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Abstract

Recent studies have revealed that deep learning-based
speaker recognition systems (SRSs) are vulnerable to adver-
sarial examples (AEs). However, the practicality of existing
black-box AE attacks is restricted by the requirement for ex-
tensive querying of the target system or the limited attack
success rates (ASR). In this paper, we introduce VoxCloak,
a new targeted AE attack with superior performance in both
these aspects. Distinct from existing methods that optimize
AEs by querying the target model, VoxCloak initially em-
ploys a small number of queries (e.g., a few hundred) to infer
the feature extractor used by the target system. It then uti-
lizes this feature extractor to generate any number of AEs
locally without the need for further queries. We evaluate Vox-
Cloak on four commercial speaker recognition (SR) APIs
and seven voice assistants. On the SR APIs, VoxCloak sur-
passes the existing transfer-based attacks, improving ASR
by 76.25% and signal-to-noise ratio (SNR) by 13.46 dB, as
well as the decision-based attacks, requiring 33 times fewer
queries and improving SNR by 7.87 dB while achieving com-
parable ASRs. On the voice assistants, VoxCloak outperforms
the existing methods with a 49.40% improvement in ASR and
a 15.79 dB improvement in SNR.

1 Introduction

Our voices not only convey “what we speak” but also reflect
“who we are”. Based on this phenomenon, speaker recogni-
tion (SR) techniques have been widely applied in various
biometric authentication systems [1–3]. The core of current
speaker recognition systems (SRSs) is deep neural networks
(DNNs) [4, 5]. Unfortunately, SRSs also inherit various vul-
nerabilities from DNNs. One of the primary security concerns
is adversarial examples (AEs), where an adversary can bypass
SRSs by adding small perturbations to audio inputs [6–8].

*The first two authors contributed equally to this work.
†Corresponding authors.

The AE attacks can be categorized into the white-box at-
tacks and the black-box attacks based on the capacity of the
attacker. In the white-box setting, where the internal details,
such as the parameters and architecture of the underlying
DNN, are accessible, the adversary can easily generate AEs
using the gradient descent method [9, 10]. In the black-box
setting where the adversary cannot access the internal details,
it is still possible to generate AEs through query-based at-
tacks or transfer-based attacks. Query-based attacks [7, 11]
operate by estimating the gradients of the target model via
the analysis of how variations in model inputs affect outputs,
as shown in Figure 1 (a). Transfer-based attacks leverage
the transferability of AEs, using examples that can deceive
a known model to fool an unknown model [12, 13], as seen
in Figure 1 (b). However, the assumption of the white-box
attacks is too strong, as attackers typically cannot access the
internal information of the target system in practice. Both
black-box attack approaches also have inherent limitations.
Specifically, query-based attacks require extensive queries to
the target model to estimate gradients, while transfer-based
attacks face restricted attack success rates, as summarized in
Table 1. These constraints hinder their practicability in reality.

In this paper, we take a different approach from prior works
to explore the vulnerability of SRSs against AE attacks. In-
stead of generating AEs targeting the underlying DNNs, we
focus on disrupting the feature extractor (FE) to realize the
attack. Our primary insight is that since the DNN relies on the
output from the FE as its input, disrupting the FE will naturally
impact the output of the DNN. Compared to complex DNNs,
the FEs are easier to manipulate intuitively because their
structures are simpler. Besides, we observe that most existing
SRSs utilize a few common feature extraction algorithms,
such as Mel-frequency Cepstral Coefficients (MFCC) [14],
D-Vector [15], and X-Vector [16], to construct their FEs [17].
This fact inspires us to attempt to infer the FE used by the
target system, thereby enabling a white-box attack to simplify
the optimization of adversarial perturbations. This approach
is similar to prior works, which initially establish local sub-
stitute models closely resembling the target model through
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Figure 1: Overview of query-based attacks, transfer-based
attacks, and our attack.

model extraction attacks [18, 19], and then utilize the substi-
tute models to optimize AEs. However, compared to the prior
works that aim to extract complex black-box DNNs, deter-
mining which feature extraction algorithm the target system
uses could be much easier.

Based on the above considerations, we propose VoxCloak,
a new targeted AE attack against black-box SRSs, as shown
in Figure 1 (c). VoxCloak comprises two stages. The first is
inferring the FE of the target black-box SRS from a set of
candidates. We utilize the fact that each FE defines unique
feature spaces, and the subsequent DNN will output similar
results for similar feature vectors. Specifically, we generate
AEs for each candidate FE. Then, we can determine the target
FE by analyzing which AEs successfully compromise the
target system. In addition, to address the problem where the
target system outputs identical results for multiple AEs as-
sociated with different FEs, making it hard to determine the
target FE, we design a genetic algorithm to eliminate incorrect
candidates to improve the accuracy of the inference results.

The second is generating high-quality AEs based on the
inferred FE. After inferring the target FE with a small num-
ber of queries, we can generate an arbitrary number of AEs
locally without the need for any further queries. Therefore,
compared to previous attacks that may require tens of thou-
sands of queries to craft a single AE [6], our method signif-
icantly reduces the cost of the attack. We also enhance the
imperceptibility and real-world robustness of the AEs by in-
corporating the psychoacoustic masking effect and the room
impulse response into the AE generation process.

Compared to prior works, we highlight the three advan-
tages of VoxCloak: (1) Low Cost: VoxCloak only requires a
small number of queries to the target system, such as a few
hundred, which is a one-time cost. After this, the attacker
can generate any number of AEs without the need for further
queries (unless the target system updates its used FE). (2)
Imperceptibility: The AEs generated by VoxCloak are less

detectable to the human ear, offering improved impercepti-
bility. (3) Robustness: VoxCloak could successfully attack
various SRSs in the physical world with an effective attacking
distance of up to 4 meters. This surpasses the state-of-the-art
method with a maximum distance of 2 meters.

Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to utilize the
vulnerability stemming from the reuse of FEs to realize
targeted AE attacks against SRSs. This vulnerability
allows adversaries to bypass user identity authentication
mechanisms.

• We propose VoxCloak, a new targeted AE attack against
black-box SRSs. Our attack requires a one-time, small
number of queries to the target SRS for inferring the em-
ployed FE. This design facilitates the offline generation
of an arbitrary number of AEs.

• We evaluate VoxCloak on four commercial SR APIs and
seven smart devices equipped with SR techniques. The
results show that VoxCloak achieves an average attack
success rate close to 100% and 70%, with a signal-to-
noise ratio of 21.47 dB and 21.38 dB in the digital and
physical domains, respectively.

2 Background

2.1 Speaker Recognition Systems
SRSs are designed to authenticate the identities of speakers
based on the unique features of their voices. The typical work-
flow of an SRS is shown in Figure 2, comprising five main
steps: feature extraction, universal background model model-
ing, speaker modeling, pattern matching, and score decision.
These steps can be divided into three phases: the offline train-
ing phase (top part), followed by the online enrollment and
online recognition phases (lower parts) [24].

In the offline training phase, an FE is employed to extract
acoustic feature vectors from a set of voices. These feature
vectors are then utilized to train a UBM [5], which captures
the general features inherent in human speech audio. In the
online enrollment phase, the SRS constructs a user-specific
model based on the voices uploaded by the user, leveraging
the previously established background model. In the online
recognition phase, the SRS calculates a score to quantify the
similarity between the input voice and the voices stored in
the system. The authentication result of the identity is then
determined based on a predefined threshold about the score.
Remark. All three phases involve an independent feature
extraction process for reducing the dimensionality of the raw
speech signal. Most current SRSs rely on existing FEs, such
as MFCC, Mel spectrum (Mel) [25], X-Vector, D-Vector, etc.
Detailed information regarding these FEs is provided in Ap-
pendix A.2. As these FEs are open-sourced and time-proven,



Table 1: Overview of the state-of-the-art adversarial attacks against SRSs.
Method Threat Scenario Attack Type Task Commercial Target Carrier Query ASR

Li et al. [20] White-box Digital CSI × ✓ Speech - <100%

VMASK [12] Black-box Digital SV × ✓ Speech 500 100%
Black-Box Physical SI ✓ ✓ 0 67%

Advpules [21] White-box Digital SI × ✓ Speech - 90%
FakeBob [7] Black-box Digital OSI, CSI, SV × ✓ Speech 3000 100%
Occam [6] Black-Box Digital SI, SV ✓ ✓ Song 10000 100%

Abdullah et al. [22] Black-Box Digital SI × × Speech 0 100%
Physical ✓ 42%

NRI-FGSM [23] Black-box Digital OSI, CSI × ✓ Speech 0 <100%

Our Black-box Digital OSI, CSI, SV
✓ ✓ Speech ∼300∗ ∼100%

Physical SV 0 70%
∗: The query cost is one-time, where our attack only queries the black-box model to infer its FE in the first stage and then generates AEs without querying the

model in the second stage.
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Figure 2: The workflow of an SRS contains three phases:
offline training, online enrollment, and online recognition.

developers can easily build their own SRSs by directly invok-
ing them, requiring minimal additional effort.

