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Abstract
Social authentication has been suggested as a usable authenti-
cation ceremony to replace manual key authentication in mes-
saging applications. Using social authentication, chat partners
authenticate their peers using digital identities managed by
identity providers. In this paper, we formally define social
authentication, present a protocol called SOAP that largely
automates social authentication, formally prove SOAP’s secu-
rity, and demonstrate SOAP’s practicality in two prototypes.
One prototype is web-based, and the other is implemented in
the open-source Signal messaging application.

Using SOAP, users can significantly raise the bar for com-
promising their messaging accounts. In contrast to the default
security provided by messaging applications such as Signal
and WhatsApp, attackers must compromise both the messag-
ing account and all identity provider-managed identities to
attack a victim. In addition to its security and automation,
SOAP is straightforward to adopt as it is built on top of the
well-established OpenID Connect protocol.

1 Introduction

Social authentication promises simple, usable, and remote
key authentication for messaging applications [48] and was
first implemented in the Keybase application [27]. Using
Keybase, Alice can link her Keybase account to, for example,
her Twitter account by tweeting a message signed with her
Keybase account’s key. This allows other users to socially
authenticate Alice on Keybase via her Twitter account. More
generally, when performing social authentication, users verify
that their actual chat partner controls accounts at different
identity providers (IdPs) which they know are controlled by
their intended chat partner.

Authenticating chat partners is critical for user security: if
not done properly, users risk that a Meddler-in-the-Middle
(MITM) intercepts their messages. Existing authentication
ceremonies do not sufficiently address this risk. Various stud-
ies have found that users are unwilling or unable to perform

Figure 1: SOAP implements a social authentication ceremony.
A user initiates the ceremony in their messaging application,
which requests an identity token for each of the user’s identi-
ties and forwards the tokens. The verifier’s application verifies
the token’s sender. The verifier uses the identities to authenti-
cate the user.

these authentication ceremonies [24, 41, 42, 49]. In particular,
users are both challenged and constrained by the in-person
comparison of safety numbers as implemented in the messag-
ing applications Signal and WhatsApp. Not only must they
understand how to perform this ceremony correctly, they must
also be in close physical proximity with one another.

In contrast, automated social authentication was established
as a usable authentication ceremony [48] that works remotely.
Keybase was first to study social authentication beyond the
idea, but Keybase requires manually posting key material,
which requires non-trivial user effort. Moreover, the posting
is public, which discloses account associations to everyone.

After Zoom acquired Keybase, Zoom published an end-to-
end encryption whitepaper [7] which continued this line of
work. In particular, it automated the authentication process
using a modified version of the OpenID Connect protocol.
Zoom’s proposal, though, was designed in a setting where
every account can be authenticated only by a single IdP and,



moreover, Zoom’s design requires IdP adoption.
Finally, although past works have presented designs, social

authentication has never been studied as an authentication
protocol. No prior work defined what security guarantees
social authentication should provide, let alone considered
whether a given design correctly provides these guarantees.

In this paper, we address all these shortcomings and present
SOAP, a formally verified social authentication protocol. We
make the following contributions:

• We precisely define the security objectives of social au-
thentication and argue that it should provide a novel se-
curity property that we call sender correspondence. This
is a strong security property in that messaging sessions
can only be compromised if all digital identities and the
application’s key servers are compromised. This raises
the bar for the adversary and distributes trust amongst
many providers. In contrast to Signal’s and WhatsApp’s
default security, neither the cellular provider nor the key
servers nor any of the IdPs involved can individually
intercept messaging sessions.

• We formally relate sender correspondence to existing
notions of authentication, and show how sender corre-
spondence applies to designs beyond secure messaging.

• We present SOAP, a secure and practical protocol imple-
menting social authentication. Our protocol can be seen
as an extension of Zoom’s design that works without
IdP adoption and for multiple IdPs. SOAP automates the
authentication ceremony and provides a straightforward
and immediate means for adoption. Figure 1 provides an
overview of our design.

• Using the Tamarin model checker [34], we formally
prove that SOAP satisfies our novel security property
and that SOAP respects user privacy. Users can decide
to whom they disclose which identities, and SOAP leaks
no information to IdPs beyond that one is using the mes-
saging app in question, e.g., Signal. By employing a
salt-and-hash scheme, we avoid revealing key material
to IdPs and, thus, leaking one’s contacts to providers.

• We show that SOAP is straightforward to adopt by im-
plementing it in two fully functional prototypes: a web-
based application and an extension of the Signal Android
application.1 The former requires some user interaction
whereas the latter functions mostly automatically.

To the best of our knowledge, SOAP is the first formally
verified authentication ceremony for messaging applications
that works remotely and does not require users to work with
cryptographic objects like keys or fingerprints. By leveraging
an existing and widely used standard, SOAP is easy to imple-
ment and can be used immediately with any IdP that already

1The web-based prototype is hosted at https://soap-proto.net, and
a video demo of the Signal prototype can be viewed at https://youtu.be/
Ip_RAF8PRrM.

supports OpenID Connect. Finally, SOAP allows for authenti-
cation in useful ways, that are impossible using conventional
solutions, which we explicate in two further use cases.

Use Case 1: Social Authentication as a Second Factor
One may question SOAP’s value whenever users cannot au-
thenticate their chat partner’s identities because they have no
relationship to these identities. For example, someone who
has never received an e-mail from a given Outlook address
would be unable to verify that e-mail address as truly belong-
ing to the person in question without further interaction.

In such cases, SOAP is still valuable as it can serve as
a second factor, raising the bar for compromise. If one of
your contacts authenticated themselves as in control of two
accounts, and you are prompted that this contact’s public
key changed, you can check whether the “new” contact still
controls both these accounts. This information can help to dis-
tinguish a public key maliciously associated to your contact’s
profile from a legitimate, fresh public key after key-rollover.

Use Case 2: Native Digital Authentication For some on-
line interactions, users do not base the identification of their
chat partners in the physical world, but rather in the digital
world. For example, in the physical world, I might like to
authenticate my chat partner as “my colleague Alice, who I
eat lunch with every day.” In contrast, in the digital world, I
might like to authenticate my chat partner as “the open-source
maintainer Alice123 on GitHub, who I have never met in real
life, but writes beautiful JavaScript.” In the latter case, SOAP
promises to seamlessly bootstrap a secure communication
channel from such a pre-existing relationship.

Structure We proceed with additional problem motivation
in Section 2. In Section 3, we present SOAP’s design idea,
define our security goal, and provide our threat model. Sec-
tion 4 explains SOAP’s design, Section 5 presents our security
analysis, and Section 6 reports on our two prototypes. Finally,
Section 7 compares SOAP to related work and sender corre-
spondence to existing notions of authentication and designs.

Artifacts Our formal model and proofs (Sec. 5), and proto-
types (Sec. 6) are available at: https://soap-wg.github.
io/sources. Both prototypes come with source files and
compiled versions, e.g., .apk files for the Signal prototype.

2 Problem Motivation

Both Signal and WhatsApp allow their users to communi-
cate without authenticating their chat partners. By default,
users rely on the authentication performed by the applica-
tion provider during registration and that the application’s
key server correctly reports other users’ public keys to them.
When registering, users first register a public key at the key

https://soap-proto.net
https://youtu.be/Ip_RAF8PRrM
https://youtu.be/Ip_RAF8PRrM
https://soap-wg.github.io/sources
https://soap-wg.github.io/sources


Figure 2: Steps of the prover to register at the messaging
application and share their public key with other users. Our
proposal is to additionally authenticate using multiple IdPs,
here Microsoft and GitLab.

server (Step 1, Fig. 2). For that, they generate a public/pri-
vate key pair locally and claim that the respective public key
is associated with their phone number. The application then
sends the user an SMS one-time password (OTP) to verify
that the user controls the phone number (Step 2). When the
user enters the correct OTP into the app, the key server asso-
ciates the user’s public key with their phone number (Step 3).
Afterwards, the Signal server shares the user’s public key with
other users (Step 4).

