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Abstract
Searchable symmetric encryption schemes often unintention-
ally disclose certain sensitive information, such as access, vol-
ume, and search patterns. Attackers can exploit such leakages
and other available knowledge related to the user’s database
to recover queries. We find that the effectiveness of query
recovery attacks depends on the volume/frequency distribu-
tion of keywords. Queries containing keywords with high
volumes/frequencies are more susceptible to recovery, even
when countermeasures are implemented. Attackers can also
effectively leverage these “special” queries to recover all oth-
ers.

By exploiting the above finding, we propose a Jigsaw at-
tack that begins by accurately identifying and recovering those
distinctive queries. Leveraging the volume, frequency, and co-
occurrence information, our attack achieves 90% accuracy in
three tested datasets, which is comparable to previous attacks
(Oya et al., USENIX’ 22 and Damie et al., USENIX’ 21).
With the same runtime, our attack demonstrates an advantage
over the attack proposed by Oya et al (approximately 15%
more accuracy when the keyword universe size is 15k). Fur-
thermore, our proposed attack outperforms existing attacks
against widely studied countermeasures, achieving roughly
60% and 85% accuracy against the padding and the obfus-
cation, respectively. In this context, with a large keyword
universe (≥3k), it surpasses current state-of-the-art attacks by
more than 20%.

1 Introduction

Searchable Symmetric Encryption (SSE) [2, 4, 7, 8, 12, 23,
33, 38, 41, 48] enables users to securely search encrypted
databases stored on remote servers. An SSE scheme typically
consists of setup and search protocols. In the setup, the user
sends encrypted indexes of the documents to the server. In the
search, the user generates a search token and sends it to the
server who then returns the matched documents. The search
process does not reveal any confidential information about the

documents or the user’s search query, except for the volume
pattern (also known as the response length) and the access
pattern, which reveal the number of matched documents and
their identities, respectively. Additionally, the server may also
know the search pattern, which indicates whether two queries
are identical by comparing their search tokens or access pat-
terns.

Passive attacks on SSE can exploit the above leakages
and some prior knowledge to recover queries. According to
the prior knowledge given to the attacker, we categorize two
main attacks in Table 1: 1) known-data attacks [1, 5, 22,
25, 30, 35, 46], which assume that the attacker has access to
partial/full plain texts of the documents in the user’s dataset;
and 2) similar-data attacks [13, 26, 31, 32, 35], which enable
the attacker to obtain a similar document set or estimations
on the users’ query distribution. Unlike known-data attacks,
that require the plain texts, similar data attacks can recover
queries by exploiting statistical information from a similar
dataset, such as query frequency and the probability of two
keywords appearing in the same document. Without relying
on the “strong assumption” that the attacker must be provided
plain texts of documents, similar-data attacks are relatively
practical to deploy and bypass countermeasures. Existing
works [31,32] have shown that similar-data attacks can bypass
some defenses employing pattern randomization techniques
[10, 36]. We note that SSE is also vulnerable to active attacks
[1, 34, 50, 51] leveraging file injection to recover queries,
which is orthogonal to this work.

Damie et al. [13] explored an intriguing phenomenon
across various query distributions, indicating the correlation
between accuracy and query volume (i.e., the number of docu-
ments containing a particular keyword). Oya et al. [31] demon-
strated that high-frequency queries (i.e., the frequency with
which the user queries a specific keyword) give a greater
probability of being successfully recovered in their proposed
attack. We note that a similar notice was given in [1] that the
effectiveness of known-data attacks is also influenced by the
volume of queries, wherein high-volume queries are easily
recoverable. Building upon the aforementioned interesting



Table 1: Comparisons of existing passive attacks1.

Attack Leakage Known prior knowledge Similar prior knowledge Accuracy Padding
2

Obfuscation
3

Document Query Document Frequency
IKK [22] ap ∼ 80% - -
Count [5] ap, vp ∼ 90% - -
SubgraphID [1] ap ∼ 90% - -
LEAP [30] ap ∼ 100% - -
RSA [13] ap ∼ 85% < 20% < 20%
Freq [26] sp ∼ 20% ∼ 20% ∼ 20%
SAP [31] vp,sp ∼ 50% ∼ 30% ∼ 30%
GraphM [35] ap ∼ 70% < 20% < 20%
IHOP [32] sp,ap ∼ 90% < 20% ∼ 85%
Jigsaw (Ours)4 vp,sp,ap ∼ 90% ∼ 60% ∼ 85%
1 “ap” denotes the access pattern, “vp” denotes the volume pattern, and “sp” denotes the search pattern. The “ ” indicates that the attack needs nearly all

known data or strongly relies on the corresponding similar data. The “ ” indicates that the attack needs partial known data or not particularly relies on
similar data. The “ ” means that the attack does not need any known data or similar data. The first four attacks are known-data attacks, and the last five
are similar-data attacks. The RSA mainly relies on similar data but needs a few known queries to start the attack. We do not present the performance of
the first four attacks against padding and obfuscation (denoting “-”) since we mainly focus on similar-data attacks.

2 The performance against the padding of CGPR [5] with k = 1,000 on Enron. We utilize an adaptation (Appendix B) for Jigsaw. Padding is claimed to
mitigate the listed known-data attacks effectively [1, 30].

3 The performance against the obfuscation of CLRZ [10] with TPR= 0.999, FPR= 0.05 on Enron. Note adaptations (Appendix B) are used for IHOP
and Jigsaw.

4 Our attack can reach 90% accuracy even if a defense hides the sp, and thus one may consider the sp an optional attack advantage.

hints, we conduct experiments that confirm the influence of
volume and/or frequency on the performance of attacks. More-
over, we discover that leveraging this knowledge enables us to
enhance the effectiveness of similar-data attacks. We provide
two crucial observations regarding the query recovery.
Observation 1. Queries containing keywords with a high
volume/frequency are much easier to recover than others.

In a database, the volume of keywords follows Zipf’s
law [52], which states that the volume of a keyword ranks nth
in a sorted list (sorted by volume) is inversely proportional to
n. We also observe that the frequency of keywords follows
almost the same law. We confirm the above phenomenons
by showing the concrete results in three datasets (See Sec-
tion 4.1 and Appendix A for more details). Keywords with
higher volume or frequency display larger disparities, which
consequently makes it easier for attackers to recover those
queries.
Observation 2. By revealing the queries from observation 1,
the attacker can gain advantage to retrieve further queries
(even all queries).

