20

40

60

80

100

Number of Devices

Pe
rc

en
ta

ge
of

D
ev

ic
es

Updated
Missing
EVOKE

(a) 10% devices missing updates

10K 50K 500K 1M
0

20

40

60

80

100

Number of IoT Devices

(b) 30% devices missing updates

10K 50K 500K 1M
0

20

40

60

80

100

Number of IoT Devices

(c) 50% devices missing updates

Figure 5: Percentage of updated IoT devices by EVOKE with varying the number of devices that miss updates with 5 interactions
per device per hour.

ing any operations. It is worth noting that since the baseline
only involves a minimal amount of data, it is expected to
have better performance than any other revocation mecha-
nism. EVOKE operations for verifying VCs only contribute a
few milliseconds per device, posing minimal impact on total
latency. Therefore, the increased latency between EVOKE
and the baseline, in both configurations, is due to the transfer
of revocation information. However, EVOKE’s required size
is much lower than existing approaches.

6.4 Large-scale Analysis

To conduct a scalability evaluation of EVOKE, an extensive
number of devices would be required. However, due to practi-
cal limitations, we implemented a large-scale network simu-
lation of IoT devices. The simulation was run on an 11th Gen
Intel(R) Core(TM) i7-11370H @ 3.30GHz equipped with 4
cores and 16GB of RAM. The configurations we considered
involved scaling the number of devices from 10,000 up to 1
million over a simulated week.

In addition to assessing scalability, our experiments also
focused on evaluating the effectiveness of offline updates. To
achieve this, we categorized devices as either updated or out-
dated, with varying percentages of devices missing updates.
Additionally, an outdated device can be normal or constrained,
the former supports direct retrieval, while constrained devices
can only be updated indirectly. We adopted a revocation share
of approximately 0.028% of VCs per day (almost 10% yearly),
based on similar studies [27] that addressed PKI-certificate re-
vocation. This estimation was derived from the impact of the
Heartbleed bug on certificates [31]. When the issuer revokes
a VC, the accumulator value and witnesses are updated and
disseminated through the Tangle. However, due to various
circumstances such as lack of connectivity or devices being
in power-saving hibernation mode, a portion of IoT devices
may not receive these updates. In our simulations, we con-

Table 5: EVOKE’s communication overhead to update offline
devices with 5 interactions per device per hour.

Number of Devices % Devices Missing Updates Network Overhead
(Accumulator + Witnesses)

10K
10 1.49 MB
30 4.42 MB
50 7.19 MB

50K
10 7.45 MB
30 22.03 MB
50 36.05 MB

500K
10 74.51 MB
30 220.44 MB
50 360.70 MB

1M
10 155.43 MB
30 452.13 MB
50 721.67 MB

sidered different missing shares of 10%, 30%, and 50% in
different experiment executions to understand the impact of
outdated devices on the system. The number of interactions
among devices depends on several factors including purpose,
communication protocols, and the nature of the data being
processed. For our evaluation, we consider the same network
set-up of [27], where each device in a satellite network com-
municates with 5 random devices within an hour. Further
experiments and considerations are presented in Appendix.
During the interactions, devices exchange their accumula-
tor values implementing the protocol described in Section
4. Therefore if a device has an outdated witness, the node
with the older version requests an updated witness from the
Tangle node or the interacting device if the capabilities are
not sufficient.

In Figure 5, we highlight the percentage of updated IoT
devices in one hour by EVOKE while varying the number
of devices missing updates. The Updated bars indicate the
percentage of devices that have received the novel accumula-
tor value and witnesses, while the Missing bars denote the



percentage of devices missing such information. As clearly
shown, the percentage of updated devices is not affected by
the number of devices. The experimental results demonstrate
that EVOKE can update the whole IoT network in the first
hour when the number of devices missing updates is 10%.
By increasing the number of disconnected devices to 30%
and 50%, the percentage of updated devices in the network
reached approximately 98% and 96%, respectively. Table 5
presents the network overhead, defined as the amount of data
exchanged to updated devices that failed to receive updates.
As expected, the overhead grows with both the number of
devices and devices missing updates. This increase is due to
the higher number of interactions that occur in the network.

