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Abstract
As a booming research area in the past decade, deep learning
technologies have been driven by big data collected and pro-
cessed on an unprecedented scale. However, privacy concerns
arise due to the potential leakage of sensitive information
from the training data. Recent research has revealed that deep
learning models are vulnerable to various privacy attacks,
including membership inference attacks, attribute inference
attacks, and gradient inversion attacks. Notably, the efficacy
of these attacks varies from model to model. In this paper,
we answer a fundamental question: Does model architecture
affect model privacy? By investigating representative model
architectures from convolutional neural networks (CNNs) to
Transformers, we demonstrate that Transformers generally
exhibit higher vulnerability to privacy attacks than CNNs.
Additionally, we identify the micro design of activation lay-
ers, stem layers, and LN layers, as major factors contributing
to the resilience of CNNs against privacy attacks, while the
presence of attention modules is another main factor that
exacerbates the privacy vulnerability of Transformers. Our
discovery reveals valuable insights for deep learning models
to defend against privacy attacks and inspires the research
community to develop privacy-friendly model architectures.

1 Introduction

Deep learning has been gaining massive attention over the
past several years. Training deep learning models requires
collecting and processing user data, which raises significant
privacy concerns. The data gathered during the training phase
often contains sensitive information that malicious parties
can access or retrieve. Various privacy attacks targeting deep
learning models have demonstrated this vulnerability exten-
sively. One prominent type of attack is membership inference,
which focuses on determining whether a specific data sample
belongs to the training data [60,62]. Another attack is attribute
inference, which aims to uncover implicit attributes learned
by the model beyond the intended target attribute [52,65]. Ad-
ditionally, gradient inversion attacks pose a significant threat

by attempting to reconstruct the information of the training
data from the gradients of the model [20, 22]. These attacks
empower adversaries to exploit deep learning models for ex-
tracting sensitive data.

Prior research has established that overfitting is one of
the primary causes of privacy leakage in deep learning mod-
els [10,27,43,62]. In general, overfitting occurs when models
excessively learn specific details from the training data, which
can lead to inadvertent privacy breaches. Surprisingly, we dis-
cover that even when models exhibit comparable levels of
overfitting, the effectiveness of attacks varies across differ-
ent models. This observation raises intriguing questions as
to why certain deep learning models are more susceptible
to privacy attacks than others, a puzzle that researchers have
not fully comprehended. Consequently, we conjecture that
other factors beyond overfitting might also contribute to the
increased vulnerability of some deep learning models to pri-
vacy attacks. Though existing literature has explored model
robustness and explainability [4, 57], the privacy leakage of
the model architectures remains underexplored. Therefore,
we are motivated to address this critical gap by answering the
following question: How does a model’s architecture affect
its privacy preservation capability?

In this paper, we approach this question by comprehen-
sively analyzing different deep learning models under various
state-of-the-art privacy attacks. Our investigation focuses on
two widely adopted deep learning model architectures: con-
volutional neural networks (CNNs) and Transformers. CNN-
based models have been dominant in computer vision, thanks
to its sliding-window strategy, which extracts local informa-
tion from images effectively. Transformers, initially intro-
duced in natural language processing (NLP), have gained
popularity in computer vision by capturing large receptive
fields through attention mechanisms, resulting in compara-
ble accuracy performance against CNNs. The tremendous
achievements and wide usage of these two model architec-
tures provide an excellent opportunity for us to make a com-
parative analysis regarding model privacy risks. Through our
investigation, we make an intriguing discovery: Transformers,



in general, exhibit higher vulnerability to mainstream privacy
attacks than CNNs.

While Transformers and CNNs have different designs in
many aspects, we investigate whether some key modules in
the model architecture have a major impact on privacy risks.
To this end, we evaluate the privacy leakage of several ma-
jor modules in a Transformer architecture by sending only
selected gradients to the gradient inversion attacks and dis-
cover that attention modules cause significant privacy leakage.
Moreover, we start with a popular CNN-based model, ResNet-
50 [26], and gradually morph the model to incorporate the
key designs of Transformers. This leads us to the structure
of ConvNeXt [46]. We evaluate the privacy leakage through
this process and identify several key components that have
a significant impact on privacy risks: (1) the design of the
activation layers; (2) the design of stem layers; (3) the design
of LN layers. We further conduct ablation studies to verify
our discoveries and propose solutions to mitigate the privacy
risks.

In summary, our contributions in this paper are summarized
as follows:

• For the first time, we investigate the impact of model
architectures and micro designs on privacy risks.

• We evaluate the privacy vulnerabilities of two widely
adopted model architectures, i.e., CNNs and Transform-
ers, using three prominent privacy attack methods: (1)
membership inference attacks, (2) attribute inference at-
tacks, and (3) gradient inversion attacks. Our analysis
reveals that Transformers exhibit higher vulnerabilities
to these privacy attacks than CNNs.

• We identify three key factors: (1) the design of activation
layers, (2) the design of stem layers, and (3) the design of
LN layers, that significantly contribute to the enhanced
resilience of CNNs in comparison to Transformers. We
also discover that the presence of attention modules in
Transformers could make them susceptible to privacy
attacks.

• We propose solutions to mitigate the vulnerabilities of
model architectures: modifying model components and
adding perturbations as defense mechanisms.

2 Related Work

2.1 CNNs and Vision Transformers

Convolutional Neural Networks (CNNs) are a type of neu-
ral network that employs convolutional layers to extract fea-
tures from input data. In contrast to fully connected networks,
CNNs use convolutional kernels to connect small samples
to neurons for feature extraction, reducing the number of
model parameters and enabling the recognition of local fea-
tures. Various techniques are employed to construct a CNN

model, including padding, pooling, dilated convolution, group
convolution, and more.

The concept of convolutional neural networks (CNNs)
dates back to the 1980s [38]. However, the invention of
AlexNet [37] makes CNNs the most prominent models in
computer vision. Subsequent research improved the accuracy
and efficiency of models [63, 68]. ResNet [26] addressed
the challenge of training deep networks using skip connec-
tions. Other notable networks consist of Inception [69], Mo-
bileNet [30], ResNeXt [79], EfficientNet [70], RegNet [56],
ConvNeXt [46].

Vision Transformers, originating from natural language
processing, divide the input image into multiple patches, form-
ing a one-dimensional sequence of token embeddings. Their
exceptional performance can be attributed to the multi-head
self-attention modules [74]. The attention mechanism has sig-
nificantly contributed to the advancement of natural language
processing [5, 14, 81], subsequently leading to the introduc-
tion of Transformers in the field of computer vision as Vision
Transformers (ViT) [16]. Research has shown that ViTs can
surpass CNNs in various downstream tasks [16, 67]. Later
Transfomer models have focused on numerous improvements
of ViTs, such as Tokens-to-Token ViT [85], Swin Transform-
ers [45], DeiT [71], MViT [40], DaViT [15].

Numerous studies have compared CNNs and Transformers
from the perspectives of robustness [4, 55, 75] and explain-
ability [57]. However, our research diverges from previous
works by concentrating on the privacy leakage inherent in
both CNNs and Transformers.

2.2 Privacy Attacks on Deep Learning Models

A primary concern in deep learning privacy is that the model
may reveal sensitive information from the training dataset.
An adversary can exploit various approaches to compromise
privacy, including predicting whether a particular sample is
in the model’s training dataset via membership inference
attacks, or disclosing the implicit attributes of data samples
via attribute inference attacks, or even recovering private data
samples utilized in training a neural network through gradient
inversion attacks.

Membership inference attacks were initially introduced
in [62], where an attack model was employed to distinguish
member samples from non-member samples in the training
data. To execute these attacks, shadow models would mimic
the behavior of victim models [60, 62]. Prediction results
from victim models were gathered for attack model training.
Usually, the confidence scores or losses were utilized [62],
but more recent work (label-only attacks) applied prediction
labels to launch attacks successfully [11, 41]. The attacks
could also be executed by designing a metric with a thresh-
old by querying the shadow model [66]. Some researchers
expanded the attacks into new domains, including genera-
tive models [9, 25], semantic segmentation [28, 87], federated



learning [54, 73], and transfer learning [64, 94]. Other re-
searchers relaxed the attack assumptions and improved the
attacks, including discussion on white-box/black-box access
for the attacks [59], providing more metrics (i.e. ROC curves
and the true positive rate at a low false positive rate) to mea-
sure the attack performance more accurately [7,34,48,77,82].
We select [7, 60, 62] as our baseline methods.

