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Abstract
This paper presents a novel attack technique called page-
oriented programming, which reuses existing code gadgets
by remapping physical pages to the virtual address space of a
program at runtime. The page remapping vulnerabilities may
lead to data breaches or may damage kernel integrity. There-
fore, manufacturers have recently released products equipped
with hardware-assisted guest kernel integrity enforcement.
This paper extends the notion of the page remapping attack
to another type of code-reuse attack, which can not only be
used for altering or sniffing kernel data but also for building
and executing malicious code at runtime. We demonstrate the
effectiveness of this attack on state-of-the-art hardware and
software, where control-flow integrity policies are enforced,
thus highlighting its capability to render most legacy systems
vulnerable.

1 Introduction

Code-reuse attack (CRA) is a category of modern exploit
techniques where attackers hijack control flows of legitimate
software and transfer the control to existing code snippets,
known as gadgets, to utilize them for malicious purposes.
Techniques such as return-into-libc [60], return-oriented pro-
gramming (ROP) [8, 19], and jump-oriented programming
(JOP) [3, 15] fall into this category.

A notable series of studies have been conducted on control-
flow integrity (CFI) enforcement to prevent control-flow hi-
jacking attacks. The possible execution flow of a program
can be approximated using its source or binary code prior
to execution. The result can be represented as a control-flow
graph (CFG), where a block of code corresponds to a node,
and a flow path between nodes is represented as an edge. At
runtime, the CFG is used to constrain the flow of control along
predetermined forward and backward edges throughout the
nodes. By invalidating arbitrary changes in control transfers,
CRAs that are enabled by corrupting indirect branch targets of
indirect calls, jumps, and returns can be eliminated. A signifi-
cant number of studies have followed the seminal work [1, 2]

on CFI enforcement, and some of them have been adopted
to the toolsets used in actual practice [17, 27, 28, 50, 71]. The
downside of the CFI policy enforcement is that its perfor-
mance overhead increases as the number of indirect branches
increases.

On the one hand, certain studies [14, 63, 78, 79] have pro-
posed relaxed CFI enforcement policies to improve perfor-
mance or compatibility. However, these policies have faced
vulnerabilities that bypass their lenient enforcement [10, 21,
30,31]. On the other hand, another group of studies has aimed
to improve the precision of CFI enforcement. This has been
achieved through techniques such as combining CFG gen-
eration with a compilation toolchain [18, 29, 61, 72] or sup-
plementing dynamic data obtained at runtime [22, 35, 43, 44,
62, 73]. Their efforts narrowed down the size of a possible
target set of an indirect branch (referred to as an equivalence
class) [1, 2].

The CFI enforcement techniques currently in use, such as
Microsoft Control Flow Guard (CFG) [50], PaX Reuse At-
tack Protector (RAP) [71], GNU Compiler Collection (GCC)
CFI [28], Clang/LLVM CFI [17], and fine-grain CFI enforce-
ment with indirect branch tracking (FineIBT) [27], employ
static analysis during the compilation process to produce CFI
policy-enforced binaries. These techniques incorporate the
aforementioned studies with an emphasis on practicality and
deployability. Some of them have even adopted hardware-
based control-flow enforcement mechanisms [4, 38].

A critical requirement shared by most CFI enforcement
research is non-writable code, which implies that code mem-
ory should be immutable at runtime. When CFI is enforced
at the user level, the immutability can be maintained as long
as a program itself does not modify access rights to its code
memory, and the kernel sets the page table attributes to read-
only. Unfortunately, this implies that CFI at the kernel level
is neutralized with page table modification if a vulnerabil-
ity in the kernel allows an attacker to read and write arbi-
trary data to memory [23, 45]. To ensure code immutability,
hypervisor-level authority can be utilized [33, 66, 68], and the
practicality of this approach has been showcased by Microsoft



Windows [52].
In this paper, we present a novel form of data-only attack

(DOA) called page-oriented programming (POP). POP en-
ables an attacker to create an arbitrary control flow by exe-
cuting a page-level CRA. It leverages direct branches in non-
writable code memory and remaps desired gadgets in pages
to the branch targets by modifying page tables. The state-of-
the-art CFI enforcement focuses solely on ensuring the safe
transfer of control through indirect branches. Meanwhile, in
cases where hypervisor-based write protection is in place,
an additional address translation layer is introduced by the
hypervisor. This layer maps the OS’s physical addresses (i.e.,
guest physical addresses) to their corresponding physical ad-
dresses (i.e., host physical addresses) with read-write-execute
permissions. However, this mechanism does not delve into
mappings of logical addresses to guest physical addresses
within the OS. POP exploits these blind spots by remapping
the virtual address of the direct branch target to the physical
address of the gadget within the kernel. Consequently, POP
circumvents current CFI implementations in a novel way.

Our POP involves three steps: page carving, page stitching,
and page flushing. First, an attacker creates a list of gad-
gets and system calls that are carved out of the kernel binary.
Second, the attacker creates a new control flow to a security-
sensitive function by chaining these gadgets together. The
physical pages containing the gadgets are then stitched to-
gether, along with the created control flow, after modifying
the page tables. Finally, the attacker may need to flush stale
information from the translation lookaside buffer (TLB) of
the CPU after altering the page tables to ensure that the new
mappings between the virtual and physical addresses are func-
tional.

We explain the concept of POP and illustrate its three steps.
We first transpose a real-world vulnerability into an up-to-date
system that offers hypervisor-based kernel integrity protec-
tion, featuring both hardware and software-based CFI mecha-
nisms. Subsequently, we present a proof-of-concept exploit
that allows a user-level application to establish a new con-
trol flow leading to a security-sensitive function, ultimately
achieving privilege escalation despite state-of-the-art CFI pro-
tections. This demonstration highlights the feasibility and
effectiveness of the POP scheme.

2 Background

Numerous studies have been conducted on CFI thus far, result-
ing in a diverse range of research outcomes. These outcomes
can be broadly categorized into academic achievements and
practical applications.

2.1 Control-Flow Integrity
Academic Achievements. CFI studies aim to obtain more
detailed information by implementing it within compiler

Figure 1: Example of a control-flow graph and control-flow
integrity

toolchains and creating a more precise CFG. Modular CFI
(MCFI) [61] utilizes a function label per unique function
signature to restrict indirect branches and support module
linking. Kernel CFI (kCFI) [29] enhances CFG precision by
incorporating jump tables and restricted pointer indexing. Pit-
tyPat [22] and µCFI [35] use dynamic instrumentation using
Intel Processor Trace (PT) [38] to obtain more precise indi-
rect branch targets. CFI with look back (CFI-LB) [44] and
origin-sensitive CFI (OS-CFI) [43] add call-site information
of indirect branches. Notably, OS-CFI utilizes additional data
on function pointer origin, resulting in the reduced size of the
equivalence class.

This series of trials exhibited two limitations. One limita-
tion was the performance overhead. At runtime, CFI intro-
duces the additional burden of testing whether each indirect
branch is directed toward a predetermined set of nodes (Fig-
ure 1). While Abadi et al. [1, 2] excluded direct branches
from consideration, assuming that the destinations of direct
branches (the dotted arrow in Figure 1) are not easily replace-
able, their work still resulted in an execution overhead of up
to 45%. Recent research [43] has made progress in reducing
the overhead, but it is still over 14% at the NGINX bench-
mark. The other limitation is the incompatibility with legacy
systems. The aforementioned CFI studies require source code
for precise CFG generation during the pre-analysis process.
Some of them [22, 35] even rely on traces of dynamic in-
strumentation obtained from the CPU at runtime. However,
legacy commercial-off-the-shelf (COTS) binaries and CPUs
are unable to meet the requirements of these studies.

CFI for binary executables (Bin-CFI) [79] and compact
CFI and randomization (CCFIR) [78] enforce CFI on COTS
binaries by analyzing binary executables instead of relying on



CFI Implementation Commodity
OS Forward Edge Policy Backward Edge Policy

Microsoft CFG [50] with
CET [4, 38] Windows Bitmap-based verification Hardware-based shadow stack

PaX RAP [71]
(open-source version) Linux Type-based verification Type-based verification

GCC CFI [28]
(only CET) Linux Hardware-based indirect branch tracking Hardware-based shadow stack

Clang/LLVM CFI [17]
with CET

Linux,
Windows

Type-based verification with hardware-based
indirect branch tracking

Hardware-based shadow stack or
shadow call stack (only for AArch64)1

FineIBT [27]
(embedded with CET) Linux Type-based verification2 with hardware-based

indirect branch tracking
Hardware-based shadow stack or

shadow call stack (only for AArch64)

Table 1: Control-flow integrity implementations currently in use and their policies for commodity OSes

source code. These approaches enforce relatively relaxed
policies, resulting in lower overhead as compared to the
CFI techniques based on the precise CFG. Conversely, the
kBouncer [63] and ROPecker [14] techniques aimed to detect
ROP patterns at runtime by leveraging a hardware-provided
feature, that is the Last Branch Record (LBR) of Intel, which
stores recently executed branch history. These approaches
loosen the restrictions in policy enforcement to improve per-
formance; however, this trade-off can result in attacks that
bypass their CFI policies [9, 10, 21, 30, 31].
Practical Applications. Among the various CFI implementa-
tions, the most notable ones have already been adopted into
the two major commodity OSes: Microsoft Windows and
Linux. Table 1 summarizes the CFI implementations that are
currently used.