Figure 6 illustrates, on a log scale, the three primary over-
heads encountered on the issuer side: the generation of the
accumulator value, the production of witnesses for the in-
cluded VCs, and the updating of the accumulator value. This
latter comprises the removal of VCs and the generation of
witnesses, which are obtained by the latest valid accumulator
value. The update of the accumulator value was analyzed
under various scenarios, considering different percentages
of revoked VCs: 10%, 25%, and 50%. Evaluating EVOKE
while revoking half of the issued VCs demonstrates its effi-
ciency in handling mass revocations: the store requirements
are not affected, while as the revoked VC percentage rises,
the accumulator value time decreases due to fewer witnesses
generated. This result is because updating the accumulator
value involves the removal of VCs, which in turn reduces the
number of witnesses to be generated. The graph highlights
that the generation of witnesses is the most time-consuming
operation. As demonstrated [5], the number of operations
needed to generate w witnesses requires at least Ω(w) oper-
ations. However, even when generating 1 million witnesses,
the process only requires 80K ms. It is important to note that
issuers typically have more computational power, enabling a
significant reduction in this overhead.

6.5 Discussion of Results

In this section, we present further considerations regarding the
conducted experiments. As previously mentioned, to ensure
consistency across all scenarios, including those involving
commodity IoT devices, we implemented all experiments
using the same JavaScript and WASM libraries. It is worth
noting that employing diverse implementations and program-
ming languages could potentially yield improved performance
outcomes. These variations could lead to optimized execution
and better resource utilization. Moreover, any revocation pro-
tocol is affected by the characteristics of the region in terms
of latency and bandwidth. However, EVOKE’s efficiency con-
sists of minimizing storage and verification time on devices,
hence, its performance is independent of the considered geo-
graphic area.

10K 50K 500K 1M
1
4

40

80

Number of IoT Devices

O
ve

rh
ea

ds
(s

)

Acc. Generation
Wit. Generation

Acc. Revocation, 10%
Acc. Revocation, 25%
Acc. Revocation, 50%

Figure 6: Large scale analysis: Issuer overhead for managing
VCs.

Commodity IoT Devices. Vendors typically restrict end users
from directly running code on their devices. To demonstrate
the compatibility of EVOKE with commodity devices, we
developed a JavaScript/WASM application. In this approach,
a device sends a request to a server, which responds with an
HTML page containing our JavaScript code. This allows the
execution of the primary EVOKE operations on the device
itself. It is important to note that we had to consider com-
modity devices with a browser connection to run EVOKE
through JavaScript/WASM. Nevertheless, we demonstrated
that vendors have the opportunity to integrate EVOKE into
their products. The results reported in Tables 3 and 4 demon-
strate that EVOKE already achieves remarkable performance
when implemented in JavaScript. This underscores its poten-
tial for enhanced performance if vendors permit its native
execution on devices. Additionally, the ECC-based accumula-
tor used by EVOKE requires very limited storage and efficient
verification times, making it particularly suitable for devices
with constrained capabilities.

Hybrid Network Settings. The adoption of a hybrid network,
which combines both off-the-shelf devices and single-board
computers such as Raspberry Pis, provides a holistic approach
to exploring the potential of our solution. This setup not only
demonstrates the versatility of EVOKE but also broadens its
scope, making it applicable in contexts where different types
of devices coexist and require efficient and secure manage-
ment of VCs. Through this set of experiments, we demon-
strated the applicability of EVOKE even when the code is
not executed directly on the target device but rather on the
controlling board. This flexibility opens up new possibilities
for deploying our solution in diverse environments. More-
over, the introduction of a controller in the network further
expands the potential applications of EVOKE. By incorporat-
ing a controller into the system, we can extend the utilization



of VCs and, consequently, the use of EVOKE to encompass
more resource-constrained devices. This capability becomes
especially relevant for incorporating small sensors that lack
the computational power to handle VCs or any revocation
mechanisms directly.

Large-Scale Analysis. This set of experiments allowed us
to demonstrate two important features of EVOKE that can
be achieved through the accumulator: mass and offline revo-
cation. The size of the accumulator value does not increase
with the number of devices, thus, it can be employed for mas-
sively revoking VCs in any IoT network. The information
stored by each device for the accumulator value and witness
is always in the order of 1.5 KB. Including the accumulator
value within a VC signed by the issuer and the reduced size
of the accumulator value itself enable updated devices to up-
date the ones that missed fresh revocation information. Also
when 50% of devices are missing updates, after 1 hour, around
96% of the whole network has been successfully updated. As
shown in Section 7, the amount of data related to revocation
of EVOKE is minimal compared to other approaches. Figure
6 demonstrates that the main overhead is given by the genera-
tion and dissemination of witnesses. However, the issuer has
the necessary resources to efficiently compute them. Notably,
these overheads do not impact the EVOKE’s performance in
terms of storage and verification time on devices, which is the
primary objective of our revocation scheme.

7 Comparison to Other Approaches

This section compares EVOKE to the state-of-the-art tech-
niques in the revocation space and V’CER [27], which we
consider the closest work in the literature. It is worth not-
ing that these approaches are applied to PKI certificates, but
they can be extended to VCs. An overview of the approaches
discussed in this section is reported in Table 6. The storage
column indicates the size required per device to store the
whole revocation information of 1 million certificates or VCs,
according to the focus of the work.