In [13], Damie et al. proposed an efficient similar-data
attack (i.e. refined score attack, RSA) that achieves around
85% accuracy in recovering all queries by utilizing only 10
known queries. They also show that when utilizing known
queries with a higher volume, the attack’s accuracy increases
and becomes more stable.
Challenges. Observation 1 does not explicitly facilitate a way
to identify and recover those distinctive queries as they consis-
tently intermingle with others. To the best of our knowledge,
there is no attack that first focuses on filtering those distinc-

tive queries, thereby allowing for the recovery of queries from
easy to hard. Setting a start with immediately recovering all
queries based on known or recovered queries is not trivial
and could be defended against by countermeasures. For exam-
ple, previous work [13] cannot work effectively at the outset
without any proper known query set. This also implicitly ex-
plains why it achieves low accuracy under padding [5] and
obfuscation [10].
Contributions. We propose a new effective similar-data at-
tack called Jigsaw providing a “granular and incremental”
strategy, which comprises three core modules. 1) The first
module uses the keyword’s volume and frequency informa-
tion to locate and recover the most distinctive queries. 2)
The second module further refines the recovered queries by
matching the queries with the keywords according to the co-
occurrence matrix. This module eliminates those incorrect
query recoveries from the first module and tries to achieve
near-perfect accuracy. 3) The last module is to recover the
remaining queries using the outputs from the second module.
We generate scores for query-keyword combinations using
the co-occurrence matrix, volume, and frequency information.
We optimize the score for queries to obtain matches between
queries and keywords. We also provide comprehensive evalu-
ations of Jigsaw. Concretely, our contributions are outlined as
follows.
• Localization and recovery of distinctive queries. We mea-
sure the distinguishability of each query and use the volume
and frequency to recover the most distinguishable queries
(the first module of Jigsaw). For queries with a high volume
and frequency (e.g., the top 10% of queries in volume and



frequency in Enron [44], Lucene [15], and Wikipedia [16]),
we can obtain an accuracy > 70%.

• Precise verification of recovered queries. We make a further
refinement by filtering out those queries that do not align well
with the co-occurrence information (the second module). We
here obtain nearly 100% accuracy at the expense of recov-
ering a smaller number of queries (about a dozen queries in
Enron and 50 queries in Lucene and Wikipedia).

• Accurate recovery of all queries. We at last utilize the recov-
ered queries to recover all queries with about 95% accuracy
(the last module). Even if the frequency information is not
given, we can still capture roughly 90% accuracy. We state
that Jigsaw exhibits durability, as it can hold its effectiveness
(dropping < 5% of accuracy) in the future period even by ex-
ploiting the auxiliary frequency information that was leaked
long ago (e.g., 30 months in Wikipedia and 150 weeks in
Enron and Lucene).

• Comprehensive evaluations and comparisons. We present
empirical experiments and comparisons with the state of art
similar-data attacks (including Graphm [35], SAP [31], RSA
[13], and IHOP [32]) to highlight the performance of Jigsaw.
Our attack provides > 90% accuracy surpassing the Graphm
and SAP attacks, similar to the RSA and IHOP. Within the
same runtime, Jigsaw exhibits about 15% more accuracy than
IHOP when the keyword universe is 15k. Also, Jigsaw outper-
forms them when countering the defenses (padding [5] and
obfuscation [10]). It maintains > 60% and > 85% accuracy
against the padding (in most cases) and obfuscation and takes
the lead in accuracy in most cases.

2 Related Work

Except for the SSE schemes [14, 17, 45] based on expen-
sive primitives, such as ORAM and PIR, most SSE schemes
leak the access pattern, search, volume, and response size
pattern (i.e., the size of each document). With some prior
knowledge, passive attacks abuse the above leakages to re-
cover users’ queries. These attacks can be categorized as
similar-data attacks [13, 26, 31, 32, 35] and known-data at-
tacks [1, 5, 22, 25, 30, 35, 46].
Similar-data attacks. Liu et al. [26] proposed the Freq attack
that exploits the search pattern and the query frequency in-
formation to recover users’ queries. Recently, Oya et al. [31]
proposed the SAP attack, which utilizes the search and volume
pattern to get the frequency and volume of each query. How-
ever, Freq and SAP strongly rely on the frequency information
and achieve a relatively low accuracy. Attacks that abuse the
access pattern have higher accuracy. Pouliot et al. [35] pro-
posed the GraphM attack that formalizes the query recovery as
a weighted graph match problem and solves it by PATH [49]
or Umeyama [42] algorithm. Oya et al. [32] proposed the
IHOP attack, which uses a co-occurrence matrix of queries
and keywords, along with query frequency, to launch its at-

tack. IHOP supposes that queries are correlated and follow
a Markov process, allowing it even to threaten frequency-
smoothing defenses such as PANCAKE [20]. Damie et al.
[13] proposed the RSA, which starts with some known queries.
Though providing an accuracy of about 85%, RSA still re-
quires some known queries as a prerequisite. Without those,
the attack will not work effectively.
Known-data attacks. Islam et al. [22] proposed the first
known-data attack (IKK) with all documents and partial
queries to recover queries. Cash et al. [5] proposed the Count
attack that can recover most queries without known queries.
In [1], Blackstone et al. proposed an attack that performs
perfectly (accuracy approaching 100%) with fully known
documents, but poorly (less than 10%) with a small portion
of known documents. Ning et al. [30] proposed LEAP, which
can recover half of all queries with 100% accuracy with only
1% of documents. These attacks are all dependent on known
data information. However, the known data are hard to obtain,
and the attacks are easy to prevent with countermeasures.
Countermeasures. To defend against leakage abuse attacks,
many countermeasures [3, 5, 10, 14, 22, 43, 47] have been pro-
posed. Among those, padding is one of the most commonly
used methods. Cash et al. [5] first presented the padding strat-
egy. The volume of each query is padded to the nearest multi-
ple of an integer k. After that, Demertzis et al. [14] proposed
SEAL, which pads the volume of each query to the nearest
power of an integer x. The padded documents would add noise
to the volume and access patterns, hampering attacks abusing
those leakages. Several works also consider the keywords
clustering [3, 43]. Each cluster contains no less than α key-
words, and then each keyword is padded to the largest volume
in the cluster.

Another countermeasure is obfuscation [10]. When query-
ing for a keyword, if a document contains the keyword, the
document will be returned with probability p (the true positive
rate, TPR); otherwise, each document will be returned with
probability q (the false positive rate, FPR). Shang et al. [36]
proposed OSSE, which provides the same response effect and
produces fresh obfuscation in each query.

3 SSE Scheme and Attack Model

We revisit the standard SSE [12], define the leakage function
of queries, and describe the attacker’s prior knowledge as the
prerequisite of our attack. We put the summary of notations
in the full version [29].

3.1 SSE
An SSE scheme [12] facilitates keyword searches over en-
crypted data, denoted as ED, while maintaining the confiden-
tiality of the data and the keywords. The typical components
of an SSE scheme encompass the setup, update, and query
processes. Initially, the user possesses a dataset D, which



comprises a set of documents d identified by id(d). Each doc-
ument contains a list of keywords k. During the setup phase,
the user can construct and encrypt an index, and then upload
it along with the encrypted document set ED to the server. In
the update, the user can dynamically update the index stored
on the server. During the query process, to search a keyword
k, the user generates a trapdoor td(k) for the server. Eventu-
ally, the user retrieves the list D(k), which is a list of id(d)
satisfying that k appears in d. We also denote the list D(k) as
D(td(k)) for convenience. We note that the user also needs to
retrieve the encrypted documents according to the id(d) and
decrypt them to complete the search.