In terms of specific functionalities, SRSs typically address
three types of sub-tasks: close-set identification (CSI) [26],
speaker verification (SV) [27], and open-set identification
(OSI) [28]. The differences among these sub-tasks lie in their
methods of determining whether the current speaker initiating
the authentication request is indeed the enrolled user. CSI
identifies which enrolled user matches the current speaker.
SV checks whether the current speaker can be identified as
the target enrolled user. OSI determines whether the current
speaker is an enrolled user or an unknown user.

Formally, let S(·) be the similarity score between the en-
rolled user and the current speaker x. For a CSI system, it
outputs the identity of the enrolled user with the highest score.
The decision module D(x) can be formulated as follows:

D(x) = argmax
i∈T

[S(x)]i, (1)

where the set T includes m enrolled users {1,2, . . . ,m}. For an
SV system, T only contains one enrolled user. It determines
whether an input voice x belongs to the user according to the
score and a predefined threshold θ. Its decision module output

D(x) can be formulated as follows:

D(x) =

{
S(x), if S(x)≥ θ,

reject, otherwise.
(2)

The OSI system is a combination of CSI and SV. It utilizes
the output of Eq. (1) and the threshold for decision as follows:

D(x) =

argmax
i∈T

[S(x)]i, if max
i∈T

[S(x)]i ≥ θ,

reject, otherwise.
(3)

2.2 Adversarial Example Attacks
AE attacks are one of the primary security threats faced by
DNNs [29–31]. Attackers can manipulate the output of the
target model by introducing subtle noises into the inputs.

AE attacks can be categorized into white-box attacks [21,
32] and black-box attacks [33–35] based on the capabilities of
the adversary. In the white-box setting, the adversary has com-
plete access to the target model, including its architecture and
parameters. Such information enables the adversary to gener-
ate AEs relatively easily using gradient-based methods [9,10].
However, in the black-box setting, the adversary is limited to
accessing only the outputs of the target model, making the
attacks more challenging than in the white-box setting [6].
Furthermore, most real-world SRSs, such as commercial APIs
and smart devices with authentication capabilities, operate as
black boxes. They only disclose final results to users without
any internal details, making black-box attacks more impactful
than white-box attacks in practice.

Depending on the objective of the attack, AE attacks can
also be categorized into untargeted and targeted attacks. Untar-
geted AEs [36] can deceive the target model into misclassify-
ing the inputs into a random category, while targeted AEs [37]
are designed to manipulate the target model into classifying
the inputs into a category specified by the attacker.

Formally, let X be the set of inputs and Y be the set of
outputs. Given the target model f (x) : x ∈ X 7→ y ∈ Y , an



untargeted AE x∗ can be represented as:

x∗, s.t. f (x∗) ̸= y and ∥x∗− x∥ ≤ ε, (4)

where ε is a parameter used to limit the magnitude of the
adversarial perturbation, and ∥ · ∥ is a distance function, e.g.,
l2-norm. Similarly, a targeted AE with the target class y∗ can
be formulated as follows:

x∗, s.t. f (x∗) = y∗ and ∥x∗− x∥ ≤ ε. (5)

In this paper, we focus on generating targeted AEs in the
black-box setting, as they potentially pose a greater real-world
threat compared to untargeted AEs. Moreover, since targeted
attacks are more challenging to achieve, the investigation of
these attacks can provide deeper insights into the vulnerabili-
ties of SRSs [38].

2.3 Model Extraction Attacks
Model extraction attacks are for creating a model highly sim-
ilar to the target model by analyzing the returned query re-
sults [18,19,39]. One of the purposes of this attack is to serve
as an auxiliary method to facilitate black-box AE attacks [40].
While obtaining a substitute model with similar functionality
to the target model, the adversary can use it to generate AEs
locally via white-box attack methods, thus saving the cost of
querying the target model.

To our knowledge, there have been no prior model extrac-
tion attacks specifically targeting SRSs. Due to the inherent
complexity of SRSs and the diversity of their training data
collected from various users, it is difficult for the adversary to
extract a model that is sufficiently similar to the target model.

2.4 Threat Model
Our goal is to achieve a practical attack capable of deceiving
commercial SRSs, including online SR services in the digital
domain, as well as smart devices with identity authentication
mechanisms in the physical domain.

We outline the following essential properties for an effec-
tive real-world attack: (1) It should be a black-box attack, as
most commercial SRSs, including APIs and smart devices,
only provide users with the final recognition results; (2) The
number of queries to the target system should be as few as
possible to reduce the cost of the attack and enhance its ef-
ficiency; (3) The attacker should not be able to access the
target device, such as a smartphone, physically; (4) The gen-
erated AEs should be highly imperceptible, ensuring that they
remain undetected by the victim.

We make two assumptions about the target systems and the
capabilities of the attackers in real-world scenarios. Firstly,
we assume that the target system follows the typical work-
flow employed by most existing SRSs. As the SRSs usually
consist of the five components as introduced in Section 2.1,

we consider that the assumption is practical. Secondly, the at-
tacker could obtain a single voice sample of the enrolled user,
which is long enough for authentication by the SRS, through
alternative attacks, such as eavesdropping, phishing, or social
engineering. This assumption aligns with traditional replay
attacks [41], voice impersonation attacks [42], and prior AE
attacks against SRSs [6, 12, 43].1

3 Methodology

3.1 Key Insights

Our first insight is that once the target FE is known, generating
AEs becomes easier. SRSs typically operate by initially em-
ploying the FE to derive feature vectors fed into a subsequent
DNN. Therefore, if the target system extracts the same fea-
ture vector from the AE as the enrolled voice, it will naturally
lead to incorrect recognition results. Previous studies have
suggested generating AEs targeting some specific FEs [13].
However, given the nearly infinite space of voice samples,
searching for an AE that meets this requirement is extremely
difficult. We observe that most current SRSs achieve iden-
tification according to the similarity between the output of
the universal background model and the enrolled voice rather
than requiring them to be identical (which is inherently diffi-
cult in the physical world due to environmental interferences).
Hence, we transform the problem of searching for AEs into
an optimization problem that focuses on optimizing a voice
sample to make its feature vector as close as possible to the
voice of the legitimate user.

The second insight is that to infer the FE used by the target
system, it is only necessary to correctly select from among
the candidates. The previous research revealed that current
SRSs typically employ only a few common FEs [24]. This
observation simplifies the task from “extracting” the specific
FE used by the target system to “determining” which FE it
uses. A natural method for inferring the target FE is to analyze
the differences in the outputs of the target system to various
inputs. However, the output of an SRS is typically limited
to “accept” or “reject”, which is insufficient to achieve the
attack. For example, if the attacker queries the target system
using normal samples, the system will always return correct
recognition results (as long as it has high accuracy), regard-
less of the FE it uses. Therefore, our idea is to generate AEs
for each candidate FE and then identify which examples can
successfully deceive the target system. Intuitively, due to the
differences among various FEs, the effectiveness of AEs in-
dicates that the target FE is identical or at least similar to the
FE corresponding to the AEs.

1In some practical situations, AE attacks are more feasible than replay
attacks and voice impersonation attacks because such attacks might be easier
to notice by the target user.
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FE of the target SRS using a genetic algorithm method. The
second step utilizes the inferred FE to generate imperceptible
and robust AEs through psychoacoustic masking and room
impulse responses.

3.2 Overview

Building upon the two insights above, we propose VoxCloak,
a black-box targeted attack focusing on the feature extractors.
Specifically, VoxCloak comprises two main steps.

