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Abstract
Most existing targeted password guessing models view users’

reuse behaviors as sequences of edit operations (e.g., insert

and delete) performed on old passwords. These atomic edit

operations are limited to modifying one character at a time

and cannot fully cover users’ complex password modifica-

tion behaviors (e.g., modifying the password structure). This

partially leads to a significant gap between the proportion of

users’ reused passwords and the success rates that existing tar-

geted password models can achieve. To fill this gap, this paper

models users’ reuse behaviors by focusing on two key compo-

nents: (1) What they want to copy/keep; (2) What they want to

tweak. More specifically, we introduce the pointer mechanism

and propose a new targeted guessing model, namely POINT-

ERGUESS. By hierarchically redefining password reuse from

both personal and population-wide perspectives, we can ac-

curately and comprehensively characterize users’ password

reuse behaviors. Moreover, we propose MS-POINTERGUESS,

which can employ the victim’s multiple leaked passwords.

By employing 13 large-scale real-world password datasets,

we demonstrate that POINTERGUESS is effective: (1) When

the victim’s password at site A (namely pwA) is known, within

100 guesses, the average success rate of POINTERGUESS in

guessing her password at site B (namely pwB, pwA �= pwB) is

25.21% (for common users) and 12.34% (for security-savvy

users), respectively, which is 21.23%∼71.54% (38.37% on

average) higher than its foremost counterparts; (2) When

not excluding identical password pairs (i.e., pwA can equal

pwB), within 100 guesses, the average success rate of POINT-

ERGUESS is 48.30% (for common users) and 28.42% (for

security-savvy users), respectively, which is 6.31%∼15.92%

higher than its foremost counterparts; (3) Within 100 guesses,

the MS-POINTERGUESS further improves the cracking suc-

cess rate by 31.21% compared to POINTERGUESS.

1 Introduction
Textual passwords stubbornly survive as the most prevalent

authentication method, and they are unlikely to be replaced

in the foreseeable future, because none of their alternatives

(e.g., biometric authentication [8, 22], multi-factor authentica-

tion [46, 47], and graphical passwords [6]) can compete with

textual passwords in terms of simplicity to use, easiness to

change and low cost to deploy [9, 10, 30, 37].

Recent research [11,31,41] shows that the average user has

80∼107 distinct online accounts, and a large fraction of inves-

tigated users (58%∼79% [13, 18, 38, 53]) tend to reuse their

passwords across sites, even though 91% of them are aware of

the risks associated with password reuse [25]. To address this

issue, security experts [12, 43] recommend using password

managers to help users create secure passwords and protect

users from password guessing attacks. A password manager

is designed to store a user’s passwords, generate secure pass-

words, and identify any weak or compromised passwords [29].

However, due to users’ lack of trust in password managers

and the fact that it is too risky to store all passwords in one

place [36, 42, 63], most users still tend to manage their pass-

word by themselves. This indicates that users’ password reuse

behaviors remain a significant security vulnerablity.

On the other hand, unending large-scale password dataset

breaches (e.g., [1, 4, 16, 17, 34]) provide attackers with ample

training data to conduct targeted guessing attacks. Still, recent

studies show that two-thirds of users “modify passwords in

a non-trivial way” [56, 57]. This suggests that designing an

effective targeted guessing model to accurately characterize

users’ reuse behaviors is not an easy task.

1.1 Motivations and design challenges
Recent research shows that 58%∼79% of investigated users

directly reuse or simply modify their existing passwords [13,

18, 38, 53]. However, the cracking success rates that state-

of-the-art targeted password guessing models (i.e., Pass2Edit

[57] and Pass2Path [38]) can achieve are much lower than this

statistic (e.g., within 1,000 guesses, Pass2Edit [57] achieves

a cracking success rate of 52.01% for common users, which

is 11.52%∼51.89% lower than the reported statistic). This

indicates that existing targeted password models may not

effectively characterize users’ reuse behaviors, and the threat



of password reuse guessing attacks might be underestimated.

Despite numerous string similarity metrics (e.g., edit dis-

tance and cosine similarity), they fail to measure users’ pass-

word reuse behaviors comprehensively. For instance, while

modifying IloveMacOP to MacOP6789, neither edit distance

(employed by Pass2Path [38]) nor cosine similarity (employed

by Pass2Edit [57]) can accurately measure their similarity due

to overlooking complex reuse behaviors. This highlights a

gap in existing research on password reuse, indicating a lack

of an appropriate definition for “password reuse”. In all, how

to accurately characterize users’ reuse behaviors given limited

guessing attempts (e.g., 100 as recommended by NIST [19])

remains a challenging problem. Here we explain why.

First, characterizing the transformation rules that users em-

ploy to modify their passwords is quite subtle. In general, we

can view the process of users reusing their old password as

involving two major components: (1) Identifying what the

user wants to copy from her old password; and (2) Determin-

ing what the user wants to tweak or generate based on her old

password. However, most existing targeted password models

(e.g., Pass2Path [38] and Pass2Edit [57]) focus primarily on

the second component. These state-of-the-art models charac-

terize the new password modification process as a sequence of

atomic edit operations (i.e., deleting, inserting, or substituting

one character at a time). Then, they predict the sequence of

edit operations in a “password-to-path” task. For example,

suppose we modify a user’s old password pwA=IloveMacOP
to pwB=MacOP6789, then the edit operation sequence from

pwA to pwB is {<BOS>, (Del, 0, ‘I’), (Del, 1, ‘l’), (Del, 2, ‘o’),

(Del, 3, ‘v’), (Del, 4, ‘e’), (Ins, 10, ‘6’), (Ins, 10, ‘7’), (Ins,

10, ‘8’), (Ins, 10, ‘9’), <EOS>}, where (Del, 0, ‘I’) denotes

deleting the character ‘I’ in the first position of pwA, and

<BOS>/<EOS> represents the start/end of the edit sequence.

To be effective, Pass2Edit [57] and Pass2Path [38] have

to define a large number of atomic edit operations (e.g.,

Pass2Edit [57] defines a total of 1,561 atomic operations). Be-

sides, they filter out “dissimilar” password pairs when training

(e.g., Pass2Path [38] only utilizes password pairs with edit

distance≤4 for training to avoid the negative impacts of fu-

tile/distant password pairs like yjqqq916198 → 916198yj).

This makes it difficult for them to generate long (yet realis-

tic) edit sequences (e.g., edit distance≥5), overlooking users’

macroscopic population-wide reuse behaviors (e.g., using pop-

ular passwords and substituting long segments). To mitigate

this defect, they resort to heuristic approaches to combine a

popular password dictionary with the generated guesses.

Second, as 49%∼65% of websites [5, 32] adopt security

mechanisms (e.g., account lockout and login throttling as

recommended by NIST [60]) to resist online guessing, the

guess number allowed is often very small. For instance, the

Alexa top-10 websites allow 120∼1,140 attempts per day, i.e.,

3,600∼43,200 attempts per month [54]. As the possible pass-

word space is large, it is challenging to prioritize password

reuse behaviors in a personalized manner under such small
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Figure 1: An example of POINTERGUESS generating guesses. Suppose the

old password is IloveMacOP, the target password is MacOP6789. At each

timestep, POINTERGUESS generates two conditional probabilities, Pcopy and

Pvocab, respectively. <BOS>/<EOS> represents the start/end of the generation.

guess numbers. In all, building a password reuse-based guess-

ing model that can accurately capture users’ comprehensive

password reuse behaviors remains a challenging task.

To address these issues, we propose a new targeted guessing

model, POINTERGUESS (see Fig. 1 for a high-level view), di-

rectly taking password characters as input and output, to avoid

the need for defining numerous atomic edit operations. Addi-

tionally, unlike [38, 57], it trains on the entire dataset without

filtering out any distant password pairs. By using the pointer

mechanism [50], POINTERGUESS figures out how likely it is

to copy characters from the old password and how likely it

is to create new characters, enabling POINTERGUESS to cap-

ture both personal and population-wide reuse behaviors (e.g.,

using popular passwords and substituting long segments).

Particularly, within 100 guesses, POINTERGUESS achieves a

success rate that is 38.18% on average higher than its coun-

terparts. Furthermore, we propose MS-POINTERGUESS for

attack scenarios with the victim’s multiple leaked passwords.

Experimental results demonstrate that MS-POINTERGUESS

outperforms POINTERGUESS in practical scenarios.

1.2 Related work
The first targeted guessing algorithm based on password reuse

was proposed by Das et al. at NDSS’14 [14]. They introduced



a heuristic algorithm that applies eight transformation rules

(e.g., insertion and deletion) to the old password of a victim

in a predetermined order to generate guesses. While this algo-

rithm demonstrates superior performance compared to some

trawling guessing algorithms like PCFG [59], it remains en-

tirely heuristic in nature. Its fundamental limitation is that it

uses the same transformation rules across all users, lacking

consideration for personalized rule priority.

At CCS’16, Wang et al. [56] proposed TarGuess-II based on

the PCFG algorithm. As the first probabilistic-based targeted

password model, its key idea is that the user performs only

one operation (e.g., insertion, deletion) on her old password or

password structure once at a time. It analyzes the transforma-

tion path between the password pairs to learn the probability

of the corresponding transformation. It could output guesses

in descending order of probability when generating guesses.

At IEEE S&P’19, Pal et al. [38] proposed a password reuse

model based on deep learning, named Pass2Path. It utilizes a

seq2seq model [49] and conceptualizes its task as predicting

the edit-operation path from the old password to the new

password. Pass2Path can intuitively predict the edit operations

and accurately generate guesses.

One limitation of Pass2Path [38] is that it can not cap-

ture the impact between the editing operations and the corre-

sponding editing effects. Accordingly, Wang et al. [57] pro-

posed a new algorithm called Pass2Edit. Unlike Pass2Path,

Pass2Edit models the new password generation task as a clas-

sification task and uses a multi-step decision-making training

mechanism to capture users’ reuse behaviors. However, both

Pass2Edit and Pass2Path use atomic edit operations, once at a

time and fiter out “dissimilar” password pairs during training,

and thus they can not model transformation operations on

long segments effectively.