OCSP. In OCSP [42], the verifier sends a request to the issuer
to check the validity of the presented VC. The traditional
OCSP approach assumes the verifier has a fast and reliable
connection to the issuer. However, this assumption may not
hold in IoT networks due to the network overhead and the
limited connectivity capabilities of certain devices. OCSP
Stapling offers a more efficient alternative. It shifts the re-
sponsibility of querying the issuer from the verifier to the
presenter of the VC. The presenter periodically queries the
issuer and appends a time-stamped OCSP response, which is
signed by the issuer. Thus, the verifier can obtain the neces-
sary information about the VC’s validity without additional
communication. While OCSP Stapling provides a more ef-
ficient approach, it is worth noting that the stapled OCSP
responses have a limited validity period and do not guarantee

Table 6: Comparison of EVOKE to other approaches

Work Storage 1M Cert/VC Mass Revocation Offline Revocation
EVOKE 1.5 KB ✓ ✓

V’CER [27] 3 KB × ✓

Revoc. List 2020 [53] 125 KB × ×
CRLite [45] 112.5 KB × ×

Let’s Revoke [30] 70 KB × ×
TinyOCSP [22] × × ×

information freshness, which is a key advantage of this pro-
tocol. Furthermore, each OCSP request typically consumes
around 4 KB of data [31], which exceeds the 1.5 KB required
by EVOKE. Recently, TinyOCSP [22] managed to reduce
the size by approximately 70%; however, meeting this re-
quirement while maintaining a reliable connection remains
challenging in many IoT networks.
CRLs. When using CRL [10], devices need to store the whole
list. However, in IoT networks comprising many devices and
VCs, the amount of data to memorize can be extremely large.
A CRL that contains only strictly necessary information for
1 million certificates would require at least a few MBs of
storage [31].

Concerning VCs, the only revocation mechanism proposed
by W3C is the draft namely Revocation List 2020 [53]. It
associates each VC with a position in a bitstring managed by
the issuer. If the binary value at a specific position is set to
1, the VC is considered revoked; otherwise, it is considered
valid. With 1 million VCs, this would result in approximately
125 KB of storage. However, the use of a bitstring offers the
advantage of high compressibility since a significant num-
ber of credentials often remain unrevoked, leading to long
sections of repetitive bits. By employing compression tech-
niques like ZLIB [12], the compressed size of the bitstring
can be nearly halved, assuming an average compression ratio
of 50% in case of mass revocation. Although a lower per-
centage of revoked VCs would yield a higher compression
ratio, the memory storage would still exceed that of EVOKE.
Indeed, EVOKE always requires that each device only stores
1.5 KB, even though the number of devices in the network
may be larger. There are ongoing research efforts, such as
CRLite [45] and Let’s Revoke [30], aimed at reducing the
storage and update overhead specifically for the Web’s Public
Key Infrastructure PKI. These solutions can reduce the size
of the CRL to hundreds of kilobytes.
V’CER. In the literature, we find V’CER as the closest work
to EVOKE. V’CER aims to tackle the challenge of efficient
trust establishment on constrained networks using PKI cer-
tificates. V’CER adopts Sparse Merkle Trees (SMTs) [11], a
type of MT that contains all possible hash values. Similar to
our approach, V’CER concatenates valid certificates to create
a hash root, which can be considered analogous to the final
value of the accumulator in EVOKE. However, V’CER em-
ploys a small set of hashes called co-path as witnesses, which
represents all sibling nodes on the path to the root and serves



as proof of inclusion. The size of this proof is O(log(n)),
where n is the number of leaves. Consequently, the storage
required by devices may increase with the number of certifi-
cates. For instance, when dealing with 1 million certificates,
the storage demand is approximately 3 KB. Although V’CER
offers a valuable solution tailored for constrained devices,
it demands twice the amount of data per device when com-
pared to EVOKE. However, it offers the advantage of enabling
devices to distributively repair their proofs in certain cases,
without relying on CAs or delegates and supporting offline
revocation. In contrast, EVOKE is the most efficient in terms
of storage requirements since it demands around 1.5KB of
storage and facilitates mutual assistance among devices to
update.

Mass and Offline Revocation. Traditional approaches and
their enhancements are unsuitable for IoT networks due to
their storage and connection requirements, lacking adequate
support for mass and offline revocation. By leveraging the
features of the accumulator, EVOKE meets the requirements
of mass revocation (Definition 1). On the contrary, related
works do not meet them due to the usage of data structures
whose size grows with the increase of the number of revoked
VCs in the network, resulting in a longer verification time.