Step 1: Feature Extractor Inference. This step aims to
infer the FE used by the target SRS, as illustrated in the upper
part of Figure 3. To achieve this goal, we design a genetic
algorithm. Initially, we generate AEs for all candidate FEs,
respectively, by minimizing the distance between the voice
of the attacker and the enrolled voice of the victim. These
AEs serve as the initial population for the genetic algorithm.
The fitness value of each individual (i.e., an AE) is evaluated
according to the recognition results of the target SR. Based
on the query results, we can filter out individuals with lower
fitness. After multiple queries, we can infer the target FE
according to the surviving individuals.

Step 2: Adversarial Example Optimization. This step
aims to further improve the imperceptibility and robustness
of the AE by utilizing the inferred FE, as shown in the bottom
half of Figure 3. During the optimization process, in addition
to minimizing the distance between the AE and the voice ex-
ample of the victim, we incorporate psychoacoustic masking
to make the perturbation almost inaudible. Moreover, we use
room impulse responses to simulate the absorption and rever-
beration during over-the-air transmission, thereby improving
the robustness of our attack. Note that this step is entirely
carried out locally using the inferred FE without the need to
query the target system.

4 Design of VoxCloak

4.1 Feature Extractor Inference
We first present how to generate AEs based on FEs and the
specially designed genetic algorithm for inferring the FE uti-
lized by the target SRS.

4.1.1 Generating AEs against Feature Extractor

As discussed in Section 3.1, we have transferred the challenge
of extracting the FE employed by the target SRS into deter-
mining the FE from a set of candidates. A trivial approach is
to compare the representation space of the candidate FEs with
that of the target. Specifically, the attacker first constructs the
common FEs locally (using open-source implementations).
For each candidate FE, the attacker employs a personal input
voice to generate AEs by minimizing the distance between the
feature vector of this voice and the voice of the victim. Then,
the attacker queries the target SRS by the AEs and analyzes
the responses. Intuitively, AEs generated using an FE similar
to the target FE would yield higher attack success rates due
to their closer resultant feature vectors.

We approximate the computational process of the FE as a
differentiable form, thereby minimizing the distance between
the feature vector of the AE and that of the legitimate voice.
Considering an audio example x of the attacker, an audio
example xt of the victim, and a candidate FE g(·), by intro-
ducing a perturbation δ on x, the formulation of optimizing a
targeted AE x+δ can be defined as follows:

argmin
δ

∥g(x+δ),g(xt)∥2 . (6)

We select representative audio samples for each candidate
FE from our dataset to construct an AE repository. This reposi-
tory will then serve as the initial population for the subsequent
genetic algorithm.

4.1.2 Genetic Algorithm

Theoretically, we can infer the information about the target FE
according to the output of the AEs. However, such a straight-
forward method presented in Section 4.1.1 has a limitation:
For each candidate FE, if we only generate one AE for the
inference attack, then once multiple AEs can successfully
deceive the target system, it becomes difficult to determine
which candidate FE is correct. However, if we generate mul-
tiple AEs for each candidate FE, it will lead to a significant
increase in the number of queries. To address this issue, we
design a genetic algorithm to heuristically search for the FE
most similar to the target FE from the candidate set.2 Our

2To validate the effectiveness of the genetic algorithm, we have also
attempted to infer the target FE using a straightforward grid search method.
The results indicate that while this approach is feasible, it requires a higher
number of queries. More detailed results are presented in Appendix B.1.



design includes two parts: encoding each candidate into a
chromosome and realizing the basic operations of genetic
algorithms, e.g., selection, crossover, and mutation operators,
along with an apt fitness function. This approach is designed
to mimic biological evolution, with the ultimate goal of accu-
rately identifying the correct FE.
Encoding and Decoding. This step establishes a mapping
relationship between the candidate FEs and the chromosomes
of the genetic algorithm. We use an n-bit one-hot vector cn to
represent a possible solution, which can be formulated as:

cn = [c1,c2, · · ·,cn],

s.t.
{

ci = 0,1,
∑

n
i=1 ci = 1.

(7)

Each element in the vector represents a candidate FE. To
encode the i-th FE into a chromosome, we could set ci = 1.
Fitness Function. This function assigns a fitness value to
each chromosome to evaluate the quality of the candidate FE
based on the authentication result outputted by the target SRS.
Given an example x, the SRS can authenticate the identity of
the speaker and return a score S(x) or a decision D(x).

For a score-based SRS that returns the decision scores to
the user, the range of the score might be [0,1] or [0,100],
depending on its configuration. Initially, we transform the
score to fall within [0,100]. Then, we amplify the distance
between different FEs by squaring the score. This amplifica-
tion is also helpful for accelerating the convergence of the
genetic algorithm. We formulate the fitness function h(x) as
h(x) = S(x)2.

For a decision-based SRS that only returns the decision
results to the user, we map the results to values within the
[0,100] range to ensure the fitness function is differentiable.
Specifically, since the OSI and CSI tasks might misidentify
the input voice as belonging to another legitimate user, there
are three possible decisions: reject, misidentify, and accept.
We define the fitness function for these decisions as follows:

h(x) =

 10, f ail,
50, misidenti f y,

100, pass.
(8)

For the SV task, as it will only make two decisions, i.e., pass
or fail, the fitness function sets the values of the two decisions
to 10 and 100, respectively.
Selection, Crossover, and Mutation. The three operations
are the basic components of a genetic algorithm. Selection in-
volves choosing the most fit chromosomes and ensuring their
genes are inherited in the subsequent generation. Crossover is
combining two chromosomes to produce two new offspring
chromosomes. The goal of mutation is to maintain the diver-
sity of the population.

For the selection operation, we select chromosomes accord-
ing to their fitness values based on the roulette wheel method.
Moreover, we utilize the elitism selection approach, which

transfers the superior chromosomes from previous popula-
tions to a new population. This approach ensures the selection
of chromosomes exhibiting high performance across various
populations while preventing the algorithm from erroneously
identifying AEs, which succeed occasionally and are derived
from inaccurate FEs, as the optimal solution. We do not imple-
ment the crossover operation because our encoding method
renders the crossover meaningless and might even produce
additional invalid chromosomes. Thus, after the selection pro-
cess, we immediately undertake the mutation. The mutation
operation is realized by randomly modifying a position ci in
the original one-hot vector to 1. It can prevent the genetic
algorithm from converging on local optima.
Workflow. We hereby summarize the workflow of the ge-
netic algorithm-based method for inferring the target FE. The
attacker first establishes a population and encodes all can-
didate FEs into chromosomes. Secondly, AEs generated for
candidate FEs are fed into the target SRS, yielding recogni-
tion results and associated fitness values. Thirdly, the attacker
sequentially conducts the selection and mutation operations
to create new populations. Then, the second and third steps
are iteratively executed to update the population until the
algorithm terminates. The termination criteria are set as iden-
tifying the best chromosome, one that persists across five
consecutive generations, or the genetic algorithm running for
over 30 generations.

4.2 Adversarial Example Optimization

After obtaining the inferred FE, the attacker can use it to
generate AEs in a simpler way. This subsection details how
to generate effective, imperceptible, and robust AEs.

4.2.1 Psychoacoustic Masking

Eq. (6) demonstrates a basic approach for generating an AE.
The goal of the attacker is to make the feature vector of the
AE as close as possible to that of the legitimate audio voice.
However, such AEs generated by this unconstrained approach
may contain significant perturbations, making them easily
detectable by human ears and rendering the attack impractical.

Minimizing the lp distance between two examples is a
common way to improve the visual imperceptibility of image
AEs. However, this approach is less feasible in the audio
domain because human ears are highly sensitive to minor
changes in amplitude and frequency in audio signals. Merely
limiting the magnitude of the perturbation might still make it
perceptible. To address this issue, we employ psychoacoustic
masking, which exploits the limitations of human auditory
perception to optimize adversarial perturbations.

Psychoacoustic masking refers to the phenomenon wherein
louder sounds can mask quieter ones, thereby making them
less noticeable [44]. It occurs when two sounds with close fre-
quencies are present simultaneously. For example, if a louder



sound at 1000 Hz is played alongside a quieter sound at 1010
Hz, the latter becomes less noticeable. In other words, the
louder sound creates a “masking threshold” in the frequency
domain. Any signals that fall below this threshold become
less perceptible. Hence, we limit the magnitude of the pertur-
bations and confine them to specific frequency ranges. This
ensures that the perturbation does not significantly alter the
energy and spectral shape of the audio.