This key distribution practice requires a high degree of trust
in the security of SMSes and the application servers them-
selves. An adversary can eavesdrop or impersonate a user by
compromising that user’s cellular provider or the key server.
More specifically, SMS-based attacks like SIM swaps [26]
allow for impersonation, and by compromising a key server
an adversary can eavesdrop on users as an MITM. Users must
trust their messaging application and thus their messaging
provider in general. But it is one thing to trust a provider to
not implement a backdoor in a messaging application, and
another to trust that their key servers are never compromised
by insiders, attackers, or force by government authorities.

The breach of Signal’s SMS OTP provider Twilio [46]
calls into question whether the considerable trust placed in
Signal’s registration procedure is warranted. Through social
engineering, attackers gained read access to SMS OTPs, and
re-registered phone numbers, one of which belonged to a
prominent journalist [20].

To prevent such attacks, Signal and WhatsApp users can
compare safety numbers [36, 52] with their chat partners.
Safety numbers are fingerprints of the two conversation par-
ticipants’ public keys. If two chat partners’ safety numbers
match, they are using the same public keys, and hence there is
no MITM. To compare safety numbers though, users must rely
on a trusted out-of-band channel, for example, the in-person
scanning of the QR codes that encode these numbers.

In Signal’s Android app, the screen for safety number veri-

fication displays the safety number as a QR code and numeri-
cally. Signal users have four options: (i) They can mark the
conversation as verified. (ii) They can tap the QR code to scan
their partner’s QR code. (iii) They can share the safety number
using a separate out-of-band channel. To do this, they click
on the appropriate button, which launches the sharing menu
of the phone’s operating system. (iv) Finally, they can press
on the safety number itself to either copy it to the clipboard
or to compare it with the clipboard’s contents.

Although safety numbers provide a secure authentication
ceremony, their actual benefit is questionable. In incidents like
the Twilio breach, users are unlikely to reauthenticate their
session in a timely way by scanning QR codes. Signal noti-
fied the impersonated journalist’s contacts when the attackers
associated a malicious public key with the journalist’s phone
number. However, to successfully thwart this attack, users
must (i) notice and understand this warning, and (ii) compare
safety numbers in-person, which requires physical proximity,
or (iii) compare safety numbers using an ad-hoc out of band
channel, which must be first agreed upon – while possibly
talking to an attacker. But even if users were to engage in
these authentication ceremonies, various studies suggest that
an attack is still very likely to succeed.

To start with, [24, 41, 49] reported that, lacking explicit
instructions, only around 15%-25% of user study participants
manage to successfully authenticate their chat partners in per-
son or using phone calls. When receiving instructions, these
numbers rise to 75%-80%. Remarkably, only around 50%
of [24]’s participants indicated that they would perform the
authentication ceremony again in the future, even after its
importance was explained to them. Another study investi-
gated the usability of SMS-based authentication ceremonies
supported by Signal’s share button in the safety screen’s top
right corner [42]. The authors found that in 40%-60% of the
cases, a difference in safety numbers went unnoticed. Notably,
the study considered a best-case scenario by recruiting edu-
cated, technology-savvy users who were explicitly instructed
to compare safety numbers.

The aforementioned user studies show that many users can-
not correctly compare safety numbers and, more critically,
they do not want to. To make matters even worse, none of
these studies accounts for how few users initiate these cere-
monies in the first place. The share of authenticated messaging
sessions is likely much lower than the above figures suggest.

Users can also protect their own accounts using a regis-
tration lock, provided by both WhatsApp and Signal [2, 43].
When activating the registration lock, users configure a PIN or
password that must be entered when attempting to associate a
new public key with a phone number. This, for the most part,
rules out SMS-based attacks. If users (or attackers) cannot
provide the PIN, an inactivity of 7 days is required to disable
the registration lock. Registration locks, though, still require
trust in the application’s key server, and, more critically, users
cannot verify whether their chat partners utilize them. I can



Figure 3: Social authentication establishes for a verifier that
the digital identity ID and messaging application public key
PK are controlled by the same person.

defend myself against impersonation attacks on my identity,
but I cannot know whether my peers are impersonated or
MITM-ed.

3 A Social Authentication Protocol

To address all aforementioned issues of modern messaging
applications, we propose SOAP and present its security goals,
its design idea, and our threat model.

3.1 Design Goals

The aim of social authentication is for a verifier to authenticate
a prover (the verifier’s chat partner) using one or more digital
identities. Social authentication is appealing as: (i) many users
have pre-existing relationships on social media, and (ii) by
linking their social media presence to a different account,
they can transfer the relationship from one medium to another.
Note that these two notions are independent: even if you have
no relationship with a given social media account, you could
still be convinced that you are talking to the account holder.
Formalizing this intuition, we define the security property
of sender correspondence which, as we shall later see, is an
authentication property.

Authentication Property (Sender correspondence). A proto-
col P guarantees a verifier sender correspondence between
two pseudonyms A and B if, whenever P successfully termi-
nates, then all messages that appear to have been sent by A
and all messages that appear to have been sent by B were sent
by the same user.

Social authentication is simply an instantiation of sender
correspondence, where the pseudonym A is the messaging
application public key PK and B is an IdP-controlled digital
identity ID. We define sender correspondence in more general
terms than social authentication because sender correspon-
dence finds application in other protocols, as we will discuss
in Section 7.2. We illustrate social authentication’s security
guarantees in Figure 3.

In addition to social authentication, SOAP was also de-
signed to provide privacy. For example, IdPs cannot learn
with whom their users communicate. We define SOAP’s pri-
vacy property in terms of the allowed leakage to an IdP. In
particular, IdPs neither learn who the prover authenticates to
nor which other IdPs the prover uses.

Privacy Property. IdPs can only learn that SOAP users
(i) use SOAP, (ii) the messaging applications where they use
it, and (iii) when they use it.

3.2 Design Idea
SOAP, our Social Authentication Protocol, works as follows.
The prover requests an OpenID Connect identity token at an
IdP and submits a hashed-and-salted conversation’s safety
number with that request. The IdP will then issue a token
that includes a signature on the safety number and one of
the prover’s digital identities. At its core, this signature en-
ables SOAP to provide social authentication and hashing-
and-salting the safety number provides privacy. The prover
forwards the token to the verifier, whose messaging appli-
cation verifies it cryptographically and displays the prover’s
identity if all checks pass. In particular, this means that neither
the verifier nor the prover must interact with cryptographic
objects such as cryptographic keys or fingerprints thereof.
In practice, users must run SOAP once per IdP to authenti-
cate themselves to one contact, and only need to rerun SOAP
should their long-term key material change.

We propose to run SOAP with multiple IdPs (as shown in
Fig. 2), which substantially improves user security compared
to Signal’s and WhatsApp’s default security. To the user, these
multiple runs of SOAP (for multiple IdPs) will appear as one,
which will become clear when we explain our prototypes
in Section 6. Recall that, by default, a user’s account can be
attacked under the following condition: compromise the appli-
cation’s key server or compromise the cellular provider while
the registration lock is not enabled (Sec. 2). Now suppose the
prover runs SOAP (Step 5, Fig. 2), both with Microsoft and
GitLab as the IdP. Both protocol runs are independent and,
when completed successfully, the verifier’s app will display
both the prover’s Microsoft and GitLab identity.

It is now much harder to impersonate or MITM the prover:
the adversary must compromise both Microsoft and GitLab
and either the prover’s cellular provider or the application’s
key server. Critically, the compromise of the application’s key
server no longer suffices, and in contrast to the registration
lock, users can authenticate their chat partners and need not
rely on their chat partners activating the registration lock.