At USENIX Security’23, Wang et al. [58] introduced

RFGuess-reuse, a targeted password guessing model. It rep-

resents password prefixes as high-dimensional vectors and

employes a random forest classifier to predict each edit opera-

tion for each type of string. Results show that RFGuess-reuse

performs comparably to TarGuess-II [56] and Pass2Path [38].

1.3 Our contributions
We summarize our main contributions as follows:

• A new targeted guessing model. We introduce the

pointer mechanism into the password reuse research

domain and propose a new targeted password guess-

ing model, POINTERGUESS. By leveraging the pointer

mechanism, POINTERGUESS can effectively identify

what the user wants to copy/keep and what the user wants

to tweak from the old password. Furthermore, consider-

ing the increasingly realistic scenario of multiple pass-

word leakage for common users, we propose a brand-new

targeted guessing model, MS-POINTERGUESS, to assess

the threat of attackers using multiple old passwords to

compromise the target password. By hierarchically re-

defining “password reuse” on two levels, we demonstrate

the effectiveness of POINTERGUESS and provide a new

angle to understand the performance of existing models.

• Extensive evaluation. We demonstrate the effective-

ness of POINTERGUESS on 12 practical attack scenarios

by employing 11 large-scale password datasets. More

specifically, within 100 guesses, POINTERGUESS out-

performs the state-of-the-art models by 38.17% on av-

erage, without counting identical password pairs and

mixing an extra popular password dictionary. Further-

more, we demonstrate the superior performance of MS-

POINTERGUESS over our POINTERGUESS in two prac-

tical attack scenarios. More specifically, within 100

guesses, the MS-POINTERGUESS achieves a success

rate 31.21% (on average) higher than POINTERGUESS.

• A password reuse-based password strength meter.

We introduce a password reuse-based password strength

meter, called PR-PSM, by integrating Zxcvbn [60] with

POINTERGUESS to enhance the evaluation accuracy.

Our experiments demonstrate the importance of consid-

ering password reuse attacks for improving personalized

PSMs, and highlight the importance of avoiding pass-

word reuse for security-critical accounts.

• Some insights. Our analysis shows that POINTERGUESS

can capture complex password reuse behaviors (e.g.,

1991322322 → 1.99132E+12). These findings enhance

our understanding of password reuse and showcase the

effectiveness of POINTERGUESS. Moreover, our results

indicate that in multiple old password reuse attack sce-

narios, the target password is more likely to be found

within old passwords, highlighting the increased risk of

multiple password compromises against users.

2 Background
2.1 Modeling password guessing probability
There are two approaches for neural network-based models

to compute the conditional password probability: (1) directly

predicting the targeted password character sequence (e.g.,

PassTrans [21]); and (2) predicting the atomic edit operation

sequence from the old password to the target password (e.g.,

Pass2Path [38] and Pass2Edit [57]). The first approach fo-

cuses on predicting the exact character sequence by modeling

conditional probabilities of generating each character, and we

can express the conditional probability P(pwB|pwA) as

P(pwB|pwA) = P
(

c
′
1,c

′
2, ...,c

′
M|c1,c1, ...,cN

)

=
M∏

i=1

P
(

c
′
i|pwA,c

′
<i

)
,

(1)

where c
′
<i = (c

′
1, ..,c

′
i−1) denotes the subsequence of pwB, and

how to model P
(

c
′
i|pwA,c

′
<i

)
depends on the specific model.

The second approach aims to predict the atomic edit op-

eration sequence needed to transform the old password into



the targeted password. We denote τA,B = (e1,e2, ...,eE) as

the transformation path from pwA to pwB. The conditional

probability is modeled to estimate the likelihood of each edit

operation given the old password. In this case, we can express

the conditional probability P(pwB|pwA) as

P(pwB|pwA) = P(τA,B|pwA)

=

E∏
i=1

P(ei|pwA,e<i),
(2)

where the e<i denotes the subsequence of τA,B, which is

(e1, ..,ei−1), and the specific formula of the conditional proba-

bility P(ei|pwA,e<i) depends on the specific model. Most re-

cent targeted password guessing models (e.g., Pass2Path [38]

and Pass2Edit [57]) are based on the second approach.

Predicting the atomic edit operation sequence can intu-

itively capture the transformations in password reuse, provid-

ing insights into the specific operations required. However,

employing this approach requires defining a substantial num-

ber of atomic operations, which limits the model’s ability to

generate long/complex operation sequences (i.e., giving very

low probabilities to such sequences). Thus, POINTERGUESS

employs the first approach to model the conditional password

probability in a novel manner. See details in Sec. 3.2.

2.2 Password similarity metrics
Generally, two main types of similarity metrics are com-

monly used to measure password similarity: syntactic met-

rics [20, 38, 57] and semantic metrics [14, 52]. Syntactic met-

rics calculate the “structural distance” (e.g., edit distance and

cosine similarity) as a similarity score, while semantic met-

rics focus on capturing the structural and semantic similarity

between passwords. For instance, Wang et al. [52] presented a

workflow with eight rules (e.g., leet and reversal) to quantify

users’ password reuse behaviors.

In this paper, we primarily consider four representative

syntactic metrics due to their simplicity and sufficiency for

our use in latter sections:

Spatial distance-based metrics. These metrics measure

the spatial distance between passwords, considering their

structure/character-level differences, such as cosine similar-

ity [57] and edit distance [27]. They primarily focus on the

positional and directional differences or equally the number

of operations needed to transform one password into another.

Sequence alignment-based metrics. These metrics align

the character sequences of two passwords to identify com-

mon segments and measure the similarity based on the align-

ment, such as the Needleman-Wunsch algorithm [35] and the

Largest Common Substring algorithm [14], which consider

the order and position of characters in the sequences.

Overlap-based metrics. These metrics quantify the overlap

or common strings between passwords, providing a similarity

score based on the common characters (e.g., the Dice coef-

ficient [15]). They focus on the common elements between

Edit distance 3?
Cosine Similarity 0.75?

pwA
pwB

N
Y OthersY

Y Y Y YN
NNNN

Population-wide reuse

Personal reuse

Figure 2: The workflow of detecting password reuse behaviors based on the

new password reuse definition. “Others” refers to unmatched password pairs.

passwords rather than their structural differences.

Combination metrics. Combination metrics provide a com-

prehensive measurement of similarities by integrating multi-

ple individual metrics. In the work by Guo et al. [20], a com-

bination of edit distance and cosine similarity is employed

to capture both structural and semantic aspects of password

similarities. Edit distance focuses on the absolute positional

dimension, quantifying the atomic operations (e.g., insertion,

deletion, and substitution) needed to transform one password

into another, while cosine similarity gauges syntactic resem-

blance by further considering the angle between vectors rep-

resenting passwords in a high-dimensional space.

3 POINTERGUESS: A targeted password reuse
guessing model based on pointer mechanism

In this section, first, we introduce a hierarchical definition of

“password reuse”, which provides a new angle to understand

users’ password reuse behaviors. Second, we describe our

model, POINTERGUESS, and how to model the conditional

password probability using POINTERGUESS. Third, we detail

our model methodology and hyperparameters.

3.1 A new definition of password reuse
As mentioned in Sec. 1.1, existing targeted password guessing

models (e.g., Pass2Path [38] and Pass2Edit [57]) have inher-

ent limitations. They prefer to use syntactic metrics (e.g., edit

distance [38] and cosine similarity [57]) to measure password

similarities and evaluate their effectiveness in characteriz-

ing users’ password reuse behaviors. To accurately capture

users’ password reuse behaviors, we propose a new definition

of “password reuse” (combining both syntactic and semantic

metrics, as depicted in Fig. 2), which hierarchically catego-

rizes users’ password reuse behaviors into two distinct levels:

personal reuse and population-wide reuse.

Personal reuse refers to the simple modifications that users

tend to apply to their old passwords based on their preferences

and the characteristics of old passwords. These modifications

typically involve a limited number of edit operations, such as

adding/deleting the first/last character and/or replacing a char-

acter with visually similar alternatives (e.g., replacing a with

@). These new passwords, primarily created through personal

reuse, can be easily identified as instances of password reuse

using syntactic metrics (e.g., edit distance [38]).

Population-wide reuse refers to some more complex and

challenging-to-identify password reuse behaviors. In general,

it relates to users’ reuse patterns that can be observed across
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Figure 3: Model architecture of POINTERGUESS, which is based on [45, 50]

and consists of a basic seq2seq model [49] and a pointer module. Pgen (i.e.,

“Final Distribution”) denotes the conditional password probability of POINT-

ERGUESS generating the next character, Pcopy and Pvocab are the conditional

probabilities of copying characters from the old password, and of generating

new characters from the vocabulary, respectively. POINTERGUESS employs

a soft switch pg to decide whether to copy characters from the old password

or generate new characters from the vocabulary.

the entire dataset, encompassing the reuse of popular pass-

words (which are frequently chosen by a substantial number of

users, e.g., KeveinMobile→ password123). Furthermore, it

extends to reusing some specific popular password segments,

like KevinMobile → Kevin@gmail.com.

3.2 Modeling conditional guessing probability
As discussed in Sec. 2.1, we adopt the directly predicting

characters approach (i.e., Eq. 1) to address limitations in

Pass2Edit [57] and Pass2Path [38]. We start with a basic

sequence-to-sequence (seq2seq) model, utilizing it to directly

model the similarity between users’ target and old passwords.

However, the basic seq2seq model may neglect the impact of

low-frequency yet crucial characters in a given old password

(i.e., the encoder input) on predicting subsequent characters.

For example, as shown in Fig. 1, the basic seq2seq model

struggles to generate ‘M’ as the first character due to the infre-

quent occurrence of ‘M’ as the first character in the training set.

More specifically, at the first step, it assigns an extremely low

probability to ‘M’ (i.e., Pvocab(M) = 0.005). This highlights the

challenge of modeling the conditional password probability:

How to assign a sufficient likelihood to those crucial char-
acters that appear in the given old password but have low
frequency in the training set.

To address this issue, we introduce the Pointer Module to

add additional likelihood for those characters appearing in the

old password. Our POINTERGUESS incorporates Pvocab (the

conditional probability of generating characters from vocabu-

lary, i.e., 95 printable characters) and Pcopy (the conditional

probability of copying from the old password), to model the

conditional password probability (Pgen). As shown in Fig.