According to Definition 2, to support offline revocation, a
revocation scheme must minimize the amount of data trans-
mission to facilitate the sharing of revocation information.
Other approaches employ bigger data structures that cause re-
markable bandwidth overhead and make them unsuitable for
constrained networks. For example, CRLs demand roughly
two orders of magnitude greater than EVOKE for data trans-
mission. Additionally, in the event of missed updates, these
methods always rely on devices directly contacting the is-
suer or their delegates. In contrast, the very limited storage
requirements of EVOKE as well as the use of VCs to share
revocation information empower updated devices to bring
outdated ones up to date.

8 Related Work

Despite the growing interest in VCs, there is a limited research
that focuses on developing novel and efficient approaches for
their revocation. In this section, we reviewed the existing
literature on the revocation of VCs and related works for
certificates/credentials, which can be eventually extended to
VC, with a particular emphasis on IoT networks.

Verifiable Credential Revocation. Most studies lack a spe-
cific emphasis on constrained environments and use tradi-
tional revocation mechanisms [9]. For instance, Abraham et
al. [2] proposed to revoke VCs by including them in a revo-
cation list. To allow offline verification, nodes (i.e., issuers
and users) can generate attestations for valid VCs. These at-
testations enable verifiers to determine the freshness of the
presented credential, ensuring its validity. Recently, Fotiu

et al. [18] introduced a lightweight revocation mechanism
for VCs tailored for IoT environments, inspired by the W3C
draft [53]. The proposed approach involves maintaining a
revocation list, where each VC is assigned a position. The
position information is embedded within each VC. If the
corresponding position is set to 1, the VC is revoked. It is
worth noting that this mechanism is most suitable for sce-
narios with a restricted number of VCs. A similar approach
is also presented in [19], wherein in a group of IoT devices,
each member is allowed to participate through a VC. The
revocation list is included in a TXT DNS record a retrieved is
identified through DNS resolution. This solution specifically
refers to group member revocation and may not be suitable
for use cases where devices are not clustered in groups.

Accumulator-based Approaches. Cryptographic accumula-
tors have long been recognized as an efficient solution for
revoking anonymous credentials and PKI certificates [6, 21].
However, most of the existing literature has primarily focused
on user-centric revocation rather than efficient revocation in
constrained networks. For example, in the protocol recently
proposed by Parameswarath et al. [39], the accumulator is
used to revoke user policy. The unique characteristics of accu-
mulators, such as their constant memory size and verification
time, harness them to design novel revocation schemes specif-
ically tailored for IoT networks [7, 56]. In this direction, the
most relevant related work is V’CER [27], an efficient cer-
tificate validation in constrained networks. V’CER adopts
SMTs, a form of a hash-based accumulator, for performing
revocation. The proposed approach achieves remarkable stor-
age efficiency, requiring less than 3KB per node to store 1
million certificates, while also supporting offline updates.

DLT-based Approaches. Numerous studies [28, 44, 59] have
highlighted the potential of DLTs in revolutionizing PKI-
based authentication and authorization schemes. One partic-
ular area where blockchain technology has shown promise
is in the management of certificates, with initial applications
focusing on storing certificate updates and revocation infor-
mation [16]. However, implementing a blockchain-based re-
vocation system for IoT devices presents several challenges,
including long latency, high energy consumption, and low
transaction throughput. To address these challenges, innova-
tive approaches [49, 57] leveraging DAG-based ledgers have
emerged as a viable alternative for IoT networks. DAG-based
ledgers offer a lightweight solution that maintains the same
level of security as traditional blockchains while addressing
the specific requirements of IoT environments.

Differences from Existing Works. While several existing
approaches can be adapted for revoking VCs, they are often
not suitable for constrained environments of IoT networks. In
this context, EVOKE stands out as the first revocation scheme
specifically designed for VCs in IoT networks. EVOKE offers
offline revocation capabilities similar to V’CER, but with
even lower storage overhead. Each device only requires less



than 1.5KB to store the accumulator value and the witness.
Furthermore, EVOKE introduces the advantage of supporting
mass revocation. Unlike traditional schemes, the size of the
accumulator value and witness remains constant regardless
of the number of included VCs.

9 Conclusion

VCs offer a promising solution to enhance trust among IoT
devices. However, ensuring the efficient revocation of VCs
in IoT networks remains a critical challenge that is still in
its early stages of research. Our work lays the foundation for
future research and developments in this field.