3.3 Threat Model
SOAP’s security properties hold against two kinds of adver-
saries: We establish social authentication against an active net-
work adversary and privacy against a malicious IdP. Whereas



the social authentication-adversary can read, intercept, reorder,
and replay all messages, the malicious IdP can do the same
but only with messages sent to it directly. For example, the
malicious IdP cannot observe whether the prover forwards
tokens to the verifier. We restrict our analysis of SOAP’s pri-
vacy property to a malicious IdP as we wish to show that
adding IdPs to the messaging application ecosystem does not
threaten user privacy.

Our threat model permits the compromise of the messag-
ing application’s key server, the leaking of OpenID Connect
requests to IdPs, and the compromise of some of the IdPs
integrated into the messaging application. Notably, we make
no assumptions on user-behavior other than that users do not
leak their credentials. Users may click any link sent to them,
whenever an IdP asks them for consent, they may provide it,
and whenever an IdP asks them to log in, they may do so,
even if the adversary triggered that query. We only limit our
adversaries’ capabilities in the following ways:

1. Adversaries are bound by the security properties of the
cryptographic primitives used and the TLS and Signal
protocols (both Signal and WhatsApp use the Signal
protocol). For example, adversaries can neither invert
cryptographic hash functions nor eavesdrop on a TLS
session.

2. User credentials at IdPs are uncompromised.
3. Whenever a user authenticates via a given IdP, that IdP’s

signing keys and TLS certificates are uncompromised.
4. The messaging application and the user’s web browser

are uncompromised. In particular, the parameters of
browser redirects to the messaging application remain
confidential until they expire, and messaging application
key material remains uncompromised.

The necessity for Assumptions 1-3 is self-evident. Regard-
ing Assumption 4, it should be clear that we must require the
messaging application and the user’s browser to be uncom-
promised. We will discuss why we require the parameters of
browser redirects to remain confidential later in Section 5.2.3
as this assumption requires a deeper understanding of SOAP’s
design. Finally, we require that messaging application key
material remains uncompromised because an adversary could
otherwise launch a trivial impersonation attack. They could
run SOAP with a victim’s safety number as a parameter and
use an attacker-controlled account to log in. The adversary
could then inject that token into the conversation between the
victim and one of the victim’s contacts as they compromised
the key material. However, note that (i) messaging secret keys
are stored on-device only, i.e., a compromise of these keys
likely comes with a compromise of the messaging application,
and that (ii) the Signal protocol offers strong security guaran-
tees against such key compromise, namely forward secrecy
and post-compromise security [9]. SOAP was not designed to
defend against key compromise, but rather against imperson-
ation by associating malicious keys with pseudonyms such as

Token EndpointAuth Endpoint Client User
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consent page

consent?

credentials/acknowledge

confirm

code, s

code, s

request token: code, v

ID token σ

msc OpenID Connect - Authorization Code + PKCE Flow

Figure 4: OpenID Connect authorization code flow with
PKCE. h(v) is the commitment to a random value v as speci-
fied by PKCE and s is the state parameter.

in the Twilio incident.

4 Protocol Design

In this section, we present SOAP’s design in detail. SOAP
utilizes the OpenID Connect protocol [38, 39] to facilitate
adoption, which we explain first.

4.1 OpenID Connect

OpenID Connect [38, 39] is an authentication protocol that
itself builds on the OAuth 2.0 authorization protocol [23].
OpenID Connect is used to implement the well-known “Login
with Google/Microsoft/Apple/. . . ” buttons. OpenID Connect
involves three parties: a user, an IdP managing the user’s
identity, and a relying party seeking to authenticate the user.
The OpenID Connect protocol is executed by a client operated
by the relying party. At the end of a successful protocol run,
the client receives an ID token through a browser redirect from
the IdP. The ID token is a cryptographically signed message,
proving that the IdP authenticated the respective user, and
which the client can use to identify the user. Prior to issuing
requests, relying parties must register at the respective IdP.
During registration, relying parties whitelist redirect URLs,
and IdPs issue client IDs.

OpenID Connect supports multiple flows, which are pro-
tocol variants aiming at specific types of software clients.
We use the authorization code flow extended with the Proof
Key for Code Exchange (PKCE) standard [40], which is cur-
rently recommended as best practice for clients such as mobile



applications [31]. The authorization code flow with PKCE
implements a commitment reveal scheme, which we depict
in Figure 4 and works as follows. The client first issues an
authorization request by launching the device’s browser at a
specific URL called the authorization endpoint. The request
encodes various parameters in the URL: a client ID, redirect
URL, code challenge (the commitment, which is the hash
of a random string), and optionally a state parameter and a
nonce. The state parameter and nonce protect against replay
and cross-side request forgery (CSRF) attacks.

After receiving an authorization request, the IdP verifies
the redirect URL as whitelisted for the given client ID, authen-
ticates the user, and asks the user for consent. Users usually
authenticate by logging in, or through a session cookie already
stored in their browser. Depending on the user’s history with
the IdP, the user may not need to grant consent.

Once a user consents to logging in, the IdP forwards the
browser to the redirect URL given in the request. In the redi-
rect URL, the IdP encodes an authorization code and the
state parameter sent earlier. The client verifies that the state
matches the state it previously issued, and exchanges the au-
thorization code for an ID token. The client does this by
sending a POST request to the IdP’s token endpoint, includ-
ing the authorization code and the code verifier. The code
verifier opens the code challenge commitment sent earlier to
the IdP. This allows the IdP to determine that the ID token is
requested from the same client that issued the initial request.

The ID token is encoded as a JSON Web Signature (JWS),
which is a signed object that maps keys to values. Amongst
other values, the object includes the issuer, the audience (iden-
tifying the client), the subject (the user who was authenti-
cated), the nonce, and a validity period. Usually, ID tokens are
short-lived, with lifetimes typically ranging from two minutes
to two hours. According to the OpenID Connect specification
[38], ID tokens must only be accepted by the intended audi-
ence. This prevents a service to which a user logged in from
using the ID token with another service.

4.2 Protocol Description
We next present SOAP, which provides an automated social
authentication ceremony that requires no IdP adoption.2 We
suggest running SOAP with multiple IdPs (Section 3.2), and
that applications provide a user experience where these multi-
ple runs appear as one. Users are then only required to select
IdPs and to provide consent. We base SOAP on the OpenID
Connect authorization code flow with PKCE [38]. This makes
its adoption straightforward, and it can be used immediately
with any IdP that supports OpenID Connect.

The idea behind SOAP is to utilize the signed ID token to
convince the verifier that the prover (i) authenticated to the
IdP using the identity included in the token, and (ii) submitted
their session’s safety number when logging in. The verifier

2For a technical description, see Appendix A.

Token Endpoint Auth Endpoint Prover Browser Prover App Verifier App

Share safety number k

k′ := hs(k)

k′, n, h(v)

code, nRequest auth code

code, v

ID token σ σ, s

msc SOAP

Figure 5: SOAP running between the prover, the IdP, and the
verifier. Here, hs is a password hashing algorithm using a salt
s and h is SHA-256 as specified by PKCE. The application
randomly samples a code verifier v, a salt s, and nonce n.
Finally, σ is the OpenID Connect token, which is forwarded
to the verifier and includes a signature on hs(k,s) and n.

must only check that the token was intended for them by com-
paring the safety number included in the token to the safety
number of the session through which they received the token.
SOAP consists of three steps for the prover (request, valida-
tion, and forwarding) and one step for the verifier (validation).
Figure 5 sketches our protocol.