Attribute inference attacks, another significant category
of privacy attack methods, attempt to reveal a specific sensi-
tive attribute of a data sample by analyzing the posteriors of
the victim model trained by the victim dataset. Some early re-
search launched the attacks by generating input samples with
different sensitive attributes and observed the victim model
output [21, 83]. However, these methods could only work in
structured data. Later research improved the attacks with vic-
tim model representations [52, 65]. They also claimed that
the overlearning feature of deep learning models caused the
execution of the attacks [65]. Attributes could also be inferred
through a relaxed notion [91], model explanations [18], label-
only settings [51], or imputation analysis [33]. As we aim to
infer attributes from visual data, we select [52,65] as baseline
methods.

Gradient inversion attacks primarily aim to reconstruct
training samples at the local clients in federated learning. Us-
ing the publicly shared gradients in the server, adversaries can
execute the attacks by reconstructing the training samples us-
ing gradient matching. DLG [93] and its variant, iDLG [92],
were the early attacks to employ an optimization-based tech-
nique to reconstruct the training samples. Later research like
Inverting Gradients [22] and GradInversion [84] improved the
attack performance by incorporating regularizations into the
optimization process. APRIL [49] and GradViT [24] further
developed the attack methods to extract sensitive information
from Transformers. The use of Generative Adversarial Net-
works (GANs) in some gradient inversion attack methods [42]
can have a significant impact on reconstructed results, making
it difficult to isolate the influence of other factors on privacy
leakage. Therefore, we use conventional gradient inversion
attack methods [22] that do not involve the use of GANs.

There have been several evaluations and reviews of these
privacy attacks against deep learning models [27,31,43,44,66,
88, 90]. However, we aim to evaluate the model architectures
leveraging these privacy attacks. To sum up, we utilize con-
ventional privacy attacks [7, 22, 52, 60, 62, 65] as the baseline
attacks in our analysis, for these attack methods have inspired
many follow-up research works, and they are suitable for
evaluation on various models and datasets.

3 Methodology of Evaluating the Impact of the
Model Architecture on Privacy

In this section, we present our approach to assessing the im-
pact of model architectures on privacy leakage. In order to

organize our study in a thorough and logical manner, We aim
to answer the following research questions sequentially:

• RQ1: How to analyze the privacy leakage in model ar-
chitectures?

• RQ2: What model architectures of CNNs and Trans-
formers should we choose to evaluate these attacks?

• RQ3: What performance aspects should we focus on
when evaluating the privacy attacks on model architec-
tures?

• RQ4: How should we investigate what designs in model
architectures contribute to privacy leakage?

In this work, we focus on classifier or feature representation
models such as CNNs and Transformers, which are subject to
the investigated privacy attacks. A new line of generative AI
models, such as generative adversarial networks (GANs) and
diffusion models, are vulnerable to different privacy attacks
and thus out of the scope of this paper. We believe our eval-
uation methodology could shed light on the effect of model
privacy from the perspective of model architectures.

3.1 Privacy Threat Models
To answer the first research question (RQ1), we choose three
prominent privacy attack methods: membership inference
attacks, attribute inference attacks, and gradient inversion at-
tacks.

3.1.1 Membership Inference Attacks

Network-Based Attacks. Initiating a network-based mem-
bership inference attack [60, 62] requires three models: the
victim model V (the target), the shadow model S (the model
to mimic the behavior of the victim model), and the attack
model A (the classifier to give results whether the sample
belongs to the member or non-member data). The following
paragraphs provide explanations of how the attacks work.

The first step is the attack preparation. Since the adversary
has only black-box access to the victim model V , they can
only query the model and record prediction results. To launch
a membership inference attack, the adversary needs to create a
shadow model S , which behaves similarly to the victim model
V . This involves collecting a shadow dataset DS, usually
from the same data distribution as the victim dataset DV . The
shadow dataset DS is then divided into two subsets: Dtrain

S for
training and Dtest

S for testing.
Once the preparation is complete, the adversary trains the

attack model. The shadow model S and shadow dataset DS
are used to train the attack model A . Each prediction result
of a data sample from the shadow dataset DS is a vector of
confidence scores for each class, which is concatenated with
a binary label indicating whether the prediction is correct or
not. The resulting vector, denoted as P i

S, is collected for all n
samples, forming the input set PS = {P i

S, i = 1, ...,n} for the



attack model A . Since A is a binary classifier, a three-layer
MLP (multi-layer perceptron) model is employed to train it.

At last, the adversary launches the attack model inference.
The adversary queries the victim model V with the victim
dataset DV and records the prediction results, which are used
as the input for the attack model A . The attack model then
predicts whether a data sample is a member or non-member
data sample.

Likelihood-Based Attacks. The Likelihood Ratio Attack
(LiRA) [7] is a state-of-the-art attack method that employs
both model posteriors and their likelihoods based on shadow
models. In contrast to attacks relying on a single shadow
model, LiRA requires the adversary to train multiple shadow
models S = {S1, ...,Sn}. This ensures that a target sample
(from the victim dataset DV ) is included in half of the mod-
els S and excluded from the other half. The adversary then
queries the shadow models with the target sample and calcu-
lates the logits for each model. Using these logits, the adver-
sary calculates the probability density function to determine
the likelihood ratio of the target sample, which corresponds
to its membership status.

There are other kinds of membership inference attacks,
including metric-based attacks and label-only attacks [11,
41, 66]. Instead of using a neural network to be the attack
model, metric-based attacks [66] launch the attacks using a
certain metric and threshold to separate member data from
non-member data. Label-only attacks [11, 41] relax the as-
sumptions of the threat model leveraging only prediction la-
bels as the input of the attack model. Our study focuses on
two types of membership inference attacks: network-based
and likelihood-based attacks. We chose these two types of at-
tacks because the network-based attack is commonly used as
a baseline in many research papers, making it a conventional
attack to consider. Additionally, the likelihood-based attack
is a more recent state-of-the-art attack that has demonstrated
high effectiveness, making it an important attack to evaluate
as well. By considering these two types of attacks, we can
effectively represent the performance of membership infer-
ence attacks against various victim models and gain insights
into potential privacy risks associated with different machine
learning models.

3.1.2 Attribute Inference Attacks

The goal of attribute inference attacks [52, 65] is to extract
sensitive attributes from a victim model, which may inadver-
tently reveal information about the training data. For instance,
suppose the victim model is trained to classify whether a per-
son has a beard or not. In that case, an adversary may infer
the person’s race based on the model’s learned representation.

At the attack preparation stage, the victim model V is
trained by the victim dataset DV with two subsets Dtrain

V and
Dtest

V for the training and testing.
The second step is also the attack model training. To train

the attack model A , the adversary uses an auxiliary dataset
Dtrain

A , which includes pairs of the representation h and the
attribute a, i.e., (h,a) ∈ DA.

At last, the adversary launches the attack. The adversary
takes a data sample’s representation h as the input and uses
the attack model A to infer the attribute result.

3.1.3 Gradient Inversion Attacks

Launching the gradient inversion attack [22, 92, 93] involves
solving an optimization problem, which aims to minimize the
difference between the calculated model gradients and the
original model gradients. The optimization process continues
for a certain number of iterations, after which the input data
sample can be reconstructed.

The adversary operates within a federated learning sce-
nario. In the attack preparation stage, the adversary operates
from the central server, aggregating model gradients to create
a centralized model. Since the adversary has access to the
communication channels used during the federated learning
process, they can retrieve the model gradients and prepare to
extract sensitive information from the training samples. This
allows the adversary to launch attacks against the federated
learning system.

In the step of gradient reconstruction, the aggregated model
gradients are denoted as ∇θLθ(x,y), where θ is the model
parameters, x and y are the original input image and its ground
truth in a local client, and L represents the cost function for
the model. To initiate the reconstruction process, the adversary
generates a dummy image x∗. The adversary tries to minimize
this cost function: argminx ||∇θLθ(x,y)−∇θLθ(x∗,y)||2. The
dummy image x∗ is reconstructed to resemble x closely.

3.2 CNNs vs Transformers
To answer the second research question (RQ2), we investi-
gate the privacy of two mainstream architectures: CNNs and
Transformers. We carefully select several popular CNNs and
Transformers for the attacks to analyze the privacy leakage.

For CNNs, we choose ResNets [26] as baseline models,
which are known for incorporating residual blocks and have
become widely used in various computer vision tasks. We
specifically select ResNet-50 (23.52 million parameters) and
ResNet-101 (42.51 million parameters) to represent CNN
architectures in our analysis. Regarding Transformers, we
focus on Swin Transformers [45], which have gained attention
for their innovative design incorporating attention modules
and shifted window mechanisms. We analyze Swin-T (27.51
million parameters) and Swin-S (48.80 million parameters)
as representatives of Transformer architectures.