In Microsoft Windows, a software-based forward-edge
protection called CFG is developed, which can be option-
ally equipped with Windows 10 and 11 series. Moreover, a
hardware-based backward-edge protection mechanism called
shadow stack is employed. This mechanism is built on
Control-flow Enforcement Technology (CET) that has been
commercialized by Intel.

In Linux, several major compilers support CFI protections.
First, RAP provides type-based indirect branch protection. Ad-
ditional backward-edge protection can be achieved through
return address duplication and encryption. Second, GCC sup-
ports the indirect branch tracking and shadow stack features
of CET for CFI protection. Third, Clang/LLVM offers its
own type-based forward-edge protection and software-based
shadow call stack for backward-edge protection. Recently
Clang/LLVM has also adopted CET. Starting from November
2022, the Linux kernel has enabled a hybrid CFI protection
scheme, called FineIBT, which ensures the accuracy of the for-
ward indirect branch by validating the hashes of functions and
using CET. In the case of FineIBT, the hash validation is per-

1AArch64 of ARM only supports the feature. It was integrated for the
x86_64 system but later removed owing to performance overhead and race
condition problems [48].

2PaX RAP and Clang/LLVM CFI employ a caller-side verification policy,
whereas FineIBT employs a callee-side verification policy.

formed by callees, whereas in other schemes, it is performed
by the callers. Notably, the hardware-based backward-edge
protection, shadow stack, is only applicable to the userspace
in Linux, while the other CFI implementations can be applied
to both user applications and the kernel.

2.2 Code Immutability and Protection Mecha-
nisms

Code region must be preserved as non-writable at runtime
since CFI policies cannot be enforced on dynamically gener-
ated or self-modified code [1, 2]. The responsibility for ensur-
ing the immutability of user- and kernel-level code memory
has been given to the kernel.
Data-Only Attack. It is an attack technique that manipu-
lates non-control data [34, 36, 39, 70] without violating CFI
policies. Data-only attacks (DOAs) are effective when the
kernel or drivers have memory access vulnerabilities [55, 56].
These vulnerabilities would allow an attacker to break the ker-
nel address space layout randomization (KASLR) and gain
escalated privileges by modifying credentials. Moreover, if
the vulnerability enables reading and writing arbitrary mem-
ory [53, 54], the attacker could manipulate both user- and
kernel-level code. This manipulation can occur even when
CFI enforcement is in place by altering page tables that are
supposed to be protected by the kernel [20, 23, 45].
Hypervisor-Based Kernel Integrity Protection. Recent
hardware-based virtualization processes support hypervisors
in enforcing strong security policies. Running at a higher
privilege than the kernel, the hypervisor utilizes second-level
address translation (SLAT), which allows the hypervisor to set
page permissions separately from the kernel. Moreover, Mode-
Based Execution Control (MBEC) from Intel [38] and Guest
Mode Execute Trap (GMET) commercialized by AMD [4]
impose further restrictions on code page execution, which
is determined by the execution modes designated as either
user-mode or supervisor-mode. These features cooperate with
the SLAT and enable sophisticated page permissions. Conse-
quently, modern operating systems employ the hypervisor as



a monitoring and controlling entity with elevated privileges.
While the 12th generation CPU products from Intel provide
Hypervisor-managed Linear Address Translation (HLAT) to
ensure page table integrity for the kernel, SLAT with MBEC
or GMET is a widely adopted feature in modern CPUs. Fur-
ther discussion on this topic is presented in Section 7.

Secvisor [68] and NICKLE [66] can maintain kernel code
integrity with hypervisor-level authority, and their implemen-
tations in Linux have been demonstrated. The current Mi-
crosoft Windows series include a feature called Hypervisor-
Protected Code Integrity [52], which provides virtualization-
based memory integrity for kernel code. These hypervisor-
based mechanisms utilize SLAT to translate the physical ad-
dresses used in the guest OS to the physical addresses in the
host OS. During this second-level translation process, the
CPU ensures that the access to physical pages adheres to the
defined page attributes. For instance, if a process in the guest
OS attempts to write to an address on a page that is marked as
executable only and not writable, an exception occurs during
the SLAT process. The hypervisor can interpret this as a code
modification attack. Similarly, if an exception occurs when
data is written to read-only credentials, the hypervisor may
consider it as a credential modification attack. Furthermore,
if an exception is raised while executing code in kernel mode
and the code is located in a code page that lacks the supervisor-
execute permission of MBEC and GMET, the hypervisor may
identify it as a control-flow hijack or an unauthorized kernel
code injection. For the purpose of data protection, Credential
Guard [51] from Microsoft utilizes a virtualized enclave to
store security-sensitive data such as credentials. A framework
called PrivWatcher [41] was also proposed, which includes a
hypervisor-based read-only safe area where credentials can be
securely stored, and its prototype was implemented in Linux.

The CFI enforcements in commodity OSes have evolved
to incorporate stronger countermeasures against traditional
CRAs and page table attacks by leveraging hardware assists
and the notion of hypervisors [17, 27, 50, 52, 66, 68].

3 Assumption and Threat Model

We assume our target system is fortified with cutting-edge
CFI protection mechanisms. Namely, hardware-assisted CFI
policies and hypervisor-based kernel integrity protection pre-
vent control-flow hijacking techniques like ROP and JOP.
Additionally, the page-level write protection [33, 52, 66, 68]
and read-only safe area scheme [41, 51] of the protection
mechanisms thwart unauthorized code alterations, code in-
jection, and unauthorized modifications to kernel credentials.
Thus, an attacker has to invoke legitimate kernel functions to
perform malicious behaviors such as privilege escalation and
spawning a root shell.

We have the same set of assumptions regarding system
vulnerabilities and the capabilities of potential attackers as
in prior studies [6, 20, 65, 68, 71]. Specifically, the system

has an arbitrary kernel memory read and write vulnerability.
By exploiting it, an attacker can manipulate page tables, dis-
able KASLR, and manipulate the kernel of the system. The
attacker, possessing local user privileges as in previous stud-
ies [20, 23, 45], can also execute system calls and programs,
thereby collecting system information such as the kernel bi-
nary, the size of system memory, and the list of kernel symbol
names. Leveraging these capabilities, the attacker may at-
tempt typical control-flow hijacking techniques and kernel
modification. However, these trials must be hindered by the
presence of CFI policies and the hypervisor running on the
system.

4 Motivation

Contemporary CFI approaches are fortified by the kernel
CFI policies, which control indirect branches, and by the
hypervisor, which ensures the sanity of the kernel during
the second-level address translation process. In other words,
direct branches and page-mapping information inside the
OS have been out of the spotlight. Our study revisits DOAs
against page tables, shedding light on the blind spots.
Kernel Control-Flow Integrity Policies. Most of the CFI-
related studies, including hardware-assisted kernel CFI, have
primarily concentrated on validating indirect branches, over-
looking the direct branch targets. This oversight is attributed
to the assumption that the targets reside in read-only code
memory. However, if the immutability of code memory cannot
be guaranteed, the effectiveness of most CFI implementations
must be reassessed.
Non-Writable Code Mechanism. As shown in Figure 2a,
the kernel code is protected by SLAT. A normal func-
tion, kern_normal(), resides at the guest logical address
(GLA) 0xffff1100, while a security-sensitive function,
kern_sensitive(), is located at GLA 0xffff2100. Based on
the page table, their corresponding guest physical addresses
(GPAs) are translated as 0xff001000 and 0xff002000, re-
spectively. These GPAs are then translated again by the hy-
pervisor via SLAT, resulting in the host physical addresses
(HPAs) of 0x00001000 and 0x00002000, respectively.

Let us consider a scenario where an attacker attempts to
modify the code of kern_normal() and successfully manip-
ulates an attribute of the page in the page table, as shown
in the upper-left corner of Figure 2b. However, because the
corresponding page in the SLAT table still does not grant
write permission, an exception occurs, leading to termination.
In the case of page injection, as depicted in the lower-left
corner of Figure 2b, an arbitrarily injected page cannot have
a corresponding page in the SLAT table or be granted exe-
cute permission without authorization from the hypervisor.
Consequently, this situation triggers an exception.