To start a run of SOAP, the prover’s messaging application
prepares the request. It generates two random values: a code
verifier and a nonce n. The application then uses a secure
password-hashing algorithm to calculate a salted hash h of
the safety number. This hash serves to blind the safety number
to the IdP. To defend against CSRFs attacks, the application
stores the nonce, the salt, the IdP’s ID, and the code verifier
as the most recently issued request. Then, the application
launches the authorization code flow, passing n as the nonce
and as the state, h, the code challenge, and a redirect URL.
This redirect URL must be distinct for each IdP and should
use the HTTPS scheme (preferred) or a custom scheme. The
application then launches the system’s browser with the re-
quest URL, which takes the prover to the consent/login page.

If the prover consents, the IdP redirects the browser back
to the application. The redirect passes the application a state
parameter and an authorization code, which can be exchanged
for an ID token. Before the application uses the authorization
code, it must verify that the state value it just received equals
the nonce stored with the most recently issued request, and
that the response originates from the expected IdP.

If both checks pass, the application uses the authorization
code and stored code verifier to request the ID token from the
IdP. It verifies the token’s signature and fields, e.g., that it cor-
rectly encodes the hashed and salted safety number. Finally,



the application clears its storage for the most recently issued
request, and stores the nonce in a replay cache. Recording
nonces defends against reflection attacks; the description of
our web-based prototype in Section 6.1 illustrates this threat.

The application forwards the ID token and the salt to the
verifier and the verifier applies the same checks. It also verifies
that the safety number encoded in the ID token encodes the
prover and verifier’s keys, and that it did not request this token
itself by looking up the stored nonces from runs where it was
the prover. If these checks pass, the verifier can obtain the
sender’s identity from the token.

While Figure 5 may suggest that SOAP simply “calls
OpenID Connect,” previous work [31, 17, 19] highlighted
many subtleties in implementing an OpenID Connect-based
protocol securely. Hence, we next present our formal proof
that SOAP indeed provides social authentication.

5 Security Analysis

SOAP is designed to implement social authentication and to
protect user privacy, as defined in Section 3. In the following,
we prove its security using the protocol-verifier Tamarin [34].
Tamarin has been used to verify many critical protocols, such
as 5G-AKA, TLS 1.3, and the credit card protocol EMV [5, 10,
11]. We first introduce Tamarin, and then present the formal
proofs of SOAP’s social authentication and privacy property.

5.1 The Tamarin Prover
Tamarin [34] is an infinite-state protocol verifier that supports
both fully automated and guided proof construction in the
symbolic model. Tamarin models have three parts: rules mod-
eling protocol steps, an equational theory modeling crypto-
graphic primitives, and lemmas modeling protocol properties.

Rules have the form l --lbl-> r, where l reads from the
current state, r updates the new state, and lbl labels this tran-
sition for reference in properties. Typically, l encodes reading
incoming messages and parts of the participant’s state and
r encodes sending messages and updating the participant’s
state. For example, the rule below models that a participant
receives a message, looks up a key, and sends the message
symmetrically encrypted under the respective key. The label
adds Enc(m) to the protocol trace for reference in properties.

[In(m),!K(k)] --[Enc(m)]-> [Out(senc(m,k))]

Equations model cryptographic primitives. For example,
the equation sdec(senc(m, k), k) = m models that the
symmetric decryption of a ciphertext using the correct key
yields the respective plain text. Equational theories allow one
to formalize a strong network adversary that can derive new
knowledge from previously sent messages. For example, if a
participant sent both a symmetrically encrypted message and
the respective key, the aforementioned equation would allow
the adversary to learn that message’s content.

Tamarin supports two types of properties: universally quan-
tified and existentially quantified trace properties. Tamarin
verifies both kinds of properties similarly. Universally quanti-
fied properties are first negated, whereas existentially proper-
ties are left as is. Then, Tamarin tries to construct a trace that
satisfies the resulting property using backwards constraint
solving. For universally quantified properties, Tamarin hence
tries to construct a counterexample, and for existentially quan-
tified properties, Tamarin tries to construct a positive example.

5.2 Social Authentication

We next provide high-level intuition on why SOAP provides
social authentication and then describe our formal proof.

5.2.1 Informal Analysis

We previously defined social authentication as an implication:
“If the verifier associates an account A with the public key PK
and received a message from each of these pseudonyms, then
these messages were sent by the same party.”

There are two ways to violate social authentication. Ei-
ther, there is no send event for one of the messages or the
send events have different senders. In our formal model, we
modelled the message-exchange channels as authentic (i.e.,
given a receive event, there will be a send event) and thus
focus on the latter case. Given SOAP’s design, the attacker
can achieve this by either making the prover send a malicious
token through the messaging application, linking an attacker-
chosen account to the prover’s messaging channel (identity
substitution), or making the prover authenticate in an attacker-
controlled OpenID Connect flow, linking the prover’s account
to an attacker-chosen channel (impersonation).

Let us first focus on impersonation attacks, and presume
Eve attempts to attack Alice. This means that Eve has a mes-
saging session with Alice and wants to convince Alice that
she, Eve, controls one or more of Bob’s accounts at IdPs. To
achieve this, Eve must send a token that includes a reference to
Bob’s account and the safety number of Eve’s and Alice’s pub-
lic keys. As we assume that Bob’s account is uncompromised
(Assumption 2, Sec. 3.3), Eve must craft a malicious OpenID
Connect request and forward it to Bob. This is straightforward
as it requires nothing more than convincing Bob to click on a
malicious link encoding such a request. However, Eve cannot
obtain a token from this: Bob’s application will discard the
authorization response if it did not issue the request itself.
Moreover, if it did issue the request itself, it would include
one of Bob’s safety number and not Alice and Eve’s.

Similarly, Eve cannot launch an identity substitution attack.
Eve would need to run SOAP herself, using a victim’s safety
number as parameter, log in with her own account, and then
make the victim’s application accept the resulting browser
forward. However, the application would again discard that
forward as it did not issue the corresponding request.



Figure 6: Sketch of our formal model of SOAP. Arrows indi-
cate message exchanges, denoted with the respective channels
used. Dashed arrows indicate that the adversary can initiate
the respective request on the user’s behalf. We omit the IdP-
controlled bulletin board and the messaging channel.

This argument spells out the main idea behind SOAP’s
security. In reality, the security of protocols based on OAuth
2.0 and OpenID Connect is much more subtle. Attackers can
in general access authorization code responses through other
means than capturing the redirects. For example, [17] first
described the IdP-mixup attack, in which applications leak an
authorization code by sending it to the wrong IdP. Therefore,
we formally evaluate SOAP’s security next.

5.2.2 Formal Proofs

Our formal model comprehensively captures SOAP and its
heterogeneous environment. Beyond the messaging applica-
tion and TLS, we modelled all security-critical aspects and
auxiliary protocols such as public key requests and distribu-
tion. Figure 6 depicts a sketch of what we modelled. Our
model permits arbitrarily many participants to communicate
with each other in arbitrarily many parallel protocol sessions.
The adversary can corrupt any party in a fine-grained manner,
e.g., a user’s account could be compromised independently
of their messaging long term keys, only constrained by our
security assumptions from Section 3.3. For example, IdP cor-
ruption is possible for every IdP except the one with which
the prover intends to authenticate themselves.

More specifically, our model includes channels for SMS,
TLS, browser redirects, and messaging applications with dif-
ferent security properties and distinct keys. We also modelled
communication associated with IdP-controlled pseudonyms
(usernames) as a bulletin board where users can post mes-
sages associated with their pseudonym publicly after the IdP
authenticates them using a password. We modelled SMSes as
insecure and the messaging application as secure (confidential
and authentic). We modelled TLS as a secure channel without
client authentication, i.e., the adversary can always initiate
new sessions with servers.

The adversary can compromise any TLS server, which al-
lows it to read client queries and respond to them. TLS queries
can have one of two methods, GET and POST, whereby GET

requests can be initiated by the adversary on a user’s be-
half, modelling that the adversary can trick users into click-
ing any link. In practice, this allows the adversary to launch
the OpenID Connect protocol at various points (e.g., initial
request and code forwarding) for non-compromised clients.
Browser redirects are modelled as GET requests using an
existing session to connect to a new server, initiated by the
previous server. This allows us to model, e.g., the redirect to a
mobile application by modelling that application as a server.