To ensure fair comparisons, we organize the evaluation
of the four models based on their parameter sizes, grouping
models with similar parameter sizes together. This approach
allows us to compare models that exhibit comparable task



Table 1: Training recipes for privacy attacks.

Config Param Config Param

for all models of membership inference

optimizer AdamW training epochs 300
learning rate 0.001 batch size 256
weight decay 0.05 mixup 0.8
optimizer momentum β1,β2 = 0.9, 0.999 cutmix 1.0
learning rate schedule cosine annealing label smoothing None

for all models of attribute inference

optimizer SGD batch size 256
learning rate 0.01 training epochs 100
weight decay 0.0005 random augmentation None
optimizer momentum 0.9

for gradient inversion

cost function similarity total iteration 3000
optimizer Adam total variance 0.0001
learning rate 0.1

performances while considering their architectural differences.
Specifically, we compare ResNet-50 with Swin-T, as they
have similar parameter sizes, and we compare ResNet-101
with Swin-S for the same reason.

Apart from model architectures, training Transformers re-
quires a modernized training procedure compared to training
traditional CNNs [45, 74]. To ensure fair comparisons, we
employ the same training recipe for both CNNs and Trans-
formers in each comparison.

4 Evaluation on Privacy Attacks with CNNs
and Transformers

This section addresses the third research question (RQ3) and
comprehensively analyzes the experimental settings and re-
sults. We aim to compare the attack performance under var-
ious metrics to gain a deeper understanding of the findings.
We also focus on the performance differences and overfitting
differences between CNNs and Transformers.

4.1 Settings
Datasets. Our experiments evaluate the privacy leakage under
these four datasets.

• CIFAR10 [36] consists of 60,000 color images with
dimensions of 32× 32 pixels. It is organized into ten
classes, with each class containing 6,000 images. The
dataset covers a wide range of general object categories.

• CIFAR100 [36] is similar to CIFAR10 but with 100
classes. Each class has 600 images and represents a
specific general object category.

• ImageNet1K [13] is a widely used dataset in computer
vision containing over 1 million labeled images, cover-
ing 1,000 different classes. The dataset encompasses a
diverse range of objects and scenes.

• CelebA [47] contains over 200,000 face images, each
with 40 binary attributes.

In membership inference attacks, we use two datasets, CI-
FAR10 and CIFAR100, for their popularity in prior attack
research [7, 44, 60]. For network-based attacks, each dataset
is evenly split into four subsets for training and testing both
the victim and shadow models to ensure a fair evaluation [60].
For likelihood-based attacks, we follow the training settings
in [7]. This involves dividing the training data into multiple
subsets, ensuring that a specific training sample is present in
only half of these subsets.

For attribute inference attacks, we utilize the CelebA
dataset, which provides rich attribute labeling. This allows us
to identify hidden attributes accurately. In our experiments,
we focus on inferring the race attribute while using the gender
attribute as the classification goal for the victim model. We
randomly select 20,000 images from CelebA and evenly split
them into four subsets for training and testing both the victim
model and the attribute inference attack model.

In gradient inversion attacks, we employ the CIFAR10 and
ImageNet1K datasets for low/high-resolution reconstruction.
These attacks are conducted in a federated learning scenario
to reconstruct the training batch. We randomly select a subset
of images from these datasets to evaluate the attacks, ensuring
a representative assessment of the attack performance.

In a nutshell, all these datasets are benchmark datasets for
evaluating privacy attacks [7, 22, 27, 44, 84]. These datasets
cover a wide range of objects with different numbers of
classes, making them sufficient for our evaluation.

Victim Models. To ensure fair comparisons, we evaluate
the performances of CNNs and Transformers with similar pa-
rameter sizes. For all attacks, we select two groups of models
based on their parameter sizes. These groups include ResNet-
50 and ResNet-101 as CNN-based models and Swin-T and
Swin-S as Transformer-based models. We train these models
to reach more than 0.99 training accuracy and output testing
accuracy (i.e., task accuracy) results in the experiments.

Attack Models. For membership inference attacks, we
employ a three-layer MLP model to infer membership infor-
mation. Attribute inference attacks utilize a two-layer MLP
model to uncover learned representations and potentially infer
sensitive information. In gradient inversion attacks, we opti-
mize input and generate gradients to reconstruct the original
data, revealing private information.

Evaluation Metrics. We evaluate the performance of dif-
ferent attacks using specific metrics. For membership infer-
ence attacks, we consider attack accuracy (↑), ROC curve (↑),
AUC (↑), and TPR at low FPR (↑). For attribute inference
attacks, we assess effectiveness using attack accuracy (↑) and
macro-F1 score (↑). Regarding gradient inversion attacks, we
use multiple metrics to evaluate the quality of reconstruction
results. These metrics include mean square error (MSE ↓),
peak signal-to-noise ratio (PSNR ↑), learned perceptual im-



Table 2: Results for network-based membership inference
attacks.

CIFAR10 CIFAR100

Task acc ↑ Attack acc ↑ Task acc ↑ Attack acc ↑

ResNet-50 0.8220 ± 0.0023 0.6385 ± 0.0078 0.5288 ± 0.0083 0.8735 ± 0.0029
Swin-T 0.8335 ± 0.0042 0.6904 ± 0.0052 0.5632 ± 0.0056 0.9340 ± 0.0030

ResNet-101 0.8301 ± 0.0037 0.6317 ± 0.0063 0.5313 ± 0.0074 0.8607 ± 0.0034
Swin-S 0.8258 ± 0.0039 0.6405 ± 0.0075 0.5665 ± 0.0059 0.9357 ± 0.0039

age patch similarity (LPIPS ↓) [89], and structural similarity
(SSIM ↑) [76]. Note that "↑" means the higher metric corre-
sponds to the higher attack performance, while ↓ means the
lower metric leads to the higher attack performance.

Training Settings for Privacy Attacks. Table 1 illustrates
the training configurations for membership inference attacks,
attribute inference attacks and gradient inversion attacks.

4.2 Evaluation on Membership Inference At-
tacks

The results presented in Table 2 offer the performance of
network-based membership inference attacks on CIFAR10
and CIFAR100 datasets. The task accuracy scores of the vic-
tim models on CIFAR10, which are approximately 0.82 for
both CNNs and Transformers, indicate that these models
exhibit competitive task performance with similar overfit-
ting levels. Notably, the attack accuracy on CIFAR10 reveals
that Transformers exhibit more privacy leakage within each
group than CNN models. Similar findings are observed on
CIFAR100, suggesting that Transformers consistently exhibit
higher vulnerability to membership inference attacks com-
pared to CNN models.

It is worth mentioning that the dataset used in this study is
divided into four equally sized subsets for training and testing
the victim and attack models. Consequently, the task accuracy
of the victim models on CIFAR10 and CIFAR100 might be
lower than expected in a standard CIFAR10 or CIFAR100
classification task. This does not affect the performance of the
attacks, and this phenomenon has been acknowledged in prior
research [7,27,35,61]. This also applies to later experimental
results.

Figure 1 illustrates the task accuracy and attack accuracy of
ResNet-50 and Swin-T across multiple epochs on CIFAR10.
The task accuracy of ResNet-50 starts relatively low but ex-
hibits a rapid increase over time. Eventually, both ResNet-50
and Swin-T can achieve task accuracy scores of approximately
0.82. Regarding attack accuracy, the plot demonstrates that
the attack on Swin-T consistently outperforms the attack on
ResNet-50.

Table 3 displays the outcomes of likelihood-based mem-
bership inference attacks on CIFAR10 and CIFAR100. The
table includes task accuracy and attack performance, the same
as the evaluation for network-based attacks. To assess attack
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Figure 1: The performance of membership inference attacks
against ResNet-50 and Swin-T on CIFAR10 under different
numbers of epochs.

Table 3: Results of likelihood-based membership inference
attacks.