Given an audio input, the first step is to calculate its
frequency masking threshold through the normalized log-
magnitude power spectral density (PSD) estimation [45]. It
is achieved by performing a short-time Fourier transform on
the raw audio signal, segmenting it into multiple frames, and
then calculating their respective spectrums.3 We represent the
k-th bin of the spectrum for each frame x as Sx(k). The PSD
is calculated as follows:

px(k) = 10log10

∣∣∣∣ 1
N

Sx(k)
∣∣∣∣2 . (9)

Then, we normalize px(k) to a sound pressure level (SPL)
of 96 dB [46]

p̄x(k) = 96− argmax
k

{px(k)}+ px(k). (10)

Following the approach outlined in the work [46], we then
calculate the frequency masking threshold θx(k). By analyz-
ing the normalized PSD estimate of the perturbation p̄x(k),
we can determine which frequencies have sufficient energy to
mask adjacent frequencies. Then, we calculate the frequency
masking using a standard psychoacoustic model, such as the
Bark scale, to identify which frequencies can be masked at
certain energy levels to remain inaudible post-masking. For
more details, please refer to the works [45, 46].

For an adversarial perturbation δ added to the audio input
x, its normalized PSD estimate can be calculated as:

p̄δ(k) = 96− argmax
k

{px(k)}+ pδ(k). (11)

According to the principles of psychoacoustic masking, if
the normalized PSD estimate of the perturbation δ falls below
the global masking threshold θx(k), the perturbation will be
less perceptible to human ears. It is achieved by minimizing
the loss function defined as follows:

Psy(x,δ) =
1⌊N

2

⌋
+1

⌊N
2 ⌋

∑
k=0

max{p̄δ(k)−θx(k),0} . (12)

Upon integrating the distance constraint, the optimization
goal is:

argmin
δ

{∥g(x+δ),g(xt)∥2 +α ·Psy(x,δ)} , (13)

where α is a hyper-parameter to balance the effectiveness and
the imperceptibility of the attack.

3Here, we use a modified Hann function with a window size of 2048
and a hop size of 512 to segment an audio file into multiple frames.
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Figure 4: Inferring FEs with genetic algorithm.

4.2.2 Room Impulse Response

An additional challenge arises in physical environments where
audio signals might be distorted due to factors like absorption
and reverberation, resulting in the ineffectiveness of the attack.
To enhance the robustness of the AEs, we introduce a room
impulse response (RIR) component during the optimization
process to simulate environmental distortions and counteract
their effects.

Specifically, we established a dataset of RIRs, using
FAST_RIR [57] to generate 50,000 medium-sized room im-
pulse responses. Then, we adjust the optimization objective
as follows:

argmin
δ

{∥g(r⊗ (x+δ)),g(xt)∥2 +α ·Psy(x,δ)} , (14)

where r represents the RIR sampled from the set, and ⊗ rep-
resents the convolution operation.

5 Evaluation

5.1 Ethical Considerations

Throughout the experimental process, we rigorously follow
the ethical guidelines below:
Strictly Controlled Experiments. In our tests with commer-
cial APIs, we only used publicly available datasets, ensuring
that no data concerning personal privacy or commercial se-
crets were involved. Furthermore, upon the completion of
successful attacks, no unauthorized actions were executed.
All devices used in our experiments were under the personal
ownership of the research team.



Table 2: Details of the commercial speaker recognition systems.
SRS Task Text Type Over-the-Air Query Return Results FRR FAR FE⋆

Google [2] SV Independent API ×
√

D 1/10 0/10 MFCC
Unisound [47] SI Independent API ×

√
D‡+S≀ 0/10 0/10 X-Vector

iFlytyke [48] SI Independent API ×
√

D+S 0/10 0/10 D-Vector
Talentedsoft [49] SI Independent API ×

√
D+S 0/10 1/10 X-Vector

Apple Siri [50] SV Dependent Device
√

× Action† 0/10 1/10 X-Vector
Tmall Genie [51] SI Dependent Device

√
× Action 0/10 0/10 X-Vector

Millet Xiaoai [52] SI Dependent Device
√

× Action 0/10 0/10 X-Vector
Google Assistant [53] SV Dependent Device

√
× Action 0/10 0/10 X-Vector

Samsung Bixby [54] SV Dependent Device
√

× Action 0/10 0/10 X-Vector
Huawei Xiaoyi [55] SV Dependent Device

√
× Action 0/10 0/10 X-Vector

OPPO Breeno [56] SV Dependent Device
√

× Action 0/10 0/10 X-Vector
‡: “D” means that the SRS returns the final decision, e.g., accept or reject. ≀: “S” means that the SRS returns the confidence score. †: “Action” means that the

SRS adopts the wake-up mechanism. ⋆: “FE” means the feature extractor used in our experiments.

Responsible Disclosure. We have informed all companies
involved in our experiments about this potential vulnerability
through official reporting channels or direct emails. We pro-
vided detailed explanations and solutions for mitigating this
risk.

5.2 Experiment Setup
Target Systems. To evaluate the performance of our attack,
we select several popular and representative commercial SRSs,
including four online SR APIs and seven commercial voice
assistants, as the targets (shown in Table 2).4 Table 9 in Ap-
pendix A provides detailed information about the voice assis-
tants.
Datasets. We utilize two widely-used datasets: VoxCeleb
V1 (Vox) [58] and CMU_arctic (Cmu) [59], to evaluate the
performance of VoxCloak. In addition, we recruited 20 vol-
unteers for voice data collection and named the constructed
dataset “WakeUp” because the purpose of the recorded voice
commands, like “Hey Siri” and “Hey Google”, are designed
to activate the voice assistants. We randomly selected a pair
of volunteers from all participants to serve as the attacker and
victim in each experiment. For the experiments about com-
mercial APIs, ten pairs of volunteers were selected. For voice
assistants, 15 pairs were selected. Details about the datasets
are provided in Appendix A.1.
Metrics. We utilize the following three metrics: (1) Attack
Success Rate (ASR): This measures the proportion of AEs
that can successfully deceive the target SRSs. A higher ASR
indicates that the attack is more effective. (2) Signal-to-noise
Ratio (SNR): This quantifies the level of adversarial perturba-
tion, calculated using the formula SNR = 10log10

Px
Pδ

, where
Px and Pδ indicate the average power of the signal and the
perturbation, respectively. A higher SNR means a lower noise

4We have surveyed more commercial SRSs, as detailed in Table 10 in
the Appendix A. Unfortunately, several of them do not provide the interface
for personal users. For example, Microsoft Azure only provided the service
to their partners and rejected our request to use the service.

level, i.e., the perturbation is less perceptible. (3) Number of
Queries (NoQ): This refers to the number of queries required
for generating an effective AE. Fewer queries imply that the
attack is more efficient.

Moreover, we use the false rejection rate (FRR) and the
false acceptance rate (FAR) to measure the function of the
SRSs. The FRR is the proportion of audio samples from
legitimate users that are erroneously rejected, and the FAR is
the proportion of audio samples from unauthorized users that
are incorrectly accepted.
Benchmarks. We compare VoxCloak with three state-of-the-
art attacks: two query-based black-box attacks, namely Fake-
Bob [7] and Occam [6], along with a transfer-based attack,
VMask [12]. In addition, we established a baseline compari-
son, termed Vanilla, which involves the samples created by
directly overlaying the audio waveforms of the attackers onto
those of the legitimate users.

5.3 Evaluation on Online SR APIs
Effectiveness. The results of VoxCloak and baselines are
presented in Table 3. Overall, AEs generated by VoxCloak
achieved nearly a 100% ASR with an average SNR as high as
21.47 dB, marking a considerable improvement over existing
works. Specifically, in comparison to decision-based attacks,
VoxCloak outperforms FakeBob [7] with an ASR of 99.96%
and an SNR of 8.04 dB and outperforms Occam [6] with a
close ASR and an SNR of 7.86 dB. Compared to the transfer-
based attack, VoxCloak outperforms VMask [12] with an ASR
of 76.25% and an SNR of 13.46 dB. Figure 7 in Appendix B.3
shows the waveforms and spectrograms of both the original
audio examples and the AEs produced by VoxCloak and var-
ious baselines. We can observe that the adversarial audio
examples generated by VoxCloak more closely resemble the
original audio compared to those from the baselines. This
indicates that the AEs generated by VoxCloak are closer to
normal examples, thereby exhibiting better imperceptibility.
Efficiency. As shown in Figure 4, the ASR of AEs related to



Table 3: Experimental results on commercial online SR APIs.