We modelled the messaging provider, messaging appli-
cation, end users, and IdPs as different parties. Our model
includes SOAP itself, messaging application registration (in-
cluding SMS OTP verification), IdP account registration, as
well as messaging key server and IdP public key requests and
responses. Moreover, we fully modelled OpenID Connect and
we make no assumptions on this protocol’s security.

Within this model, we prove that SOAP implements so-
cial authentication. Figure 7 shows our Tamarin specifica-
tion formalizing social authentication as a trace property. It
has three parts. Lines 2-7 formalize social authentication:
If the verifier associates two pseudonyms with each other
(Correspond), then all messages received from those two
pseudonyms (ReceiveMessaging/IdP) originate from the
same sender. We formalize the latter by showing that there
exist two send events (SendMessaging/IdP) for which the
sender (Sender) is the same party s.

Lines 8-15 formalize Assumptions 2-4 from our threat
model (Sec. 3.3). Assumption 1 is covered implicitly as
Tamarin operates in the symbolic model. There is just one
subtle difference from social authentication as presented ear-
lier. Namely, since the messaging channel is not just sender-
authenticated, but also receiver-authenticated, we can include
the recipient’s pseudonym rcvKey in the receive and send
event in lines 3 and 6. This means that our formalization of
social authentication is stronger than sender correspondence.

The size and complexity of our model put its security prop-
erties out of reach for fully automated verification. For exam-
ple, modelling that browser redirects remain confidential until
they expire (Assumption 4) proved to be challenging. In part,
we modelled this assumption by revealing authorization codes
to the adversary after receiving the respective ID token. This
led to infinite looping in Tamarin’s proof construction, which
we avoided by proving an inductive, auxiliary lemma showing
that authorization codes can only be used once. In total, we
verified nine auxiliary lemmas and programmed custom proof
heuristics to aid Tamarin’s proof construction.

5.2.3 Discussion of Threat Model

With our formal analysis of the authentication property com-
pleted, we briefly return to Assumption 4 of our threat model,
where we require that the parameters of browser redirects to
the messaging application remain confidential. Without this
assumption, the adversary could easily obtain an identity to-



1 All v sendKey rcvKey m1 idp acc m2 #t #r1 #r2.
2 ( Correspond(v, sendKey , idp, acc) @ #t
3 & ReceiveMessaging(sendKey , rcvKey , m1) @ #r1
4 & ReceiveIdP(idp, acc, m2) @ #r2)
5 ==> ( (Ex s #x1 #x2.
6 ( SendMessaging(sendKey , rcvKey , m1) @ #x1 & Sender(s) @ #x1 & #x1 < #r1
7 & SendIdP(idp, acc, m2) @ #x2 & Sender(s) @ #x2 & #x2 < #r2))
8 | (Ex p #x. CompromisedAccount(p, idp, acc) @ #x)
9 | (Ex #x. CompromisedIdP(idp) @ #x)

10 | (Ex #x. CompromisedDomain(idp) @ #x)
11 | (Ex app redirectURL #x #y #z.
12 IsMessagingApp(app) @ #x
13 & IsRedirectURL(idp, app, redirectURL) @ #y
14 & CompromisedDomain(redirectURL) @ #z)
15 | (Ex p #x. CompromisedMessaging(p, sendKey) @ #x))

Figure 7: Formalization of social authentication (Sec. 3), also encoding the threat model (Sec. 3.3). Note that the two Sender
facts are bound to the respective SendMessaging and SendIdP events, as they occur at the same time points (x1 and x2).

ken that binds an attacker-chosen safety number to a victim’s
account. To achieve this, they would only need to trick their
victim into clicking a SOAP-request link that includes a mali-
cious safety number as parameter. As soon as the victim logs
in and consents (which they will do under our liberal threat
model), the adversary could learn the authorization code from
the redirect URL and request the ID token themselves.

Users can theoretically protect themselves from this attack
by only granting consent to requests they initiated themselves.
However, (i) we find it unrealistic to assume users are resis-
tant to social engineering, and (ii) we experienced during our
prototype development that some IdPs immediately acknowl-
edge requests without user involvement whenever the user
was already logged in and had previously granted consent. In
this case, users could be attacked easily, e.g., with malicious
URLs obfuscated with a URL shortener.

In practice, though, capturing redirects requires the adver-
sary to have access to a user’s browsing history while an
attack is launched. This requires the compromise of the user’s
browser, or the installation of a malicious application handler
on the user’s device. In case of a compromised browser, it is
nigh impossible to protect the user’s account credentials at
the same time. To address malicious application handlers, we
recommend that the application should use HTTPS redirect
URLs as described in Section 4. With HTTPS URLs, applica-
tion developers can utilize the security features provided by
modern operating systems to ensure that authorization codes
do not leak. For example, both Windows and Android sup-
port applications to handle HTTPS URLs, but only as long
as these applications have been delegated to do so by the
respective URL [22, 13]. This way, application developers
can rely on the security features provided by the Web PKI
to protect authorization responses. Without HTTPS URLs,

an attacker would still need to install a malicious application
handler and in turn a malicious application on their victim’s
device to capture redirects to custom schemes.

5.3 Privacy
SOAP protects users’ privacy against the IdPs in that it only
reveals that a prover is using SOAP, which messaging appli-
cation is being used, and at what times SOAP is used. We
formally proved SOAP’s privacy as an observational equiva-
lence property using Tamarin. Implementing our threat model
(Sec. 3.3), we proved privacy in a simplified model (com-
pared to the model presented in the previous section) that
only includes communication between users and the IdP. We
modeled the malicious IdP as the adversary and consequently
replaced TLS with an insecure channel. Our observational
equivalence property shows that IdPs cannot distinguish pro-
tocol runs where a user submits the correct salted-and-hashed
prover/verifier safety number from runs where the user sub-
mits a different safety number. In the symbolic model, our
privacy property is straightforward as we will lay out next.

SOAP only includes two requests to the IdP’s servers, and
these requests include the following parameters: the messag-
ing application ID with the IdP, a redirect URL, a nonce, the
code challenge (the hashed code verifier), the code verifier, the
authorization code, and the salted-and-hashed safety number.
The messaging application’s ID and redirect URL reveal the
messaging application and that the prover is using SOAP. The
nonce, the code challenge, and the code verifier are randomly
generated values that change with every request, and hence,
leak nothing about the prover. The authorization code is is-
sued by the IdP and therefore allows the IdP to connect the
initial authorization request with the token request. Finally,
the salted-and-hashed safety number leaks nothing about the



prover under the assumption that the IdP cannot break crypto-
graphic primitives such as salt-and-hashing, and because the
salt is only shared with the verifier.

In theory, a verifier could share the salt with an IdP to re-
veal that the prover intended to communicate with the verifier.
However, a verifier could leak this information even without
SOAP. The IdP could also attempt to correlate public key
requests with issued tokens. Fetching public keys, however,
is not part of SOAP itself as applications will likely cache
public keys. Additionally, the OpenID Connect specification
[39] requires that IdPs distribute their public keys publicly
and application-independently via HTTPS. For both of these
reasons, we deem such a correlation to be practically infea-
sible. To summarize: SOAP prevents the surveillance by an
IdP of its user’s contact graphs in messaging applications.

6 Implementation

We implemented our proposal in two prototypes: as a stand-
alone web application3 and as a fork of the Signal open-source
Android application. Both prototypes support GitLab and Mi-
crosoft as IdPs. The stand-alone version does not require
messaging application adoption but requires more user in-
teraction. In its current design, it can be used to associate
arbitrary statements to a user’s account.