1, after incorporating Pcopy, the probability of generating ‘M’

significantly increases (i.e., Pgen (M) = 0.097 � Pvocab(M) =
0.005). In each subsequent step, POINTERGUESS dynami-

cally adjusts the probabilities of each character through Pcopy

and Pvocab, gradually approaching the correct target password

(i.e., MacOP6789). Below, we formally describe how POINT-

ERGUESS models the conditional password probability.

As shown in Fig. 3, at each timestep t, POINTERGUESS

uses pwA as the input to produce encoder input xt , and uses the

previously generated character sequence as decoder input yt .

The basic seq2seq model of POINTERGUESS outputs encoder

hidden states ht and decoder hidden states st . Subsequently,

POINTERGUESS computes the conditional probability of gen-

erating characters from the vocabulary, i.e., Pvocab, as

Pvocab = so f tmax
(
W ′ (W ∗ [st ,ct ]+bout)+b′out

)
, (3)

where [st ,ct ] denotes concatenating st and ct , W , W ′, bout ,

b′out are learnable parameters, and ct is the context vector at

timestep t. ct represents the context information learned from

the encoder input (i.e., pwA) at timestep t.
Additionally, POINTERGUESS employs the Pointer Module

to capture user-specific patterns and reuse behaviors, produc-

ing the conditional probability of copying characters from the

old password, i.e., Pcopy, which can be expressed as

Pcopy (c) = FFN

⎛
⎝ ∑

j:c j=c

at
j

⎞
⎠ , (4)

where FFN (·) is a feed-forward network used to rescale the

attention vector at generated by the pointer module at timestep

t. If the input sequence does not contain the token c, then the

value of Pcopy (c) is zero.

To facilitate flexible decision-making on whether to copy
characters from the old password or generate new characters
from the vocabulary, POINTERGUESS utilizes a soft switch

pg, which is

pg = σ(Wc ∗ ct +Ws ∗ st +Wy ∗ yt +bg) , (5)

where Wc, Ws, Wy, bg are learnable parameters. yt is the de-

coder input at timestep t and σ(·) is a sigmoid function.

Finally, POINTERGUESS integrates Pvocab and Pcopy to gen-

erate Pgen, representing the conditional password probability

Pgen, which is expressed as

Pgen (c) = pg ∗Pcopy (c)+(1− pg)∗Pvocab (c) . (6)

This allows POINTERGUESS to dynamically decide be-

tween copying characters from the old password and generat-

ing new characters from the vocabulary.

3.3 Methodology and configuration
As shown in Fig. 4, POINTERGUESS consists of three phases:

Preprocess, training, and generation. We now present the

workflow of POINTERGUESS that tackles model training and

guess generation, and detail the preprocess phase in Sec. 4.

Model architecture. As shown in Fig. 3, our POINTERGUESS

mainly consists of a sequence-to-sequence model (with an

encoder and a decoder) and an extra Pointer Module [50]. The

encoder is a 1-layer Bi-LSTM, which is used to capture the



Table 1: Data cleaning of 13 password datasets leaked from various web services (“PWs” stands for passwords).

Dataset Language Leaked Time Original PWs Unique PWs Removed% Email invalid PW invalid After cleaning Service

000Webhost English Oct. 2015 15,299,907 10,526,769 0.76% 195 67,401 15,183,627 Web hosting
LinkedIn English Jan. 2012 54,656,615 34,282,741 0.23% 0 122,051 54,534,564 Job hunting
Yahoo English Jul. 2012 5,737,798 3,495,654 0.95% 118 54,105 5,683,574 Portal

RedMart‡ English Oct. 2020 1,108,774 — 0.0% 0 — 1,108,774 E-commerce
ClixSense English Jun. 2016 2,222,045 1,627,069 0.07% 0 1,445 2,220,600 E-commerce
LiveAuctioneers English Jun. 2020 2,912,377 2,229,358 1.34% 3,341 35,646 2,876,496 Online auction platform
Tianya Chinese Dec. 2011 30,816,592 12,873,222 0.03% 5,783 3,279 30,807,530 Social forum
126 Chinese Dec. 2011 6,392,568 3,764,740 0.24% 0 14,995 6,377,573 Email
Dodonew Chinese Dec. 2011 16,282,286 10,010,744 1.57% 42,585 30,085 16,026,270 E-commerce
Taobao Chinese Feb. 2016 15,072,418 11,633,759 0.01% 1,176 90 15,071,153 E-commerce
CSDN Chinese Dec. 2011 6,428,410 4,034,779 0.05% 5 3,157 6,425,246 Programmer forum
4iQ Mixed Dec. 2017 1,400,553,869 445,259,097 1.36% 575,283 18,475,938 1,381,502,648 Unkonwn
COMB Mixed Feb. 2021 3,279,064,312 855,833,811 2.97% 81,542,117 15,718,941 3,181,803,254 Unkonwn
‡RedMart passwords are in salted-hash, and we use them as real targets in attack scenario #8 (000Webhost → RedMart). See more details in Table 2.
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Figure 4: The workflow of POINTERGUESS. There are three phases: Prepro-

cess, Training, and Generation. Specifically, M and K denote the number of

users per batch and Top-K password guesses for each user, respectively.

contextual information of the old password. The decoder is a

1-layer Bi-LSTM used to generate conditional guesses based

on the captured contextual information from the encoder. We

set the hidden dimension of encoder and decoder as 128. We

add an extra reduce layer to process the output of the encoder

and decoder, which is used to aggregate the encoder’s output

and further improve the performance of our model.

Additionally, we integrate a Pointer Module [50] into our

POINTERGUESS, comprising an attention network and a feed-

forward network. The attention network highlights relevant

parts of the old password during model decoding. It generates

the attention vector and employs a sigmoid function to yield

the context information vector at each timestep.

Training phase. During this phase, POINTERGUESS ran-

domly samples batches of password pairs (XBS,YBS) from the

training set, where XBS represents the old passwords, and YBS
represents the corresponding target passwords. Our model in-

puts the old passwords and generates guesses at the character

level, denoted as ŶBS. The training objective involves a loss

function, denoted as L, which measures the log probability of

ŶBS being aligned with the ground truth passwords YBS. The

goal of L is to find the optimized parameters θ∗, which are

θ∗ = argmin
θ

(Lθ
(
YBS,ŶBS

))
, (7)

where θ denotes model parameters. We use Mean Masked

Negative Log-Likelihood as our loss function and the Adam

optimizer [23] to optimize parameters based on computed gra-
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USER_ID = 1

USER_ID = 2

SOS p
SOS a
SOS Z
SOS Z
SOS B
SOS b

Depth == 3
Loop execution

Sort &
Sample

Depth == 2

Figure 5: An example of batch-beam search.The batch size is three and beam

size is two. SOS is the start symbol. Darker color means higher probability.

For example, the second user (i.e., USER_ID = 1) choose c2
3 and c2

5 (which

denote the predicted characters) due to their high probabilities. Guess gener-

ation will continue until all users are completed.

dients. The training process is repeated over multiple epochs

(e.g., set to 50), with shuffling and batch division of the data.

Generation phase. As shown in Fig. 4, POINTERGUESS

generates K guesses for each user using the given old pass-

word. Furthermore, we implement the Batch Beam Search

algorithm based on [61] to improve efficiency and leverage

parallel computing on GPUs. As shown in Fig. 5, the algo-

rithm generates top-K guesses simultaneously for all users

(e.g., M users) in a batch, selecting the top candidates based

on their probabilities. Password generation process continues

until the desired number of guesses is obtained for all users.

Model hyperparameter configuration. During the genera-

tion process, we perform log-softmax operations on the condi-

tional probability predicted by the model at each timestep. To

ensure the predicted probability is not zero, we select ε=1e-

12 as our smoothed value. We denote the vocabulary as Σ,

consisting of 95 printable ASCII characters and four special

identifiers (i.e., <EOS>, <SOS>, <PAD>, and <UNK>), and the

vocabulary size ‖Σ‖ is 99. Without loss of generality, we im-

plement Bahdanau et al.’s attention mechanism [7] in our

model, and set the learning rate as 0.001 and the number of

training epochs as 50. We use the Dropout [48] to alleviate

overfitting, and the dropout rate is set to 0.5, which means

that there are 50% neurons randomly selected to be invalid

and not considered in gradient operations.

4 Experiments and analysis

4.1 Dataset cleaning and ethical consideration
Datasets. We demonstrate the effectiveness of POINTER-

GUESS and compare it with other state-of-the-art models

based on 11 large-scale real-world datasets, a total of 4.8



Table 2: Setups of 14 different attack scenarios (see detailed results in Fig. 6).‡

#. Attack scenario Language Training set setup Size (pairs) Testing set setup Size (pairs) Clean strategies†

#1. 126 → CSDN Chinese 126 → Dodonew 188,926 126 → CSDN 85,206 Len≥8
#2. CSDN → 126 Chinese CSDN → Dodonew 211,385 CSDN → 126 86,104 Basic
#3. Tianya → CSDN Chinese Tianya → Dodonew 434,255 Tianya → CSDN 826,559 Len≥8
#4. CSDN → Dodonew Chinese CSDN → 126 86,104 CSDN → Dodonew 211,385 Basic
#5. 000Webhost → LinkedIn English 000Webhost → Yahoo 265,083 000Webhost → LinkedIn 213,697 Len≥6
#6. Yahoo → 000Webhost English Yahoo → LinkedIn 40,646 Yahoo → 000Webhost 37,479 LD
#7. LinkedIn → 000Webhost English LinkedIn → Yahoo 40,812 LinkedIn → 000Webhost 259,175 LD, Len≥6
#8. 000Webhost → RedMart English 000Webhost → Linkedin 213,697 000Webhost → RedMart 6,858 Len≥6
#9. 80% Mixed_EN → 20% Mixed_EN English 80% of Mixed_EN 338,857 20% of Mixed_EN 84,714 Basic
#10. 80% Mixed_CN → 20% Mixed_CN Chinese 80% of Mixed_CN 434,255 20% of Mixed_CN 108,564 Basic
#11. 80% 4iQ → 20% 4iQ Mixed 80% of 4iQ dataset 116,837,808 20 % 4iQ dataset 29,209,452 Basic
#12. 80% COMB → 20% COMB Mixed 80% of COMB 342,921,727 20 % COMB dataset 85,730,432 Basic
#13A. Tianya, 126 → Taobao Tianya, 126 → Dodonew Tianya, 126 → Taobao Basic
#13B. Tianya → Taobao Chinese Tianya → Dodonew 95,457 Tianya → Taobao 79,562 Basic
#13C. 126 → Taobao 126 → Dodonew 126 → Taobao Basic
#14A. 80% Union → 20% UnionB