3.2 Leakages
An efficient SSE scheme typically leaks the volume pat-
tern, the access pattern, and the search pattern of queries to
the server and potential eavesdroppers. For a sequence of s
queries T ds = [td(x1), td(x2), . . . , td(xs)], the leakages often
used in attacks are summarized as follows.
• Access pattern is the family of functions ap : ED×

T ds→ APs where AP is a list [D(x1),D(x2), . . . ,D(xs)]. For
each query, the scheme leaks the identifiers of corresponding
encrypted documents. This leakage happens in most SSE
schemes [2, 4, 6, 9, 12, 24, 28, 39, 48] when the user retrieves
the encrypted document. Some schemes use primitives such
as ORAM [18] or PIR [11] to hide access pattern, but those
primitives lead to expensive costs.
• Volume pattern is the family of functions vp : ED×

T ds→V Ps, where V P is a list [|D(x1)|, |D(x2)|, . . . , |D(xs)|].
For each query, the scheme leaks the number of documents
returned by the server.
• Search pattern is the family of functions sp : ED×

T ds → Ms×s, where Ms×s is a s× s binary matrix such
that Ms×s[i, j] = 1, if the underlying keywords of tdi and
td j are the same and otherwise Ms×s[i, j] = 0. For any two
queries td(xi), td(x j) ∈ T d, i ̸= j, the attacker knows whether
xi equals x j. While schemes may not directly reveal the search
pattern from queries, repeated querying of the same keyword
leads to the exposure of the same access pattern. Attackers
can utilize this access pattern to infer whether two queries
correspond to the same keyword [31].

3.3 Attackers
We respectively consider two kinds of attackers targeting the
user’s queries: honest but curious servers and eavesdroppers:
• An honest but curious server follows the SSE protocols

but attempts to recover the users’ queries by utilizing the
leakage pattern and other prior knowledge, such as known
data or similar data. The server also has access to all the
encrypted documents.
• An eavesdropper who intercepts the traffic between the

server and the user can observe the encrypted documents

returned in each query and possess the same knowledge
of leakages as the server, except for all the encrypted doc-
uments. With a similar dataset, the eavesdropper can also
launch similar-data attacks.

Different from known-data attacks, the server could utilize
outdated (obtained from the past) or leaked documents which
are not necessarily included in the current user’s dataset to
launch similar-data attacks. Note the eavesdropper could also
know some similar data in several scenarios by acting as
a legal user. For instance, the eavesdropper may share the
same email system (producing similar email data) with his
colleagues. We state that both attackers can employ our Jigsaw
attack by utilizing the following knowledge derived from
leakage and similar data.
Attackers’ knowledge derived from leakages. We use the
leakages to derive the frequency, volume, and co-occurrence
of queries. We assume the user issues s queries, denoted as
T ds, from which the attacker identifies l different queries by
the search pattern. We denote the query list identified by the
attacker as T dr = [td1, td2, . . . , tdl ], which does not contain
repeated queries. The attacker can also observe the returned
documents [D(td1),D(td2), . . . ,D(tdl)]. The server possesses
knowledge of the total number of documents, denoted as |D|.
While the eavesdropper, who can only observe the query
traffic, does not know the total number of documents. We also
use |D| to represent the size of the document set observed by
the eavesdropper. Then for each query td, we normalize the
volume pattern of query denoted vtd = |D(td)|/|D|. For the
query list T dr, Vr = [vtd1 ,vtd2 , . . . ,vtdl ] is the vector of volume
of all queries in T dr. With the search pattern, the attacker
acquires knowledge of the frequency at which a td appears in
T ds. We denote the frequency of td as ftd =Count(td)/|T ds|,
where Count(td) computes the number of td in T ds. For
the query list T dr, Fr = [ ftd1 , ftd2 , . . . , ftdl ] is the vector of
frequency of all queries in T dr. Based on the access pattern,
the attacker can construct a l×|D| matrix IDr. IDr[i, j] = 1,
if the search result for tdi contains d j, 0 otherwise. Then, the
attacker can construct the l× l co-occurrence matrix Cr =
IDrID⊤r /|D|.
Attackers’ knowledge derived from similar data. We as-
sume the attacker knows a list of similar documents Ds =
[d1,d2, . . . ,dk] and employs the same algorithm to extract
keywords as the user. Actually, the attacker can easily ob-
tain a similar keyword universe as the user’s database with a
small similar data [50]. We denote the keyword universe ex-
tracted by the attacker as Ws = [w1,w2, . . . ,wm]. Then, the
attacker can construct the volume Vs = [vw1 ,vw2 , . . . ,vwm ],
where vwi = |Ds(wi)|/|Ds| and the Ds(wi) is the documents
in Ds which contain keyword wi. The attacker also constructs
IDs from Ws and Ds in a similar manner as the construc-
tion of IDr. Based on the IDs, the attacker calculates the
co-occurrence matrix Cs = IDsID⊤s /|Ds|. The attacker can
also obtain a similar query frequency Fs = [ fw1 , fw2 , . . . , fwm ]
for Ws by public information such as Google Trend [19] or



Figure 1: The distribution of queries on Enron. The horizontal
dashed line divides the top 10% queries on volume from
other queries; the vertical dashed line divides the top 10%
queries on frequency from other queries. The blue dots denote
the real queries issued by the user; the red dots denote the
queries successfully recovered by the simple attack presented
in Appendix A.

outdated frequency information.

4 Jigsaw Attack

We first demonstrate that Observation 1 does apply to all
tested datasets although it does not directly provide an ap-
proach to recover those distinctive queries. We introduce the
differential distance in the first module of Jigsaw to establish
a way to distinguish these queries. We then define a distance
between queries and keywords, enabling us to pair the distinc-
tive queries with their nearest keywords. We accomplish the
refinement in the second module by testing the queries’ com-
patibility with co-occurrence relationships. Building on Ob-
servation 2, in the third module, we systematically recover all
remaining queries by using those obtained in the second mod-
ule. We define a specified “score” for each query-keyword
pair and maximize it to get matches. The recovery process is
iterative, with previously recovered queries being utilized in
the recovery of subsequent queries.

4.1 Distribution of Keywords

Before proceeding to the Jigsaw attack, we present a com-
prehensive exposition of volume and frequency distribution
(commonly found) in typical databases. We also showcase
how the distribution impacts the effectiveness of attacks.

According to the Zipf’s law [52], the volume of keywords
in a database follows the Zipfian distribution, illustrating that
a small portion of keywords associates with a high volume. As
a result, these keywords exhibit significant disparities among
each other due to their limited quantity but extensive volume
range. A similar phenomenon emerges concerning query fre-
quency, which indicates that a small subset of keywords could
tend to be more frequently queried by users.

We present a simple similar-data attack to show that queries
with high volume and frequency are relatively easier to re-
cover. We employ this attack solely to demonstrate the distri-
bution of keywords and its influence on the recovery. In this
attack, the attacker generates the volume and frequency of
queries and pairs them with keywords that exhibit the closest
similarity w.r.t. volume and frequency. We simulate the attack
on Enron [44], Lucene [15], and Wikipedia [16] and provide
the results for Enron in Figure 1 (See Appendix A for details
regarding the attack and its results on other datasets).