Our prototypes demonstrate that social authentication can
be realized practically, with provable security guarantees, and
without OpenID Connect-IdP adoption. Our web-based pro-
totype shows that social authentication can be implemented
even without messaging application adoption. Library sup-
port for OpenID Connect is abundant and, hence, adoption
is straightforward. One of the authors could implement an
initial prototype within a day. With just a few clicks and in a
couple of seconds, users can verifiably share their identity.

6.1 Web-based Prototype
Figure 8 depicts the interaction with our web-based proto-
type. When started, the application renders a text input and a
list of IdPs to select from (Fig. 8a). After the prover selects
an IdP, the application assumes that the input contains the
safety number to authenticate, and initiates SOAP. After they
complete the OpenID Connect flow (see Sec. 4.1), the prover
is forwarded to our application, which requests the ID token
(Fig. 8b). The web application verifies the ID token, and, if
all checks pass, displays a success message. The prover can
then copy a link to send to their chat partners.

This link encodes the ID token and everything needed to
verify it. When the verifier clicks the link, the application
verifies the token, and if all checks pass, displays the prover’s
identity, the IdP, and the safety number. The verifier can copy
this safety number to their clipboard. The Signal Android

3 The prototype is hosted at https://soap-proto.net.

(a) Prover pastes safety number
into the application and selects
one of two IdPs.

(b) Prover receives ID token and
is presented a URL to forward to
their chat partner.

(c) Verifier sees the prover’s iden-
tity and safety number when
clicking the link.

(d) Prover sees a warning when
clicking a link generated within
the same browser.

Figure 8: Screenshots depicting the web application prototype.
The prover must initiate this flow for each IdP.

application offers its users to compare the safety number with
the clipboard, giving the verifier an easy way to check the
safety number (Sec. 2).

Note that the application will render a success message to
anyone clicking a link containing an ID token. Only the user
can determine whether the safety numbers match. This allows
for social engineering attacks whenever users click links they
earlier forwarded themselves. To mitigate this threat, the web
application warns users that they issued this request them-
selves whenever they click a link that was issued within the
same browser. Figure 8d shows the view after clicking on a
URL that encodes an ID token.

6.2 Signal Prototype
Our Signal prototype, depicted in Figure 9, provides a more
streamlined experience compared to the web-based proto-
type.4 In particular, the Signal prototype requires significantly
less interaction from the prover and no interaction from the
verifier. Users need not actively examine and insert safety
numbers, and flows need not be initiated for each IdP.

When a user wishes to authenticate themselves to their chat
partner (becoming a prover), they must first select the new
“Authenticate” option within the attachment menu. Next, the
prover selects all the IdPs they wish to authenticate themselves
with (Fig. 9a). When they press continue, they will run SOAP
for each of the IdPs. The application verifies all tokens and

4A video demo of the Signal prototype can be viewed at https://youtu.
be/Ip_RAF8PRrM.

https://soap-proto.net
https://youtu.be/Ip_RAF8PRrM
https://youtu.be/Ip_RAF8PRrM


(a) Prover selects the
IdPs to authenticate
with.

(b) Prover sees that
they shared their
identities.

(c) Verifier sees the
prover’s identities.

Figure 9: Screenshots depicting the Signal prototype. The
interaction with our prototype is depicted from left to right.

displays a distinctly styled message to both the prover and
verifier that shows the shared identities (Fig. 9b, 9c).

Our Signal prototype demonstrates that SOAP is a prac-
tical design that requires little user interaction. While it is
adequate for a proof-of-concept, we suggest further enhance-
ments before it is deployed in production. First, previously
performed social authentications should be recorded as such
in the application. The application could display a contact’s
identities within the chat header, rather than mark them as
“Verified.” This would additionally highlight that our proposal
is intended to augment in-person safety number comparison,
not supersede it. Second, the messaging application could
compare the identities provided through SOAP with identities
linked to the contact’s address book entry on the smartphone
to automatically combat impersonation attacks. Messaging
applications are usually granted access to address books any-
ways, providing a straightforward means to automate social
authentication further.

6.3 Development
The web-based prototype was written as a single-page
JavaScript application in React [37], i.e., all code runs in the
user’s browser. The prototype consists of roughly 500 lines of
code and the first version was developed within a day by one
of this paper’s authors. In contrast to the web-based proto-
type, the Signal prototype’s development was more involved
and required around three person weeks. Understanding the
meagerly documented Signal Android codebase demanded
most of the time. We changed 21 files and added around 1000
lines of Java and Kotlin code for the application logic, and
also changed 17 files with around 200 additional lines of code
for configuration changes, like layout and localization.

During prototype development, we noticed that not all IdPs
support OpenID Connect ideally for our use case. Microsoft,
for example, does not support HTTPS redirect URLs for An-
droid applications. We tried working around this restriction
by registering our Android application as a Single-Page Ap-

plication, which permitted us to configure an HTTPS redirect
URL. However, requesting the ID token failed as cross-origin
request headers were missing.

GitLab supports HTTPS redirects and does not distinguish
the types of applications upon registration. However, GitLab
does not ask for consent again after the user consented once to
log in. This causes HTTPS redirects to Android applications
to fail. A Chrome policy requires user interaction in order to
redirect users to Android applications through HTTPS URLs
[3]. This left us with using custom schemes, e.g., auth://,
in redirect URLs to support GitLab as an IdP.

Finally, Google neither allows one to configure a redirect
URL nor lists a redirect URL when registering Android ap-
plications as an OpenID Connect client. In this way, Google
hides their OpenID Connect API. We suspect this practice
is intended to force developers to implement “Sign-In with
Google” using Google’s SDK [44]. This SDK need not be
configured with a redirect URL to request ID tokens and does
not allow one to specify a nonce.

These findings suggest that while SOAP does not require
adapting the OpenID Connect specification, explicating our
use case in the OpenID Connect specification could still ben-
efit users and developers. Currently, users will only consent
to log in, and developers have to use the nonce field outside
its specified intent. If OpenID Connect were to recognize
user-submitted claims as a request parameter, users could
grant consent to show that they control the given account and
developers could use APIs supporting user-submitted claims.

6.4 Performance
The performance of both prototypes is mainly constrained by
the page load times of OpenID Connect authorization end-
points, consent screens, and HTTP redirects. We timed the
prototypes with a user that was logged in and had authorized
our application already. In the web-based prototype, running
SOAP for a single IdP was nearly instantaneous (<1 second),
and in the Signal prototype, running SOAP for two IdPs con-
sistently took less than 10 seconds.

As we described in Section 4, SOAP requires local, per-
sistent storage to protect against replay and CSRF attacks.
SOAP stores the latest issued request, which only requires a
small, constant amount of space, and the nonces generated by
the application. The number of nonces stored is limited by
the number of SOAP sessions initiated by the user, and the
nonces can be discarded after a token expires, which in our
experience happens within two hours.

7 Related Work

7.1 Key Authentication
In this section, we examine three research strands aimed at
improving key authentication: key transparency, authentica-



tion ceremonies within messaging applications, and social
authentication.

Key Transparency CONIKS, SEEMless, Parakeet, and
KTACA [35, 8, 33, 53] implement key transparency as an al-
ternative to key authentication. In key transparency, providers
commit to a publicly auditable key directory, and users (or
rather their messaging applications) both fetch their contacts’
public keys from this directory and check that the public key
associated with their pseudonym in the directory matches
their actual public key. Key transparency aims to obviate the
need for key authentication as other users can assume that
their peers would have taken action should their application
detect a malicious public key associated with their pseudonym.
Recently, Meta announced that WhatsApp will deploy key
transparency services and published an open-source key trans-
parency service based on SEEMless and Parakeet [29, 14].