∗ 80% of Union dataset 20 % UnionB dataset Basic
#14B. 80% UnionA1 → 20% UnionB English 80% of UnionA1 dataset 27,833,899 20 % UnionB dataset 10,785,542 Basic
#14C. 80% UnionA2 → 20% UnionB 80% of UnionA2 dataset 20 % UnionB dataset Basic
‡ A → B (e.g., #1. 126 → CSDN) means that: A user’s password at service A can be used by an attacker to help attack this user’s account at service B. Note that for

#13A and #14A, we represent the attack scenarios as A1,A2 → B, which means that a user’s passwords at services A1 and A2 can be used by an attacker to help
herself attack the same user’s account at service B. The sub-scenarios #13B∼#13C and #14B∼#14C are the sub-scenarios for #13A and #14A, respectively.∗The Union dataset is built by matching ClixSense, LiveAuctioneers and 4iQ using email. Note that we remove any data item with fewer than three passwords.

†The Basic strategy (defined in Sec. 4.1) involves the removal of invalid emails and non-human created passwords. Cleaning strategies need to exclusively focus on
the site B in the A → B pairs. E.g., for Yahoo → LinkedIn and LinkedIn → Yahoo, the initial number of password pairs is identical. However, after applying the LD
strategy (which means retaining passwords with at least one letter and one digit) to LinkedIn, its number becomes 40,646, while after applying LD and Len≥6 to
Yahoo, its number becomes 40,812. This explains the differences in the number of data items for Yahoo → LinkedIn (LD) and LinkedIn → Yahoo (LD and Len≥6).

billion passwords (see Table 1). To ensure a comprehensive

and reliable evaluation of our models and their counterparts,

besides four English and five Chinese datasets, we further

employ two synthesised large-scale datasets, 4iQ [2] and

COMB [3]. All these datasets in Table 1 were leaked and

published on the Internet from 2011 to 2021 and are represen-

tative of current real users’ reuse behavior. Particularly, (1)

4iQ and COMB are two massively mixed datasets [2, 3] con-

sisting of large datasets exposed by previous breaches (e.g.,

LinkedIn, Netflix); (2) RedMart [4] is an online grocery plat-

form whose servers store all passwords in salted-hash. These

passwords serve as real targets (as with [57]); (3) 000Webhost

is a website used by web administrators, so its users are more

likely to have higher security awareness. Thus, the experi-

ments involving 000Webhost in attack scenarios #6 and #7

represent evaluation on security-savvy users (see Table 2).

Ethical consideration. Though ever available on the Internet

and dark web (and widely used in the literature [14,38,57,58]),

these datasets are private data. Thus, we take three precau-

tionary measures to ensure that there is no additional harm

to users: (1) All our datasets are stored and processed on

computers not connected to the Internet; (2) Only report the

aggregated statistical information and some typical password

examples (without PII), i.e., treat each account as confidential,

so that using it in our work will not bring new risks to the

corresponding victim; (3) Delete all the intermediate sensi-

tive data (e.g., email and datasets of target guesses) once our

analysis is completed. These datasets may be exploited by

malicious parties for misconduct, while our use is beneficial

for the community to understand password strength and for

security administrators to make more informed decisions.

Dataset cleaning. First, we remove data items with an

empty/invalid email. We also keep passwords that are Len<30

and only contain 95 printable ASCII characters. We call this

as the Basic cleaning strategy. We will adaptively adjust this

strategy for different websites according to their password

policy (see more details in Table 1).

4.2 Experimental setup
To better evaluate the effectiveness of our POINTERGUESS,

we design 12 practical attack scenarios (see Table 2) by em-

ploying datasets described above (see Table 1). More specifi-

cally, we use email to match two datasets to create training/test

datasets. For instance, 126 → CSDN means matching 126

with CSDN (by using email) and getting 85,206 password

pairs. We design attack scenarios #1∼#4 and #5∼#8 for Chi-

nese and English users, respectively. All selected test sets,

except for the scenario #8 (where RedMart passwords are in

salted-hash), are in plaintext. As 000webhost is mainly used

by web administrators, and we design attack scenarios #6 and

#7 to simulate attacks on high-security users.

Scenarios #9 and #10 employ mixed datasets within one

language, i.e., Mixed_EN and Mixed_CN, which combine

multiple English (i.e., 000Webhost, LinkedIn and Yahoo) and

Chinese (i.e., Tianya, Dodonew, and CSDN) datasets, respec-

tively. Scenarios #11 and #12 further evaluate users of mixed

languages by employing two large-scale synthesized datasets

4iQ and COMB. These four additional evaluation setups are

in accord with that of [57].

In Sec. 6, we introduce MS-POINTERGUESS designed for

multiple password reuse attack scenarios. To demonstrate

its effectiveness, we design two practical attack scenarios

#13 and #14 (see Table 2 for details), with each consisting

of a main scenario for MS-POINTERGUESS and two sub-

scenarios for comparison with POINTERGUESS. We design

scenario #13 (#13A∼#13C) for Chinese users, which evaluate

the cases when the attacker gets two old passwords of the

victim. This allows us to fairly compare the effectiveness of



(a) Chinese: #1. 126 → CSDN (b) #2: CSDN → 126 (c) #3: Tianya → CSDN

(d) #4: CSDN → Dodonew (e) English: #5. 000Webhost → LinkedIn (f) #6: Yahoo → 000Webhost

(g) #7: LinkedIn → 000Webhost (h) #8: 000Webhost → RedMart (i) #9: Mixed_EN: 80% → 20%

(j) #10: Mixed_CN: 80% → 20% (k) #11: 4iQ: 80% → 20% (l) Mixed: #12. COMB: 80% → 20%
Figure 6: Experiments for attack scenarios #1∼#12, for each of which the training set is shown in Table 2 and the test set is as the sub-title. Our POINTERGUESS

achieves the highest cracking success rate in 10 of 12 scenarios over its foremost counterparts TarGuess-II [56], Pass2Edit [57] and Pass2Path [38].

POINTERGUESS with MS-POINTERGUESS.

We design scenario #14 (#14A∼#14C) for English users.

We match ClixSense, LiveAuctioneers, and 4iQ by emails,

ensuring a minimum of three passwords for each data item in

the matched dataset called Union. We randomly select 80%

of the Union as the training set and the rest 20% as the test set.

Additionally, to comprehensively evaluate our models’ per-

formance, we construct UnionA1 and UnionA2 for scenarios

#14B and #14C, based on the source data, respectively.

State-of-the-art models for comparison. We compare our

model with three state-of-the-art models (i.e., TarGuess-II

[56], Pass2Path [38], and Pass2Edit [57] and their variants),

as well as other relevant models (e.g., Top-PW and PlainSeq).

To evaluate the impact of the pointer module on model per-

formance, we use a basic seq2seq model, called PlainSeq,

without utilizing the pointer module. We provide a briefly

overview of these models in Appendix A. As CPG [40]

and ReSeg-PCFG [51] are tailored for trawling guessing

or mask guessing rather than password reuse-based attacks,

and RFGuess-reuse achieves comparable performance with

TarGuess-II [56] and Pass2Path [38] (see Table 5 in [58] for

details), we exclude them from our model comparison.

Experimental environment. We randomly sample 20,000 
passwords for test sets exceeding 20,000 as previous stud-

ies [38,57] have proved that using over 10,000 password pairs 
leads to performance convergence. We perform all experi-

ments on a workstation with an Intel Xeon Silver processor 
and a GPU of NVIDIA RTX 3090 (24GB of VRAM), an 
experimental environment most attackers can easily build.

4.3 Experimental results
Here we briefly analyze the results of attacking scenarios 
#1∼#12. As with [14, 38, 57, 58], we use the guess-number 
graph to evaluate the performance of POINTERGUESS and 
its counterparts (see more details about these models in Ap-

pendix A). Moreover, we present exact crack rates for specific 
guess numbers (e.g., 10, 100, and 1,000), which are commonly 
concerned in password security studies [38, 56, 57] and stan-

dard (e.g., NIST [19]). See more detailed results in Appendix 
G of the full version at https://bit.ly/3wGx9Ke.

Overall analysis. Due to the presence of identical password 
pairs (i.e., pwA = pwB) in each test set, we present the experi-

mental results of scenarios #1∼#12 in two cases: one without 
identical password pairs and the other with.



Figure 7: The comparision of POINTERGUESS and PlainSeq’s ability in

cracking passwords with different cosine similarity (2-gram) thresholds.

Here we take scenario #2 (CSDN → 126) for example.

In the former case (i.e., without identical password pairs),

as shown in Table 8 of the full version, within 1,000 guesses,

the success rates of POINTERGUESS are 10.08% ∼ 45.00%

(avg. 25.85%), while that of Pass2Edit [57], Pass2Path [38],

and TarGuess-II [56] are 9.82%∼37.62% (avg. 20.39%),

8.52%∼31.87% (avg. 16.28%), and 8.92%∼38.38% (avg.

20.61%). That is, the guessing success rates of POINTER-

GUESS are 21.58%, 52.27%, and 20.61% (on average) higher

than Pass2Edit, Pass2Path, and TarGuess-II, respectively.

In the latter case (i.e., with identical password pairs), as

shown in Table 9 of the full version, within 1,000 guesses,

the success rates of POINTERGUESS are 24.36% ∼ 77.03%

(on average 44.91%), while that of Pass2Edit [57], Pass2Path

[38], and TarGuess-II [56] are 21.88%∼74.39% (on aver-

age 41.25%), 19.54%∼69.26% (on average 38.64%), and

18.20%∼74.62% (on average 41.25%), respectively. That is,

the guessing success rates of POINTERGUESS are 8.87%,

16.23%, and 8.87% (on average) higher than Pass2Edit,

Pass2Path, and TarGuess-II, respectively.