Task acc ↑ AUC ↑ TPR@0.1%FPR ↑ Attack acc ↑

C
IFA

R
10

ResNet-50 0.8716 ± 0.0035 0.6446 ± 0.0276 3.15% ± 0.25% 0.6009 ± 0.0163
Swin-T 0.8630 ± 0.0017 0.7384 ± 0.0029 3.68% ± 0.33% 0.6553 ±0.0027

ResNet-101 0.8708 ± 0.0043 0.6671 ± 0.0107 3.33% ± 0.41% 0.6090 ± 0.0079
Swin-S 0.8636 ± 0.0036 0.7392 ± 0.0054 3.75% ± 0.37% 0.6576 ± 0.0045

C
IFA

R
100

ResNet-50 0.5632 ± 0.0032 0.9431 ± 0.0005 23.75% ± 2.09% 0.8524 ± 0.0009
Swin-T 0.6001 ± 0.0033 0.9756 ± 0.0003 28.52% ± 1.54% 0.9112 ± 0.0010

ResNet-101 0.5654 ± 0.0042 0.9379 ± 0.0021 21.25% ± 1.55% 0.8484 ± 0.0036
Swin-S 0.5900 ± 0.0029 0.9639 ± 0.0006 31.02% ± 1.74% 0.8978 ± 0.0014

performance more comprehensively, we adopt the methodol-
ogy proposed in [7] and incorporate additional metrics such
as AUC, TPR@0.1%FPR, besides attack accuracy. The vic-
tim models achieve task accuracy scores of approximately
0.86 on CIFAR10 and 0.56 on CIFAR100. Consistently, the
attack performance metrics highlight that Transformers are
more vulnerable to membership inference attacks compared to
CNNs in terms of any attack metric. We also present the attack
performance through ROC curves in Figure 2. These curves
demonstrate that Transformers yield higher ROC curves, sig-
nifying their better attack performance.

The privacy leakage varies on different models and datasets.
Similar to [60, 62], we analyze the overfitting levels of vic-
tims models in Figure 4a. The overfitting level indicates the
accuracy difference of a model between its training and in-
ference. Figure 4a illustrates the results of Transformers and
CNNs in CIFAR10 and CIFAR100. We conclude that a more
overfitted model comes with higher membership inference at-
tack accuracy. More importantly, at the same overfitting level,
Transformers always suffer from higher attack accuracy.

In conclusion, the results strongly suggest that Transform-
ers are more susceptible to network-based and likelihood-
based membership inference attacks compared to CNNs.
Transformers consistently demonstrate higher vulnerability
to membership inference attacks across various metrics.
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Figure 2: ROC curves for membership inference attacks on
CIFAR10 and CIFAR100. Comparisons between CNNs and
Transformers.

Table 4: Results of attribute inference attacks on CelebA.

Task acc ↑ Attack acc ↑ Macro F1 ↑

ResNet-50 0.6666 ± 0.0020 0.6854 ± 0.0015 0.3753 ± 0.0012
Swin-T 0.6587 ± 0.0023 0.7312 ± 0.0014 0.5530 ± 0.0019

ResNet-101 0.6431 ± 0.0029 0.6291 ± 0.0023 0.4262 ± 0.0009
Swin-S 0.6569 ± 0.0024 0.7369 ± 0.0036 0.5536 ± 0.0015

4.3 Evaluation on Attribute Inference Attacks

Table 4 presents the results of attribute inference attacks on
CelebA. Similarly to membership inference attacks, we cate-
gorize CNN and Transformer models into two groups based
on their parameter sizes. The table shows that within each
group, CNNs and Transformers achieve similar task accuracy
scores, approximately 0.65. However, when considering the
attack accuracy and Macro F1 score, Transformers consis-
tently outperform CNNs. The results from attribute inference
attacks align with our previous findings from membership
inference attacks, emphasizing the increased vulnerability of
Transformer models to privacy attacks.

Figure 3 presents the performance of task accuracy and
attack accuracy in attribute inference attacks using ResNet-50
and Swin-T on CelebA over 100 epochs. Figure 3a shows
that although ResNet-50 and Swin-T models start with differ-
ent task accuracy scores, both models gradually converge to
similar task accuracy scores of around 0.65. However, when
we examine the attack accuracy in Figure 3b, the attack accu-
racy on Swin-T consistently outperforms that on ResNet-50
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Figure 3: The performance of attribute inference attacks
against ResNet-50 and Swin-T on CelebA under different
numbers of epochs.
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Figure 4: The performance of privacy attacks against both
CNNs and Transformers with various models and datasets
under different overfitting levels.

throughout the 100 epochs. This reveals that Transformers
like Swin-T are more vulnerable to attribute inference attacks
than ResNet-50 from the start of the attack training to the end.

We further analyze the relationship between the attack per-
formance and the overfitting levels of victim models in Fig-
ure 4b. We have made a similar discovery to the previous
evaluation: Transformers suffer from higher attack accuracy
than CNNs when the victim models are at the same overfitting
level.

4.4 Evaluation on Gradient Inversion Attacks

Table 5 presents the results of gradient inversion attacks on
CNNs and Transformers using CIFAR10. Similar to our pre-
vious evaluations, we still compare these two model architec-
tures in groups. The attacks are evaluated by multiple metrics,
which measure reconstruction results between ground truth
images and reconstruction images. The table clearly shows
that the attacks on Transformers outperform the attacks on
CNNs by a significant margin. Figure 5a provides examples
of the reconstruction results. The attacks on CNNs fail to gen-
erate high-quality reconstruction images, whereas the attacks
on Transformers produce remarkably accurate reconstructions
that closely resemble the originals.

Figure 5b provides the reconstruction results of the gradi-



Table 5: The results of gradient inversion attacks on CNNs
and Transformers on CIFAR10.

MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑

ResNet-50 1.3308 ± 0.6507 11.30 ± 2.24 0.1143 ± 0.0403 0.0946 ± 0.0989
Swin-T 0.0069 ± 0.0071 36.24 ± 5.21 0.0012 ± 0.0016 0.9892 ± 0.0118

ResNet-101 1.2557 ± 0.6829 11.58 ± 2.16 0.1461 ± 0.1012 0.0784 ± 0.0675
Swin-S 0.0063 ± 0.0083 37.85 ± 6.15 0.0016 ± 0.0028 0.9878 ± 0.0128

ent inversion attacks over multiple iterations. It demonstrates
the transformation of a raw dummy image towards a recon-
struction that closely resembles the original image as the
attack training continues. The reconstruction results reveal
the varying degrees of success achieved by the attacks on
different models. In the case of ResNet-50, the reconstructed
image shows limited resemblance to the original image. When
attacking ResNet-101, the reconstruction result fails to cap-
ture any meaningful information. On the other hand, when
targeting Transformers such as Swin-T and Swin-S, the at-
tacks yield highly accurate reconstruction results since early
iterations.

In the evaluation of gradient inversion attacks on Ima-
geNet1K, we still compare the performance of ResNet-50,
ResNet-101, Swin-T, and Swin-S models. Randomly selected
images from ImageNet1K are used to generate reconstruction
results, shown in Figure 5c. Similar to the previous exper-
iments on CIFAR10, the attacks on ResNet variants have
limited success in reconstructing the original images. In con-
trast, the attacks on Transformer models (Swin-T and Swin-S)
yield significantly better reconstruction results.

These findings highlight the higher vulnerability of Trans-
formers to gradient inversion attacks compared to CNNs. This
raises questions about specific architectural features in Trans-
formers that contribute to their increased vulnerability to pri-
vacy attacks. We further analyze the vulnerability of architec-
tural features in Section 5.

5 Which Architectural Features Can Lead to
Higher Privacy Leakage?

In this section, we answer the fourth research question (RQ4).
We delve into analyzing architectural features that can po-
tentially lead to privacy leakage. Through a comprehensive
analysis, we first examine the impact of partitioning a trans-
former model on privacy vulnerabilities. Then, we investigate
the influence of various micro designs on model privacy and
conduct an ablation study on these micro designs.

5.1 Segmenting a Transformer Model to Ana-
lyze the Privacy Leakage

One of the key distinctions between a CNN and a Transformer
lies in the design of their respective blocks. In this section,

(a) CIFAR10 with 3000 iterations.
1 50 100 500 1000 1500 2000 2500 3000

(b) CIFAR10 with different iteration numbers (i.e. 1, 50, 100, 500, 1000,
1500, 2000, 2500, 3000).

(c) ImageNet1K with 3000 iterations.

Figure 5: The performance of gradient inversion attacks on
CNNs and Transformers. From the top row to the bottom
in each subfigure are ResNet-50, Swin-T, ResNet-101, and
Swin-S.

we focus on segmenting a Transformer-based model and as-
sessing the potential influence of specific layers on privacy
leakage. As there are only prediction results and model repre-
sentations from membership inference attacks and attribute
inference attacks, it is difficult to evaluate some specific lay-
ers using these attacks. However, gradient inversion attacks
offer a more precise means of evaluation, as they require a
comprehensive list of gradients from each layer of the victim
model.