The “RWX” access control during SLAT can offer write-
protection for code pages; however, it is unable to ensure
the integrity of the kernel code. Figure 2c illustrates a sce-



Figure 2: Effectiveness and weakness of the hypervisor-based
non-writable code mechanism

nario where the physical page mapped to kern_sensitive() is
remapped to kern_normal(). This remapping can be achieved
by modifying the page tables, particularly when the two func-
tions share the same page offset, such as 0x100. If the GPA of
kern_normal() (0xff001000) is changed to match the GPA of
kern_sensitive() (0xff002000), SLAT will translate it to the
corresponding HPA (0x00002000) when the attacker invokes
kern_normal(). Consequently, the code of kern_sensitive()
will be executed, and the attacker can even pass arbitrary ar-
guments to the function. This scenario hints at the possibility
of a page-level CRA.
Revisiting DOAs against Page Tables. Traditional page table
attacks focused on enabling write permission for immutable
pages. Some attacks corrupted code or read-only function
pointers [20,23,45,75], while others duplicated pages to evade
hardware-based external monitors [40]. By utilizing arbitrary

kernel memory read and write vulnerabilities, the traditional
attacks were achieved by (i) changing the permissions of page
tables directly, (ii) duplicating and inserting physical pages
with new page table entries, or (iii) remapping page table
entries to existing physical pages. Although the attack tech-
niques led to identical results for the attacker, we discovered
a new capability of page remapping, especially remapping
arbitrary virtual addresses to existing code pages. In other
words, if we identify page-level gadgets, we can reuse them
to perform ROP-like attacks. The page-level CRA technique
is the core part of exploiting two blind spots we found.

We discover a new pathway leading to the same goal of
traditional CRAs by remapping arbitrary virtual addresses
to existing code pages. We identify page-level gadgets and
link the gadgets to direct branch targets. That results in creat-
ing an arbitrary control flow circumventing CFI policies and
hypervisor-based protection in Section 5.

5 Page-Oriented Programming

5.1 Overview
POP is a new type of CRA that can circumvent robust secu-
rity enforcement, including kernel CFI and hypervisor-based
kernel integrity protection. It primarily focuses on the direct
branches and performs a page-level CRA by remapping the
physical addresses of the gadgets to the branches and chaining
them together. It sets up new control flows from system call
functions to security-sensitive functions within the kernel.
Characteristics of POP. Our POP attack can occur even on
state-of-the-art CFI protection schemes, in contrast to typical
ROP attacks [8, 15, 19, 60], which manipulate stack or heap
memory, and page table attacks [20,23,45,75], which modify
kernel code. Additionally, as depicted in Figure 3, the POP
technique offers a notable merit of intuitively passing argu-
ments by invoking a system call and chaining a few gadgets.
Consequently, it does not require any complicated argument
passing or stack pivoting. POP consists of three steps: (i) page
carving, (ii) page stitching, and (iii) page flushing.
Page Carving. Before reaching the security-sensitive func-
tion, kern_sensitive(), gadgets and system call candidates
must be identified from kernel binaries (❶). These gadgets
are of two types: call gadgets for function chaining and no-
operation (NOP) gadgets that serve to prevent the remapping
explosion, which is presented in Section 5.3. Gadgets can be
identified by analyzing a kernel binary file or an extracted
binary image from the kernel memory.
Page Stitching. The system call candidates and gadgets are
combined through page stitching, which creates new control
flows by remapping physical pages to logical addresses (❷).
In the page stitching step, an attacker frequently exploits an
arbitrary kernel memory read and write vulnerability to ma-
nipulate page tables, as discussed in Section 3. Let us assume
that the logical and physical addresses of kern_normal() are



Figure 3: Page-oriented programming (POP) overview

0xff102400 and 0x00102400, respectively, and their page
offset is 0x400. This implies that any gadget with the same
page offset can replace the function. Consequently, the at-
tacker can create a new control flow by replacing the page
with a call gadget located at the physical address 0x00402400,
as shown in the lower-left part of Figure 3.

The call gadgets that were previously gathered are divided
into two types: direct and indirect call gadgets. In particular,
when using direct call gadgets, additional page remappings
are required according to the target logical address. As illus-
trated in the lower-left part of Figure 3, let us assume that a
new control flow has been created over 0xff301200 using
the direct call gadget; then, the sensitive function and related
data, kern_sensitive() and curret_task_cred, respectively, must
be remapped to 0xff301200 and 0xff302900, respectively.
In the case of indirect call gadgets, these page remappings
are not necessary. If a target function is non-essential, such as
sub_sensitive(), it can be replaced with a NOP gadget whose
physical page is 0x00601600 and is unlinked with the fall-
through. Furthermore, as shown in the lower-left corner of
Figure 3, if arbitrary data, such as modified_cred, are required,
the attacker can forcibly inject it into the page table for subse-
quent exploitation. The attacker can then pass the data to the
target system call as an argument.
Page Flushing. POP specifically focuses on remapping page

Figure 4: POP gadget types

tables in the kernel and does not modify the TLB cache entries
that are accessed when invoking a system call. If the original
and remapped pages are mixed in the TLB, the exploitation
may fail. To this end, POP must be able to flush the TLB
entries by executing or accessing kernel pages that trigger the
flushing algorithm of the TLB (❸).

At the end of POP, as shown in the upper-middle part of
Figure 3, the attacker finally proceeds to invoke a system



Figure 5: Two types of exploitation strategies of POP

call with arbitrary arguments that will eventually be chained
to the target function, that is, kern_sensitive(), in the kernel
(❹). Using the direct call gadget, the attacker passes the first
argument, arg1, which specifies the address of modified_cred
(0xff401900) holding root credentials via sys_normal() (❹-
a). Otherwise, for the indirect call gadget, the attacker should
pass the argument containing the address of kern_sensitive()
(0xff201200) along with arg1 through sys_normal() (❹-b).
Consequently, current_task_cred, shown in the lower-right of
the figure, is updated, and the attacker gains the administrator
privilege, known as root.

Next, we describe the details of our three-staged POP tech-
nique, which aims to subvert state-of-the-art CFI protection
mechanisms.

5.2 Page Carving
Gadgets for POP are categorized into two types based on their
purpose: call gadgets (Figure 4a), which chain the system
call candidates to the security-sensitive functions, and NOP
gadgets (Figure 4b), which unlink non-essential functions if
required. Moreover, based on their forms, these gadgets can
be classified into function gadgets, which utilize the entire
functions, and ROP-like partial gadgets, which only leverage
specific code pieces as required. Note that call gadgets with
indirect branches are considered partial gadgets because the
CFI policy enforces indirect branches within functions.

The page carving step is a process that extracts the candi-
dates for call gadgets, NOP gadgets, and system calls from
kernel binaries and creates a list. The kernel binaries are
disassembled and converted into assembly code. Function
gadgets are then extracted from this result, encompassing all
functions within the kernel. Partial gadgets are obtained by
examining each page offset, disassembling the code pages of
the kernel binary from page offset 0 to 4095, and converting
them into assembly code. Owing to disassembling of arbi-

trary instruction sequences, some of the partial gadgets have
invalid instructions. Therefore, they are removed from the list.
System call candidates are also identified from the assembly
code by utilizing system call-related information, such as the
system call table and symbol names. They are included in the
list as well. System call candidates can also be considered
part of the gadget if they contain direct branches.

When identifying gadgets and system call candidates, we
considered the two strategies for exploitation flows, as il-
lustrated in Figure 5: (i) round trip, where the control flow
executes a security-sensitive function and then returns to the
caller, and (ii) one way, where the control flow executes the
security-sensitive function without the need to return.

In the round-trip strategy (Figure 5a), an attacker regains
control after exploiting the system via POP. In this case, the
attacker can gain escalated privilege and perform additional
procedures, such as modifying system files and gaining a root
shell within the malicious application, by returning to the
exploitation point. In the round-trip strategy, the pair of call
and return instructions are required when chaining gadgets.

In the one-way strategy (Figure 5b), the attacker performs
similar operations as in the round-trip approach, except that
the security-sensitive function must execute attacker-targeted
applications, including the malicious application with esca-
lated privilege. Unlike the former, the control flow does not
return to the exploitation point. Therefore, the pair of call and
return instructions need not be considered.

5.3 Page Stitching
The page stitching step, a core component of POP, chains
the previously collected gadgets and system call candidates.
This step identifies new control flows capable of reaching
a security-sensitive function and employs arbitrary memory
read and write vulnerabilities to remap the page tables. The
step consists of the following four phases: chaining gadgets,



Figure 6: Different methods of chaining gadgets. POP gadgets
are shown in gray boxes.

avoiding the remapping explosion, modifying page tables,
and allocating free physical pages.
Phase 1 - Chaining Gadgets. This phase involves chaining
gadgets that link the system call candidate to the security-
sensitive function along with arguments. As shown in Fig-
ure 6, we define three types of gadget chains: (i) direct, (ii)
indirect, and (iii) direct to indirect calls. These gadget chains
cater to both round-trip and one-way exploitation strategies,
as discussed in Section 5.2.

(i) Direct call chaining (Figure 6a) consists of call and jump
instructions. The gadget can be directly chained to a
security-sensitive function if the page offset of the di-
rect branch in it matches the page offset of the sensitive
function. Otherwise, the gadgets need to be chained by
combining other call gadgets until the chain reaches the
sensitive function. Ideally, the system call candidate can
also reach the sensitive function if their page offsets are
identical, resulting in the shortest gadget chain in POP.