Compare with the baseline (PlainSeq). To better illustrate

the role of the pointer mechanism [50], we conduct a further

comparison between POINTERGUESS and the basic seq2seq

model [49] without the pointer mechanism [50], i.e., PlainSeq.

Fig 7 shows their performance in cracking passwords under

different cosine similarity (2-gram) thresholds. Results show

that POINTERGUESS drastically outperforms PlainSeq, espe-

cially in cases where the cosine similarity threshold ranges

from 0.8 to 1.0. We further analyze the password cracked

by POINTERGUESS, and find that POINTERGUESS excels in

cracking: 1) password pairs whose target passwords are cre-

ated by adding or deleting uncommon substrings from the old

passwords (e.g., 585129wupan → 585129); and 2) password

pairs whose cosine similarities are large but also with a large

edit distance, such as 1000020000 → 100200 whose cosine

similarity is 0.91 and edit distance is 4.

The impact of language on performance. We now compare

the effectiveness of POINTERGUESS in Chinese (#1∼#4)

and English (#5∼#8) attack scenarios. As shown in Fig. 6,

the experimental results demonstrate that POINTERGUESS

outperforms other models in all Chinese scenarios. In En-

glish scenarios, our model still achieves higher or comparable

performance. Notably, POINTERGUESS significantly outper-

forms other models when attacking security-savvy users (see

Figure 8: The cracking success rate of all models with mixing popular pass-

words (using scenario #4: CSDN → Dodonew as an example). A model

with the suffix “-mix” means that it is an adjustment to its original model by

mixing popular passwords in the same strategy with [57].

scenarios #6 and #7 that attack 000webhost).

It is worth noting that our POINTERGUESS shows a much

higher success rates in Chinese scenarios than in English ones.

This can be largely attributed to the facts that: (1) English sce-

narios all involve users of 000Webhost, who are web admin-

istrators and thus possess a higher level of security awareness

than common users [56]; (2) there exist vast differences in

structural and semantic characteristics between Chinese and

English passwords, and the strength of Chinese passwords

is weaker in online guessing scenarios (i.e., when the guess

number allowed for the attacker is small [55]).

Mixing with external popular passwords. We explore the

impact of mixing external popular passwords on the perfor-

mance of POINTERGUESS and other models in attack scenar-

ios #1∼#12. We adopt the same mixing strategy as in [57].

Fig. 8 shows that all models (except for POINTERGUESS)

have a significant increase in crack rates after mixing exter-

nal popular passwords. Pass2Edit [57] and Pass2Path [38],

in particular, improve performance significantly after mixing

popular passwords, which is mainly due to their inherent de-

fect of overlooking users’ macroscopic population-wide reuse

behaviors (see Sec. 1.1). While excluding identical password

pairs, within 1,000 guesses, the success rates of POINTER-

GUESS-mix are 10.38%∼45.50% (avg. 25.87%), while that

of Pass2Edit-mix, Pass2Path-mix are 10.96%∼45.70% (avg.

24.58%) and 8.52%∼31.87% (avg. 16.28%), respectively.

That is, the guessing success rates of POINTERGUESS-mix

are 5.25% and 58.91% (on average) higher than Pass2Edit-

mix and Pass2Path-mix, respectively.

While not excluding identical password pairs, within

1,000 guesses, the success rates of POINTERGUESS-mix are

23.95%∼62.55% (avg. 44.94%), while that of Pass2Edit-

mix, Pass2Path-mix are 22.96%∼62.68% (avg. 44.04%) and

19.85%∼57.97% (avg. 41.27%). That is, the guessing suc-

cess rates of POINTERGUESS-mix are 2.04% and 8.89% (on

average) higher than Pass2Edit-mix and Pass2Path-mix.

5 Further analysis
We analyze characteristics of passwords cracked by differ-

ent models, employing various similarity metrics to explore

users’ password reuse from both “syntactic” and “semantic”

perspectives. To demonstrate models’ performance accurately,

we adopt a new “password reuse” definition (as discussed in



(a) Spatial distance-based distribution (b) Sequence alignment-based distribution (c) Overlap-based distribution

Figure 9: Syntactic metric distributions of independently cracked password pairs by three major models. Figs. 9(a)∼9(c) show the example of similarity

distributions based on spatial-distance metric (i.e., edit distance [27]), sequence-alignment metric (i.e., Largest Common String algorithm [14]) and overlap-based

metric (i.e., Overlap [26]), respectively. “Total” represents all password pairs in all test sets and “Union” represents all password pairs cracked by three models.
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Figure 10: The overlap ratios of cracked password pairs by three models.

Sec. 3.1) to measure similarity distributions. Additionally,

we investigate existing models’ performance and limitations

based on similarity distributions of cracked passwords.

5.1 Characteristics of cracked passwords
Overlap. To compare the cracking capabilities of POINT-

ERGUESS, Pass2Edit [57], and Pass2Path [38], we examine

the overlap in uniquely cracked password pairs across 12 at-

tack scenarios (i.e., 29,252 of 89,951 all cracked password

pairs). Fig. 10 shows a total overlap rate of 34.3% (10,033 of

29,252) among the three models. For independently cracked

password pairs, POINTERGUESS has a 16.7% overlap (4,885

of 29,252), while that of Pass2Edit and Pass2Path are 1.6%

(468 of 29,252) and 0.6% (176 of 29,252), respectively.

Notably,the overlap between POINTERGUESS and either

Pass2Edit or Pass2Path is significantly higher (i.e., 24.3% =

7,108/29,252, and 18.0% = 5,265/29,252, respectively) com-

pared to the intersection between Pass2Edit and Pass2Path

(i.e., 4.4% = 1,287/29,252). This highlights that POINTER-

GUESS is good at what Pass2Edit and Pass2Path can do.

Length distribution. Here we use the password pairs inde-
pendently cracked by each of these three models to explore

their differences in cracking passwords of varied lengths.

Fig. 11 shows that our model primarily focuses on pass-

words with lengths of 6 and 8∼10 due to the fact that POINT-

ERGUESS can capture users’ macroscopic population-wide

reuse behaviors, e.g., using popular passwords (which are

typically of length 6 and 8) and substituting long segments

(like yjqqq916198 → 916198yj). Notably, the length distri-

butions of our model and the union set (denoted as “Union” in

Fig. 11) exhibit a high degree of similarity (i.e., have two

peaks), which highlights that POINTERGUESS is good at

cracking passwords of lengths that Pass2Edit [57] and/or

Figure 11: The length distribution of independently cracked passwords.

Pass2Path [38] are good at.

5.2 Characterize password reuse behaviors
We conduct further evaluations on the performance of differ-

ent models in characterizing user’s password reuse behaviors.

We employ various similarity metrics (as we mentioned in

Sec. 2.2) to evaluate different models’ ability on cracking

password pairs with different similarity scores.

First, we employ syntactic metrics to measure the distri-

bution of independently cracked password pairs. As shown

in Fig. 9, POINTERGUESS exhibits superior performance on

low-similarity cases, attributing this to its ability in predict-
ing targeted password character sequences without excluding
unsimilar password pairs from the training set. This allows

POINTERGUESS to generate tweaked passwords with low

similarity to the old password, including those with edit dis-

tances >5 (see examples in Table 3).

Figure 12: The combined similarity distribution of edit distance and cosine

similarity (2-gram) as defined in [20]. Results are similar to Fig. 9.

Fig. 9 illustrates that Pass2Edit [57] and Pass2Path [38]

exhibit “overfitting”, as the similarity distribution of the

cracked password pairs significantly deviates from the over-

all similarity distribution (i.e., “Total” in Fig. 9) of all pass-

word pairs in the test sets. This phenomenon implies that

Pass2Edit and Pass2Path struggle to model the distribution

of entire password reuse behaviors. Particularly, they face

challenges in cracking password pairs with excessively long



Table 3: Ten examples of password pairs cracked independently by POINTERGUESS, Pass2Edit [57] and Pass2Path [38].

Models POINTERGUESS Pass2Edit [57] Pass2Path [38]

Index Old password Target password Old password Target password Old password Target password

1 852255685145294 abc123 MCfaraona020591 mcfaraona91 8841800lin lin8841800lin
2 boy78697740 boy123456789 edwardcullenqwe Edwardcullen jangobango88 jangobango1988
3 kazeevatanyuffka872ghbrjyf kazeevatanyuffka Castor Castor08 13197277038 131w97277038
4 katmarlzelda969 katmarlzelda969@yahoo.com 4.14495E 4.14495E+13 IloveYOU2998 iloveyou2998
5 ghostgamer-2001 ghostgamer-2001@hotmail.com t0romerda. toromerda SAIIIOK sai1iok
6 uuDBUMDM5NApOzYW qweasdzxc UHJVuhjvbr49 Uhjvuhjvbr49 wgpfuqd861208 wgpfUQD861208
7 jaydiltddasilva@partners.org jaydilla1 30061986123 30061986qwe rajuraju raju2raju
8 102457685& 102457685&#33;&#33; WMOOLMAN1058 WMOOLMAN drdeath 1DRDEATH
9 1991322322 1.99132E+12 RBV//1960 rbl//1960 samantha s@mantha

10 6125251987110 6.12525E+12 SharmaHellV1.0 HellV1.0 liljojo202 liljojo120

Table 4: The proportion of transformation rules.

Models
Password transformation rules %†

Sub. Leet Cap. LCS Rev. Leet+LCS Cap.+Sub. Others
Union 71.48 0.57 4.31 63.71 0.06 36.48 1.78 9.78
POINTERGUESS 62.46 0.53 3.35 57.41 0.13 34.94 5.00 20.17
Pass2Edit [57] 76.75 0.60 4.53 68.03 0.01 38.69 7.02 3.13
Pass2Path [38] 78.92 0.59 5.53 68.14 0.00 36.15 8.44 1.92

†The abbreviations “Sub.”, “Cap.”, “LCS” and “Rev.” stand for “Substring”,
“Capitalization”, “Largest Common String” and “Reversal” respectively.