In contrast to SOAP, key transparency has the upside that it
requires no user-interaction when there is no compromise, but
this comes at the cost of a significant engineering effort and
can require recruiting external auditors. Moreover, key trans-
parency only aims to protect against malicious providers and
not outside attackers, such as in the Twilio incident (Sec. 2),
and key transparency cannot prevent compromise but only
make it detectable. Finally, key transparency provides no no-
tion of authentication, which is desirable in its own right, e.g.,
to verify that one chats with the person controlling a given
account on a different platform. We see SOAP as complement-
ing key transparency and not rivaling it. Moreover, SOAP is
far less complex than key transparency and, thus, it is simpler
to deploy SOAP, especially for smaller organizations.

Authentication Ceremonies for Messaging Applications
We already extensively compared SOAP to numerous manual
authentication ceremonies in Section 2. Other researchers
additionally investigated how one could improve authentica-
tion ceremonies to increase success rates. [47] proposed UI
changes, and [15] proposed new ceremonies altogether, but
they did not consider whether those ceremonies were secure.
Both [15, 47] focus on manual verification, where users com-
pare two pieces of information. In contrast, SOAP lifts this
burden from the user and instead asks them to authenticate a
set of identities.

Social Authentication The idea of authenticating users us-
ing their profiles at IdPs was pioneered by Keybase [27].
There, users can bind their social media accounts, e.g., at
Twitter, to their Keybase account using so-called proofs [28].
Users do this by posting a signed message on a social media
platform. Other users can verify that a user linked their ac-
counts by checking that the signature was generated using the
key associated with the Keybase account, and posted by the
claimed social media account.

[48] coined the term “social authentication,” proposed its
application to Signal, and conducted a user study. The authors
found that users regard social authentication as understand-
able, easy to use, working asynchronously and remotely (in
contrast to, e.g., in-person verification), and that it enhances
their security when using multiple providers. However, users
gave social authentication a lower trust score than in-person
verification, partially stemming from their limited understand-
ing of the mechanism. For example, users feared that a com-
promise of their social media accounts could lead to a com-
promise of their Signal account, and they distrusted social
media providers in general. Users also mentioned the risk of
social engineering with fake accounts.

The authors of [48] did not implement a working prototype
for social authentication. They justified this decision with
the complicated process of acquiring approval from the ap-
plication providers to access social media accounts. Instead,
they evaluated a mock-up prototype without designing or im-
plementing any protocol. The prototype communicated with
servers storing the association of social media profiles to Sig-
nal keys, simulating a perfectly secure world. Nonetheless, the
authors note that safety numbers should be posted publicly on
the social media platforms, thereby disclosing the association
of keys with accounts. Through such public posts, users have
no control over who can associate keys with accounts.

In contrast to both of the above works, SOAP is a privacy-
preserving protocol that allows for the selective disclosure of
key-to-account associations. Whereas the proposal of [48] re-
quires users to authorize Signal to access the respective social
media platform, SOAP neither requires Signal to access ac-
counts at IdPs nor vice versa. Additionally, we demonstrated
SOAP’s feasibility with two fully functional prototypes, and
we rigorously evaluated SOAP’s security.

Key Authentication with OpenID Connect Zoom’s cryp-
tography whitepaper [7] proposes “Identity Provider Attesta-
tions,” which authenticate Zoom’s end-to-end encryption keys
using OpenID Connect in conjunction with DNS. Organiza-
tions can delegate an IdP via DNS as eligible to authenticate
that organization’s users. The Zoom client can then (i) upload
a commitment to a user’s public key at the IdP on the user’s
behalf using OAuth and a custom API, and (ii) request an
ID token that includes that commitment. Both these steps
require adoption by the IdP, which is not the case for SOAP.
Moreover, Zoom’s design considers the case in which an ac-
count delegates authentication to a trusted IdP. In contrast,
we propose to utilize multiple IdPs, which makes it strictly
more difficult to compromise a messaging account.

7.2 Sender Correspondence
We next focus on sender correspondence, our formalization
of social authentication. We show that this notion has appli-
cation beyond secure messaging, and we relate it to existing



notions of authentication. Namely, we show that sender cor-
respondence establishes non-injective agreement for each of
the two associated pseudonyms.

7.2.1 Sender Correspondence in the Wild

To show that sender correspondence applies beyond social au-
thentication as presented in this paper, consider the Automatic
Certificate Management Environment (ACME) protocol [4,
1], powering the free certificate authority (CA) Let’s Encrypt.
ACME automates the certificate request and issuance pro-
cedure. Using ACME, CAs verify certificate requests using
a challenge-response mechanism in three steps. First, a CA
receives a certificate request for a given domain name, signed
by a private key. Second, the CA sends a challenge to the
respective public keyholder and asks them to return it using
DNS or HTTP. Third, the CA verifies that they receive the
signed challenge through the DNS or HTTP channel, at which
point it issues a certificate for the respective public key.

The ACME protocol can be seen as establishing sender
correspondence. Namely, the requesting public key is the
pseudonym A and the domain name is the pseudonym B. Re-
lated literature [6, 25] verifying the ACME protocol only
considered key establishment properties. Namely, they re-
quire that for any attack on ACME, the adversary must know
the certificate’s corresponding secret key. However, they do
not consider identity misbinding attacks, where the adversary
could provide the domain name that gets associated with an
honest key. [4] analyzed ACME’s domain validation algo-
rithm and considered an authentication-style property. But as
the authors only analyzed this one part of ACME, they did
not consider ACME’s overarching security goals.

In general, sender correspondence can be applied to any
two channels that allow for information exchange associated
to pseudonyms. An IdP-managed online version-control sys-
tem like GitLab is a channel where users exchange informa-
tion (commits, comments, etc.) associated with a pseudonym
(usernames). Similarly, DNS is a channel where information
(DNS records) is associated to pseudonyms (domain names).

7.2.2 Relationship to Other Authentication Properties

Non-Injective Agreement In his analysis of authentica-
tion properties [32], Lowe defined the notion of non-injective
agreement, which we recast slightly as follows and formalize
in Tamarin’s property language below:5

Authentication Property (Non-injective agreement; adapted
from [32]). A protocol guarantees a responder A non-injective
agreement if whenever A receives a message m, apparently
from initiator B, then B was previously running the protocol
as the initiator, and the two agents agreed on m.

5[32] also requires that A and B agree on the intended recipient (A), which
we drop so that we can also consider only sender-authenticated protocols.

1 All R S m #tr. Receive(R, S, m) @ #tr
2 ==> (Ex #ts. Send(S, m) @ #ts
3 & #ts < #tr)

Compare this to the following formalization of sender corre-
spondence, a simplified variant of our formalization of social
authentication (Sec. 5.2.2).

1 All V R1 R2 PX PY mx my #ta #trx #try.
2 ( Correspond(V, PX, PY) @ #ta
3 & ReceiveChX(R1, PX, mx) @ #trx
4 & ReceiveChY(R2, PY, my) @ #try)
5 ==> (Ex S #tsx #tsy.
6 SendChX(PX, mx) @ #tsx
7 & Sender(S) @ #tsx
8 & #tsx < #trx
9 & SendChY(PY, my) @ #tsy

10 & Sender(S) @ #tsy
11 & #tsy < #try)

Receive[ChX/Y](R, S, m) models that R received mes-
sage m from S (on channel X or Y), Send[ChX/Y](S, m) that
S sent message m (on channel X or Y). Note that S could be
a pseudonym. Correspond(V, PX, PY) formalizes that the
verifier V identifies pseudonyms PX and PY with the same
party, and Sender(S) @ #t that the message sent at time
point t was sent by agent S.

Intuitively, sender correspondence relates to non-injective
agreement for two reasons: (i) Sender correspondence only
works when the two associated pseudonyms can be used for
authentic communication. Otherwise, it would make little
sense to “tie” them together. (ii) The formalizations of both
properties are very similar: lines 3, 6, 8 and lines 4, 9, 11
exactly match our formalization of non-injective agreement.