In this paper, we presented EVOKE, an innovative solution
that addresses the efficient revocation of VCs in IoT networks.
EVOKE harnesses the power of ECC-based accumulators to
efficiently manage VCs with minimal computational and stor-
age overhead. It also provides essential features like mass and
offline revocation, making it a scalable and efficient revocation
scheme for IoT networks. To comprehensively validate its ef-
fectiveness, we conducted extensive experiments comprising
commodity IoT devices, hybrid network settings, and large-
scale analysis. The results showcased the efficiency and prac-
ticality of EVOKE in real-world scenarios. Each device only
demands 1.5 KB of storage for verification information. The
experiments conducted in the hybrid network settings showed
an overhead in the order of milliseconds for performing key
operations. Finally, the large-scale analysis demonstrated its
feature to update devices that miss revocation information.

Acknowledgments

We thank the anonymous reviewers and our shepherd for their
helpful feedback and dedication. This work was partially sup-
ported by the project SERICS (PE00000014) under the MUR
National Recovery and Resilience Plan program funded by
the European Union - NextGenerationEU, the US National
Science Foundation (Award: 2219920), and Microsoft. The
views expressed are those of the authors only, not of the fund-
ing agencies.

References
[1] LG WebOS TV Developer. Accessed: 2023-10-06.

[2] ABRAHAM, A., MORE, S., RABENSTEINER, C., AND HÖRANDNER,
F. Revocable and Offline-Verifiable Self-Sovereign Identities. In 2020
IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom) (2020), pp. 1020–1027.

[3] BENALOH, J., AND DE MARE, M. One-way accumulators: A de-
centralized alternative to digital signatures. In Advances in Cryptol-
ogy — EUROCRYPT ’93 (Berlin, Heidelberg, 1994), T. Helleseth, Ed.,
Springer Berlin Heidelberg, pp. 274–285.

[4] BHANSALI, S., ARIS, A., ACAR, A., OZ, H., AND ULUAGAC, A. S.
A First Look at Code Obfuscation for WebAssembly. In Proceedings
of the 15th ACM Conference on Security and Privacy in Wireless and

Mobile Networks (New York, NY, USA, 2022), WiSec ’22, Association
for Computing Machinery, p. 140–145.

[5] CAMACHO, P., AND HEVIA, A. On the impossibility of batch up-
date for cryptographic accumulators. In Progress in Cryptology–
LATINCRYPT 2010: First International Conference on Cryptology
and Information Security in Latin America, Puebla, Mexico, August
8-11, 2010, proceedings 1 (2010), Springer, pp. 178–188.

[6] CAMENISCH, J., KOHLWEISS, M., AND SORIENTE, C. An Accumu-
lator Based on Bilinear Maps and Efficient Revocation for Anonymous
Credentials. In Public Key Cryptography – PKC 2009 (Berlin, Heidel-
berg, 2009), S. Jarecki and G. Tsudik, Eds., Springer Berlin Heidelberg,
pp. 481–500.

[7] CEBE, M., AND AKKAYA, K. Communication-efficient certificate
revocation management for Advanced Metering Infrastructure and IoT
Integration. Future Generation Computer Systems 115 (2021), 267–
278.

[8] CHAABOUNI, N., MOSBAH, M., ZEMMARI, A., SAUVIGNAC, C.,
AND FARUKI, P. Network Intrusion Detection for IoT Security Based
on Learning Techniques. IEEE Communications Surveys & Tutorials
21, 3 (2019), 2671–2701.

[9] CHADWICK, D. W., LABORDE, R., OGLAZA, A., VENANT, R.,
WAZAN, S., AND NIJJAR, M. Improved Identity Management with
Verifiable Credentials and FIDO. IEEE Communications Standards
Magazine 3, 4 (2019), 14–20.

[10] COOPER, D., SANTESSON, S., FARRELL, S., BOEYEN, S., HOUSLEY,
R., AND POLK, W. Internet x. 509 public key infrastructure certificate
and certificate revocation list (crl) profile. Tech. rep., 2008.

[11] DAHLBERG, R., PULLS, T., AND PEETERS, R. Efficient Sparse Merkle
Trees. In Secure IT Systems (Cham, 2016), B. B. Brumley and J. Röning,
Eds., Springer International Publishing, pp. 199–215.

[12] DEUTSCH, P., AND GAILLY, J.-L. Zlib compressed data format speci-
fication version 3.3. Tech. rep., 1996.

[13] DOCKNETWORK. crypto-wasm-ts.

[14] DOLEV, D., AND YAO, A. On the security of public key protocols.
IEEE Transactions on Information Theory 29, 2 (1983), 198–208.