(ii) Indirect call chaining (Figure 6b) typically links only
with an indirect branch. POP creates a new control flow
by chaining a single indirect call gadget, as it can invoke
an arbitrary function allowed by the CFI policy.

(iii) Direct to indirect call chaining (Figure 6c) combines
both direct and indirect call chains. It is used if the afore-

mentioned chains are not affordable, although it is a
longer path to the sensitive function.

Direct call chaining requires the remapping of additional
pages. When the logical address of the security-sensitive func-
tion is modified, the physical pages containing subfunctions
and data within the sensitive function must be remapped
accordingly. If the gadgets used for page stitching involve
subfunctions and data, they must also be remapped corre-
spondingly. The remapping process varies depending on the
addressing mode employed. For example, we need to identify
the base address of the segment or address of the instruction to
calculate the exact value when segment- or instruction pointer-
based addressing mode is used, respectively. The addressing
modes are detailed in Section 6.1.

When exploiting the security-sensitive function with data
arguments, the size of a logical address has to be considered
along with the gadget chain and system call candidate. Let
us assume that the system call candidate is invoked with a
4-byte argument, which contains the logical address of the
malicious credentials to be passed to the sensitive function. In
this case, the upper 4 bytes of the argument will be trimmed,
and only the lower 4 bytes will be delivered to the sensitive
function, even though an 8-byte argument is passed through
the system call. Consequently, the physical page of the mali-
cious credentials needs to be remapped to an address within
the 4 GB address space, and the 4-byte argument is passed to
the sensitive function.
Phase 2 - Avoiding the Remapping Explosion. For reliable
exploitation, page remappings should be minimized, which
causes code changes in the logical address space. This can be
achieved by prioritizing the selection of gadgets with indirect
calls and shorter lengths, without subfunctions and data ref-
erences, and those on a single physical page. However, if an
exploitation method other than direct call chaining is not ap-
plicable, hundreds of physical pages may need to be remapped
depending on the structure of a security-sensitive function.
The importance of subfunctions and data must be determined
to prevent this remapping explosion, and non-essential ones
must be remapped using NOP gadgets to unlink function
calls, as shown in Figure 6. Data also need to be remapped
to dummy physical pages. Note that employing the unlink-
ing technique, which replaces the fall-through with the NOP
gadget, can be used to weaken the security features of the
sensitive function.
Phase 3 - Modifying Page Tables. The vulnerability of arbi-
trary memory read and write is leveraged to remap page tables
with the chained gadgets and data. As described in Section 3,
we assumed that an attacker can exploit kernel vulnerabilities
to obtain useful symbol information from the kernel. Conse-
quently, the attacker can traverse the process list, obtain the
page tables of the malicious application, and modify them
according to the gadget chain.

If the attacker forcibly modifies the page tables of the kernel
code area, it may cause side effects on other processes that



share the same kernel code. To resolve this issue, we utilize
private page tables to prevent the propagation of changes to
all processes. Whenever we need to modify the original page
tables, we allocate private page tables using the following free
page allocation methods of POP. The pages are initialized by
copying data from the original page tables, and the copied
pages replace them. For instance, in the x86_64 Linux system,
the top-level private page table is set to the CR3 register of
the CPU by modifying the target process context within the
kernel, such as the task_struct and mm data structures. Lower-
level private tables replace the original ones by modifying
related entries in higher-level page tables [40]. Additionally,
commodity OSes typically employ large pages, such as 2 MB
and 1 GB pages, for the linear address space. In that case,
private page tables have to be allocated by extending the large
page to 4 KB pages.
Phase 4 - Allocating Free Physical Pages. New physical
pages have to be allocated to create private page tables. They
are also required even when passing data as arguments to
the system call candidate during the exploitation process.
Securing these new physical pages can be achieved by (i)
allocating pages from the free physical page pool in the kernel
or (ii) obtaining them from the process heap area.

The kernel manages a pool of free physical pages to handle
system memory efficiently and sequentially allocates pages
when necessary. Allocating pages from the kernel exploits
this characteristic. When free pages are needed, the method
arbitrarily obtains them from the end of the pool to the be-
ginning with a simple counter. It is a straightforward process
and does not need memory allocation functions of the kernel.
However, when the system memory is exhausted, the kernel
will overwrite the allocated pages.

On the other hand, the heap is an isolated area for each
process. Therefore, obtaining free pages from the heap can
result in individual availability of free pages. However, the
method requires traversing the page tables of the process to
determine their physical pages.

5.4 Page Flushing

The remapped addresses resulting from the page stitching
step may interfere with previously cached addresses in a TLB.
Therefore, it is crucial to flush the TLB prior to exploitation.
In commodity OSes, the TLB entries are frequently flushed
as their memories are exhausted by applications, system ser-
vices, and interrupts. This implies that TLB entries associated
with the pages that were forcibly remapped are flushed out in
adequate time after page stitching. Unfortunately, in x86_64
systems, the page table has a global bit that delays the flush-
ing. This global bit is used for kernel code pages that are used
in process-wide sharing. As such, to accelerate TLB flushing,
the page flushing step unsets the global bits of the entries that
are remapped through the page stitching step. Moreover, it
leverages the CPU affinity to perform exploitation and page

flushing on the same core because of the independent TLB
for each CPU core.

6 Evaluation

POP is not only a practical but also an effective CRA under
state-of-the-art CFI enforcement. To demonstrate its effective-
ness, we revisited a real-world page-remapping vulnerability,
CVE-2013-2595 [53], along with its exploit code [64] on a
Linux system. The vulnerability allows arbitrary remapping
of physical pages to the userspace. Consequently, an attacker
can read and write arbitrary kernel memory and conduct typ-
ical page modification attacks, such as altering kernel code
or credentials. However, hypervisor-based kernel integrity
protection can prevent these typical page modifications, as
discussed in Section 3. To show the page-level CRA still
functions under the CFI enforcement, we rewrote the exploit
code only with the arbitrary memory read and write capability
and POP technique. Additionally, we assessed the distribution
of system call candidates and gadgets across various kernel
versions and configurations to demonstrate the feasibility of
POP.

The evaluation was conducted on an HP Victus 16 lap-
top, which features an Intel i7-12700H processor and 16
GB of memory. To enable Clang/LLVM CFI with CET and
FineIBT, we employed Linux kernel versions 6.1.12 and 6.2.8,
respectively, and compiled these kernels using LLVM 6.0.0 on
Ubuntu 22.04.2. To leverage the SLAT and MBEC features,
we extended an open-source lightweight hypervisor [33] and
integrated hypervisor-based kernel integrity protection. We
ported CVE-2013-2595 to our vulnerable kernel driver and
executed it for evaluation. The code and data we used are
accessible via our GitHub repository [32].

At the time of writing, a shadow stack feature was incor-
porated in the Linux kernel. Therefore, we did not utilize
this feature in our evaluation. However, the evaluation results
were not affected by it because POP does not rely on stack
corruption techniques.

6.1 Proof-of-Concept Exploitation

We constructed a PoC exploit for the Linux kernel version
6.2.8 with FineIBT. Another exploit for Clang/LLVM CFI
with CET is not significantly different, except for the address
values. As several CRA studies [3, 8, 15, 19] have shown the
effectiveness of indirect call gadgets, we developed a round-
trip type exploitation scenario to demonstrate the distinctive
differences and characteristics of POP. One of the strengths
of POP is the ability to provide attackers with the flexibility
to select arbitrary entry points with arguments. To emphasize
this advantage, we intentionally chose a system call candidate
whose direct branch aligns with the page offset of the security-
sensitive function and whose argument has a length of 64



Symbol Name Offset Value Usage
sys_call_table 0x1400400 Breaking

KASLR_x64_sys_read 0x46fda0
clear_tasks_mm_
cpumask() 0xeb800

Identifying kernel
data structures

prepare_kernel_cred() 0x1257f0
__set_task_comm() 0x47bff0
pgd_alloc() 0xc6840
init_task 0x201bb00

Performing POPpage_offset_base 0x19d7008
__per_cpu_offset 0x19dd9e0
commit_creds() 0x1253b0

Table 2: Important symbol names and offset values in the
kallsyms_offsets table. The offset values indicate distances
from the start of the .text section.

bits. This enabled us to create a new control flow using the
minimum number of gadgets.
Preparation of Attack Primitives and Page Carving. To
perform POP, an attacker must acquire symbol information
and data structures from the kernel. In Section 3, we assumed
that the attacker could run arbitrary programs locally and
exploit a kernel memory read and write vulnerability. As a
result, we obtained the kernel binary from the boot directory
of the system and disassembled it using the objdump tool.
Within the kernel binary, we located the kallsyms_offsets
table to access symbol information. The table contains the
offset of each kernel symbol and is composed of hundreds of
4-byte values in a continuously growing format. We identified
the table by searching for its distinctive feature within the
kernel binary. To complement symbol names to the table,
we extracted them from the /proc/kallsyms file because its
symbol list originates from the table [42]. We then added
symbol information to the kernel assembly code. Finally, we
collected system call candidates and gadgets through static
analysis of the assembly code we generated, as discussed in
Section 5.2. We employed the Python scripting language for
it and compiled a list for page stitching.