In our analysis, we employ ViT-B as the victim model.
This is because ViT models are one of the first Transformers
in computer vision. Additionally, ViT models incorporate
several common modules shared across various Transformer
architectures. We utilize gradient inversion attacks as our
chosen attack method. Rather than supplying all the gradients
to the attacks, we selectively provide specific gradients for
evaluation purposes. The architecture of a Vision Transformer
(an example of ViT-B) is depicted in Figure 6. To facilitate
our assessment, we divide the model into five distinct modules
based on their layer designs. Subsequently, we evaluate the
influence of gradients obtained from each module individually.
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Figure 6: An illustration of a Vision Transformer architecture
and the modules we focus on evaluating. Numbers (1) - (5)
denote the modules we evaluate in gradient inversion attacks.
(a): The whole model architecture. (b): Detailed architecture
of each Transformer block.

Table 6: The performance of gradient inversion attacks when
segmenting ViT-B to make a selection of gradients.

Layers Num of layers Params MSE ↓ PSNR ↑

All 152 85.65M 0.0007 ± 0.0003 43.70 ± 1.84
Stem 4 0.59M 0.0000 ± 0.0000 67.43 ± 5.03
Attention 48 28.34M 0.0020 ± 0.0009 39.61 ± 2.76
MLP 48 56.66M 0.0036 ± 0.0016 36.98 ± 2.59
Norm 48 0.05M 0.0040 ± 0.0018 36.57 ± 2.56
Head 4 0.01M 0.2776 ± 0.2312 19.01 ± 3.89

If the attack using gradients from Module A yields a higher
attack accuracy compared to the attack using gradients from
Module B, it suggests that Module A is more likely to reveal
more information about the data samples than Module B.

• Module 1: Stem layers. This module receives the
model’s input and has patch embedding and position
embedding layers.

• Module 2: Attention layers. They are in the Transformer
block, and this module is the main reason why Trans-
formers are different from CNNs.

• Module 3: MLP layers. They are also in the Transformer
block.

• Module 4: Norm layers. They are located right before
the attention layers and MLP layers. LayerNorm is often
used as Norm layers in Transformers.

• Module 5: Head layers. They are the last few layers for
producing the output of the model. A few fully connected
layers could be used as head layers.

Table 6 presents the reconstruction results of gradient in-
version attacks when only gradients from selected layers are
utilized in the attacks. The "All" layers represent the default
attack scenario, where gradients from all layers are employed.
The stem layers contain the patch embedding and position
embedding processes. These layers exhibit minimal changes

Table 7: Attack performance on ConvNeXt-T compared with
ResNet-50 and Swin-T. NN MIA for Network-based mem-
bership inference, AIA for attribute inference, and GIA for
gradient inversion.

ResNet-50 ConvNeXt-T Swin-T

NN MIA Attack acc ↑ 0.6385 ± 0.0078 0.7471 ± 0.0052 0.6904 ± 0.0052

AIA
Attack acc ↑ 0.6854 ± 0.0015 0.7203 ± 0.0020 0.7312 ± 0.0014
Macro F1 ↑ 0.3753 ± 0.0012 0.5469 ± 0.0011 0.5530 ± 0.0019

GIA

MSE ↓ 1.5096 ± 0.5538 0.0177 ± 0.0171 0.0069 ± 0.0071
PSNR ↑ 10.58 ± 1.87 31.88 ± 5.04 36.24 ± 5.21
LPIPS ↓ 0.1624 ± 0.0613 0.0032 ± 0.0055 0.0012 ± 0.0016
SSIM ↑ 0.0896 ± 0.0544 0.9666 ± 0.0451 0.9892 ± 0.0118

in the output compared to the original image sample. As the
stem layers comprise only four layers, they can be relatively
easier to attack compared to other types of layers. Conse-
quently, the attacks on the stem layers demonstrate excellent
performance, and we will further assess stem layers in the
next subsection.

Among the attacks conducted with the remaining selected
layers, the attack that demonstrates the best performance is the
one utilizing "attention layers." This attack achieves an MSE
of 0.0020 and a PSNR of 39.61. These results indicate that the
attention layers are more susceptible to attacks, suggesting
that they potentially leak more information about the data
samples.

5.2 Impact of Other Micro Designs on Privacy

In the previous subsection, we established that attention lay-
ers within Transformers can contribute to privacy leakage.
However, it is important to recognize that other micro designs
within Transformers may also impact privacy vulnerabilities.
One example is ConvNeXt [46], a convolutional neural net-
work that incorporates multiple schemes from Transformers,
similar to the Swin Transformer. ConvNeXt-T, ResNet-50,
and Swin-T all share a similar parameter size, with ConvNeXt-
T having approximately 27.83 million parameters. This allows
for a direct comparison of the attack performance between
ConvNeXt-T and the other two models. When ConvNeXt-T is
tested on CIFAR10 using the same attack settings, it achieves
a task accuracy of 0.8258. This indicates that we can com-
pare the attack performance of ConvNeXt-T with ResNet-50
and Swin-T. The results presented in Table 7 further confirm
the high attack performance on ConvNeXt-T. These findings
suggest that ConvNeXt-T and Swin-T exhibit vulnerability to
various attacks at a similar level.

The difference between ConvNeXt and the Swin Trans-
former lies in the attention module. This allows us to explore
and investigate the privacy implications of various micro de-
signs in model architectures beyond just the attention layers.
By studying the impact of different micro designs, we can
gain deeper insights into the specific architectural features
that may pose privacy risks.



We continue with utilizing gradient inversion attacks as a
tool for further examination. Following the design process
outlined in [46], we have made several adjustments based
on our own analysis. Since ConvNeXt is constructed in-
crementally from ResNet, we meticulously scrutinized each
model architecture to investigate the steps that contribute
most significantly to privacy leakage. We focus on ResNet-50
and ConvNeXt-T models and conduct tests on a total of 14
model architectures using randomly selected samples from
CIFAR10.

The analysis involves a 14-step process, where we begin
by modifying the overall architecture (Steps 1 to 4) based
on ResNet-50. Subsequently, we align the bottleneck design
(Steps 5 to 7) and refine the stem layer design in Step 8.
Finally, we align the micro designs (Steps 9 to 14) to achieve
ConvNeXt-T. This 14-step process, from macro to micro
levels, as outlined in [46], has been established as an optimal
procedure for designing ConvNeXt. Leveraging this proven
methodology, we utilize it to analyze the impact on privacy.
By identifying the critical steps that contribute to privacy
leakage, we can assess the influence of micro designs on
the privacy of model architectures. This analysis provides
valuable insights into understanding the specific stages or
modifications that may pose risks to privacy. The 14 steps are
outlined below:

1. ResNet-50: We begin our process with this model.
2. Changing channel dimensions: Each stage in

ResNet-50 uses different channel dimensions (i.e.,
(64,128,256,512)). To align with ConvNeXt-T, we
modify these dimensions to (96,192,384,768).

3. Changing the stage compute ratio: ResNet employs
a multi-stage design that modifies channel dimensions.
ResNet-50 has a stage compute ratio of (3,4,6,3), while
ConvNeXt and Swin Transformers adopt (3,3,9,3). We
follow this adjustment in this step.

4. Applying "Patchify": Vision transformers process in-
put images by sliding them into patches. Here, we re-
place the stem convolutional layers with a kernel size of
(4×4) and a stride of 4.

5. Applying "ResNeXtify": ResNeXt [79] introduced
grouped convolution, reducing parameter size while
maintaining performance. We utilize depth-wise con-
volution, which employs the same number of groups and
channels.

6. Using the inverted bottleneck: The inverted bottleneck
design is widely employed in models like MobileNet,
ConvNeXt, and Swin Transformers. We incorporate this
step into our process.

7. Enlarging kernel sizes: To align the parameters with
ConvNeXt, we adopt a larger kernel size of (7×7) in-
stead of (3×3).

8. Forming the new stem layers: In this step, we remove
the activation and maxpool layers, originally part of
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Figure 7: The performance of gradient inversion attacks on
each architecture changing from ResNet-50 to ConvNeXt-T
with several selected iterations (i.e., 1, 50, 100, 1000, 3000).
Model architectures from 14 steps are shown.

ResNet.
9. Changing ReLU to GELU: The Gaussian Error Linear

Unit (GELU) [29] is a variant of ReLU commonly used
in Transformers. We introduce this change to the model.

10. Removing some activation layers: Transformer blocks
typically have fewer activation layers. Here, we retain
only one activation layer within the block.