[15] EISENSTADT, M., RAMACHANDRAN, M., CHOWDHURY, N., THIRD,
A., AND DOMINGUE, J. Covid-19 antibody test/vaccination certifica-
tion: There’s an app for that. IEEE Open Journal of Engineering in
Medicine and Biology 1 (2020), 148–155.

[16] ELLOH ADJA, Y. C., HAMMI, B., SERHROUCHNI, A., AND
ZEADALLY, S. A blockchain-based certificate revocation manage-
ment and status verification system. Computers & Security 104 (2021),
102209.

[17] FARAHANI, B., FIROUZI, F., AND LUECKING, M. The convergence
of IoT and distributed ledger technologies (DLT): Opportunities, chal-
lenges, and solutions. Journal of Network and Computer Applications
177 (2021), 102936.

[18] FOTIOU, N., SIRIS, V. A., POLYZOS, G. C., KORTESNIEMI, Y., AND
LAGUTIN, D. Capabilities-based access control for IoT devices using
Verifiable Credentials. In 2022 IEEE Security and Privacy Workshops
(SPW) (2022), pp. 222–228.

[19] FOTIOU, N., SIRIS, V. A., XYLOMENOS, G., AND POLYZOS, G. C.
IoT Group Membership Management Using Decentralized Identifiers
and Verifiable Credentials, journal = Future Internet.

[20] GHOSH, B. C., PATRANABIS, S., VINAYAGAMURTHY, D., RAMAKR-
ISHNA, V., NARAYANAM, K., AND CHAKRABORTY, S. Private Certi-
fier Intersection. Cryptology ePrint Archive (2022).

[21] GOODRICH, M. T., TAMASSIA, R., AND HASIĆ, J. An efficient
dynamic and distributed cryptographic accumulator. In Information
Security: 5th International Conference, ISC 2002 Sao Paulo, Brazil,
September 30–October 2, 2002 Proceedings 5 (2002), Springer, pp. 372–
388.



[22] HÖGLUND, J., FURUHED, M., AND RAZA, S. Lightweight certificate
revocation for low-power IoT with end-to-end security. Journal of
Information Security and Applications 73 (2023), 103424.

[23] HÖGLUND, J., LINDEMER, S., FURUHED, M., AND RAZA, S.
PKI4IoT: Towards public key infrastructure for the Internet of Things.
Computers & Security 89 (2020), 101658.

[24] IOTA FUNDATION. IOTA Identity Framework.

[25] KANTARA INITAITIVE. Identities of Things Discussion Group.

[26] KIM, S., ZHANG, A., LIAO, R., ZHENG, W., HU, Z., AND SUN, Z.
Sampling blockchain-enabled smart city applications among South
Korea, the United States and China. Journal of Smart Cities and
Society 1, 1 (2022), 53–70.

[27] KOISSER, D., JAUERNIG, P., TSUDIK, G., AND SADEGHI, A.-R.
V’CER: Efficient Certificate Validation in Constrained Networks. In
31st USENIX Security Symposium (USENIX Security 22) (Boston, MA,
Aug. 2022), USENIX Association, pp. 4491–4508.

[28] KUBILAY, M. Y., KIRAZ, M. S., AND MANTAR, H. A. CertLedger:
A new PKI model with Certificate Transparency based on blockchain.
Computers & Security 85 (2019), 333–352.

[29] KUMAR, A., LAFOURCADE, P., AND LAURADOUX, C. Performances
of cryptographic accumulators. In 39th Annual IEEE Conference on
Local Computer Networks (2014), pp. 366–369.

[30] LARISCH, J., CHOFFNES, D., LEVIN, D., MAGGS, B. M., MISLOVE,
A., AND WILSON, C. CRLite: A Scalable System for Pushing All TLS
Revocations to All Browsers. In 2017 IEEE Symposium on Security
and Privacy (SP) (2017), pp. 539–556.

[31] LIU, Y., TOME, W., ZHANG, L., CHOFFNES, D., LEVIN, D., MAGGS,
B., MISLOVE, A., SCHULMAN, A., AND WILSON, C. An End-to-
End Measurement of Certificate Revocation in the Web’s PKI. In
Proceedings of the 2015 Internet Measurement Conference (New York,
NY, USA, 2015), IMC ’15, Association for Computing Machinery,
p. 183–196.

[32] LIU, Y., WANG, J., LI, J., NIU, S., AND SONG, H. Machine Learning
for the Detection and Identification of Internet of Things Devices: A
Survey. IEEE Internet of Things Journal 9, 1 (2022), 298–320.

[33] MARAM, D., MALVAI, H., ZHANG, F., JEAN-LOUIS, N., FROLOV,
A., KELL, T., LOBBAN, T., MOY, C., JUELS, A., AND MILLER, A.
CanDID: Can-Do Decentralized Identity with Legacy Compatibility,
Sybil-Resistance, and Accountability. In 2021 IEEE Symposium on
Security and Privacy (SP) (2021), pp. 1348–1366.