To access the kernel area from the user level and break
KASLR, we first read the /proc/meminfo file to obtain the
system memory size. Then, we exploited CVE-2013-2595
to map all physical memory to the user area and searched
the start address of the kernel code by matching its signa-
ture in every 4 KB page. Once we found the start address of
the kernel, we could read and write arbitrary kernel memory
using this address along with symbol information. KASLR
loads the kernel into a random location each time the sys-
tem boots. To defeat it, we needed to obtain the address
of an arbitrary kernel function. The kernel stores the ad-
dresses of system call functions in the sys_call_table array,
and the first system call is sys_read(). Therefore, the first value
in sys_call_table contains the address of __x64_sys_read()
(0xffffffffbbe6fda0). By subtracting the offset value of

__x64_sys_read() (0x46fda0) within the kallsyms_offsets
table from it, we obtained the base address of the kernel code
(0xffffffffbba00000) and broke KASLR. Using the base
address, we consequently mapped kernel virtual addresses
to userspace virtual addresses. Hereafter, we refer to ker-
nel addresses calculated based on the default kernel address
(0xffffffff81000000).

We identified kernel structures by analyzing the ker-
nel assembly code with the symbols to trace runtime ker-
nel data. For example, we obtained each offset of the
field in the task_struct and cred data structures by analyz-
ing clear_tasks_mm_cpumask(), prepare_kernel_cred(), and
__set_task_comm() that modify the fields. We also recon-
structed the mm_struct data structure from pgd_alloc() to
manipulate page tables. Using the data structures, symbol
information, and the base address of the kernel, we tra-
versed the init_task variable (0xffffffff8301bb00) with
the well-known technique that traces linked lists [25] to ob-
tain the task_struct data for the malicious application. We
also accessed the top-level page table information for page
stitching with the pgd field of the mm_struct data struc-
ture within the task_struct data. Furthermore, by reading
the page_offset_base variable (0xffffffff829d7008), we
obtained the direct mapping area (0xffff888000000000)
where system memory is mapped one-to-one, then used it
to allocate free physical pages. The __per_cpu_offset table
(0xffffffff829dd9e0) was also identified to access the per-
CPU data of CPU 0 (0xffff88846f600000). The symbol
information we utilized for POP is summarized in Table 2.
Page Stitching. The control and data flows of the security-
sensitive function, commit_creds, are shown in Figure 7.
To clarify, we merge duplicated data references and func-
tion calls into a single entity. In line 3, the function starts
with the endbr64 instruction that allows indirect branches
to execute it. This implies indirect call gadgets can reach
it even under CET enforcement. In line 8, the rbx regis-
ter stores the sum of the base address of the gs segment,
the value of the rip register, and 0x7ef0c776 to access the
task_struct data of the currently running process, that is, cur-
rent_task. The instruction employs a combination of the
segment- and instruction pointer-based addressing modes.
The value of the rip is 0xffffffff811253ca. When it
is added to 0x7ef0c776, the result represents an offset of
0x31b40 (percpu_hot) from the base address of the gs seg-
ment. The base address of CPU 0 in __per_cpu_offset vari-
able is 0xffff88846f600000. Consequently, by adding the
offset and the base address, we can obtain the final address
of the current_task, 0xffff88846f631b40. In line 13, the
suid_dumpable variable is also accessed via the rip register,
and the address of the value is 0xffffffff846178a8.

The most important part of commit_cred() is in line
26, where credentials are updated. Other functions are
not essential and can be remapped or replaced with NOP
gadgets. A straightforward approach is to replace these



1 0 x f f f f f f f f 8 1 1 2 5 3 b 0 : <commit_creds >
2 ; I n d i r e c t b r an c h t r a c k i n g of CET
3 endbr64
4
5 ; G e t t i n g t h e c u r r e n t t a s k ’ s p o i n t e r
6 ; r i p : 0 x f f f f f f f f 8 1 1 2 5 3 c a
7 ; gs ( pe r_cpu ) o f CPU 0 : 0 x f f f f 8 8 8 4 6 f 6 0 0 0 0 0
8 mov %gs : 0 x7ef0c776 (% r i p ) , ; 0 x f f f f 8 8 8 4 6 f 6 3 1 b 4 0
9 %rbx ; <per_cpu >+0 x31b40 =

10 ; < c u r r e n t _ t a s k >
11 ; Upda t ing d u m p a b i l i t y
12 ; r i p : 0 x f f f f f f f f 8 1 1 2 5 4 8 4
13 mov 0 x34f2424(% r i p ) , ; 0 x f f f f f f f f 8 4 6 1 7 8 a 8
14 %e s i ; <su id_dumpable >
15 c a l l 0 x f f f f f f f f 8 1 4 7 c c 6 0 ; < se t_dumpab le >
16
17 ; Upda t ing f s u i d and f s g i d
18 c a l l 0 x f f f f f f f f 8 1 6 4 f b a 0 ; < k e y _ f s u i d _ c h a n g e d >
19 c a l l 0 x f f f f f f f f 8 1 6 4 f c 0 0 ; < k e y _ f s g i d _ c h a n g e d >
20
21 ; I n c r e a s i n g c o u n t s
22 c a l l 0 x f f f f f f f f 8 1 1 2 9 6 c 0 ; < i n c _ r l i m i t _ u c o u n t s >
23
24 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
25 ; C r e d e n t i a l s a r e u p d a t e d below w i t h o u t c a l l s .
26 < I n s t r u c t i o n s f o r u p d a t i n g new c r e d e n t i a l s >
27 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
28
29 ; D e c r e a s i n g c o u n t s
30 c a l l 0 x f f f f f f f f 8 1 1 2 9 7 5 0 ; < d e c _ r l i m i t _ u c o u n t s >
31
32 ; Sending n o t i f i c a t i o n s
33 c a l l 0 x f f f f f f f f 8 1 a c 1 e d 0 ; < p r o c _ i d _ c o n n e c t o r >
34
35 ; R e l e a s i n g o l d c r e d e n t i a l s
36 c a l l 0 x f f f f f f f f 8 1 1 a c a 8 0 ; < c a l l _ r c u >
37
38 f f f f f f f f 8 1 1 2 5 6 4 4 :
39 r e t

Figure 7: Control and data flows in commit_creds(). Dupli-
cated function calls and data references are merged.

non-essential functions with NOP gadgets, which helps us
avoid the potential explosion caused by remapping. How-
ever, when it comes to page remapping, it is important
to note that if a function shares the same page as com-
mit_creds() or if two or more functions are located on the
same page, those functions cannot be replaced with NOP
gadgets. While developing the PoC exploit, we identified
four functions: inc_rlimit_ucounts(), dec_rlimit_ucounts(),
key_fsuid_changed(), and key_fsgid_changed(), which could
not be replaced with NOP gadgets. The first two functions
had no subfunctions, while the latter two had multiple ones.
Upon further analysis, we discovered that their subfunctions
were not called when the thread_keyring field of the cred data
structure was zero. With this information, we remapped these
functions and modified the thread_keyring field accordingly.

Finding gadgets with specific direct branches is a straight-
forward process, and we manually searched gadgets from
the gadget list using a simple text search tool, the grep

Target Name
(Origin)

Page Stitching
Remapping to

Logical Address
(Origin +0x38a000)

Replaced by
NOP Gadget

commit_creds() 0xffffffff814af3b0 -
current_task 0xffff88846f9bbb40 -

suid_dumpable 0xffffffff849a18a8 -
set_dumpable() 0xffffffff81806c60 0xffffffff81a23c60

key_fsuid_changed() 0xffffffff819d9ba0 -
key_fsgid_changed() 0xffffffff819d9c00 -
inc_rlimit_ucounts() 0xffffffff814b36c0 -
dec_rlimit_ucounts() 0xffffffff814b3750 -
proc_id_connector() 0xffffffff81e4bed0 0xffffffff81428ed0

call_rcu() 0xffffffff81536a80 0xffffffff82056a80

Table 3: Page stitching table for commit_creds(). Physical
pages of functions and data are remapped to new logical ad-
dresses. Physical pages of NOP gadgets replace non-essential
functions to avoid the remapping explosion.

tool. To perform page stitching with minimal gadgets,
we chose __64_sys_removexattr(), which included a direct
branch at 0xffffffff814af3b0. The page offset of the
system call matched the page offset of commit_creds() at
0xffffffff811253b0 with a displacement of 0x38a000. We
also chose the functions and data listed in Table 3. They were
either remapped for the system call or replaced by NOP gad-
gets, as discussed in Section 5.3.

Free physical pages were allocated in reverse order, be-
ginning from 0xffff8880003ff000, which is 16 GB away
from the value of page_offset_base. One free page was allo-
cated for the malicious credentials, which were copied from
the credentials of init_task. The thread_keyring field of the
malicious credentials was set to zero to skip the subfunctions.
Additionally, ten free pages were utilized to maintain private
page tables.
Page Flushing and Exploitation. Before page flushing,
we attached the malicious application to CPU 0 with the
taskset tool and cleared all global bits of the remapped
pages from the page tables. Subsequently, we waited until
the remapped pages were flushed from the TLB. Through
our experiments, 60 seconds were sufficient to wait in
our evaluation environment. Finally, the application suc-
cessfully obtained root privilege by passing the malicious
credentials (0xffff8880003ff000) as an argument to the
__x64_sys_removexattr system call.