11. Removing some normalization layers: We reduce the
number of BatchNorm (BN) layers within the block to
one.

12. Changing BN to LN: Inspired by the prevalent use of
LayerNorm (LN) layers [3] in Transformers, we replace
the BN layers in our model with LN layers. We also
enable bias parameters for all convolutional layers in
this step.

13. Separating downsampling layers: We move the down-
sampling layers between stages, introducing an LN layer
to ensure stability during training.

14. Final touches to reach ConvNeXt-T: We incorporate
Stochastic Depth [32] and Layer Scale [72] in the final
stage to complete the ConvNeXt-T model.

Please refer to [86] for more detailed architecture specifi-
cations.

Figure 7 and Table 8 show the performance of gradient
inversion attacks on each model architecture. The 14-step
changes from macro to micro levels exhibit fluctuations but
generally show a trend of improved attack performance.

Figure 7 provides qualitative results of the attacks. During
the initial stages (Steps 1 to 3), the attacks struggle to recon-
struct proper images. In the middle stages, some information
emerges in the reconstruction results, but to a limited extent.
The reconstruction results improve in the later stages (After
Step 10). At last, using ConvNeXt-T, which is step 14, the
attacks achieve a good attack performance.



Table 8: The results of gradient inversion attacks on model architectures from 14 steps. Some significant changes in results are
marked in bold.

Steps Task acc ↑ MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑

1. ResNet-50 0.8220 ± 0.0039 1.5096 ± 0.5538 10.58 ± 1.87 0.1624 ± 0.0613 0.0896 ± 0.0544
2. Channel dim 0.8240 ± 0.0072 1.4706 ± 0.5710 10.74 ± 1.97 0.1724 ± 0.0616 0.0826 ± 0.0405
3. Stage ratio 0.8282 ± 0.0040 1.5286 ± 0.5246 10.56 ± 2.05 0.1834 ± 0.0581 0.0731 ± 0.0613
4. Patchify 0.8293 ± 0.0061 0.9011 ± 0.4376 12.97 ± 2.10 0.0867 ± 0.0436 0.1727 ± 0.0794
5. ResNeXtify 0.8397 ± 0.0033 1.2415 ± 0.6934 11.86 ± 2.77 0.1066 ± 0.0391 0.1334 ± 0.0950
6. Inv bottleneck 0.8407 ± 0.0058 1.1123 ± 0.4994 12.06 ± 2.19 0.0989 ± 0.0290 0.1429 ± 0.0844
7. Kernel sizes 0.8432 ± 0.0052 0.8206 ± 0.3543 13.40 ± 2.30 0.0821 ± 0.0355 0.2353 ± 0.0766
8. New stem 0.8459 ± 0.0043 0.5684 ± 0.3564 15.43 ± 3.01 0.0752 ± 0.0381 0.4924 ± 0.1205
9. ReLU to GELU 0.8436 ± 0.0027 1.0540 ± 0.5075 12.42 ± 2.61 0.2422 ± 0.0904 0.1746 ± 0.1166
10. Removing Act 0.8480 ± 0.0064 0.0215 ± 0.0150 29.93 ± 3.58 0.0049 ± 0.0026 0.9562 ± 0.0224
11. Removing BN 0.8491 ± 0.0059 0.0198 ± 0.0139 30.57 ± 4.12 0.0045 ± 0.0032 0.9605 ± 0.0232
12. BN to LN 0.8501 ± 0.0031 0.0049 ± 0.0044 36.86 ± 3.96 0.0005 ± 0.0003 0.9927 ± 0.0064
13. Sep downsamp 0.8553 ± 0.0070 0.0121 ± 0.0171 33.79 ± 4.69 0.0011 ± 0.0008 0.9859 ± 0.0151
14. ConvNeXt 0.8523 ± 0.0064 0.0177 ± 0.0171 31.88 ± 5.04 0.0032 ± 0.0055 0.9666 ± 0.0451
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Figure 8: The performance of gradient inversion attacks on
models with different positions of activation layers. The posi-
tion of three activation layers is illustrated on the right, with
two between convolutional layers and one after the addition
operation. The three digits on the top of the subfigures show
whether the activation layer on this position is added or not.
The bottom of each subfigure provides MSE values for the
attack on this model (i.e., models with GELU or ReLU).

Table 8 presents more information on gradient inversion at-
tacks, highlighting their performance in various architectural
changes. Several steps exhibit significant changes compared
to other steps. We define a step as a significant change when
a metric notably decreases or increases. To illustrate, we con-
sider the MSE metric, which we define a step as a significant
change if it experiences a reduction exceeding 50%. Our anal-
ysis reveals three significant increases in attack performance,
each correlated with specific architectural changes: The first
one occurs when applying "Patchify" to stem layers; The
second one occurs with the removal of some activation lay-
ers; The third one happens when changing BN to LN. These
findings underscore the pivotal role these specific architec-
tural changes play in determining the model’s vulnerability
to privacy attacks.

5.3 Ablation Study on Micro Designs

Ablation study on the design of activation layers. One of
the differences between a Transformer block and a ResNet
block is that a Transformer block has fewer activation layers.
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Figure 9: The performance of gradient inversion attacks on
model architectures with or without some micro designs.

Leaving fewer activation layers in the model boosts the attack
performance. As illustrated in Figure 8, when different acti-
vation layers are removed, there is a noticeable improvement
in the attack performance. Particularly, the removal of the
third activation layer, located after the skip connection of the
ResNet block, results in a significant enhancement in attack
accuracy. This observation suggests that this activation layer
introduces a non-linear process that reduces the amount of
information available for the attack, thus making it harder
to reconstruct the original input. By removing this layer, the
attack performance is improved. The analysis further high-
lights that changing ReLU to GELU results in a marginal
reduction in attack performance. This is attributed to the fact
that GELU is a smoother approximation of ReLU, which
strengthens the model’s robustness and generalization [4]. Us-
ing GELU makes the adversary extract less information from
data samples, consequently decreasing their attack efficacy. In
sum, the most significant enhancement in attack performance
occurs when all activation layers are removed from the model
architecture.

Ablation study on the design of stem layers and LN lay-
ers. The additional analysis presented in Figure 9 highlights
two more features that appear to have an impact on model
privacy leakage. Firstly, Figure 9a demonstrates that the uti-
lization of "Patchify" reduces reconstruction MSE results. As
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Figure 10: The performance of privacy attacks on model
architectures with or without some features.

this process involves modifications to the stem layers, we
believe that these stem layers are crucial for privacy attacks.
Secondly, Figure 9b illustrates that changing BN to LN results
in improved reconstruction results. This suggests that incor-
porating LN also contributes to the model’s privacy leakage.
These findings emphasize the significance of stem layers and
LN layers on model privacy leakage.

Ablation study on micro designs for membership in-
ference attacks and attribute inference attacks. Figure 10
shows the impact of three micro designs on more attacks. Just
like previous studies, adding these designs can also increase
privacy leakage in these two attacks.

In summary, attention modules, as well as the design of
activation layers, stem layers, and LN layers, are the key ar-
chitectural features that lead to more privacy leakage. We
provide more discussions in Section 6.

6 Discussion

In the previous sections, we discovered that four design com-
ponents in Transformers could result in privacy leakage: at-
tention modules, activation layers, stem layers, and LN layers.
In this section, we would like to provide a more in-depth
discussion of these modules.

6.1 The Impact of Attention Modules
The receptive field of a model refers to the information re-
ceived within a specified range by a neuron in a model layer.
In a fully connected neural network, each neuron receives
input from the elements of the entire input sample. Due to
the convolution operation, the neuron in a convolutional net-

work receives input limited to its receptive field. The range
of the receptive field is defined by the convolution templates
in CNNs. This design allows CNNs to capture local patterns
in the input data efficiently. The receptive field has a theo-
retical limit. Some researchers have demonstrated that the
effective receptive field (i.e., the receptive field’s effective
area) is smaller than the theoretical receptive field [50]. From
a privacy perspective, a CNN model could only reveal part of
sensitive information from the input sample due to the design
of localized convolution templates.

Transformers employ the multi-head self-attention mech-
anism, also known as attention modules. The input sample
is taken as a sequence of flattened 2D patches. The attention
module receives the input sequence and generates its represen-
tation of the sequence by mapping the query and the key-value
pairs to the output. Transformers tend to have much larger
receptive fields than CNNs due to the fact that their attention
module is computed with the entire input sequence [16,74]. In
terms of privacy, a Transformer model is able to extract more
sensitive information than a CNN model because of its wide-
angle receptive field. Hence, Transformers are more prone to
attacks than CNNs, as demonstrated by our evaluation based
on three popular privacy attacks.