We can express (ii) formally. Namely, sender correspon-
dence establishes non-injective agreement on channel X and
Y for the pseudonyms PX and PY. Specifically, we show that
whenever there is a successful run of a protocol providing
sender correspondence between PX and PY, that trace also sat-
isfies non-injective agreement for both of these pseudonyms
(formalized using the respective ChX and ChY events). If such
a trace were a counterexample to non-injective agreement,
e.g., for channel X (the other case follows symmetrically),
there must be an event ReceiveChX(R, PX, m) for which
there is no corresponding SendChX event. In that case, since
R1 and mx in the formalization of sender correspondence are
universally quantified, that trace would be a counterexam-
ple to sender correspondence as well. This contradicts our
assumption that the protocol provides sender correspondence.

This relationship between sender correspondence and non-
injective agreement highlights that sender correspondence is a
desirable authentication property. When successfully running
a protocol providing sender correspondence, we know that
both pseudonyms can be used for authentic communication
and that they are controlled by the same sender.



Sender Invariance In [12], the authors distinguish two no-
tions of authentication that we conflate: (non-injective) agree-
ment and sender invariance. Whereas non-injective agree-
ment (in [12]) is defined for all kinds of agents, sender invari-
ance is defined only for pseudonyms, capturing the security
guarantees behind authenticated channels that use unauthenti-
cated public keys. One does not know who one is connected
with, but it must always be the same agent, provided their
corresponding private key does not leak. The authors show
that non-injective agreement implies sender invariance. Thus,
in the formalism of [12], sender correspondence establishes
both non-injective agreement and sender invariance.

7.3 Formal Analyses of OAuth Protocols

Our formal analysis of SOAP (Sec. 5.2.2) was influenced
by the recommendations of OAuth 2.0 Security Best Current
Practice standard [31] and the formal analyses of the OAuth
2.0 and OpenID Connect protocols conducted in [17, 19]. The
latter works, [17, 19], conducted pen-and-paper proofs in the
Web Infrastructure Model [18], which captures more details
of the browser environment than our model, e.g., HTTP status
codes and their semantics. In contrast, we utilize the Tamarin
prover [34], generating machine-checked proofs and consider
a strictly stronger adversary than both [17, 19] and the original
specifications [23, 38, 30]. Neither of these considered the
leakage of authorization requests.

Only [16], the formal analysis of the OpenID Financial-
grade API, considers a stronger attacker model not requiring
Assumption 4 (browser redirect parameters remain confiden-
tial). However, [16] analyzes a different profile of OAuth 2.0
that does not match our setting as it assumes that applications
can protect secrets, which enables the IdP to authenticate
clients. Dropping Assumption 4 for SOAP would allow the
adversary to capture redirects and thus effectively allow them
to run the protocol themselves altogether (see Sec. 5.2.3).

[21] proposed the Privacy-Preserving OpenID Connect
(POIDC) protocol, which enhances OpenID Connect’s privacy
guarantees, and also analyzed the security of their proposal
in Tamarin. While [21] models the process of users granting
consent more explicitly (logging in and providing consent
are two steps, which we model as one), they make stronger
assumptions on user behavior. Namely, they require that users
only log in and consent to OpenID Connect flows when they
themselves launched the protocol. We do not make this as-
sumption and it is unrealistically strong. Some IdPs neither
require a login (given an existing session) nor require consent
(given that consent has been granted in the past; see Sec. 4.1).
Moreover, [21] does not model the authorization code flow
with PKCE, which our design relies upon. Nevertheless, our
design’s privacy guarantees could be enhanced if designs such
as POIDC were adopted.

8 Conclusion

Social authentication is an exciting authentication paradigm
promising usable [48], remote, and automated authentication
in messaging applications. In this paper, we precisely and
formally defined social authentication (Sec. 3), we presented
SOAP, a secure and practical protocol implementing social
authentication (Sec. 4), we formally proved that SOAP imple-
ments social authentication even in the presence of a strong
adversary (Sec. 5), and we demonstrated SOAP’s practicality
in two prototypes (Sec. 6).

Note that while we targeted Signal in our prototype de-
velopment, and additionally WhatsApp in our problem mo-
tivation (Sec. 2), SOAP can be applied to any application to
authenticate key material and, more generally, applied to any
kind of pseudonyms. For example, the applications Telegram,
Threema, and Viber [45, 51, 50] all provide contact verifi-
cation mechanisms similar to Signal and WhatsApp. Hence,
SOAP can also be applied to these applications.

SOAP is automated to a large degree and can immediately
be adopted by IdPs (indeed, it may not require adoption at
all) because it relies on the well-established OpenID Connect
protocol. It implements a secure and complete in-application
ceremony that requires nothing more of users than their con-
sent. Widespread adoption in messaging applications would
be a cost-effective measure to increase their robustness against
impersonation attacks and eavesdropping.

Future Work. Our results suggest several next steps. First,
we argue that social authentication should be supported by
modern messaging applications. Improving our open-source
Signal prototype such that it could be deployed in produc-
tion is a promising first step in that direction. Second, social
authentication should be applicable far beyond secure messag-
ing. For example, it could be used to secure other communica-
tion such as e-mail, or video conferencing, or it could be used
as a second factor. Third, we suggest amending the OpenID
Connect specification to support user-submitted claims such
that users can consent unambiguously and developers can
use streamlined APIs. Finally, while [48] established social
authentication as a usable authentication ceremony and our
prototypes require little interaction, a user study would help
to finalize our design, accounting for users’ understanding
and preferences regarding social authentication.
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of these random values with at least 256-bits of entropy, fol-
lowing [40]’s security requirements. The application then uses
a secure password-hashing algorithm h to calculate a salted
hash h(k,s) of the safety number k. Next, the application uses
these values to issue an OpenID Connect authentication re-
quest to the selected IdP with the following parameters:

scope: “openid email”; depending on the IdP, other scopes
than “email” may be desirable.

response_type: “code”

nonce: n || h(k,s); the application must ensure that it does
not include the salt. || denotes concatenation. The appli-
cation must ensure the parsing is unambiguous, e.g., by
adding a delimiter character.

state: n

code_challenge: S256(cv); S256 marks the SHA-256 hash-
ing algorithm.

code_challenge_method: “S256”

Naturally, the application also includes its IdP-issued appli-
cation ID, and an appropriate redirect URL. Redirect URLs
must use the HTTPS scheme and must be distinct per IdP.
The application stores the salted hash h(k,s), the salt s, the
nonce n, the redirect URL used, and the code verifier cv as the
most recently issued request. Then, the application launches
the system’s browser with the request URL, which in turn
takes the user to the consent and login page.

When the user consents, the IdP redirects the browser back
to the application. The application verifies that it received the
authorization code through the expected redirect URL and
with the expected state by comparing these values to those
stored as most recently issued request. If both checks pass,
the application uses the authorization code and stored code
verifier to request the ID token from the IdP as specified in
[38], i.e., using a POST request. When receiving the token in
the response, the application verifies the token as follows:

1. Verify that the issuer matches the redirect URL stored.

2. Verify that the token’s audience matches the application
ID.

3. Verify that the token’s nonce includes the hash stored.

4. Verify that the token is not expired.

5. Verify the token’s signature using a key loaded from the
IdP’s discovery document.

If all checks pass, the application clears its storage for the
most recently issued request, stores the nonce as issued by
itself, and forwards the token and salt to the verifier. The
verifier’s application applies checks 4 and 5 and makes the
following additional checks:

1. Verify that the nonce encoded in the token has not been
generated by itself, comparing it to the nonces stored
locally.

2. Verify the safety number’s hash encoded in the token
by recomputing it, using the salt provided by the prover
and the safety number of the channel through which it
received the token, and comparing it for equality.
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