Figure 1 shows the volume and frequency correlated dis-
tribution of queries and the effectiveness of the attack (on
recovery). We select the top 1, 000 keywords on volume
except for the stop words as the keyword universe and cate-
gorize the corresponding queries into four quadrants: HVHF,
HVLF, LVHF, and LVLF, where “L” and “H” represent “low”
and “high”, and the “V” and “F” denote “volume” and “fre-
quency”, respectively. High-volume queries refer to the top
10% of queries based on volume, while low-volume queries
are the remaining 90%. The same classification applies to
high-frequency and low-frequency queries. The lower-left
corner of the figure is magnified to highlight that keywords
with low volume and low frequency exhibit dense packing,
which makes it difficult to differentiate these keywords. In
contrast, the HVHF quadrant consists of sparser queries that
are more distinguishable from each other. Using the similarity
in volume and frequency, the attacker can easily recover these
queries. Experimental results confirm this, with the simple
attack achieving an accuracy of nearly 80% in the HVHF
quadrant (> 90% in Lucene and Wikipedia datasets). In the
LVLF quadrant, however, the accuracy drops to 10%. We also
achieve a moderately high accuracy of 62% and 34% in the
LVHF and HVLF quadrants. Similar findings in [1, 13, 31]
also present the correlation between frequency, volume, and
accuracy.

4.2 Locating and Recovering the Most Distinc-
tive Queries

As previously described, some queries are more distinguish-
able and easier to recover. Our first module aims to locate and
recover these queries. We outline its details in Algorithm 1,
which takes the T dr, Vr, and Fr derived from query leakages in
SSE and Ws, Vs, and Fs from similar data as input and outputs
BaseRec predictions Pred. The BaseRec determines the num-
ber of recovered queries in this module. As we recover queries
from high to low distinctiveness, a larger value of BaseRec
can yield more predictions of queries lacking distinctiveness,
consequently leading to a decline in accuracy.

Concretely, we first identify the most distinctive queries
from all the queries by evaluating the differential distance. We
define the differential distance dtdi of a query tdi as follows:

dtdi = min
td j∈T dr∧ j ̸=i

α · |vtdi − vtd j |+(1−α)| ftdi − ftd j |. (1)



Algorithm 1: Recover the top-BaseRec distinctive
queries.

1 procedure RecoverDQ(T dr,Vr,Fr,Ws,Vs,Fs,α,BaseRec)
2 Dis← /0; ▷ Dis maintains the differential distances of queries;
3 for all tdi ∈ T dr do
4 dtdi = min

td j∈T dr∧ j ̸=i
α · |vtdi − vtd j |+(1−α)| ftdi − ftd j |;

5 append (tdi,dtdi ) to Dis;
6 end
7 Sort Dis in descending order according to Dis.dtd ;
8 Pred← /0; ▷ Pred stores the recoveries of distinctive queries;
9 for i ∈ [BaseRec] do

10 tdi,dtdi = Dis[i];
11 w = arg min

w j∈Ws
α · |vtdi − vw j |+(1−α)| ftdi − fw j |;

12 append (tdi,w) to Pred;
13 end
14 return Pred;
15 end

Note that in the measurement (line 3-6), α is the weight of
the volume, and (1−α) is the weight of the frequency. The
differential distance dtd can assess the sparsity around the
query td and thus the level of distinctiveness of the query td.
Then, we sort the queries in descending order by dtd (line
7). We regard the top BaseRec queries in dtd as the most
distinctive queries and the attack target in the first module.

Finally, we recover top BaseRec queries (line 9-13). Given
a query td j, we calculate the distance s(tdi,w j) between the
query tdi in real data and any keyword w j in similar data. We
define the s(tdi,w j) as

s(tdi,w j) = α · |vtdi − vw j |+(1−α)| ftdi − fw j |. (2)

We then recover the query tdi as

Pred(tdi) = arg min
w j∈Ws

s(tdi,w j) (3)

By properly adjusting the weight of volume and frequency
information, this module can recover the distinctive queries
with high accuracy (e.g., averagely 77% in Enron when
BaseRec = 100, see Section 5.1). We use the L1 norm here.
It’s worth noting that we also tested other norms and found
that the L1 norm yields the best performance. We note that
Zipf’s law could not be applicable to certain datasets, such
as those containing randomly generated texts or artificially
padded datasets. In this case, the module’s performance could
be negatively affected. Nonetheless, it is uncommon for real-
world datasets to deviate significantly from Zipf’s law. Fur-
thermore, padding a dataset to the extent that the volume of
keywords diverges the Zipfian distribution would result in an
inflated storage cost. Though, we can still achieve relatively
high accuracy as demonstrated in Section 7.

4.3 Adjustment by Query Co-occurrence
In the second module (see Algorithm 2), we utilize the co-
occurrence matrix to further refine the recovered queries out-

Algorithm 2: Verification by co-occurrence matrices.
1 procedure Verify(Pred,C′r,C

′
s,BaseRec,Con f Rec)

2 Temp_Pred← Pred;
3 T d′← Pred.td;
4 Revcon f ← /0;
5 for i ∈ [|T d′|] do
6 revcon f = ||C′r[i]−C′s[i]||;
7 append (T d′[i],revcon f ) to Revcon f ;
8 end
9 Sort Revcon f in descending order according to the

Revcon f .revcon f ;
10 for i ∈ [BaseRec−Con f Rec] do
11 td,revcon f = Revcon f [i];
12 Remove the prediction of td from Temp_Pred;
13 end
14 return Temp_Pred;
15 end

put by Algorithm 1. Note that the attack accuracy of all queries
relies on the precise recovery of the distinctive queries. Any
incorrect recovery could significantly impact the overall accu-
racy.

Before launching the second module, we set the following
input parameters:
• The recovered queries Pred and its cardinality BaseRec
from the first module.
• The co-occurrence matrix C′r of queries and C′s of keywords
in Pred. We construct the two co-occurrence matrices by first
extracting the columns and rows in the co-occurrence matrix
Cr and Cs when the corresponding queries and keywords ap-
pear in Pred. Then each row of C′r and C′s is normalized by
dividing the sum of that row.
• The parameter Con f Rec (≤ BaseRec), which reflects the
number of recovered queries after refinement. Similar to the
BaseRec, a smaller value of Con f Rec results in higher accu-
racy and a reduced number of recovered queries. In some
restricted scenarios where we are only given a little prior
knowledge or the leakage patterns have been “noised” by
countermeasures, we should set the Con f Rec to a smaller
value to capture high accuracy.

With the above input, the module can verify the recovered
queries in Pred and output the predictions of Con f Rec queries
with higher accuracy through the following process.

If most of the predictions in Pred are accurate, then for a
correct prediction (tdi,wi) in Pred, C′r[i] should be similar to
C′s[i]; otherwise, tdi and wi are only similar in terms of volume
and frequency and the relevant in co-occurrence matrix is not
significant. Such similarity and deviation of Pred[i] can be
captured by calculating the Euclidean norm of C′r[i]−C′s[i].
We define revcon f as the reversed confidence of a prediction
(tdi,wi) as

revcon f = ||C′r[i]−C′s[i]||. (4)

If a prediction provides a smaller value of revcon f , then it
is considered more confident.

Based on the revcon f , we calculate Revcon f contain-



ing (td,revcon f ) for all td ∈ T d′ (line 4-8). Then, we sort
Revcon f in descent order (line 9). To provide Con f Rec ver-
ified predictions, we remove the top BaseRec−Con f Rec
queries from Pred and return the remaining predictions (line
10-14).