SRS Dataset Vanilla∗ VMask∗ FakeBob Occam VoxCloak

ASR SNR ASR SNR ASR SNR NoQ# ASR SNR NoQ# ASR SNR NoQ

Google Cmu 0/10 0.01 3/10 9.15 0/10 N/A 3000 10/10 14.15 10,000 9/10 22.45 ∼300Vox 0/10 0.02 1/10 6.14 1/10 15.3 750 10/10 13.25 10,000 10/10 21.73

Unisound Cmu 0/10 0.01 4/10 9.32 0/10 N/A 3000 10/10 14.31 10,000 10/10 19.28 ∼300Vox 0/10 0.02 1/10 6.66 1/10 13.4 980 10/10 14.59 10,000 10/10 19.47

iFlytyke Cmu 0/10 0.01 2/10 9.98 0/10 N/A 3000 10/10 13.78 10,000 10/10 23.82 ∼300Vox 1/10 0.02 2/10 5.95 1/10 11.6 2540 10/10 14.47 10,000 10/10 21.26

TalentedSoft Cmu 1/10 0.01 3/10 9.74 0/10 N/A 3000 10/10 11.25 10,000 10/10 23.31 ∼300Vox 2/10 0.02 2/10 6.18 0/10 N/A 3000 10/10 12.96 10,000 10/10 21.26
∗: The method does not query the target system. #: The value of NoQ is the average number of queries for generating one AE. N/A indicates “not available”.

Since FakeBob [7] produces no effective AE, its SNR cannot be calculated. VoxCloak only requires about 300 queries to infer the target FE and does not require
further queries to generate AEs. We set the max NoQ for FakeBob [7] and Occam [6] as 3000 and 10,000, respectively.

a specific FE becomes significantly higher than others after
running the genetic algorithm for 20 generations, indicating
a high similarity between this FE and the target FE. We ini-
tially selected four FEs as candidates and created 25 AEs for
each candidate FE, requiring one query to the target system
per example. This equates to a total of 100 queries in the
initial phase. Subsequently, in each generation of the genetic
algorithm, we set the mutation probability to 10%, selecting
10 AEs for querying per generation. After running for 20
generations, this results in an additional 200 queries. There-
fore, the entire process involves approximately 300 queries
to the target system. This NoQ is significantly lower than
prior decision-based attacks like Occam, which requires up
to 10,000 queries for generating one AE, and Fakebob, which
requires an average NoQ of 1423 for generating one AE. Fur-
thermore, for Fakebob, we observe that it is challenging to
generate a successful AE even after 3000 query attempts. We
note that our results for FakeBob [7] differ from those in the
original publication [7] but are consistent with results obtained
by Zheng et al. [6]. This discrepancy is likely attributable to
updates in the APIs.

In addition, as long as the target system does not update its
extractor, VoxCloak can generate any number of AEs without
additional queries. This not only lowers the operational costs
of VoxCloak but also increases its ability to evade detection
by defense mechanisms that analyze query patterns [60].
Generalization. We have also evaluated the performance of
VoxCloak across three different SR tasks: CSI, SV, and OSI.
The results in Table 4 demonstrate that VoxCloak achieves
a near 100% average ASR and a 20.89 dB average SNR on
CSI tasks. For SV tasks, it accomplishes an average ASR of
86.67% and an average SNR of 21.77 dB. However, for OSI
tasks, there is a slight decline, with the average ASR reducing
to 78.33% and the average SNR to 21.18 dB. We consider
that this decrease may be attributed to the threshold settings
in the OSI tasks, where a higher threshold may prevent some
weaker AEs from misleading the decision-making process.

Table 4: Experimental results on different SR tasks.

SRS Dateset CSI SV OSI

ASR SNR ASR SNR ASR SNR

Unisound Cmu 10/10 19.28 8/10 22.54 8/10 22.54
Vox 10/10 19.48 7/10 19.14 7/10 19.14

iFlytyke Cmu 10/10 23.82 7/10 23.23 7/10 23.23
Vox 10/10 19.48 10/10 21.26 7/10 19.44

TalentedSoft Cmu 10/10 23.82 10/10 23.21 10/10 23.31
Vox 10/10 19.48 10/10 21.26 8/10 19.44

Nevertheless, the high ASR of VoxCloak across the three
tasks still reveals the potential security risks.

5.4 Evaluation on Voice Assistants
We evaluated the performance of VoxCloak using seven com-
mercial smart devices equipped with voice assistants. Details
of the experimental setup are provided in Figure 5 (a). All
experiments took place in a closed indoor environment, with
the loudspeaker and the voice-controlled device positioned
about 0.8 meters apart. We used two types of devices, the JBL
Clip 3 and the ThinkPad X1 8th, to play the AEs. Notably,
neither VoxCloak nor the baseline methods are allowed to
query the target system. An attack is considered successful if
it manages to activate the voice assistants with the AE in no
more than two attempts.

As it is unable to query the target system when attacking
voice assistants in the physical world, for FakeBob [7] and
Occam [6], we first adapted their approaches to generate AEs
against the Unisound API, an online SR service that allows
free queries. The generated examples were then used to at-
tack the target system. For VoxCloak, we consistently used
X-Vector as the FE for generating AEs. We choose X-Vector
for two reasons. (1) Experimental results in Appendix B.2
show that AEs generated based on X-Vector possess a degree



Table 5: Experimental results on voice assistants.

SRS Loudspeaker Vanilla Vmask FakeBob Occam VoxCloak

ASR SNR ASR SNR ASR SNR ASR SNR ASR SNR

Apple Siri JBL Clip3 6/15 0.01 3/15 9.09 2/15 2.31 2/15 14.14 12/15 17.63
ThinkPad 4/15 0.02 3/15 9.09 1/15 4.13 2/15 13.14 12/15 17.63

Tmall Genie JBL Clip3 6/15 0.01 3/15 8.38 4/15 4.71 3/15 2.78 14/15 21.71
ThinkPad 6/15 0.01 2/15 8.85 3/15 5.29 3/15 2.78 13/15 22.02

Millet Xiaoai JBL Clip3 5/15 0.01 5/15 8.62 0/15 N/A 3/15 2.36 13/15 20.89
ThinkPad 5/15 0.01 4/15 10.06 0/15 N/A 2/15 2.78 11/15 21.26

Google Assistant JBL Clip3 6/15 0.01 4/15 8.38 3/15 4.11 2/15 11.89 11/15 22.84
ThinkPad 5/15 0.01 4/15 8.38 3/15 4.11 3/15 11.75 12/15 23.21

Samsung Bixby JBL Clip3 6/15 0.01 1/15 7.35 1/15 5.21 1/15 12.68 7/15 22.45
ThinkPad 5/15 0.01 2/15 6.83 1/15 5.21 2/15 13.02 6/15 22.57

Huawei Xiaoyi JBL Clip3 5/15 0.01 3/15 9.13 2/15 3.13 2/15 12.25 11/15 20.89
ThinkPad 4/15 0.01 2/15 9.45 2/15 3.13 2/15 12.25 10/15 20.43

OPPO Breeno JBL Clip3 6/15 0.01 2/15 7.82 2/15 2.87 4/15 13.26 8/15 23.48
ThinkPad 6/15 0.01 1/15 7.82 1/15 3.91 3/15 12.87 7/15 22.27

N/A denotes “not available”. All attacks are conducted in the physical world, and the attacker does not query the SRSs. For FakeBob [7] and Occam, we find that
the AEs with higher SNR cannot attack SRSs, so we try to find a successful example by lowering the SNR.