6.2 Branch and Gadget Distributions

The Linux kernel consists of a static-linked vmlinux file and
kernel modules. Kernel modules have a significant amount
of code base but are selectively loaded only when necessary.
Therefore, they are not always available for exploitation. Com-
modity OSes typically tailor their kernels based on the default
configuration of the Linux kernel. Consequently, we focused



Kernel
Version Configuration System Call

Total Candidate
6.1.12

(Clang/LLVM CFI
with CET)

Commodity 992 252
Kernel
Default 992 220

6.2.8
(FineIBT)

Commodity 992 257
Kernel
Default 992 229

Table 4: Number of system calls and system call candidates
in Linux kernels. It includes 64-bit and 32-bit system calls.

on the .text section of the vmlinux file and compared kernels
built with commodity and kernel default configurations to
show the feasibility of POP.
Distribution of System Call Candidates. POP can utilize
both 64-bit and 32-bit system calls, and we identified all sys-
tem call candidates with prefixes such as __x64 and __ia32
across kernel versions. While extracting system call candi-
dates using the common rules described in Section 5.2, we
applied additional strict rules. (i) The first direct branch of the
system call has to be explicitly reached without any control-
flow diversions and exceptions. System calls were excluded
if they contained conditional branches, floating-point instruc-
tions, or undefined instructions before the first call or jump
instruction. (ii) At least, the first argument (rdi) has to remain
controlled before the first call or jump instruction. We also ap-
plied these rules to function and partial gadgets. Table 4 lists
the total number of system calls and the number of system
call candidates that were identified. Even with the strict rules,
we could identify more than 220 system call candidates out of
992 system calls. Kernels built with default configurations had
fewer system call candidates than commodity configurations.
The default configuration did not retain frame pointers for
functions, resulting in shorter system call functions. Conse-
quently, some system call candidates were excluded because
their branch targets pointed to the pages where their branches
are located.

While analyzing system call candidates, we discovered that
page offsets of direct branch targets were aligned to a 16-
byte boundary. The alignment characteristic was observed
in both Clang/LLVM CFI and FineIBT. Thus, the first gad-
get following after a system call candidate must be 16-byte
aligned. However, this does not limit the capability of POP
because function gadgets are also aligned to it. Hereafter, we
refer to 16-byte aligned as aligned and 16-byte unaligned as
unaligned.
Distribution of Function and Partial Gadgets. We applied
three rules while identifying all functions and partial gadgets.
First, we searched all functions in the kernel for function gad-
gets, selecting only complete function forms. Tail-call func-
tions that call other functions with jump instructions were
excluded because they require additional gadgets. Although
system call candidates could also be used as function gadgets,

we did not include them in our evaluation. Second, we disas-
sembled code units of every 32 bytes across all page offsets
to identify partial gadgets. The size of the partial gadgets was
determined based on two reasons: (i) the branch targets of
system call candidates are aligned by 16 bytes. A 32-byte size
allows for address overlapping and is adequate for collecting
gadgets. (ii) We aimed to keep the gadget size and search
space small for simplicity. After identifying the function and
partial gadgets, we selected call gadgets from them if the tar-
get of the first branch was reachable and valid. Specifically,
we considered six arguments: rdi, rsi, rdx, rcx, r8, and r9,
which could be passed to the system call candidates for indi-
rect call gadgets. Finally, we extracted NOP gadgets in which
no call and jump instructions go outside of the gadgets. All
gadgets were considered for both the round-trip and one-way
exploitation strategies.

The results of analyzing the gadgets for each kernel ver-
sion are listed in Table 5. The code size represents the size
of the .text section extracted with the objdump tool from the
vmlinux file. The numbers at the top are the count of aligned
gadgets, while the bold numbers in parentheses indicate the
sum of aligned and unaligned gadgets. Kernels with commod-
ity configurations had more gadgets than default configura-
tions, except for call gadgets that use jump instructions. The
reason was that the default configuration frequently utilized
tail calls with jump instructions. The table reveals that the
numbers of aligned direct call and NOP gadgets are sufficient
for performing POP. However, the number of aligned indirect
call gadgets is noticeably smaller compared to the others.

To find a way to reach unaligned indirect call gadgets, we
analyzed the distribution of branch targets in aligned direct
call gadgets. Table 6 lists the number of aligned direct call gad-
gets whose branch targets can jump to unaligned addresses.
The table reveals that at least over 8.7% of total gadgets have
unaligned branch targets. Figure 8 illustrates the distribution
of page offsets for these unaligned branch targets. Each dot
on the map represents gadgets within a 16x16 address range,
indicating the presence of multiple gadgets in this range. Ker-
nels built with Clang/LLVM CFI, as shown in Figures 8a and
8b, exhibit a large number of unaligned branches within the
ranges of 0xea1 to 0xeaf and 0x5c1 to 0x5cf, respectively,
resulting in horizontal lines. Conversely, kernels built with
FineIBT, shown in Figures 8c and 8d, do not display such pat-
terns. Furthermore, all kernel versions display concentrated
areas at the upper-left and lower-right corners. Although gad-
gets are gathered in specific offsets, unaligned branch targets
are evidently distributed across various page offsets. In conclu-
sion, unaligned indirect call gadgets can be reached utilizing
unaligned target branches, as shown in Table 5.

7 Discussion and Mitigation

Although POP has the capability to generate new control flows
through the DOA technique even in the presence of strong



Version Configuration Code Size
(KB)

Function Gadgets Partial Gadgets
Direct Call NOP Direct Call Indirect Call NOPCall Jump Call Jump Call Jump

6.1.12
(Clang/LLVM
CFI with CET)

Commodity 18,440.6
6,447

(6,466) -
6,088

(6,126)
67,356

(1,073,721)
4,428

(68,080)
60

(1,313)
570

(6,759)
63,199

(1,028,396)
Kernel
Default 18,444.8

5,495
(5,503)

2
(2)

6,542
(6,571)

61,639
(1,005,609)

7,249
(107,949)

42
(759)

708
(8,500)

43,224
(678,090)

6.2.8
(FineIBT)

Commodity 20,480.0
6,500

(6,507) -
6,230

(6,247)
69,448

(1,100,737)
4,897

(75,282)
80

(1,640)
604

(7,095)
64,406

(1,043,298)
Kernel
Default 18,432.0

5,504
(5,506)

2
(2)

6,604
(6,625)

61,977
(1,011,125)

6,799
(99,514)

44
(825)

733
(8,816)

42,026
(657,564)

Table 5: Numbers of call and NOP gadgets in Linux kernels. Code size indicates the .text section size of the kernel binary. The
numbers at the top of function and partial gadgets represent the number of aligned gadgets. The bold numbers in parentheses
represent the sum of aligned and unaligned gadgets.

Figure 8: Page offset distribution of unaligned branch targets within aligned direct call gadgets. Each dot represents multiple
gadgets in a 16x16 address range.

Kernel
Version Configuration

Aligned Direct Call
Gadgets

Total
Unaligned

Branch Target
6.1.12

(Clang/LLVM CFI
with CET)

Commodity 78,231 8,889
Kernel
Default 74,385 8,540

6.2.8
(FineIBT)

Commodity 80,845 7,018
Kernel
Default 74,282 6,430

Table 6: Number of aligned direct call gadgets and unaligned
branch targets in them

CFI policies, it also has certain limitations stemming from its
dependence on page table modifications. These limitations
can be leveraged as mitigations to effectively prevent the
success of POP attacks.
Limitations of Page-Oriented Programming. The remap-
ping of functions and gadgets has the potential to disrupt the
exploitation flow. For instance, if memory copy functions
such as strcpy() and memcpy() are replaced with gadgets, re-

cursive calls may occur and lead to failure when the security-
sensitive function executes these functions. Furthermore, if
the subfunctions of the sensitive function are spread over mul-
tiple physical pages and remapped, they may unintentionally
modify the execution flow of other kernel functions, resulting
in their failures. However, these limitations can be alleviated
by (i) substituting unused functions in the exploitation flow
with gadgets, (ii) unlinking non-essential subfunctions instead
of remapping them, and (iii) recovering all remapped pages
to the original pages after exploitation.