At the expense of recovering a smaller number of queries,
Algorithm 2 can reach almost perfect accuracy. We show
in Section 5.1 that when the BaseRec is set to 100, and the
Con f Rec is 20, we obtain 96.9% and 100% accuracy in Enron
and Wikipedia, respectively.

4.4 Dynamic Recovery for All Queries

The prior modules provide predictions for a subset of queries.
In Algorithm 3, we present the last module of our attack
that leverages the relation between the recovered distinctive
queries and the remaining queries. This module recovers
queries through an iterative approach, where the recovered
queries by the second module serve as known queries.

The module takes the following information as input and
outputs the predictions for all queries.
• The predictions Pred from the second module.
• The co-occurrence matrices Cr and the query list T dr from
the leakages.
• The co-occurrence matrices Cs and the keyword universe
Ws from the similar data.
• The parameter Re f Speed, which controls the number of
recovered queries in each iteration.

We denote the unknownT d as currently un-recovered
queries and the unpairedW as currently unpaired keywords.
We denote Cs

r and Cs
s as sub-matrices of Cr and Cs, which

represent the co-occurrence matrix between un-recovered and
recovered queries, and between unpaired and paired keywords,
respectively. We normalize each row of Cs

r and Cs
s by dividing

the sum of that row at each time the set of recovered queries
changes.

We use the matrix Cs
r , Cs

s , and the distance s to evaluate the
score between an un-recovered query td and an unpaired key-
word w. If a row of Cs

s is similar to one of Cs
r , it might indicate

a correct prediction for the corresponding keyword and query.
The score contains two parts, the L2-norm of Cs

r [td]−Cs
s [w]

and the distance s(td,w) (calculated in Equation 2), which are
summed with weight β and (1−β). The score of a prediction
(tdi,w j) is defined as:

score(tdi,w j)=− ln(β||Cs
r [tdi]−Cs

s [w j]||+(1−β)s(tdi,w j)).
(5)

If a prediction (td,w) is correct, the s(td,w) and the ||Cs
r [td]−

Cs
s [w]|| will be small, which results in a high score.
Inspired by the RSA [13], we use a similar concept -

certainty - to measure the level of assurance in the prediction
for a query. Given a query td, the prediction (td,wi) is con-
sidered certain if score(td,wi) is much higher than the score
of any other predictions for td. The certainty of a prediction

Algorithm 3: Dynamically recovering all queries.
1 procedure RecoverAll(Pred,T dr,Ws,Cr,Cs,Re f Speed)
2 Final_Pred← Pred;
3 unknownT d← T dr−Final_Pred.td;
4 unpairedW ←Ws−Final_Pred.w;
5 Extract Cs

r and Cs
s from Cr and Cs, respectively; ▷ Cs

r and Cs
s is

the co-occurrence matrix between unknownT d and recovered
queries, and between unpairedW and paired keywords,
respectively ;

6 while unknownT d ̸= /0 do
7 Temp_Pred← /0;
8 for all td ∈ unknownT d do
9 Cand← /0; ▷ Cand stores candidate matches for td;

10 for all w ∈ unpairedW do
11 score =

− ln(β||Cs
r [td]−Cs

s [w]||+(1−β)s(td,w));
12 Add (w,score) to Cand;
13 end
14 Sort Cand in descending order according to the

Cand.score;
15 certainty =Cand[0].score−Cand[1].score;
16 Add (td,Cand[0].w,certainty) to Temp_Pred;
17 end
18 if |unknownT d|< Re f Speed then
19 Add all predictions in Temp_Pred to Final_Pred;
20 else
21 Add the Re f Speed predictions in Temp_Pred with

largest certainty to Final_Pred;
22 end
23 Update unknownT d, unpairedW , Cs

r and Cs
s ;

24 end
25 return Final_Pred;
26 end

(td,wi) is defined as:

certainty(td,wi) = score(td,wi)−max
j ̸=i

score(td,w j). (6)

For example, if an un-recovered query has scores of 2, 3, and
7 with all three unpaired keywords, then the certainty of this
query with unpaired keywords is −5, −4, and 4, respectively.
In each iteration, we exclusively recover the queries with the
highest certainty predictions.

This module runs through multiple iterations, each consist-
ing of three main processes:

1. For all un-recovered queries unknownT d, calculate
the score of all predictions between unknownT d and
unpairedW . Then, based on the score, calculate the high-
est certainty along with the prediction of each query, and
add them to Temp_Pred. (line 8-17)

2. If the number of un-recovered queries is less than
Re f Speed, then add all the predictions in Temp_Pred to
Final_Pred, else add Re f Speed predictions with largest
certainty in Temp_Pred to Final_Pred (line 18-22).

3. Update the unknownT d and unpariedW . Update and
normalize the Cs

r and Cs
s accordingly. (line 23)



In the initial iterative process, the recovered queries have
high accuracy due to their elevated level of certainty. As the
process further operates, subsequently recovered queries are
also recovered with high precision, primarily because of the
augmented correlation between these queries and those that
have already been recovered in previous iterations.

In this module, we use a similar method as the one intro-
duced in RSA [13]. However, our approach provides several
crucial differences. First, while the RSA algorithm exclusively
utilizes the co-occurrence matrix to calculate the score, we in-
corporate both volume and frequency information in our score
calculation. What’s more, the performance of RSA is con-
strained to the “pre-set” known queries of high volume from
the outset [13]. In Jigsaw, we use the second module to ac-
tively collect and recover the high-volume queries and further
feed them into the third module. Their high volume provides
Jigsaw with an advantage in query recovery. Moreover, for a
query td, the RSA calculates the score of all keywords, poten-
tially resulting in matching the query to a keyword that is al-
ready paired with another query. Our approach only calculates
the score of unpaired keywords. Furthermore, we normalize
the co-occurrence matrix in each iteration, which differs from
the RSA algorithm. These differences collectively contribute
to a more robust and accurate outcome for our algorithm,
particularly when encountering defenses (for example, under
the obfuscation in CLRZ [10] in Enron, our attack achieves
> 80% accuracy while the RSA only captures < 40%.). We
provide a detailed analysis of the advantages of our approach
in Section 6 and Section 7.

5 Evaluations

We evaluate our attack under various metrics in real-world
datasets to show its effectiveness. We use Python 3.95 to
simulate and run codes in Ubuntu 22.04.1 with 16 cores of
an Intel(R) Xeon(R) Gold 5120 CPU (2.20GHz) and 64 GB
RAM. Our code is publicly available in https://github.
com/JigsawAttack/JigsawAttack.git.

5.1 Experimental Setup
Datasets. We utilize three datasets, Enron, Lucene, and
Wikipedia, for our experiments. The Enron email corpus
[44] was collected between 2000-2002, consisting of 30,109
emails, which is a widely used dataset in previous research.
Lucene mailing list was formed between 2001-2020, with
66,491 emails from Apache Foundation [15]. For both En-
ron and Lucene datasets, we utilize pre-processed versions
available in [31]. We use Wikipedia dataset [16] in 2020 and
extract a subset of 1,000,000 documents by the algorithm
in [37]. We employ the NLTK package [40] in Python to
obtain all English words in datasets except the stop words for
keyword extraction. In the experiments, we assume that the
attacker obtains the same keyword universe as the user.