Table 6: Results under different attack distances (meter).
Distance 0.25 0.5 1 2 4 8

Apple Siri
FRR 0/15 0/15 0/15 0/15 1/15 2/15
FAR 0/15 1/15 1/15 1/15 1/15 0/15
ASR 14/15 14/15 12/15 11/15 7/15 2/15

Tmall Genie
FRR 0/15 0/15 1/15 3/15 5/15 7/15
FAR 0/15 0/15 0/15 0/15 0/15 0/15
ASR 14/15 14/15 12/15 5/15 2/15 1/15

Millet Xiaoai
FRR 0/15 0/15 0/15 2/15 6/15 6/15
FAR 0/15 0/15 0/15 0/15 0/15 9/15
ASR 13/15 13/15 12/15 46.67 1/15 0/15

of transferability to other FEs. (2) X-Vector has better per-
formance than other common FEs [16], suggesting it is more
likely to be used in target systems.
Effectiveness. The results in Table 5 demonstrate that Vox-
Cloak outperforms baseline methods in both ASR and SNR
across all tested voice assistants. For instance, when target-
ing Apple Siri with the JBL Clip3, VoxCloak achieves an
80% ASR and an SNR of 17.63 dB. In contrast, neither Fake-
Bob [7] nor Occam [6] could effectively generate AEs capable
of a successful attack with a comparable SNR. However, the
ASRs on Samsung Bixby and OPPO Breeno are markedly
lower than those of other systems, implying substantial dif-
ferences between the FEs employed by these two systems
and X-Vector. Nevertheless, the performance of VoxCloak on
these two systems still outperforms the baselines.
Robustness. To evaluate the effect of attack distance on per-

formance, we conducted tests with varying distances between
the speaker (JBL Clip3) and voice-controlled devices, specifi-
cally at 0.25, 0.5, 1, 2, 4, and 8 meters. The results, as shown
in Table 6, align with the intuition: the ASR decreases while
the distance increases due to the signal attenuation caused by
air transmission and environmental interferences. For exam-
ple, when targeting Apple Siri, the ASR at an attack distance
of 0.5 meters is 93.33%; however, it decreases to 73.33% at 2
meters and further drops to just 13.33% at 8 meters. Despite
this decrease, VoxCloak consistently outperforms baseline
methods in the physical world.

5.5 Evaluation on Different Acoustic Environ-
ments

In this subsection, we evaluate the effectiveness of VoxCloak
across various acoustic environments, including two real-
world environments and four simulated environments aug-
mented with background noise. A JBL Clip3 speaker was
consistently used for all experiments. We detail the test envi-
ronments as follows.
Apartment Scenario. The experiments are conducted in an
apartment scenario (Figure 5 (b)). The dimensions of the
apartment are approximately 7.5 meters × 3 meters, with the
attack distance set at 0.5 meters. The primary environmental
noises originated from a computer fan and the acoustics of the
room, due to wall absorption and reverberation. These noises
could potentially impact the audio received by the microphone
compared to that emitted by the speakers.



Table 7: Results under different acoustic environments.

Environment White
(30dB)

White
(45dB)

White
(50dB)

White
(60dB)

White
(65dB)

Bus
(60dB)

AirCon.
(60dB)

Neighbor
(60dB)

Office
(64dB)

InsideCar
(75dB)

Apple Siri
FRR 0/15 0/15 0/15 1/15 2/15 2/15 7/15 2/15 2/15 1/15
FAR 2/15 3/15 2/15 2/15 2/15 3/15 1/15 2/15 2/15 2/15
ASR 15/15 15/15 15/15 12/15 11/15 13/15 6/15 8/15 10/15 12/15

Tmall Genie
FRR 0/15 0/15 0/15 0/15 0/15 0/15 3/15 1/15 0/15 0/15
FAR 1/15 0/15 0/15 1/15 1/15 3/15 2/15 0/15 2/15 1/15
ASR 15/15 15/15 15/15 13/15 10/15 7/15 9/15 6/15 12/15 13/15

Millet Xiaoai
FRR 0/15 0/15 0/15 0/15 3/15 0/15 4/15 3/15 1/15 0/15
FAR 1/15 1/15 1/15 0/15 1/15 1/15 1/15 1/15 1/15 1/15
ASR 15/15 15/15 13/15 7/15 7/15 7/15 6/15 9/15 9/15 10/15

“White” indicates white noise.“Bus” means the noise from bus noise class. “AirCon.” indicates the noise from the air conditioning Class. “Neighbor” means the
noise from the neighbor speaking noise class.

Victim SR:
Apple Siri

Speaker:
JBL Clip3

Audio Source:
iPhone 12

Attacker

Victim

Hey Siri

Distance：
0.8 meter

(a) Case study in an office setup (c) Case study in an inside-vehicle setup

(b) Case study in an apartment setup

Victim SR

Adversarial
loudspeaker

Adversarial
loudspeaker

Victim SR

Figure 5: Demonstration of acoustic environments.

Inside-car Scenario. The experiments are conducted in a
Volkswagen Gran Lavida (interior depicted in Figure 5 (c)).
The AEs were played while the car was parked and the en-
gine was running. Hence, the environmental noises mainly
stemmed from the engine and the reverberation. The speaker
was placed about 0.2 meters from the target devices due to
spatial limitations.
Simulated Scenarios. By utilizing the Microsoft Scalable
Noisy Speech Dataset, we simulated environments with four
types of noises: white noise, bus noise, air conditioning noise
(AirCon.), and noise from neighboring conversations. The
white noise volume is varied between 30 and 65 dB. In the
simulated office environment, one JBL Clip3 is used to broad-
cast the AEs and another to play the noise. Both are positioned
around 0.5 meters from the target device.

The results are presented in Table 7. VoxCloak achieves
high ASRs across various acoustic environments. For Apple

Siri, TMall Genie, and Millet Xiaoai, the average ASRs in
these ten environments were 78.00%, 76.67%, and 65.33%,
respectively. Note that even when the white noise reached 60
dB, close to the volume of the AEs (approximately 60 dB), our
attack still maintains an ASR of 69.63%. Besides, we observe
that some voice assistants could be activated by clean voices
from unauthorized users. We attribute this to two potential
causes: (1) the voiceprint features of the unauthorized user
might be similar to those of an authorized user, and (2) the
underlying SRS may have a relatively low threshold setting.
While a lower threshold can improve the user experience by
reducing authentication failures for authorized users, it also
poses potential security risks.

5.6 Evaluation on Human Perception

SNR is a common metric for quantifying audio adversarial
perturbation. However, it does not fully reflect the impercepti-
bility of AEs to the human ear. Two AEs with identical SNRs
might be perceived differently because human auditory per-
ception is impacted not just by sound intensity but also by
frequency. In this subsection, we evaluate the imperceptibility
of VoxCloak in terms of human perception.

5.6.1 Subjective Evaluation

For our human studies, we recruit 31 volunteers aged between
18 and 25 with normal hearing, including 18 males and 13
females.5

Study 1. The objective of this study is to assess whether vol-
unteers could correctly discern if two audio clips were spoken
by the same person. Volunteers are asked to listen to multiple
audio clips and respond with “yes”, “no”, or “uncertain”. We
present them with 20 audio pairs in the experimental group,
each comprising one AE and one normal speech clip. The
control group consists of two sets of audio triples, each con-

5The ethical clearance for this work was obtained from our institution.



taining a normal clip as a reference, a clip from the same
speaker as the reference, and a clip from a different speaker.

In the control group, our results show that 77.42% of the
audio pairs from the same speaker are correctly identified,
and 74.19% of pairs from different speakers were correctly
identified. However, in the experimental group, 78.55% of
the audio pairs are incorrectly identified as being from the
same speaker. This demonstrates that the AEs generated by
VoxCloak can effectively deceive humans, indicating a high
level of auditory deception.
Study 2. The objective of this study is to assess whether vol-
unteers could correctly recognize the identity of the speaker.
Volunteers are first provided with an audio clip as a reference.
Then, they are presented with two additional clips and asked
to identify the one spoken by the same speaker with the ref-
erence clip. We conduct 20 experiments as the experimental
group, each using an AE as the reference, and ask volunteers
to distinguish between normal voices from the target speaker
and the original speaker used to generate the AEs. The control
group involved two sets of audio triples, each containing a
normal clip as a reference, a clip from the same speaker, and
a clip from a different speaker.

The results show that in the control group, 93.55% of the
audio clips are correctly identified. However, in the experi-
mental group, only 4.68% of the clips are identified as be-
longing to the target speaker, with 89.07% identified as the
original speaker and 6.45% as “uncertain”. This implies that
volunteers generally associate the AEs more with their origi-
nal speakers, highlighting the deception of VoxCloak.
Study 3. The objective of this study is to evaluate the human
perception of the audio quality of AEs. Volunteers are initially
provided with normal audio clips as a reference for quality.
They are then asked to evaluate and rank 20 sets of AEs,
each including clips generated by VMask [12], FakeBob [7],
Occam [6], and VoxCloak.