[34] MAZZOCCA, C., ACAR, A., ULUAGAC, S., MONTANARI, R.,
BELLAVISTA, P., AND CONTI, M. A Survey on Decentralized Iden-
tifiers and Verifiable Credentials. arXiv preprint arXiv:2402.02455
(2024).

[35] MAZZOCCA, C., ROMANDINI, N., MENDULA, M., MONTANARI, R.,
AND BELLAVISTA, P. TruFLaaS: Trustworthy Federated Learning as a
Service. IEEE Internet of Things Journal (2023), 1–1.

[36] MILLS, D. Internet time synchronization: the network time protocol.
IEEE Transactions on Communications 39, 10 (1991), 1482–1493.

[37] NEMEC, M., SYS, M., SVENDA, P., KLINEC, D., AND MATYAS, V.
The Return of Coppersmith’s Attack: Practical Factorization of Widely
Used RSA Moduli. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security (New York, NY, USA,
2017), CCS ’17, Association for Computing Machinery, p. 1631–1648.

[38] NÓBREGA GONÇALVES, S. M., TOMASI, A., BISEGNA, A., PEL-
LIZZARI, G., AND RANISE, S. Verifiable Contracting: A Use Case
for Onboarding and Contract Offering in Financial Services with eI-
DAS and Verifiable Credentials. In Computer Security: ESORICS
2020 International Workshops, DETIPS, DeSECSys, MPS, and SPOSE,
Guildford, UK, September 17–18, 2020, Revised Selected Papers 25
(2020), Springer, pp. 133–144.

[39] PARAMESWARATH, R. P., GOPE, P., AND SIKDAR, B. A Privacy-
Preserving Authenticated Key Exchange Protocol for V2G Communi-
cations Using SSI. IEEE Transactions on Vehicular Technology (2023),
1–16.

[40] PODGORELEC, B., ALBER, L., AND ZEFFERER, T. What is a (Digital)
Identity Wallet? A Systematic Literature Review. In 2022 IEEE 46th
Annual Computers, Software, and Applications Conference (COMP-
SAC) (2022), pp. 809–818.

[41] POPOV, S. The tangle. White paper 1, 3 (2018), 30.

[42] SANTESSON, S., MYERS, M., ANKNEY, R., MALPANI, A.,
GALPERIN, S., AND ADAMS, C. X. 509 internet public key
infrastructure online certificate status protocol-ocsp. Tech. rep., 2013.

[43] SHAFIQUE, K., KHAWAJA, B. A., SABIR, F., QAZI, S., AND MUS-
TAQIM, M. Internet of Things (IoT) for Next-Generation Smart Sys-
tems: A Review of Current Challenges, Future Trends and Prospects
for Emerging 5G-IoT Scenarios. IEEE Access 8 (2020), 23022–23040.

[44] SINGLA, A., AND BERTINO, E. Blockchain-Based PKI Solutions for
IoT. In 2018 IEEE 4th International Conference on Collaboration and
Internet Computing (CIC) (2018), pp. 9–15.

[45] SMITH, T., DICKINSON, L., AND SEAMONS, K. Let’s Revoke: Scal-
able Global Certificate Revocation. Network and Distributed Systems
Security (NDSS) Symposium 2020.

[46] STATISTA. Number of Internet of Things (IoT) connected devices
worldwide from 2019 to 2023, with forecasts from 2022 to 2030. Ac-
cessed: 2023-10-12.

[47] SZYDLO, M. Merkle tree traversal in log space and time. In Eurocrypt
(2004), vol. 3027, Springer, pp. 541–554.

[48] TEKINER, E., ACAR, A., AND ULUAGAC, A. S. A lightweight IoT
cryptojacking detection mechanism in heterogeneous smart home net-
works. In Proc. of the ISOC Network and Distributed System Security
Symposium (NDSS) (2022).

[49] TESEI, A., DI MAURO, L., FALCITELLI, M., NOTO, S., AND
PAGANO, P. IOTA-VPKI: A DLT-Based and Resource Efficient Vehicu-
lar Public Key Infrastructure. In 2018 IEEE 88th Vehicular Technology
Conference (VTC-Fall) (2018), pp. 1–6.

[50] TREMEL, E. Real-world performance of cryptographic accumulators.
Undergraduate Honors Thesis, Brown University 78 (2013).

[51] U.S. DEPARTMENT OF HOMELAND SECURITY. News Release: DHS
ST Seeks Solutions for Privacy Preserving Digital Credential Wallets
Verifiers .