6.2 The Impact of Micro Designs
There are micro-design components with the potential to leak
sensitive data from input samples. Activation layers such as
ReLU and GELU add a layer of complexity to the model by
making it a non-linear function. Removing some activation
layers simplifies the logic of attacks. Stem layers receive an
input sample and perform some preliminary processing. As
the representation after the stem layers remains similar to the
original input image, there is a high possibility of extracting
private information because of the design of the stem layers.
Changing BN to LN is also likely to aid the attack process
and allow the adversary to achieve higher attack performance.

6.3 The Impact of Overfitting
Previous work claimed that privacy attacks are caused mainly
by the undesirable overfitting issue in deep learning mod-
els [44, 62]. Overfitting normally occurs when a model per-
forms well on the training data, but poorly on the validation
data. The overfitting issue tends to become severe on an
over-trained model with a large number of parameters. Deep
learning models are exposed to privacy threats due to the over-
fitting effect. In our work, we find that model architectures
have impacts on the performance of privacy attacks, which
can not be attributed solely to the overfitting effect. Indeed,
our experiments validate that the variation in performance
is due to the difference in model architectures. For models
with the same level of parameter sizes, Transformers tend
to be more vulnerable to privacy attacks than CNNs. More



importantly, for models with the same overfitting level, our
conclusion still holds that Transformers are more vulnerable
to privacy attacks than CNNs. We have then identified some
architectural features that could be responsible for privacy
leakage.

6.4 Potential (Incorrect) Explanations for the
Vulnerability of Different Models Against
Privacy Attacks

Here, we explore several potential explanations for our exper-
imental results and shed more insights on our conclusion.

• The attacks on Transformers are more effective than
those on CNNs. Is it due to random noise? To dismiss
this concern, we have conducted multiple runs for each
experiment setting and calculated the mean and standard
deviation scores for our results. In total, We have done
around 100 different experiment settings, involving 1400
experiments, 1700 training models, and 1200 training
hours, which averages out the impact of random noise.

• Is it due to the overfitting of the victim models? To
account for this, we meticulously compare the attacks on
CNNs and Transformers when their victim models are
trained on the same level of overfitting. By doing so, we
minimize the factor of overfitting for a fair assessment.

• Is it due to the immature training of the victim models?
In order to conduct our experiments, it was necessary
to split the dataset into multiple subsets for both victim
and shadow models. Consequently, it is reasonable to
expect relatively low accuracy on the victim models
for CIFAR10, CIFAR100, and CelebA (compared to the
models trained on a full dataset). This aligns with the
findings of the literature on privacy attacks, which have
reported similar results [7, 27, 44].

• Is it due to other training factors? We ensure that the
training recipes for each victim model remain consis-
tent across all comparisons. Consequently, we can confi-
dently exclude other training factors from the compari-
son study when drawing our conclusion.

After eliminating these potential explanations, we believe
that our experimental results should be best explained by
several architectural features mentioned in Section 5. Please
see Appendix B for more theoretical discussions.

7 How to Exploit the Privacy Impact of Model
Components?

7.1 Modifying Model Components as a De-
fense Mechanism

Based on our discoveries in previous sections, we propose to
explore the modification of model components as a defense
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Figure 11: The impact of the performance of privacy attacks
when model components change. In each line, the left and
right points represent the results without and with the micro
design modifications, respectively.
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Figure 12: The performance of privacy attacks when DPSGD
is applied. The utility performance of victim models and the
attack performances are given when various DP noises are
given.

mechanism against privacy attacks. We aim to achieve a trade-
off between utility and privacy. In Figure 11, we demonstrate
the influence of certain micro-design changes on the efficacy
of privacy attacks. Notably, we observe that the task accu-
racy is minimally impacted in each test, indicating that the
proposed defense measures do not significantly compromise
the model’s overall performance. However, we can observe a
decreased effectiveness of membership inference attacks and
gradient inversion attacks when these model components are
not applied.

These findings suggest that the proposed micro-design mod-
ifications can serve as effective countermeasures against pri-
vacy attacks, while the task accuracy remains almost intact.

7.2 Adding Perturbations as a Defense Mecha-
nism

The privacy leakage issue observed in Transformers high-
lights the need for an enhanced privacy treatment compared
to CNNs. Specifically, when employing perturbation as a de-
fense mechanism, such as incorporating differential privacy
noises into the model parameters, it is better to increase the
level of noise specifically for Transformers and Transformer-
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Figure 13: The performance of privacy attacks when DPSGD
is applied in stem layers. The utility performance of victim
models and the attack performances are given when various
DP noises are given.

like models. Figure 12 illustrates the outcomes of three pri-
vacy attacks when DPSGD [1] is applied. As the differential
privacy noise increases, a noticeable decline in the utility
performance of victim models is observed (depicted in sub-
figures (a) to (c)). Concurrently, subfigures (d) to (f) reveal
diminishing attack performances, with Transformers (Swin-T)
consistently exhibiting superior attack performance at equiva-
lent noise levels. From a defensive standpoint, adding more
noise to Transformers is recommended.

Another approach to consider is a layer-wise perturbation
defense mechanism, where noises are added to selected layers
only. In this scenario, it would be interesting to introduce
additional noises to the layers that are more susceptible to
privacy leakages, such as activation layers, stem layers, LN
layers, and attention modules. Paying special attention to
these "privacy-leakage" layers could also achieve satisfactory
privacy protection. Figure 13 demonstrates the impact of
privacy attacks when DPSGD is applied to stem layers. As the
differential privacy noise escalates, it influences both utility
and attack performance, demonstrating the efficacy of adding
noises to targeted layers.

8 Conclusion

In this study, we pioneer the exploration of privacy risks on
model architectures, especially CNNs and Transformers. We
have conducted a comparison of three prominent privacy at-
tacks, i.e., membership inference attacks, attribute inference
attacks, and gradient inversion attacks. We discover that Trans-
formers tend to be more vulnerable to privacy attacks than
CNNs. As a result, many Transformers-inspired CNN designs,
such as ConvNeXt, are also susceptible to privacy threats. A
number of Transformers’ features, including the design of
activation layers, the design of stem layers, the design of LN
layers, and the attention modules, are likely to incur high
privacy risks.

It is still challenging to establish accurate and theoretical

explanations for why certain architectural features are critical
to privacy preservation. We believe that these analyses require
further experimental campaigns, and we intend to study this
matter in our future work.
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Table 9: The results of membership inference attacks on more
models of CNNs and Transformers on CIFAR10 as a supple-
ment for Section 4.2.

Task acc ↑ Attack acc ↑

ResNet-50 0.8220 ± 0.0023 0.6385 ± 0.0078
EfficientNet-B4 0.8180 ± 0.0052 0.6115 ± 0.0049
RegNetX-4.0GF 0.8326 ± 0.0018 0.6197 ± 0.0042

Swin-T 0.8335 ± 0.0042 0.6904 ± 0.0052
MViTV2-T 0.8279 ± 0.0057 0.6813 ± 0.0056

DaViT-T 0.8311 ± 0.0045 0.6752 ± 0.0039

Table 10: The results of attribute inference attacks on more
models of CNNs and Transformers on CelebA as a supple-
ment for Section 4.3.

Task acc ↑ Attack acc ↑ Macro F1 ↑

ResNet-50 0.6666 ± 0.0020 0.6854 ± 0.0015 0.3753 ± 0.0012
EfficientNet-B4 0.6192 ± 0.0038 0.6504 ± 0.0031 0.4036 ± 0.0018
RegNetX-4.0GF 0.6248 ± 0.0041 0.6701 ± 0.0016 0.3649 ± 0.0022

Swin-T 0.6587 ± 0.0023 0.7312 ± 0.0014 0.5530 ± 0.0019
MViTV2-T 0.6151 ± 0.0012 0.6908 ± 0.0025 0.4883 ± 0.0024

DaViT-T 0.6517 ± 0.0030 0.7263 ± 0.0015 0.5093 ± 0.0011

A Additional Experimental Results

Tables 9 to 11 show privacy attack results for more models of
CNNs and Transformers. The comparison still involves mod-
els with similar parameter sizes, and our conclusion remains



Table 11: The results of gradient inversion attacks on more
models of CNNs and Transformers on CIFAR10 as a supple-
ment for Section 4.4.

MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑

ResNet-50 1.3308 ± 0.6507 11.30 ± 2.24 0.1143 ± 0.0403 0.0946 ± 0.0989
EfficientNet-B4 0.8178 ± 0.7276 14.6970 ± 3.9812 0.1953 ± 0.0816 0.2698 ± 0.1413
RegNetX-4.0GF 0.7937 ± 0.4853 13.8190 ± 2.6519 0.0851 ± 0.0391 0.3197 ± 0.1282

Swin-T 0.0069 ± 0.0071 36.24 ± 5.21 0.0012 ± 0.0016 0.9892 ± 0.0118
MViTV2-T 0.0711 ± 0.0172 23.6450 ± 1.1224 0.0068 ± 0.0033 0.8639 ± 0.0463

DaViT-T 0.0615 ± 0.0425 25.9200 ± 4.7786 0.0090 ± 0.0076 0.9347 ± 0.0489

unchanged that Transformers exhibit higher attack perfor-
mance.

B More Theoretical Discussion

In Section 6, we offer general discussions on the privacy
impact of four components in Transformers. In this section,
we delve deeper into more theoretical discussions.

B.1 The Impact of Attention Modules
In Sections 5.1 and 6.1, we show that the utilization of atten-
tion modules makes Transformers more susceptible to privacy
leakage than CNNs. This susceptibility is attributed to the
larger receptive field of attention modules, contributing to
increased model memorization and, subsequently, heightened
privacy leakage. Let us explore this theoretical framework
step by step:

Receptive Field. Given a neural network with n layers, the
output of the i-th layer (i ∈ {1, ...,n}) is the feature map fi.
We have the input image as f1 and the final output feature
map as fn. We define Ri as the receptive field size of feature
map fi. In other words, Ri is related to the process of the i-th
layer. The receptive field Ri can be defined as

Ri = ζ(Ri+1,α1,α2, ...,αn), (1)

where α1,α2, ...,αn are calculation factors in Ri+1, and ζ is
the calculation process of Ri+1.

In a CNN model, the receptive field of a neuron represents
the convolution-computation region in the input space that
influences the output of that neuron. It signifies the area of
the input data to which the neuron reacts. According to [2],
the receptive field in a CNN is determined by:

R C
i = si+1 ·R C

i+1 +(ki+1 − si+1), (2)

where ki and si are the kernel size and the stride in a convolu-
tion layer. Based on Equations (1) and (2), we can define the
receptive field size of a neuron in a CNN layer R C as follows
(we omit i for the simplicity of notations):

R C = ζ(k,s), (3)

where k and s are the kernel size and the stride.
The receptive field in a Transformer model, utilizing atten-

tion mechanisms, significantly differs from CNNs. In Trans-
formers, attention layers calculate each position in the input
sequence using query (q), key (k), and value (v) matrices. The
output of the attention module is computed as follows:

Attention(q,k,v) = SoftMax(q · kT/
√

d) · v, (4)

where d is the scaling factor based on query and key. Based
on Equations (1) and (4), we can define the size of the recep-
tive field of an attention layer R T as:

R T = ζ(q,k,v). (5)

As q, k, and v in a Transformer model are derived from the
entire input sequence, R T tends to be much larger. With Equa-
tions (3) and (5), we have:

R T > R C. (6)

In summary, Transformers activate a larger receptive field of
input data compared to CNNs, which is also supported by
empirical research [57].

Model Memorization. The concept of model memorization
lacks a formal definition in the research field. Informally, it
can be characterized as a label (y) memorization for a specific
sample x if removing this x from the training set would change
the performance of the model predicting y [8, 19]. Other
research refers to it as memory capacity, assessing how much
information a model can store in its parameters [6, 12, 58]. In
either case, model memorization is intricately linked to how
the model learns from input data. The relationship between
the receptive field and model memorization can be formulated
by:

increase(M )∼ increase(R ), (7)

where R denotes the receptive field and M denotes the model
memorization. A larger receptive field allows the model to
reap more information from the input data, and as Transform-
ers inherently possess a larger receptive field, they exhibit
an enhanced ability to absorb more information. With Equa-
tions (6) and (7), we have:

M T > M C, (8)

where M T is the model memorization in Transformers, and
M C is the model memorization in CNNs.

Privacy Leakage. Model memorization introduces poten-
tial privacy leakage. Normally, input data x is considered
extractably memorized if an adversary can construct data that
makes the model produce x [53]. The relationship between
model memorization and privacy leakage can be expressed
as:

increase(L)∼ increase(M ), (9)



where M is the model memorization and L denotes the pri-
vacy leakage. An increased capacity for the model to learn
from input data correlates with a higher likelihood of privacy
leakage. With Equations (8) and (9), we have:

LT > LC, (10)

where LT is the privacy leakage in Transformers, and LC

is the privacy leakage in CNNs. In summary, Transformers,
employing attention modules and featuring a larger recep-
tive field, inherently enhance model memorization, thereby
contributing to increased privacy leakage.

B.2 The Impact of the Design of Activation
Layers

In Sections 5.2, 5.3 and 6.2, we show that removing activa-
tion layers could make the model more vulnerable to privacy
attacks. Here we delve into more theoretical discussions.

ReLU vs GELU. ReLU and GELU are two widely adopted
activation layers in CNNs and Transformers, defined as fol-
lows:

ReLU(x) = max(0,x), (11)

GELU(x) = 0.5x(1+ tanh(

√
2
π
(x+0.044715x3))), (12)

where x is the input of the activation layer.
Both ReLU and GELU introduce non-linearity into the

model, enabling the learning of complex and hierarchical rep-
resentations from input data. However, non-linearity can also
bring challenges during model training, such as the vanishing
gradient and exploding gradient problems, making it difficult
to update model weights and biases [39]. The ReLU unit may
suppress half of its inputs by outputting zero values, selec-
tively passing information to the next layer [50]. Moreover,
the non-differentiability of ReLU at x = 0 poses issues in
gradient-based optimization. The GELU unit, designed as a
smooth approximation to ReLU, preserves the non-linearity
of the model [39]. The adoption of GELU can enhance the
model’s robustness and generalization, making the adversary
extract less information from data samples and decrease the
attack performance [4]. This aligns with our experimental
results presented in Step 9 of Table 8 and Figure 8.

The removal of activation layers. As using GELU does
not help with improving the privacy attack performance, our
analysis shows that removing activation layers and leaving
fewer activation layers is the key to increasing the model’s
vulnerability to privacy attacks (shown in Figure 8). This is
because retaining fewer activation layers allows the model to
preserve more information learned from the training data, re-
sulting in increased privacy leakage compared to models with

a greater number of activation layers, which can be written as
L fewer act > Lmore act.

B.3 The Impact of the Design of Stem Layers
In Sections 5.2, 5.3 and 6.2, we illustrate that the design of
stem layers (the "Patchify" step) can result in increased pri-
vacy leakage. Here, we provide more theoretical discussions.

The stem layers in a standard ResNet have a 7×7 convo-
lution layer with stride 2. The "Patchify" strategy introduced
by Transformers uses a 4× 4 convolution layer with stride
4, which is actually a non-overlapping convolution process
to make patches of the input data. Some research [17, 23]
theoretically show that non-overlapping patches can easily
learn information from input data, comparable to the capabil-
ities of overlapping patches. Empirical studies [78] provide
further support for the efficacy of this kind of stem layer
design with convolutional layers. This design is shown to
enhance optimization stability and improve the adversary’s
attack performance, which is demonstrated in our experimen-
tal results in Sections 5.2 and 5.3. We can formulate this as
Lpatchify stem > L resnet stem.

B.4 The Impact of the Design of LN Layers
In Sections 5.2, 5.3 and 6.2, we show that changing Batch-
Norm to LayerNorm can contribute to increased privacy leak-
age. Here, we provide more theoretical discussions on the
implications of this design choice.

Let x = (x1,x2, ...,xH) and y be the input of size H and
output of a normalization layer. LayerNorm re-centers and
re-scales the input x as

y = g⊙ x−µ
σ

+b,µ =
1
H

H

∑
i=1

xi,σ =

√
1
H

H

∑
i=1

(xi −µ)2, (13)

where ⊙ denotes a dot production operation, µ and σ are
the mean and standard deviation of x, bias b and gain g are
learnable parameters [3, 80].

The bias and gain are designed for affine transformation
on normalized vectors to enhance performance. However,
these parameters are trained based on the training data and
may not adequately consider the input distributions of testing
data. This increases the risk of overfitting when applying
LayerNorm in the model [80]. The overfitting of the model
would lead to more privacy leakage of the training data. As
a result, models with LayerNorm could potentially expose
sensitive information during privacy attacks, which can be
written as L ln layer > Lbn layer.
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