The results show that more than 80% of the volunteers
rate the AEs generated by VoxCloak as having the highest
quality, with 10% ranking them second and only 5% ranking
them third or fourth. These results indicate that the AEs gener-
ated by VoxCloak are acoustically similar to normal samples,
thereby demonstrating the imperceptibility of VoxCloak.

5.6.2 Objective Evaluation

We also utilize the Perceptual Evaluation of Speech Quality
(PESQ) [61], as recommended by the International Telecom-
munication Union, for an objective assessment of the imper-
ceptibility of VoxCloak. The PESQ score ranges from 1 to 5,
with 1 indicating poor audio quality and 5 indicating excellent
audio quality. The score is impacted by various factors, such
as audio sharpness, background noise, variable latency, and
audio interference.

We evaluate 80 AEs generated by VoxCloak against four
online SR APIs, achieving an average PESQ score of 2.93.

This performance outperforms that of several baselines, i.e.,
Occam [6] (2.19), FakeBob [7] (2.81), and VMask [12] (2.35),
where each method is also evaluated with 80 AEs against the
same four SR APIs.

6 Related Work

6.1 Adversarial Example Attacks

Researchers initially explored AE attacks against SR systems
in the white-box setting. Li et al. [20] employed the Fast
Gradient Sign Method to generate AEs against SV systems.
Gong et al. [10] proposed an attack targeting CSI systems
by perturbing the raw audio recording. NRI-FGSM generates
subsecond-level universal adversarial perturbations, which
can add adversarial perturbations at any position in the input
stream to improve the robustness of AEs [21].

However, since these attacks rely on a strong assumption
that the attacker has complete knowledge of the details of the
target system, researchers have increasingly focused their at-
tention on black-box attacks. VMask [12] uses a local model
to guide the optimization of AEs against target SV systems.
This approach shares some similarities with VoxCloak. How-
ever, owing to the architecture of FEs being significantly
simpler than that of SRSs, attackers using VoxCloak have
smaller differences between the results obtained locally and
those in the target system, thereby achieving higher ASRs.

Abdullah et al. [22] proposed the first zero-query black-
box attack. They leverage the common feature extraction
process that converts the captured audio into model features
and modifies the recorded audio by signal decomposition and
reconstruction. This approach is highly effective for untar-
geted attacks, but it encounters limitations in implementing
effective targeted attacks, as well as in attacking SV tasks.
FakeBob [7] also achieves targeted black-box attacks against
SV, CSI, and OSI tasks as VoxCloak does. However, it cannot
attack most commercial SR systems because of the need for
predicted probabilities/scores. Occam [6] has overcome the
limitation of FakeBob, achieving a 100% ASR with an SNR
of 14.23 dB, even if the target system does not disclose the
scores. In comparison, VoxCloak achieves a similar ASR and
higher SNR as Occam with the additional advantage of the
one-time and extremely minimal number of queries required.
Some recent works try to improve the transferability of the
attack by stabilizing the direction of the gradient to avoid
overfitting [23] or finding better loss functions for transfer-
ability [43]. However, they still only achieve a limited ASR
of about 50%. In summary, all prior AE attacks against SRSs
exhibit several limitations, such as the capability for only
untargeted attacks, reliance on confidence scores, excessive
queries, and unsatisfactory performance.



Table 8: Experimental results in the presence of commonly-used defenses.

SRS Dataset Downsampling Low-pass Filtering Quantization MP3C
8000 11025 12000 2Khz 4Khz 8Khz 256 512 1024

iFytyke Cmu 1/10 4/10 7/10 0/10 4/10 10/10 7/10 5/10 1/10 10/10
Vox 1/10 6/10 9/10 2/10 6/10 10/10 6/10 3/10 2/10 10/10

Unisound Cmu 0/10 5/10 7/10 4/10 7 /10 10/10 5/10 3/10 0/10 10/10
Vox 1/10 6/10 7/10 6/10 8/10 10/10 7/10 6/10 2 /10 10/10

Talentedsoft Cmu 3/10 5/10 5/10 7/10 8/10 10/10 6/10 4/10 1/10 8/10
Vox 5/10 8/10 8/10 10/10 10/10 10/10 8/10 5/10 3/10 9/10

Benign Input Cmu 7/10 9/10 10/10 7/10 10/10 10/10 10/10 8/10 6/10 10/10
Vox 8/10 10/10 10/10 7/10 10/10 10/10 10/10 9/10 6/10 10/10

The results of “Benign Input” are the average accuracy from three online SRSs with respect to benign inputs.

6.2 Other Types of Attacks

Sensor spoofing attacks are another category of attacks that
can deceive SRSs. Wu et al. [62] conducted a comprehensive
study of various sensor spoofing attacks in SV tasks, including
replay, impersonation, voice synthesis, and voice conversion
attacks. These attacks aim to generate or mimic the voices
of the target speakers. However, these attacks require play-
ing voices not belonging to the victim, they are more readily
detected by the victim, thereby offering lower stealth capa-
bility than AE attacks. Besides, some studies [13, 63] focus
on hidden voice attacks. These attacks modify a voice in a
way that, while still recognizable by the targeted SRSs, be-
comes incomprehensible to human listeners (usually sounds
like noise). In contrast to AE attacks, hidden voice attacks are
relatively easier to execute. Yet, they are also more suscepti-
ble to defense and detection, as humans are likely to notice
and identify noise-like sounds as anomalies.

7 Discussion

7.1 Defenses

We evaluate the effectiveness of four common defenses
against VoxCloak. The results are presented in Table 8.
Downsampling. Downsampling, a method used to lower the
sampling rate of audio signals, can remove high-frequency
components in adversarial perturbations, thereby reducing
the effectiveness of AEs [6, 21]. Experimental results indi-
cate that when AEs generated by VoxCloak are downsampled
to 8 kHz and then upsampled back to 16 kHz, the ASR de-
creases to 18%, accompanied by about a 25% decrease in
model accuracy. If the downsampling rate is set to 12 kHz
(the minimum rate that does not affect the model accuracy),
VoxCloak still maintains a 71% ASR. Moreover, if attackers
are aware of the down/upsampling rates of the target system,
they can add corresponding constraints in the optimization
process to invalidate the defense.

Low-pass Filtering. Low-pass filtering is another common
defense that removes the high-frequency components of audio
AEs [6, 21]. However, results show that VoxCloak can still
maintain a high ASR after employing low-pass filtering. For
example, setting the filter frequency to 8 kHz results in an
ASR of 100%. When the filter frequency is adjusted to 4 kHz,
the ASR remains at 71%. However, reducing the filtering
frequency to 2 kHz leads to a drop in ASR to 48%. These
results indicate that the frequency range between 2 kHz and
4 kHz in the adversarial perturbations is important for the
success of VoxCloak.
Quantization. It represents continuous analog audio signals
with a discrete set of values. It can defend against AE attacks
because it may delete some of the information within the
perturbations [64]. In our experiments, we set the quantization
interval to 256, resulting in an average ASR of 65%. When
increasing the quantization interval to 1024, the ASR of our
attack reduces to 15%. In addition, the accuracy of the SR
model for clean examples also reduces to 60%. This reduction
is mainly due to the removal of important information from
both benign and AEs during the quantization process.
MP3 Copmression (MP3C). MP3 is a lossy compression
format for audio files. Intuitively, the information loss caused
by compression might make the AE attack ineffective [7, 21].
However, experimental results indicate that VoxCloak still
maintains a high ASR, up to 95%, even after undergoing
a 10-to-1 compression ratio, which reduces the audio file
to one-tenth of its original size. This result implies that the
information lost during MP3 compression is not the major
component of the adversarial perturbations.

7.2 Limitations
Compared to previous works, VoxCloak marks significant
advancements in terms of ASR, required background knowl-
edge, and overall cost of the attack. Yet, VoxCloak does have
some limitations. The first is its robustness in real-world en-
vironments. Although VoxCloak is designed to minimize the



impact of environmental noise, excessive environmental noise,
can still render the attack ineffective, as shown in Table 7. The
second is the size of the candidate FE set. While our approach
is effective against the common FEs used in many commercial
APIs, it may fall short when SRSs use unknown or propri-
etary FEs. This is observed in our unsuccessful attempts to
compromise systems like OPPO Breeno and Samsung Bixby.
In these cases, we can only rely on the transferability of the
attack. Note that due to the potential similarities in the feature
spaces of different FEs, the AEs generated may also exhibit a
certain degree of transferability. An ASR of nearly 50% for
the two SRSs further illustrates this point.