[52] VITTO, G., AND BIRYUKOV, A. Dynamic universal accumulator with
batch update over bilinear groups. In Topics in Cryptology–CT-RSA
2022: Cryptographers’ Track at the RSA Conference 2022, Virtual
Event, March 1–2, 2022, Proceedings (2022), Springer, pp. 395–426.

[53] W3 RECOMMENDATION. Revocation List 2020.

[54] W3 RECOMMENDATION. Decentralized Identifiers (DIDs) v1.0.

[55] W3 RECOMMENDATION. Verifiable Credentials Data Model v1.1.

[56] WANG, L., TIAN, Y., AND ZHANG, D. Toward Cross-Domain Dy-
namic Accumulator Authentication Based on Blockchain in Internet
of Things. IEEE Transactions on Industrial Informatics 18, 4 (2022),
2858–2867.

[57] WANG, S., LI, H., CHEN, J., WANG, J., AND DENG, Y. DAG
blockchain-based lightweight authentication and authorization scheme
for IoT devices. Journal of Information Security and Applications 66
(2022), 103134.

[58] WANG, T., WANG, Q., SHEN, Z., JIA, Z., AND SHAO, Z. Understand-
ing Characteristics and System Implications of DAG-Based Blockchain
in IoT Environments. IEEE Internet of Things Journal 9, 16 (2022),
14478–14489.

[59] ZHU, Q., LOKE, S. W., TRUJILLO-RASUA, R., JIANG, F., AND XI-
ANG, Y. Applications of Distributed Ledger Technologies to the Inter-
net of Things: A Survey. ACM Comput. Surv. 52, 6 (nov 2019).



10K 50K 500K 1M
0

20

40

60

80

100

Number of Devices

Pe
rc

en
ta

ge
of

D
ev

ic
es

Updated
Missing
EVOKE

(a) 10% devices missing updates

10K 50K 500K 1M
0

20

40

60

80

100

Number of IoT Devices

(b) 30% devices missing updates

10K 50K 500K 1M
0

20

40

60

80

100

Number of IoT Devices

(c) 50% devices missing updates

Figure 7: Percentage of updated IoT devices by EVOKE with varying the number of devices that miss updates with 1 interaction
per device per hour.

Table 7: EVOKE’s communication overhead to update offline
devices with 1 interaction per device per hour.

Number of Devices % Devices Missing Updates Network Overhead
(Accumulator + Witnesses)

10K
10 1.26 MB
30 3.05 MB
50 3.75 MB

50K
10 6.77 MB
30 15.66 MB
50 18.61 MB

500K
10 67.53 MB
30 157.36 MB
50 186.91 MB

1M
10 134.58 MB
30 315.16 MB
50 375.76 MB

Appendix

This section provides additional experiments and results for
the large-scale analysis presented in Subsection 6.4.

A.1 Additional Experiments
To show how EVOKE performs in scenarios with lower inter-
action rates, we conducted additional experiments by setting
the number of interactions per device per hour to 1. It is worth
noting that EVOKE would perform even better in scenarios
with higher interaction rates. Therefore, we did not consider
configurations that foresee more than 5 interactions per hour.
For consistency with the experiments reported in Subsection
6.4, we maintained the revocation share and the percentage
of devices missing updates unchanged. Figure 7 depicts the
percentage of updated IoT devices in one hour by EVOKE
while varying the number of devices missing updates when
the number of interactions per hour is set to 1. Similar to pre-
vious observations outlined in Subsection 6.4, the percentage
of updated devices does not depend on the number of devices.

The experimental findings demonstrate that even in scenar-
ios with lower interaction rates, EVOKE exhibits remarkable
performance in updating the entire IoT network in the first
hour when 10% of devices miss updates. However, as the
number of disconnected devices increases to 30% and 50%,
the percentage of updated devices decreases to approximately
91% and 75%, respectively. This demonstrates the robustness
of EVOKE in updating the network despite a decrease in
interaction frequency. Further insights into EVOKE’s perfor-
mance are presented in Table 7, detailing its communication
overhead for updating offline devices in the examined config-
uration. As expected, the network overhead decreases with
the number of interactions per device per hour.


	Introduction
	Background
	Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs)
	Cryptographic Accumulators

	System and Threat Model
	Components
	Threat Model

	EVOKE Protocol
	Preliminaries
	Protocol

	Security Analysis
	Security of Issuer
	Security of IoT Devices
	Security of Communication

	Evaluation
	Implementation Setup
	Commodity IoT Devices
	Hybrid Network Settings
	Large-scale Analysis
	Discussion of Results

	Comparison to Other Approaches
	Related Work
	Conclusion