Page table modification requires multiple read-and-write
operations, exploiting an arbitrary memory access vulnerabil-
ity in the kernel. These attempts may lead to system crashes
during context switches or be affected by other CPU events,
depending on the characteristics of the vulnerability. Even
when leveraging CVE-2013-2595, the system can still crash
because page table modification is not an atomic operation.
Nonetheless, the risk can be reduced by setting the top-level
table of private page tables to the pgd field of the mm_struct
data structure after thoroughly preparing the private page ta-
bles, as described in Section 5.3. This approach can mitigate



the side effects of partially-linked private tables and allow for
atomic-like modification.
Mitigations. Several mechanisms, including Secvisor [68],
HyperSafe [76], TrustZone-based Real-time Kernel Protec-
tion (TZ-RKP) [6], Secure Kernel-level Execution Environ-
ment (SKEE) [7], kCoFI [18], and the work of Song et al. [69],
have been proposed to protect page tables by escorting page
updates. These methods are effective in detecting and pre-
venting unauthorized modifications of them. However, fre-
quent page updates can lead to notable performance overhead.
Data-flow integrity (DFI) [11] and software fault isolation
(SFI) [12, 74] can prevent POP by limiting arbitrary memory
read and write vulnerabilities. They impede paths to the ker-
nel DOAs, but runtime overhead is not negligible. In contrast,
PT-Rand [20] and Microsoft Windows employ a strategy of
randomizing page tables, thus aiming to hide their locations.
Randomizing page tables incurs lower performance overhead;
however, completely concealing them from all execution paths
within the kernel is challenging [67].

Recent studies on kernel compartmentalization and domain
isolation [47, 49, 65] leverage special hardware features such
as pointer authentication code with memory tagging extension
and SLAT table switching called Extended Page Table pointer
(EPTP) switching of the hardware-based virtualization tech-
nology. Although these mechanisms require kernel changes
in commodity OSes to collaborate, they provide robust com-
partment or domain isolation through hardware and access
policies. Therefore, they can prevent page remappings with
lower overhead by isolating page tables from unauthorized
accesses.

The 12th generation processors from Intel have recently
introduced a specialized extension called HLAT as part of the
Virtualization Technology-Redirect Protection (VT-rp). This
enhancement aims to mitigate page remapping attacks. At the
time of writing, Microsoft Windows 11 ensures support for
the HLAT extension [37], while Linux does not. With HLAT,
the guest OS is required to invoke hypercalls before and after
safely updating the page table information. However, this may
potentially hinder performance and cause synchronization
issues in multicore environments. Furthermore, HLAT is only
available on Intel CPUs starting from the 12th generation,
and it is uncertain whether all CPU vendors will support this
feature. As demonstrated, POP remains a viable and effective
attack technique for most current systems, and legacy systems
still need other mitigations we discussed.

8 Related Work

Control-Flow Integrity. Heuristic-based CFI research, such
as ROPGuard [26], kBouncer [63], and ROPecker [14], have
focused on analyzing return traces to determine the character-
istics of ROP attacks with reasonable performance overhead.
Other studies, such as Bin-CFI [79], CCFIR [78], opaque CFI
(O-CFI) [57], kCoFI [18], kCFI [29], MCFI [61], and indirect

function-call checks (IFCC) [72], employed static analysis on
source code or binaries to investigate control flow deviations
using CFGs generated from the analysis.

In contrast, πCFI [62], PathArmor [73], PittyPat [22],
µCFI [35], CFI-LB [44], and OS-CFI [43] aimed to generate
precise CFGs by combining dynamic information such as exe-
cution flow, execution path, and pointer origin information, to
enforce stringent CFI policies. Additionally, hardware-based
techniques for preventing deviations in indirect branches
were explored, including hardware-enforced CFI (HCFI) [16],
Transactional Synchronization Extensions-based CFI (TSX-
CFI) [59], and PAL [77]. These techniques leveraged cus-
tomized or commodity hardware such as Intel Transactional
Synchronization Extensions (TSX) [38] and ARM Pointer
Authentication (PA) [5].

Previous CFI research has made substantial contributions
to enforcing CFI policies by reducing the target set of the
indirect branch and leveraging hardware support. However, a
limitation of these approaches is that they primarily concen-
trate on enforcing policies over indirect branches. Although
kCoFI and kCFI considered page table protection, it is still
uncertain whether they can effectively prevent POP in com-
modity OSes with negligible performance overhead.
Bypassing Control-Flow Integrity. Several research groups,
including Carlini and Wagner [10], Davi et al. [21], Göktaş et
al. [30, 31], Evans et al. [24], and Carlini et al. [9] have inves-
tigated the weaknesses of CFI policies. They demonstrated
that several CFI studies based on heuristics and static CFGs
are still bypassed using techniques such as flushing return
traces and exploiting target sets of indirect branches.

Instead of exploiting the weaknesses, other studies by Chen
et al. [13], Morton et al. [58], and Hu et al. [34] proposed
DOAs that rely only on data to escalate privileges with-
out deviating from the CFG. Data-oriented programming
(DOP) [36] and block-oriented programming (BOP) [39] pro-
posed CRA techniques along valid execution paths. Addition-
ally, several studies have targeted the kernel [23, 45, 46] and
demonstrated code modification and privilege escalation by
modifying non-control data, such as page tables and creden-
tials. They exemplified that DOAs are applicable even beyond
the user level.

POP can be compared to DOP and BOP in the sense that
it achieves the CRA without modifying any code. However,
POP is not quite restricted by CFI policies because it exploits
direct branches. Consequently, POP does not require complex
computations, making it a more straightforward and intuitive
technique.
Kernel Integrity Protection. In x86_64 environments, pre-
vious research on kernel integrity protection with hardware
has employed the virtualization technology (VT) of the CPU.
Diverse approaches, including Secvisor [68], NICKLE [66],
and Shadow-box [33], have utilized the SLAT of VT to ensure
that kernel code remains non-writable. Secvisor, in particular,
proposed a page update mechanism using the hypervisor, but



its performance overhead was more than double because all
page faults were handled by it. In contrast, PrivWatcher [41]
focused on a lightweight protection mechanism for creden-
tials. It leveraged SLAT to establish a safe region inside the
kernel to prevent unauthorized modification of credentials.

SeCage [47] and xMP [65] utilized the SLAT-related fea-
ture, EPTP switching, and supported memory isolation with
access policies. Their isolation mechanisms could isolate page
tables from unauthorized accesses with kernel changes. Re-
cently, a new hardware feature, HLAT, has been introduced
by Intel to hinder page remapping attacks. Although the lat-
est CPUs may mitigate performance overhead and prevent
POP through it, protecting legacy systems with older CPUs
or without support for the feature is an open problem.

9 Conclusion

We introduced a novel CRA technique called POP and demon-
strated its PoC on an up-to-date system. This attack is practi-
cal and capable of creating arbitrary control flows, effectively
bypassing the current CFI implementations by undermining
their critical assumption of code memory immutability. While
the attack can be mitigated on cutting-edge hardware prod-
ucts, other existing systems still remain susceptible to this
attack at present.
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[31] Enes Göktaş, Elias Athanasopoulos, Michalis Poly-
chronakis, Herbert Bos, and Georgios Portokalidis. Size
does matter: Why using gadget-chain length to prevent
code-reuse attacks is hard. In Proceedings of the 23rd
USENIX Security Symposium, pages 417–432, 2014.

[32] Seunghun Han. Repository of the page-oriented pro-
gramming. https://github.com/kkamagui/page-
oriented-programming, 2023.

[33] Seunghun Han, Junghwan Kang, Wook Shin, H Kim,
and Eungki Park. Myth and truth about hypervisor-based
kernel protector: The reason why you need shadow-box.
In Blackhat-ASIA, 2017.

[34] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Pra-
teek Saxena, and Zhenkai Liang. Automatic generation
of data-oriented exploits. In Proceedings of the 24th
USENIX Security Symposium, pages 177–192, 2015.

[35] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon
Pak Ho Chung, William R Harris, Taesoo Kim, and
Wenke Lee. Enforcing unique code target property for
control-flow integrity. In Proceedings of the 2018 ACM
Conference on Computer and Communications Security
(CCS), pages 1470–1486, 2018.

[36] Hong Hu, Shweta Shinde, Sendroiu Adrian,
Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang.
Data-Oriented Programming: On the expressiveness
of non-control data attacks. In Proceedings of the
IEEE Symposium on Security and Privacy (SP), pages
969–986, 2016.

https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://www.coresecurity.com/sites/default/files/private-files/publications/2016/05/CSW2016%20-%20Getting%20Physical%20-%20Extended%20Version.pdf
https://www.coresecurity.com/sites/default/files/private-files/publications/2016/05/CSW2016%20-%20Getting%20Physical%20-%20Extended%20Version.pdf
https://www.coresecurity.com/sites/default/files/private-files/publications/2016/05/CSW2016%20-%20Getting%20Physical%20-%20Extended%20Version.pdf
https://www.coresecurity.com/sites/default/files/private-files/publications/2016/05/CSW2016%20-%20Getting%20Physical%20-%20Extended%20Version.pdf
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
https://gcc.gnu.org/
https://gcc.gnu.org/
https://github.com/kkamagui/page-oriented-programming
https://github.com/kkamagui/page-oriented-programming


[37] Intel. Windows 11 security starts with an
intel hardware security foundation. https:
//cdrdv2-public.intel.com/752405/intel-
Win11-Whitepaper-FINAL-June22.pdf, 2022.