Figure 13: The similarity in terms of our “Personal reuse” and ‘Population-

wide reuse’ and other types of reuse.

editing sequences or low similarity (e.g., KeveinMobile →
password123). As shown in Fig. 12, we combine edit dis-

tance and cosine similarity (2-gram) as suggested in [20] for

a comprehensive evaluation, yielding similar conclusions to

other syntactic metrics.

Second, we employ semantic metrics, following the work-

flow proposed by Wang et al. [52], to measure the transfor-

mation rules of cracked password pairs. Table 4 shows that

Pass2Edit [57] and Pass2Path [38] tend to focus on some spe-

cific transformation (e.g., “LCS”) while overlooking some

other complex segment-level transformations (i.e., “Others”

in Table 4), e.g., transforming yjqqq916198 to 916198yj.

Third, as mentioned in Sec. 3.1, we introduce a hierarchical

definition of “password reuse”, and propose a workflow that

considers both syntactic and semantic metrics (see Fig. 2).

More specifically, we use a combination of edit distance and

cosine similarity to identify “personal reuse” password pairs,

while applying transformation rules to detect “population-

wide reuse” patterns for the remaining password pairs. As

shown in Fig. 13, nearly 40% of all test passwords are catego-

rized as population-wide reuse, and POINTERGUESS shows a

clear advantage in cracking such password pairs. We can see

that another 40% of password pairs still can not be identified

as reuse (see “Total” when x-axis=“Others”) by POINTER-

GUESS and other major models. This outlines the need for a

more thorough understanding of users’ reuse behaviors.

(a) Edit distance. (b) Cosine similarity.

Figure 14: Cumulative Distribution Functions (CDF) of cracking proportion

on password similarity difference. Figs. 14(a) and 14(b) show the results of

using edit distance and cosine similarity as metrics, respectively.

Table 5: Running time of different attack models.†

Attack model POINTERGUESS Pass2Edit [57] Pass2Path [38]

Training time 15:14 09:43 14:10

Testing time 00:24 02:26 01:47

Speed‡ (pw/s) 9,700∼9,800 2,100∼2,200 2,900∼3,000

Model size (MB) 2.26 11 53.6
†All running time is taken from attack scenario #10, and their format is

“hour:minute”. All model parameters are consistent with Sec. 3.
‡Speed (of generating guesses) is calculated by dividing the total number by

the total testing time, and there may be fluctuations in different scenarios.

5.3 Further exploration on model performance
Limitation of existing models. Existing models tend to lean

towards generating passwords that are either “very similar” or

involve “fewer edit operations” regarding old passwords. This

limits their ability to effectively comprehend and capture pass-

word reuse behaviors across the entire password distribution,

particularly in cases of population-wide reuse. As a result,

there is a notable gap between their cracking performance

and the reality of password reuse.

To demonstrate this disparity and delve deeper into the lim-

itations of password reuse-based guessing models, we utilize

Cumulative Distribution Function (CDF) curves. As shown

in Fig. 14, existing models [38, 57] (that focus on generating

highly similar passwords) quickly reach the stable saturation

plain. In contrast, POINTERGUESS can crack password pairs

even when the similarity differences are as large as 0.8∼1.0,

which corroberates its capability in capturing “population-

wide reuse” and provides a new perspective on why POINT-

ERGUESS achieves higher performance than existing models.

Furthermore, when comparing the proportion cracked by

the three models with the whole 89,951 unique test password

pairs, a significant gap emerges. As shown in Fig. 14, the

CDF curves of proportions cracked by three models deviates

significantly from that of overall password pairs when the

similarity difference ≥0.5. To address this issue, we intro-



Table 6: Comparison of the cracking success rate of MS-POINTERGUESS and POINTERGUESS.∗

Experiment setup Include the identical password pairs Remove the identical password pairs

Attack Guess POINTERGUESS-
A1&A2

POINTERGUESS-A1 POINTERGUESS-A2
POINTERGUESS-

A1&A2
POINTERGUESS-A1 POINTERGUESS-A2

scenario number

#13: Tianya, 126 → Taobao

10 43.44% 32.22% 41.41% 2.70% 2.35% 2.14%

100 44.82% 34.18% 43.12% 5.08% 4.29% 4.38%

1,000 45.97% 35.62% 44.45% 7.05% 5.79% 6.36%

#14: 80%Union → 20%Union
10 58.97% 47.90% 44.30% 10.34% 6.07% 9.54%

100 61.37% 49.70% 47.67% 15.58% 8.97% 15.00%

1,000 63.67% 52.11% 50.80% 20.63% 12.99% 20.32%
∗Note that the POINTERGUESS-A1&A2 represents our MS-POINTERGUESS. POINTERGUESS-A1 means that we feed pwA1 into POINTERGUESS and guess pwB , and similarly for the definition

of POINTERGUESS-A2. POINTERGUESS-A1&A2 means that we feed both the pwA1 and pwA2 into the MS-POINTERGUESS and guess pwB .

duce our MS-POINTERGUESS for multiple leaked password

scenarios (see details in Sec. 6).

Model attacking efficiency. Here we examine the attacking

efficiency of different neural network-based models. Fig. 5

shows that the training time of POINTERGUESS is slightly

longer than Pass2Edit [57] and Pass2Path [38], mainly be-

cause existing models need to filter the training set with some

similarity threshold (e.g., edit distance<4) and this leads to a

smaller training set; As for testing time, our POINTERGUESS

runs the fastest generation speed, which is much higher than

other models; Our model’s size is only 2.26 MB, which is

5∼25 times smaller than other models, leading to easier local

deployment and reducing the risk of information leakage.

Model preferences. Table 3 shows ten examples of password

pairs cracked independently by different models. Our POINT-

ERGUESS demonstrates clear preferences in complex reuse

behaviors. First, POINTERGUESS can characterize users’ vul-

nerable behaviors of reusing popular passwords (e.g., abc123
in the first example). Second, POINTERGUESS can generate

semantic fragments based on the old password (e.g., email

suffixes like @hotmail.com), potentially assisting in guessing

reused passwords. Third, POINTERGUESS utilizes extractive

generation by identifying key parts of the old password to

generate the target password, (see indexes 7∼10 in Table 3).

Particularly, our model can generate numbers represented in

scientific notation (e.g., 1991322322 → 1.99132E+12). This

reflects the limitations in Pass2Edit [57] and Pass2Path [38],

which utilize the old password as a template for transfor-

mations (e.g., insert/delete a character) is less effective in

identifying reused fragments within the old password.

Potential applications in password protection. We con-

sider two potential applications of POINTERGUESS: password

strength meter (PSM) and compromised credential checking

(C3) services. We discuss how to design reuse-based PSM in

Sec. 7 and the application in C3 services in Appendix B.

6 Multi-Source PointerGuess
Reports [13, 31] show that most users maintain over 90 ac-

counts on average and prefer to reuse their old passwords,

which impairs password security. At IEEE S&P’19, Pal et

al. [38] attempted to employ multiple old passwords of a user

for targeted guessing attacks by running Pass2Path multiple

times and simply “merge the lists by picking one from each

list in a round robin manner” [38]. Their ad hoc approach

cannot accurately capture the relationships between different

old passwords, and we take a principled approach.

6.1 Modeling password generation
In response to the threat posed by a realistic attack scenario

involving multiple leaked old passwords, we introduce a new

targeted password guessing model, MS-POINTERGUESS. MS-

POINTERGUESS incorporates a “Multi-Encoder” module into

POINTERGUESS to handle the victim’s multiple leaked pass-

words simultaneously. More specifically, this module empow-

ers the model to extract multiple contexts from each encoder

input (i.e., old password), enabling our MS-POINTERGUESS

to effectively characterize users’ password reuse behaviors by

leveraging multiple contexts.

Note that MS-POINTERGUESS is highly scalable and can

be easily extended to handle multiple old passwords. Here,

we use two encoders to briefly describe MS-POINTERGUESS

without losing generality.

In general, the conditional guessing probability that an at-

tacker exploits users’ multiple leaked passwords (e.g., pwA
at site A and pwB at site B) to attack the victim’s target pass-

word at site C (namely pwC =
(

c
′
1, ...,c

′
M

)
) can be expressed

similarly to Eq. 1, which is

P(pwC|pwA, pwB) =

M∏
i=1

P
(

c
′
i|c

′
<i, pwA, pwB

)
, (8)

where c
′
<i dentoes the sub-sequence

(
c
′
0, ...,c

′
i−1

)
of pwC,

and P
(

c
′
i|c

′
<i, pwA, pwB

)
is the conditional probability of

generating the character c
′
i at position i in pwC given the

sub-sequence c
′
<i and the two old passwords pwA and pwB.

There are two key research questions (RQs) that need to be

solved to build an effective targeted password guessing model

based on users’ multiple leaked passwords:

RQ1: How to evaluate the importance of different leaked

passwords on guessing the target password?

RQ2: Does the designed model demonstrate superior per-

formance compared to POINTERGUESS in practical?

To address RQ1, we introduce an additional softgate layer,

denoted as λ, which serves to evaluate the significance of

users’ various old passwords and discern their preferences

when generating a new password. More specifically, MS-

POINTERGUESS outputs two context vectors, ct ,c
′
t , from pwA



and pwB, respectively. Then, we can express λ ∈ [0,1] as

λ = σ
(

Wc ∗ ct +Wc′ ∗ c
′
t +bλ

)
, (9)

where the σ is a sigmoid function, Wc, Wc′ , bλ are learnable

parameters. Initially, λ is employed to weigh and combine the

conditional probabilities of copying characters from pwA (i.e.,

PA
copy) and pwB (i.e., PB

copy), respectively. This yields Pcopy,

the weighted conditional probability of copying characters

from pwA and/or pwB, can be expressed as:

Pcopy (c) = λ∗PA
copy (c)+(1−λ)∗PB

copy (c) . (10)

Then, we can represent PA
copy and PB

copy similarly to Eq. 4,

which are

PA
copy (c) = FFN

⎛
⎝∑

i:ci=c

αt
i

⎞
⎠ , (11)

and

PB
copy (c) = FFN

⎛
⎜⎝

∑

i:c′i=c

α
′ t
i

⎞
⎟⎠ , (12)

where αt
i and α′ t

j are the attention weights of the two encoders

at timestep t and ci (resp. c
′
i) denotes the character at position i

in pwA (reps. pwB). FFN (·) is a feed-forward network. Note

that if character c does not appear in pwA or pwB, then the

value of
∑

i:ci=c αt
i or

∑
i:c′i=c α′ t

i will be zero.