Frequency information. For the tests in Enron and Lucene
datasets, we adopt the Google Trend [19], which contains 260
weeks of search trends in Google between October 2016 and
October 2021, to generate query frequency for each keyword.
Specifically, we calculate the sum of each query frequency in
1 to 50 weeks as the attacker’s auxiliary knowledge. We nor-
malize each keyword’s frequency by dividing the frequency
sum of all keywords as Fs. We also generate the user’s queries
according to the summed frequency in 1+ τ to 50+ τ weeks
(denote as F) where τ is the time offset between the attacker’s
knowledge and the observation. For tests in the Wikipedia
dataset, we use the Pageviews Analysis [27], which contains
75 months of page views from July 2015 to September 2021.
We use the sum of each query frequency in 1 to 30 months as
the attacker’s auxiliary knowledge and the frequency of 1+ τ

to 30+ τ months to generate queries.
Attacker’s knowledge. We randomly divide all documents
into two disjoint subsets of equal size. We use one subset
as the user’s encrypted database (i.e., the real data Dr) and
another as the similar data Ds. Then, the user generates single-
keyword queries according to the frequency F . The attacker
generates Ws, Vs, and Cs from similar data and observes all
the user’s queries to obtain T dr, Vr, Fr, and Cr. We perform
30 independent simulations. In each simulation, we randomly
select half of the documents as similar data and generate
queries according to F .
Accuracy definition. We use the terms accuracy and
recovery rate to evaluate the attack performance. The recov-
ery rate refers to the proportion of recovered queries in all
observed queries (i.e., |Recovered(T ds)|/|T ds|). The accu-
racy denotes the correctly recovered queries out of recovered
queries (i.e., |CorrectRec(T ds)|/|Recovered(T ds)|).

5.2 Performance of Algorithm 1 and 2

We here provide evaluations for Algorithm 1 and 2 (the
results of the entire Jigsaw are in Section 5.3 and after). We
first demonstrate the results of Algorithm 1 in four quadrants
(including HVHF, HVLF, LVHF, and LVLF). For our exper-
iments, we extract the top 1,000 keywords based on their
volume and generate 100,000 queries with τ = 0.

To evaluate the recovery in different quadrants, we sort the
queries in T dr according to their volume in descending order.
We treat the first rv · l queries as high-volume queries (l =
|T dr|), while the remaining are low-volume queries. Similarly,
we divide the queries into high and low-frequency queries,
containing r f · l and (1− r f ) · l queries, respectively. Using
the above division, we categorize the queries into the HVHF,
HVLF, LVHF, and LVLF quadrants. We set α to 0.5 and
BaseRec to l to recover all queries and test the accuracy in
four quadrants by varying rv and r f . Figure 2 demonstrates
the accuracy of Algorithm 1 on Enron. Detailed results for
Lucene and Wikipedia are given in the full version [29].

Figure 2(a) depicts the results of the HVHF quadrant in

https://github.com/JigsawAttack/JigsawAttack.git
https://github.com/JigsawAttack/JigsawAttack.git
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Figure 2: The accuracy of Algorithm 1 in four quadrants with different rv and r f , where we treat keywords with top-rv · l highest
volume as high-volume keywords and treat keywords with top-r f · l highest frequency as high-frequency keywords (A larger rv
means more queries are considered as high-volume queries. Similarly, a larger r f yields more queries that are categorized as
high-frequency queries).
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Figure 3: The accuracy of Algorithm 1 on four quadrants with different α, where α is the weight of volume and (1−α) is the
weight of frequency in measurement.

Table 2: Results of Algorithm 1 and Algorithm 2 on Enron, Lucene, and Wikipedia. The Con f Rec in Algorithm 2
equals to BaseRec×100%, BaseRec×50%, and BaseRec×20% respectively.

Dataset BaseRec
Con f Rec/BaseRec×100% (accuracy/recovery rate/correctly recovered number)1

100%2 50% 20%

Enron
25 94.14%/23.25%/23.0 100.00%/3.46%/12.0 100.00%/0.98%/5.0

100 77.33%/43.14%/57.6 91.53%/17.18%/39.5 96.95%/5.48%/19.0
400 51.85%/80.10%/112.2 72.06%/46.41%/81.1 83.96%/17.37%/50.2

Lucene
25 99.36%/27.51%/24.6 99.98%/4.17%/12.0 100.00%/1.93%/5.0

100 86.31%/48.64%/76.3 99.58%/25.55%/48.9 99.80%/5.85%/19.9
400 63.07%/83.97%/147.7 82.85%/50.04%/103.6 96.55%/27.64%/67.1

Wikipedia
25 99.71%/11.89%/23.8 100.00%/2.58%/12.0 100.00%/0.83%/5.0

100 91.57%/28.67%/80.9 99.61%/15.04%/47.7 100.00%/3.59%/19.9
400 68.79%/58.17%/177.3 88.87%/34.47%/120.2 97.54%/15.94%/64.3

1 Each result is presented as (accuracy/recovery rate/correctly recovered number). The accuracy denotes the percentage of correctly recovered
queries out of recovered queries. The recovery rate is the percentage of recovered queries out of all queries. The correctly recovered number is
the number of correctly recovered and distinct queries.

2 This column shows the results of Algorithm 1 as Algorithm 2 does not remove any predictions.

Enron. When rv < 0.2 or r f < 0.1, the accuracy is approxi-
mately 70%. As the increase of r f or rv indicates a greater
proportion of queries with lower volume and frequency within
the quadrant, the accuracy falls. This indirectly proves that
queries with high frequency or high volume are easier recov-
erable. Similar trends can be observed in the performance
of Lucene and Wikipedia. In contrast, the accuracy in the
LVLF quadrant is only < 0.3 (see Figure 2(d)). From Fig-
ure 1, we can see that the queries in this quadrant are much
denser as compared to other quadrants. There is a lack of

distinguishability based on volume and frequency, resulting
in such a low accuracy. Figure 2(b) exhibits the accuracy of
queries confined to the HVLF quadrant, representing the top
rv · l and bottom (1− r f ) · l queries w.r.t. volume and fre-
quency, respectively. The recovery of queries mainly relies on
volume, and the accuracy reaches the summit when rv < 0.1
and r f < 0.8, which implies that queries with high volume
and low frequency can be recovered with high accuracy. The
LVHF quadrant delivers a similar result to the HVLF quad-
rant, see Figure 2(c). When r f is < 0.2, the recovery provides



high accuracy, approaching 70%.
We also investigate the impact of the parameter α on the

accuracy in the four quadrants. We set rv = 0.1, r f = 0.1, and
BaseRec = l to recover all queries, and the results are shown
in Figure 3. The accuracy decreases when α is either 0 or
1, indicating that relying solely on frequency or volume for
query recovery leads to poor accuracy. When α is appropri-
ately configured, the accuracy > 50% in the HVHF, HVLF,
and LVHF quadrants, while it remains relatively low in the
LVLF quadrant. We also observe that the α displays a distinct
impact on the accuracy in the quadrants. For example, in the
HVLF quadrant, when α = 0.05, we achieve the highest ac-
curacy, while the LVHF quadrant’s best performance is when
α is about 0.3. In the HVLF quadrant, we achieve the highest
accuracy when α = 0.05, while in the LVHF quadrant, the
best performance is obtained with α around 0.3. This suggests
that selecting an appropriate value of α accordingly can lead
to higher accuracy in different scenarios.