[38] Intel. Intel 64 and ia-32 architectures software developer
manuals. https://www.intel.com/content/www/
us/en/developer/articles/technical/intel-
sdm.html, 2023.

[39] Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block-Oriented Programming: Au-
tomating data-only attacks. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), pages 1868–1882, 2018.

[40] Daehee Jang, Hojoon Lee, Minsu Kim, Daehyeok Kim,
Daegyeong Kim, and Brent Byunghoon Kang. ATRA:
Address translation redirection attack against hardware-
based external monitors. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), pages 167–178, 2014.

[41] Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi,
Xun Yi, Quan Chen, Ahmed M Azab, Guruprasad
Ganesh, and Peng Ning. PrivWatcher: Non-bypassable
monitoring and protection of process credentials from
memory corruption attacks. In Proceedings of the ACM
on Asia Conference on Computer and Communications
Security (ASIACCS), pages 167–178, 4 2017.

[42] Linux Kernel. kallsyms_sym_address. https:
//elixir.bootlin.com/linux/v6.2.8/source/
kernel/kallsyms.c#L149, 2022.

[43] Mustakimur Khandaker, Wenqing Liu, Abu Naser, Zhi
Wang, and Jie Yang. Origin-sensitive control flow in-
tegrity. In Proceedings of the USENIX Security Sympo-
sium, pages 195–211, 2019.

[44] Mustakimur Khandaker, Abu Naser, Wenqing Liu, Zhi
Wang, Yajin Zhou, and Yueqiang Cheng. Adaptive call-
site sensitive control flow integrity. In Proceedings of
the 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 95–110, 2019.

[45] WithSecure Labs. Windows 8 kernel memory protec-
tions bypass. https://labs.withsecure.com/
publications/windows-8-kernel-memory-
protections-bypass, 2014.

[46] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. Dirtycred:
Escalating privilege in linux kernel. In Proceedings of
the 2022 ACM Conference on Computer and Communi-
cations Security (CCS), pages 1963–1976, 2022.

[47] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting memory disclosure with efficient
hypervisor-enforced intra-domain isolation. In Proceed-
ings of the ACM Conference on Computer and Commu-
nications Security (CCS), pages 1607–1619, 2015.

[48] LLVM. Shadowcallstack. https://clang.llvm.org/
docs/ShadowCallStack.html, 2023.

[49] Derrick McKee, Yianni Giannaris, Carolina Ortega
Perez, Howard Shrobe, Mathias Payer, Hamed Okhravi,
and Nathan Burow. Preventing kernel hacks with HAKC.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS), pages 1–17, 2022.

[50] Microsoft. Control flow guard for platform security.
https://docs.microsoft.com/en-us/windows/
win32/secbp/control-flow-guard, 2022.

[51] Microsoft. Windows defender credential guard
requirements. https://learn.microsoft.com/en-
us/windows/security/identity-protection/
credential-guard/credential-guard-how-it-
works, 2022.

[52] Microsoft. Enable virtualization-based protection
of code integrity. https://learn.microsoft.com/
en-us/windows/security/threat-protection/
device-guard/enable-virtualization-based-
protection-of-code-integrity#how-to-turn-
on-memory-integrity, 2023.

[53] MITRE. CVE-2013-2595. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2013-2595, 2013.

[54] MITRE. CVE-2017-16995. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-16995,
2017.

[55] MITRE. CVE-2022-36280. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2022-36280,
2022.

[56] MITRE. CVE-2023-4569. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2023-4569, 2023.

[57] Vishwath Mohan, Per Larsen, Stefan Brunthaler,
Kevin W Hamlen, and Michael Franz. Opaque control-
flow integrity. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), pages 27–
30, 2015.

[58] Micah Morton, Jan Werner, Panagiotis Kintis, Kevin
Snow, Manos Antonakakis, Michalis Polychronakis, and
Fabian Monrose. Security risks in asynchronous web
servers: When performance optimizations amplify the
impact of data-oriented attacks. In Proceedings of the
IEEE European Symposium on Security and Privacy
(EuroS&P), pages 167–182, 2018.

https://cdrdv2-public.intel.com/752405/intel-Win11-Whitepaper-FINAL-June22.pdf
https://cdrdv2-public.intel.com/752405/intel-Win11-Whitepaper-FINAL-June22.pdf
https://cdrdv2-public.intel.com/752405/intel-Win11-Whitepaper-FINAL-June22.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://elixir.bootlin.com/linux/v6.2.8/source/kernel/kallsyms.c#L149
https://elixir.bootlin.com/linux/v6.2.8/source/kernel/kallsyms.c#L149
https://elixir.bootlin.com/linux/v6.2.8/source/kernel/kallsyms.c#L149
https://labs.withsecure.com/publications/windows-8-kernel-memory-protections-bypass
https://labs.withsecure.com/publications/windows-8-kernel-memory-protections-bypass
https://labs.withsecure.com/publications/windows-8-kernel-memory-protections-bypass
https://clang.llvm.org/docs/ShadowCallStack.html
https://clang.llvm.org/docs/ShadowCallStack.html
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://learn.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-how-it-works
https://learn.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-how-it-works
https://learn.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-how-it-works
https://learn.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-how-it-works
https://learn.microsoft.com/en-us/windows/security/threat-protection/device-guard/enable-virtualization-based-protection-of-code-integrity#how-to-turn-on-memory-integrity
https://learn.microsoft.com/en-us/windows/security/threat-protection/device-guard/enable-virtualization-based-protection-of-code-integrity#how-to-turn-on-memory-integrity
https://learn.microsoft.com/en-us/windows/security/threat-protection/device-guard/enable-virtualization-based-protection-of-code-integrity#how-to-turn-on-memory-integrity
https://learn.microsoft.com/en-us/windows/security/threat-protection/device-guard/enable-virtualization-based-protection-of-code-integrity#how-to-turn-on-memory-integrity
https://learn.microsoft.com/en-us/windows/security/threat-protection/device-guard/enable-virtualization-based-protection-of-code-integrity#how-to-turn-on-memory-integrity
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2595
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2595
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-36280
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-36280
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-4569
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-4569


[59] Marius Muench, Fabio Pagani, Yan Shoshitaishvili,
Christopher Kruegel, Giovanni Vigna, and Davide
Balzarotti. Taming transactions: Towards hardware-
assisted control flow integrity using transactional mem-
ory. In Proceedings of the Research in Attacks, Intru-
sions, and Defenses (RAID), pages 24–48, 2016.

[60] Peng Ning, Sabrina De Capitani di Vimercati, Paul
Syverson, and Hovav Shacham. The geometry of inno-
cent flesh on the bone: return-into-libc without function
calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security
(CCS), pages 552–561, 2007.

[61] Ben Niu and Gang Tan. Modular control-flow integrity.
In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), pages 577–587, 2014.

[62] Ben Niu and Gang Tan. Per-input control-flow integrity.
In Proceedings of the 22nd ACM Conference on Com-
puter and Communications Security (CCS), pages 914–
926, 2015.

[63] Vasilis Pappas, Michalis Polychronakis, and Angelos D
Keromytis. Transparent rop exploit mitigation using
indirect branch tracing. In Proceedings of the 22nd
USENIX Security Symposium, pages 447–462, 2013.

[64] Pastebin. sh-06e root. https://pastebin.com/
8BPCDc4i, 2013.

[65] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavam-
nia, Vasileios P Kemerlis, and Michalis Polychronakis.
xmp: Selective memory protection for kernel and user
space. In 2020 IEEE Symposium on Security and Pri-
vacy (SP), pages 563–577, 2020.

[66] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-
transparent prevention of kernel rootkits with vmm-
based memory shadowing. In Proceedings of the 11th
Recent Advances in Intrusion Detection (RAID), pages
1–20, 2008.

[67] Morten Schenk. Taking windows 10 kernel exploitation
to the next level-leveraging write-what-where vulnera-
bilities in creators update. In Blackhat-USA, 2017.

[68] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig.
Secvisor: A tiny hypervisor to provide lifetime kernel
code integrity for commodity oses. In Proceedings of
the ACM Symposium on Operating Systems Principles
(SOSP), pages 335–350, 2007.

[69] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William
Harris, Taesoo Kim, and Wenke Lee. Enforcing kernel
security invariants with data flow integrity. In Proceed-
ings of the 2016 Network and Distributed System Secu-
rity Symposium (NDSS), 2016.

[70] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. SoK: Eternal War in Memory. In Proceedings
of the IEEE Symposium on Security and Privacy (SP),
pages 48–62, 2013.

[71] PaX Team. Rap: Rip rop. In Hackers 2 Hackers Confer-
ence (H2HC), 2015.

[72] Caroline Tice, Tom Roeder, Peter Collingbourne,
Stephen Checkoway, Úlfar Erlingsson, Luis Lozano, and
Geoff Pike. Enforcing forward-edge control-flow in-
tegrity in GCC & LLVM. In Proceedings of the 23rd
USENIX Security Symposium, pages 941–955, 2014.

[73] Victor Van der Veen, Dennis Andriesse, Enes Göktaş,
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