Still, we use the pointer mechanism pg to weigh Pcopy (c)
and Pvocab (c), the conditional probability of generating char-

acters from the vocabulary. At each timestep t, our generation

probability pg ∈ [0,1] can be calculated from two content vec-

tors and current decoder state vector st and current decoder

input xt , that is

pg = σ
(

Wc ∗ ct +Wc′ ∗ c
′
t +Ws ∗ st +Wx ∗ xt +bg

)
, (13)

where Wc, Wc′ , Ws, Wx, bg are learnable parameters, and σ(·)
is a sigmoid function.

Finally, MS-POINTERGUESS integrates Pcopy and Pvocab
to represent Pgen (c), the conditional guessing probability of

MS-POINTERGUESS generating the character c, which is

Pgen (c) = pg ∗Pcopy (c)+(1− pg)∗Pvocab (c) . (14)

Overall, the scalability facilitated by the “Multi-Encoder”

module in MS-POINTERGUESS empowers our model to han-

dle users’ multiple leaked passwords simultaneously. This

capability enables MS-POINTERGUESS to extract multiple

contexts from various old passwords, facilitating flexible deci-

sions regarding the importance of each old password at every

timestep. Moreover, the pointer mechanism [50] ensures that

our MS-POINTERGUESS dynamically determines whether

to copy characters from the old passwords or generate new

characters directly from the vocabulary.

(a) #13: Tianya, 126 → Taobao (b) #14: 80% Union → 20% Union
Figure 15: Experiments of attack scenarios for MS-POINTERGUESS (i.e.,

#13 and #14) in Table 2. POINTERGUESS-A1&A2=MS-POINTERGUESS.

6.2 Experimental results and analysis
Experimental design and results. To address RQ2, we con-

duct two practical attack scenarios (#13 and #14, detailed in

Sec. 4.2) to evaluate the performance of MS-POINTERGUESS.

Fig. 15 shows that MS-POINTERGUESS invariably outper-

forms POINTERGUESS across both attack scenarios. For iden-

tical password pairs, MS-POINTERGUESS achieves cracking

success rates that are, on average, 17.54% (scenarios #13) and

26.11% (scenarios #14) higher than POINTERGUESS within

100 guesses, respectively. Even when excluding identical pass-

word pairs, MS-POINTERGUESS maintains its superiority.

More specifically, within 100 guesses, it achieves cracking

success rates that are, on average, 17.20% (scenarios #13)

and 38.78% (scenarios #14) higher than POINTERGUESS,

respectively. See Table 6 for more details and specific results.

This highlights the effectiveness of MS-POINTERGUESS

and the substantial impacts of utilizing different training sets

to attack the same test set on POINTERGUESS’ efficiency. As

a large proportion of users directly reuse their old passwords

(i.e., 20%∼59% [14,51,53,57]) and there are unending catas-

trophic password leaks [44, 62] (making it more and more

likely that users have leaked two or more distinct passwords),

password guessing based on multiple old passwords is a rather

damaging threat (see the columns 3 and 6 in Table 6).

Further analysis. Overall, our analysis reveals two key find-

ings: (1) The results show that most users have identical old

passwords, aligning with recent research findings [13,18]. As

users’ leaked passwords increase, the risk of compromising

their target passwords also rises. Directly using these identical

password pairs in password cracking significantly improves

the success rate; (2) MS-POINTERGUESS effectively lever-

ages multiple old passwords to generate accurate guesses, re-

sulting in higher cracking rates compared to POINTERGUESS.

7 Targeted Password Strength Meters
Password strength meters (PSMs) offer real-time feedback on

password security during user registration, receiving much

attention as a useful tool [54]. Among them is the Zxcvbn [60],

a widely-used PSM that is renowned for its accuracy, low cost,

and user-friendliness. While Zxcvbn performs well under

trawling guessing attacks, it does not consider the targeted

guessing threat as explored in the previous sections.
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Figure 16: Architecture of PR-PSM. It consists of three primary parts:

(1) search the index in the guess list; (2) the ZxcvbnR module; (3) the

GuessSimRank module.

To address this limitation, we introduce PR-PSM, a pass-

word reuse-based PSM that integrates our POINTERGUESS

with Zxcvbn. As shown in Fig. 16, PR-PSM utilizes users’

old passwords to accurately estimate the password strength

through a “multi-step evaluation” process. This process in-

cludes GuessSimRank and ZxcvbnR modules, to accurately

evaluate the password strength of the target password.

7.1 Multi-step evaluation
Fig. 16 shows the architecture of our PR-PSM. We design a

two-step evaluation mechanism to evaluate the strength of a

given password more accurately.

Step 1: Get the index of the target in the guess list. First,

we directly input the old password pwB into the targeted pass-

word guessing model (e.g., POINTERGUESS) and generate

Top-K guesses. Then, if pwA is in the guess list, we use its

index in the guess list as the guess number, that is

GN = Index(pwA), (15)

where GN denotes the guess number (i.e., the index of pwA).

If pwA is not in the guess list, we move into the next step.

Step 2: Get the guess number from two modules. When

pwA is not in the guess list, PR-PSM uses two evaluation

modules to assess the strength of the target password. The first

module, ZxcvbnR, integrates Zxcvbn [60] and evaluates the

strength RankR of pwA using the generated guess list, which

can be expressed as

RankR = ZxcvbnR (pwA) . (16)

The second module, GuessSimRank, integrates POINTER-

GUESS and Zxcvbn to evaluate the strength RankG of pwA,

that is

RankG = GuessSimRank (pwA) . (17)

The final guess number GN is determined as the minimum

between RankR and RankG, that is

GN = min(RankR,RankG). (18)

Alg. 1 shows the detailed design of PR-PSM. Then we de-

scribe how we use ZxcvbnR and GuessSimRank two modules

to reevaluate the strength of the target password pwA.

(a) Strengths estimated by Zxcvbn. (b) Strengths estimated by PR-PSM.

Figure 17: PSM accuracy evaluation by comparing the distribution of cracked

passwords with overall test passwords. The smaller the guess number, the

weaker the password, and should the higher probability to be cracked. Results

show the advantages of PR-PSM in evaluating password strength with users’

old passwords over Zxcvbn [60].

Algorithm 1: PR-PSM evaluation

Data: Target password, Targeted password guessing

model, K, Index importance distribution

Result: Guess Number GN
1 pwA ← Target password

2 Model ← Targeted password guessing model /* input

the password and guess number, output guesses. */

3 Guesses ← Model (pwA,K) /* get the guess list,

which has K guesses. */

4 Index ← Search(pwA,Guesses) /* search the index of

the password in the guess list. */

5 distindex ← Index importance distribution

6 if Index >= 1 and Index <= K then
7 GN ← Index
8 return GN

9 RankR ← ZxcvbnR (pwA,Guesses) /* use the ZxcvbnR
module to calculate the RankR. */

10 RankG ← GuessSimRank (pwA,Guesses,distindex) /*

use the GuessSimRank module to calculate the

RankG. */

11 GN ← min(RankR,RankG) /* let the minimum value

of RankR and RankG as GN. */

12 return GN

ZxcvbnR module utilize the basic Zxcvbn [60] and the

guess list generated by POINTERGUESS. As shown in Fig.

17(a), the basic Zxcvbn is not designed for the target guessing

scenarios and overlooks the strength of most passwords if

given the old password. We incorporate the guess list based

the user’s old password to construct a new PSM that offers

accurate evaluations in targeted guessing scenarios. More

specifically, we employ sentencepiece [24] to extract popular

password segments Segtop from the guess list. Then, we input

Segtop into Zxcvbn to adjust the guess number evaluated by

the basic Zxcvbn. We denote ZxcvbnR as

ZxcvbnR (pwA) = Zxcvbn(pwA, POINTERGUESS (pwA)) ,

(19)

where POINTERGUESS (pwA) denotes the guess list gener-

ated by POINTERGUESS using pwA. Alg. 2 shows the detailed

design of ZxcvbnR module.



Algorithm 2: ZxcvbnR module

Data: Target password, Guess list, Segment count

Result: Guess Number GN
1 L ← Segment count

2 pwA ← Target password

3 BM ← BPE Method /* trained by sentencepiece [24],

use it to split password. */

4 Guesses ← Guess list

5 Define split split password function

6 Define sort sort segments by frequency function

7 zxcvbn // Zxcvbn function

8 Seg ← split (BM,Guesses) /* split all guesses and

statistic all segments. */

9 Seg ← sort (Seg) /* sort by descending order of

frequency. */

10 GN ← zxcvbn(pwA,Seg[0 : L])
11 return GN

Then, the GuessSimRank module uses a password similar-

ity method SimAlg (e.g., edit distance) to calculate the simi-

larity simi of the i-th guess, guessi, and the target password

pwA. That is simi = SimAlg(pwA,guessi) Then we denote the

guess number RankG as

GuessSimRank (pwA)=

K∑
i=1

Wguess (i)∗SimGN (pwA,simi, i),

(20)

where K denotes the number of guesses, and Wguess denotes

the normalized importance distribution of different guesses in

the guess list, weighting the impact of each guessi on RankG.

Note that the SimGN (pwA,simi, i) denotes that we use

simi and the guess number i of guessi to calculate the

guess number for pwA. More specifically, we can express

SimGN (pwA,simi, i) as

SimGN (pwA,simi, i) = exp((gnA − i)∗σ(simi))+ i, (21)

where σ(·) is a sigmoid function, and gnA denote the guess

number of pwA directly evaluated by Zxcvbn [60]. Alg. 3

shows the detailed design of GuessSimRank module. The re-

sults of the two modules are then compared, and the minimum

value is selected as the final guess number GN.