Table 2 presents the recovery results of Algorithm 1
and 2 when we consider BaseRec ∈ {25,100,400} and
Con f Rec/BaseRec ∈ {100%,50%,20%}. Overall, the accu-
racy achieved for various parameter combinations surpasses
50%. As BaseRec and Con f Rec/BaseRec decrease, indicat-
ing a reduction in the number of recovered queries, the recov-
ery rate decreases while the accuracy exhibits an increase. For
instance, when we set BaseRec= 25 and Con f Rec/BaseRe=
20%, Algorithm 2 achieves around 1% recovery rate but 100%
accuracy on all the datasets. We also observe that with the
same parameters, the results in Wikipedia are better than those
in Enron and Lucene, indicating that Wikipedia contains more
distinctive queries.

Despite a decline in the recovery rate, when Algorithm
2 is employed, its accuracy remains remarkably high with
a small BaseRec and Con f Rec. In comparison to RSA [13]
relying on a dozen known queries and their relations (with
other queries) to recover all queries accurately, the refinement
on queries proposed by Algorithm 2 is sufficient to pose a
significant threat to all the user’s queries. We demonstrate this
in detail in the experiments of the next subsection.
5.3 Results of the Jigsaw Attack

We show the results of the Jigsaw attack and demonstrate how
β influences the accuracy here. We use the same setting as in
Section 5.1. Besides, we set BaseRec to 100, Con f Rec to 50,
α to 0.3, and Re f Speed to 15.

The experimental results when varying the values of β in
Algorithm 3 are depicted in the first column of Figure 4. When
β = 0, meaning the recovery only relies on the frequency
and volume, the accuracy reaches around 30% in Enron and
Wikipedia and 60% in Lucene. As β increases, we see the
rise in accuracy, ultimately reaching the peak of over 95%
accuracy for Enron and over 98% for Lucene and Wikipedia.

As demonstrated above, using similar documents and
knowledge of query frequency, Jigsaw achieves > 95% accu-
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Figure 4: The accuracy of Jigsaw with different β, where beta
is the weight of co-occurrence information and (1−β) is the
weight of volume and frequency information in calculating
score. The left and right columns display the results with and
without frequency information.

racy. However, there are some cases where the attacker may
not have access to query frequency, such as when dealing with
newly established databases. To examine the effectiveness
of Jigsaw under such circumstances, we perform additional
evaluations without utilizing frequency information. In the
absence of frequency information, the attacker should discern
fewer distinctive queries, yielding a negative influence on the
performance of Algorithm 1 and Algorithm 2. However, by
adjusting the parameter Con f Rec to recover a smaller number
of queries, the first two modules can still achieve high accu-
racy in identifying distinctive queries. We note that with this
smaller yet highly accurate set of recovered queries, our at-
tack’s accuracy still remains stable and reaches > 90% when
β is set to 0.8 and 1.0 (See in the second column of Figure 4).

5.4 Durability

Table 3: Results of recovery accuracy with outdated fre-
quency in different τ, where τ is the time offsets between at-
tacker’s prior knowledge of the frequency and user’s queries
(measured in weeks for Enron and Lucene, and in months for
Wikipedia).

Dataset τ = 10w τ = 50w τ = 100w τ = 150w
Enron 0.9279 0.9150 0.8881 0.8824
Lucene 0.9959 0.9963 0.9955 0.9897
Dataset τ = 2m τ = 10m τ = 20m τ = 30m
Wikipedia 0.9959 0.9919 0.9721 0.9608



In the experiment, we use an “outdated” query frequency
obtained from the past as auxiliary information to enhance
accuracy. We here introduce the concept of durability to mea-
sure the effect of the time offset between the outdated and
target queries on the attack’s recovery. The time offset in-
dicates how “old” the query frequency information is. An
outdated piece of frequency information might deviate signif-
icantly from the actual query frequency, possibly leading to
the failure of attacks. We consider an attack to be durable if it
can maintain its accuracy even as the time offset increases.

We conduct experiments to evaluate the durability of our at-
tacks in Table 3. For Enron and Lucene, we use the frequency
of the first 50 weeks in Google Trend as the attacker’s auxil-
iary information, while the target queries are generated using
the frequency during τ and 50+ τ weeks. For Wikipedia, we
use the first 30 months’ query frequency in Pageviews Analy-
sis as the auxiliary information, and the queries are generated
according to the frequency during τ and 30+ τ months. Note
that τ is the corresponding time offset. In the time offset be-
tween 10 and 150 weeks, the drop of the attack accuracy is
rough > 0.05 in Enron and Lucene. In Wikipedia, the accu-
racy decreases about 3.5% as the time offset increases from
2 to 30 months. These results suggest that a leaked query
frequency continues to have an impact on our attack even
after several years have passed.

5.5 Summary of Evaluations
The results clearly illustrate that the first module of Jigsaw
successfully recovers queries with a high level of accuracy.
We also confirm that the second module can obtain nearly
100% accuracy for dozens of queries, and the last module is
able to recover all queries with about 95% accuracy. Even
without the frequency information, the accuracy does not
experience a significant decline. At last, Jigsaw demonstrates
its durability by maintaining consistent accuracy, even as the
time offset increases from several weeks to years.

6 Comparisons with Other Attacks

We compare the performance of our attack with Graph Match
attack [35] (Graphm), Sap attack [31] (Sap), Refine Score
attack [13] (RSA) and IHOP attack [32] (IHOP). We do not
test the Freq attack [26] here as the Sap dominates its results.

6.1 Settings and Parameters
We extract the top |W | keywords based on their volume as key-
word universe. In Enron and Lucene, we evaluate the above
attacks for different values of |W |, namely 500, 1000, and
2000. But for Graphm, we omit |W |= 1000,2000 due to the
extended time required for the test. For example, the running
time for Graphm with |W |= 1000 exceeds 10,000 seconds.
We suppose the attacker knows the frequency of each keyword
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Figure 5: Accuracy & Time comparisons in Enron, Lucene,
and Wikipedia.
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runtime.

in the keyword universe in the first 50 weeks and generate
η queries each week for a duration spanning from 50 to 100
weeks (τ = 50) using the frequency obtained from Google



trend. We set η to 100, 500, and 2500. In Wikipedia, we test
all the attacks except the Graphm, and we set the |W | to 1000,
3000, and 5000. We assume the attacker knows the initial 30
months’ query frequency from Pageviews Analysis, and the
user generates η queries based on the frequency during the
period of 10 and 40 months (τ = 10). We set the η to 1000,
5000, and 10000.