8 Conclusion

In this paper, we proposed VoxCloak, a new black-box AE
attack against commercial SRSs. VoxCloak can locally gener-
ate an arbitrary number of AEs after using a minimal number
of queries to the target system to infer the used FE. Our
extensive experiments across various popular commercial
SRSs and tasks have shown the effectiveness of VoxCloak.
Compared to existing query-based attacks, VoxCloak requires
30 times fewer queries to achieve a comparable ASR and
a higher SNR, and it also surpasses the performance of ex-
isting transfer-based attacks in both metrics. Additionally,
VoxCloak is available in the physical world, successfully mis-
leading voice assistants at distances up to 4 meters. These
results reveal the security concerns related to the reuse of FEs.
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A Detailed Experiment Setting
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Table 9: Details of the commercial voice assistants.
Voice Assistant OS Version Device Wakeup Words

Apple Siri iOS 14.3 iPhone12 Hey, Siri
Samsung Bixby Android11 Galaxy Note10+ 5G Hi, Bixby

Google Android11 G8 ThinQ Hey, Google
Huwei Xiaoyi HarmonyOS 3.0 P30 Pro Xiaoyi,Xiaoyi

Tmall Genie -
Tmall Gennie

X2
Tianmaojingling,

Woshishei

Millet Xiaoai -
Millet Xiaoai

Pro LOS
Xiaoaitongxue,

Woshishei
Oppo Breeno ColorOS 13.1 OPPO Reno5K+5G Xiaobu, Xiaobu

Table 10: Survey of well-known companies about SR Service.
Company SR Service Target Customer Price

Amazon Yes Authorized Person and Company $0.018∗

Google Yes Authorized Company $0.01#

Microsoft Yes Authorized Company $0.005#

Apple Yes Authorized Devices -
IBM Yes Authorized Person and Company $0.02∗

NVIDIA Yes Open Source -
Sensory Yes Only Company -
OpenAI - - -
Oracle - - -

Note that, ∗ represents the price per minute of the service, and # represents
the price per request.

some voice data (named the WakeUp dataset) from several
volunteers for attacking voice assistants.
Voxceleb V1. The Voxceleb V1 dataset [58] is a large-scale
dataset of speech recordings from celebrities. It contains over
100,000 utterances from 1,251 speakers of different accents,
genders, and ages. The dataset is designed for speaker recog-
nition and verification tasks, as well as other speech-related
applications.
CMU_arctic. The CMU_arctic dataset [59] is a collection
of speech recordings from 16 speakers of American English.
The dataset is created by the Carnegie Mellon University. It
contains about 1,132 utterances per speaker, covering a variety
of topics and linguistic phenomena.
WakeUp. This dataset comprises 420 audio recordings col-
lected from the voices of twenty volunteers, consisting of
11 males and 9 females. The volunteers are native Chinese
speakers who are also proficient in English. Among the wake-
up words used in the recordings, three are in English, while
the remaining wake-up words are in Chinese. Each volunteer
is asked to pronounce the corresponding wake-up words, in-
cluding the designated Chinese and English wake-up words,
within a quiet office environment with an SNR lower than 40
dB. Volunteers are instructed to complete the utterance within
a 3-second time clip. The recordings are captured using an
iPhone 12, and three separate voice recordings are obtained
from each volunteer. To ensure consistency and standardiza-
tion, the recordings are manually edited to remove any empty
fragments at the beginning or end. As a result, all recordings

Table 11: The transferability of adversarial examples targeting
one source FE to other target FEs.

Source\Target X-Vector D-Vector MFCC Mel
X-Vector 100% 34% 37% 38%
D-Vector 15% 100% 22% 5%
MFCC 3% 45% 100% 51%

Mel 4% 18% 45% 100%

in the dataset have a precise duration of 3 seconds.

A.2 Candidate Feature Extractors

We select four common feature-extracting algorithms as can-
didates: Mel spectrum, MFCC, X-Vector, and D-Vector.

The Mel spectrum is based on the Mel scale, which sim-
ulates the sensitivity of the human ear to different sound
frequencies [25]. In calculating the Mel spectrum, the audio
signal is first transformed using the Fast Fourier Transform
(FFT) to obtain the spectrum, which is then converted into
the Mel spectrum using a set of Mel filter banks.

The Mel Frequency Cepstral Coefficients (MFCC) [14]
are features extracted from the Mel spectrum, capturing the
primary characteristics of the short-term power spectrum of
the audio signals. These coefficients can reflect the ability of
the human auditory system to perceive and distinguish dif-
ferent sound frequencies. The extraction process of MFCC
includes steps such as preprocessing, FFT, Mel filtering, loga-
rithmic operations, discrete cosine transform, and extraction
of dynamic features.

D-Vector [15] and X-Vector [16] are speaker-embedding
methods that embed speaker characteristics into a vector space
using DNNs. Specifically, the D-Vector utilizes the hidden lay-
ers of a DNN to differentiate the features of speakers. These
representation vectors can capture key information related
to the voiceprint of speakers. X-Vector is an improvement
upon D-Vector, offering better performance in processing
more complex and varied speech data. Its core technology is
time-delay neural networks, which are more adept at handling
variable-length input sequences. The capability allows the
X-Vector to process complete speech segments, thereby more
effectively capturing the audio features.

A.3 Implementation Details

For the genetic algorithm, we configure a population size of
100 and a mutation probability of 0.1 and set the termination
generation for the genetic algorithm to 30. We set the param-
eter α to 0.05 and use the Adam optimizer to solve Eqs. (6)
and (14) with a learning rate of 3. VoxCloak was deployed
on a server equipped with six GeForce RTX 2080 Ti GPUs, a
32-core Intel Xeon Gold 5117 CPU at 2.00 GHz, and 119 gi-
gabytes of RAM. Detailed information about the target device
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Figure 6: Four attempts to infer the FE using grid search,
where AEs means adversarial examples.

is shown in Table 9. Furthermore, we survey more commer-
cial SRSs as targets, as detailed in Table 10. Unfortunately,
some of them are unavailable. For example, Amazon provides
a speaker verification service in their connection application.
As it is unavailable in our region, we are unable to use it in
our experiments. We are also unable to utilize the service
provided by IBM as our registration was denied.

B Supplementary Evaluation of VoxCloak

B.1 Grid Search-based Inference Method

Grid search is an exhaustive search method. It can accurately
identify the optimal result by traversing all possible outcomes
within the predefined search space. We have also attempted to
use grid search to infer the target FE. The results in Figure 6
demonstrate that, in our four attempts, grid search successfully
determined the target FE. However, it required a minimum of
600 queries (sometimes 900 queries), approximately two (or
three) times more than VoxCloak. Additionally, an increase in
the search space also leads to higher local computational costs
for the attacker. Therefore, in terms of efficiency, our proposed
genetic algorithm outperforms the grid search method.

B.2 Transferability of Feature Extractors

The success of VoxCloak primarily relies on the distinct fea-
ture spaces created by different FEs. We confirm this by eval-
uating the transferability of AEs. Transferability is measured
by the proportion of AEs generated from one FE that can
successfully attack a target system using a different FE. For
each FE, we generated 100 AEs, with the results presented
in Table 11. We observed that the ASR significantly drops
when attacking an SRS based on a different FE, indicating the
differences in the feature spaces of these FEs. We noticed that

Figure 7: Waveforms and spectrograms of the original audio
and adversarial audios generated by VoxCloak and baselines.

AEs generated using the X-Vector exhibit better transferabil-
ity. Therefore, in scenarios where querying the target systems
is unavailable (e.g., the physical attacks), using X-Vector to
generate AEs tends to yield better performance.

B.3 Visualization Comparison
To facilitate a more intuitive comparison with baselines, we
visualized the waveforms and spectrograms of AEs generated
by the attacks and the original audio, as shown in Figure 7. We
can see that the waveform of the AE generated by VoxCloak
is close to the original audio, whereas those produced by
Occam, Fakebob, and Vmask show significant differences.
Thus, the latter are more easily perceptible by the human ear.
Furthermore, as Vmask requires audio inputs and generated
AEs of a fixed length, its effectiveness diminishes for longer-
duration authentication processes.
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