7.2 Results and analysis

Fig. 17 evaluates the effectiveness of PR-PSM by investigat-

ing the password strength distributions of all target passwords

(in the 89,951 unique test password pairs) with these 29,252

cracked target passwords in 12 scenarios. Fig. 17(a) shows

that Zxcvbn [60] estimates the guess number for the majority

of overall test passwords to exceed 105, with over 15% of

target passwords even deemed unguessable (i.e., ≥1010).

Zxcvbn accurately evaluates only a minority of the cracked

Algorithm 3: GuessSimRank module

Data: Target password, Guess list, Index importance

distribution

Result: Guess Number GN
1 pwA ← Target password

2 MLED /* the function of calculating the Minimum

Levenshtein Edit Distance */

3 Guesses ← Guess list

4 zxcvbn // Zxcvbn function

5 M ← zxcvbn(pwA)
6 K ←‖Guesses‖
7 distindex ← Index importance distribution

8 rank ← 0

9 for i ← 1 to K do
10 score ← MLED(pwA,Guesses[i]) /* calculate the

similarity score of target password and a guess */

11 importance ← distindex[i]
12 rank ← rank+ importance∗

SimGuessNum(pwA,score, i) /* SimGuessNum
is corresponding to Eq. 21 */

13 return GN

Table 7: Examples of password strengths by Zxcvbn [60] and PR-PSM.

Index Old password Target password GNZ
† GNR Hit

1 yanlin19880911 yanlin5201314 10.02 2.45 Yes

2 yyt395746 yyt3957460 10.00 1.08 Yes

3 w564011 5640117aiolia 12.11 8.29 No

4 liu231377 liujian231377 12.53 2.99 No

5 gyhhx970621 gylyx060504 9.16 5.62 No
†GNZ and GNR denote the guess number (log10) evaluated by Zxcvbn [60] and

PR-PSM, respectively. Hit denotes if the target password is cracked or not.

passwords (i.e., guess number≤103) and overestimates the

majority of the cracked passwords to exceed 105, with some

even exceeding 1010. In contrast, Fig. 17(b) shows that PR-

PSM accurately evaluates all the cracked passwords to be

within 103 guesses, and the majority of overall test target pass-

words to be less than 1010. This indicates that Zxcvbn overes-

timates the strength of most passwords in targeted guessing

scenarios, and PR-PSM well fixes its defect.

Table 7 presents five password pairs from the Overall list,

demonstrating the difference in strength evaluations between

Zxcvbn [60] and PR-PSM. As shown in Table 7, Zxcvbn

seriously overestimates the strength of both cracked and un-

cracked passwords, while PR-PSM effectively uses the old

password to evaluate password strength more accurately and

provides a more reasonable evaluation (i.e., guess number).

See more results and analysis in Appendix B of the full pa-

per. Our experimental results demonstrate that designing a

PSM that integrates the targeted guessing model can more

accurately evaluate the strength of given passwords.



8 Conclusion

This paper provides a new technical route to dynamically gen-

erate a user’s new password through her old password. For the 
first time, we propose a password reuse guessing model cou-

pled with the pointer mechanism, namely POINTERGUESS. 
By introducing a hierarchical definition of password reuse, 
POINTERGUESS can characterize users’ password reuse be-

haviors more accurately. Extensive experiments demonstrate 
the effectiveness of POINTERGUESS and its applicability to 
targeted PSMs. Furthermore, we investigate a realistic attack 
scenario where attackers leverage victims’ multiple old pass-

words to compromise their current passwords, and propose 
MS-POINTERGUESS. We hope that our new models and ac-

curate characterization of users’ password reuse behaviors 
will help the academic community and web administrators 
have a better understanding of password security.
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A Supplementary details of other models

We now introduce several state-of-the-art models and alterna-

tive models that serve as benchmarks for comparison.

TarGuess-II. TarGuess-II was proposed by Wang et al. at

CCS’16 [56]. This model is based on PCFG [59] for train-

ing a probabilistic structure model. Additionally, it incorpo-

rates an n-gram Markov model [33] to generate two n-gram

files, one in the original order and the other in reverse. More-

over, TarGuess-II models users’ transformation behaviors

at segment- and character-level. When generating guesses,

TarGuess-II mixes guesses with a popular password dictio-

nary. We denote it as Topcn (for Chinese) and Topen (for

English). In this paper, we use CSDN, Dodonew, and 126 to

compose Topcn and use 000Webhost, LinkedIn, and Yahoo

to compose Topen. Then, we multiply the ranking by the fre-

quency of passwords in the three datasets and chose Top-104

as the dictionary. Note that for all parameters of this model,

we keep the default settings provided by the authors.

Pass2Path. In their paper presented at IEEE S&P’19, Pal

et al. [38] introduced Pass2Path, a targeted guessing model

based on seq2seq [49]. Pass2Path is designed to complete

the “password-to-path” task (i.e., take character sequence as

input and the edit-operation sequence as output) and generate

new passwords based on generated operation sequences. The

model uses a three-layer RNNs with a hidden dimension of

128 for both the encoder and decoder. They set the learning

rate to 0.0003 and the dropout rate to 0.4. We follow the same



configuration for the validation set as with [38]. As Pass2Path

is open-source, we used the same model structure and the

settings mentioned above as recommended by Pal et al. [38].

PlainSeq. At IEEE S&P’19, Pal et al. [38] also intro-

duced Pass2Pass, a targeted guessing model tailored for the

“password-to-password” task. Inspired by their work, we de-

sign a similar model, which we refer to as PlainSeq. In this

paper, we use PlainSeq to conduct an ablation study to demon-

strate the effectiveness of the pointer mechanism. We only

keep the basic sequence-to-sequence model. It is worth noting

that we did not incorporate the <key-sequence> proposed

by Pal et al. [38] into PlainSeq. Instead, we used the original

password string (i.e., character sequence) as model input to

make a fair comparison with our POINTERGUESS.

Pass2Edit. Wang et al. [57] proposed a new algorithm called

Pass2Edit. They redefined the password generation task as

a “multi-step decision classification” task. Pass2Edit has a 3-

layer GRUs and two fully connected layers. At each timestep,

Pass2Edit takes the modified password and the original pass-

word (at the character level) as input and predicts one atomic

edit operation which will be applied to the modified password.

As the source code provided to us by Pass2Edit’s authors,

we keep the model’s default settings and only adjust it on

training/test datasets. Note that in [57] Want et al. proposed

two models, Pass2Edit-nomix and Pass2Edit-mix. Pass2Edit-

nomix is the original model that does not mix an extra popular

password dictionary, while Pass2Edit-mix heuristically mixes

its guessing list with popular passwords to output the final

guessing list. In this paper, we name the model without mixing

popular passwords (i.e., Pass2Edit-nomix) as Pass2Edit.

Untargeted dictionary attack (Top-PW). We build two pop-

ular password dictionaries based on Chinese (i.e., CSDN, 126,

Dodonew) and English (i.e., 000Webhost, LinkedIn, Yahoo)

training sets. We first sort these passwords in descending

order of frequency. Then we select Top-103 as the popular

dictionary (as our maximum guess number is 103), then we

use them to build an untargeted dictionary attack.

Mixing models with an extra popular password dictionary.

Note that the models mentioned above refer to the original

models that are not mixed with popular passwords, except for

TarGuess-II [56]. We investigate how mixing popular pass-

words with the original model outputs affects each model’s

performance. We follow the same strategy of mixing popu-

lar passwords as proposed in [57], and append “-mix” to the

original model’s name to denote the model using the mixing

strategy. Furthermore, we strive to keep the random seeds

used for these neural network-based models consistent with

those used in the original paper (e.g., Pass2Edit [57]) to ensure

more meaningful and reliable comparisons.

Note that the PG-Pass model proposed by Li et al. [28] is

unsuitable for comparison with our POINTERGUESS, because

these two models are initially designed for different attacking

scenarios: PG-Pass focuses on PII-based targeted guessing

scenarios, while our POINTERGUESS focuses on password

reuse-based targeted guessing scenarios.

B Potential applications

Password protection. Here, we discuss two potential ap-

proaches for integrating POINTERGUESS into compromised

credential checking (C3) services, such as MIGP, drawing in-

spiration from the application of Pass2Path [38] in MIGP [39].

First, we directly apply our POINTERGUESS to dynamically

generate guesses. We denote this approach as “PTG”. Second,

as the “wEdit” proposed in [39], we explore using POINT-

ERGUESS to generate a ranked list of tweaks, which can be

applied to generate guesses. We denote this approach as “PTG-

wEdit”. Below we briefly introduce these two approaches.

First, “PTG” involves the real-time execution of POINTER-

GUESS within MIGP. Here, the pre-trained POINTERGUESS

model is loaded onto the server’s CPU/GPU. When a client

submits the target password, the loaded model is immediately

utilized to generate a set of password variants. This approach

capitalizes on the ability to dynamically generate password

variants using a pre-trained model. However, while offer-

ing flexibility and on-the-fly variant generation, this method

comes with drawbacks such as increased resource consump-

tion and potential speed issues during protocol execution.

Second, we employ a pre-trained POINTERGUESS to pro-

duce a series of password guesses for each user. These guesses

are then transformed into the “transformation path” format

proposed by Pal et al. [38]. By using a given dataset, POINT-

ERGUESS generates transformation paths for all password

pairs. We tally the occurrence of each transformation path

and rank them in descending order based on frequency. While

generating n variants of the target password, we apply the

first n valid transformation paths from the sorted list. This ap-

proach offers the advantage of requiring fewer computational

resources and providing faster variant generation. However,

it is important to note that it relies solely on a statistically

derived list of transformation paths for generating variants.

Overall, our proposed approaches aim to enhance password

protection within the MIGP framework by leveraging the

capabilities of POINTERGUESS. The first approach offers

dynamic variant generation using a pre-trained model but

may demand higher computational resources and raise speed

concerns. In contrast, the second approach enables rapid and

resource-efficient variant generation based on a statistically

derived list of transformation paths. Further exploration and

evaluation are necessary to gauge the feasibility and suitability

of these approaches, considering the specific requirements

and constraints of the MIGP system. Balancing execution

speed and accuracy emerges as a critical issue to address in

future research endeavors.