Parameters for Jigsaw. Recall that the selections of α, β,
BaseRec, and Con f Rec can significantly influence Jigsaw’s
accuracy (see Section 5). We briefly introduce the reasons
behind these parameters selection.
• As for α, we use it to control the weight of volume and
frequency information. Based on Figure 3, it is recommended
to select the parameter from 0.05 to 0.4. If the volume infor-
mation is not accurate (i.e. being noised by certain counter-
measures), a smaller α is recommended, and vice versa. Here,
we set the α to 0.3.
• For β, one may choose β from 0.8 to 1.0 as illustrated in
Figure 4. Note that as a larger β indicates assigning more
weight to co-occurrence rather than volume and frequency,
the co-occurrence information appears to play an important
role in recovering queries. Similar to the case of α, if the
co-occurrence is affected by noise, one can opt for a relatively
small β. We set the β to 0.9 here.
• For BaseRec and Con f Rec, we found that the Con f Rec
should be set to at least 5 for the third module to initi-
ate, and the BaseRec should range from 1.2×Con f Rec to
2×Con f Rec. In normal SSE settings, BaseRec and Con f Rec
should be sufficiently large to output more accurately recov-
ered queries, whereas they are set to small when observed
information is noised to ensure the accuracy of the second
module. The BaseRec and Con f Rec are set to 45 and 35, re-
spectively.
•When it comes to Re f speed, it controls how many queries
to recover in each iteration. One may use a large Re f Speed
to optimize the runtime of Jigsaw (such as one-tenth of |W |),
but this could harm attack accuracy. A gradually increased
Re f Speed is recommended when dealing with countermea-
sures, as it can yield both practical runtime and accuracy. The
Re f Speed is set to 10 when the keyword universe is small
(<= 2,000) and 50 when the universe is large (> 2,000). As
in the time-limited settings, we set the Re f speed to |W |/10.

Parameters for other attacks. We use the implementation
of PATH algorithm [49] available in the package1 to solve
the graph matching problem in Graphm (aiming to produce
the best performance). We set the α in Graphm to 0 because
we find that Graphm can perform its best when α = 0 in our
settings. Note we conduct tests ranging from α = 0 to α = 1,
with increments of 0.1. Recall that RSA requires some known
queries in the setup. We randomly choose 10 queries and
reveal the true keywords for RSA. We also include the results
of RSA with varying numbers of known queries in the full

1http://projects.cbio.mines-paristech.fr/graphm/

version [29]. The refine speed in RSA is set to the same as
Jigsaw. We set the α in Sap to 0.5. For IHOP, we set the p f ree
to 0.25 and the niters to 500.

6.2 Comparison Results

Comparisons with all tested attacks. Here, we demonstrate
the results of all tested attacks in Figure 5. Our attack pro-
vides comparable accuracy to RSA and IHOP while showing
a significant advantage over Sap and Graphm. Graphm’s ac-
curacy is low upon η = 100 but improves if more queries are
observed. It is argued that Graphm requires observation of
almost all possible queries to achieve high accuracy [31], and
it also takes longer matching time between queries and key-
words. On the other hand, Sap solely utilizes the frequency
and volume information, resulting in relatively lower accuracy
that increases as it observes more queries. We also observe
that increasing |W | results in a decrease in all attacks’ accu-
racy. This is because a larger value of |W | introduces a greater
number of low-volume keywords.

In the context where a large number of queries are ob-
served, our attack can outperform RSA. As the increase of
this number, our attack delivers a boost in accuracy. But RSA
cannot gain advantages from more queries because it does
not leverage the frequency information. Our performance is
similar to that of IHOP, as both of the attacks exploit the fre-
quency and co-occurrence of queries. We observe that IHOP
achieves slightly higher accuracy than our attack. This can
be attributed to its random fixing and free strategy, which
enhances the matching of a portion of the queries in each
iteration. This strategy consumes a significant amount of time,
especially when the keyword universe is large. For example,
when |W | is 5000 in Wikipedia, IHOP takes approximately
twice as long as Jigsaw to complete the attack. We are going
to show in Section 7 that the strategy used by IHOP is not
robust once certain countermeasures introduce noise to the
leaked information.

Comparisons with IHOP in large keyword universe under
the same time limitation. We also present the performance
of Jigsaw and IHOP within the same time limitation when the
keyword universe is large. Before the evaluations, we adjust
the parameters by setting Re f Speed to |W |/10 for Jigsaw
and restricting niters for IHOP to keep both runtimes at a sim-
ilar pace. Note that without any adjusting, IHOP could take
approx. 24,000 seconds for 100 iterations, and nearly five
times that for 500 iterations, when |W | = 10,000. We illus-
trate the results under Wikipedia in Figure 6. As the keyword
universe increases, from 5,000 to 15,000, the runtime costs
of both attacks jump from < 1,000 seconds to nearly 10,000
seconds. IHOP demonstrates a continuous fall in accuracy,
from roughly 89% to 85%, while Jigsaw’s accuracy stands at
the same level, 10−15% higher than that of IHOP.



7 Against Countermeasures

We evaluate the attacks against the padding in CGPR [5]
and obfuscation [10]. We also show the results against the
padding in SEAL [14] and the cluster-based padding [3,43] in
Appendix C. We specifically compare the attacks against the
padding strategy employed in SEAL, rather than the “entire”
SEAL (i.e., padding + ORAM)2 .

To counter obfuscation, Oya et al. [32] proposed an adap-
tation for IHOP, which modifies the co-occurrence matrix
of keywords in similar data. We apply the same philosophy
to Jigsaw and RSA. Note that we also design adaptations
on the compared attacks against the padding. These adap-
tations can effectively minimize the difference between the
user’s data after the noise injection and the similar data. We
highlight that the accuracy of RSA and IHOP increases sig-
nificantly in most situations after applying the adaptations
(such as 30% improvement against the padding in CGPR). We
present a comprehensive overview of the adaptations and the
performance of RSA and IHOP with/without the adaptations
in Appendix B. We emphasize that there have been no sys-
tematic and proper studies for optimal adaptions in existing
attacks, rendering this as an interesting open problem.

We conduct a comparative analysis of our attack, RSA [13],
and IHOP [32] w.r.t. the aforementioned countermeasures,
in Enron, Lucene, and Wikipedia. We do not test the SAP
and Graphm in this section, as they exhibit relatively poor
performance or require excessive computational time for the
attacks. We also introduce an α term into the objective func-
tion of IHOP to balance the weight between the frequency and
volume terms against countermeasures (noted as IHOP-α).
We test the α from 0 to 1 with a step length of 0.1, and in
most cases, α = 0.1 brings the best results for IHOP-α. We
fix α = 0.1 for IHOP-α in the following presentations.

For Enron and Lucene, we set |W | to 1000 and set η to
500. The attacker is allowed to observe η queries per week
over a duration of 50 weeks. In Wikipedia, we set the |W |
to 1000, 3000 and 5000 and η to 5000, and the attacker can
observe η queries per month for a total duration of 30 months.
The time offset τ is set to 0. For Jigsaw, to account for the
injection of noise to the volume (by the countermeasures),
we set α to a relatively small value, 0.2. And we set β to 0.9.
The BaseRec and Con f Rec are also set to relatively small,
15 and 10, to ensure that the second module of Jigsaw can
produce correct recoveries. We set the Re f Speed of our attack
and RSA to 5 in Enron and Lucene. In Wikipedia, we use a
gradually increased value to shorten the runtimes of Jigsaw
and RSA. For each iteration of Jigsaw’s third module and
RSA, the value increases by 10%. The known query number
is set to 15 in RSA. The niters and p f ree are set to 500 and
0.25 in IHOP and IHOP-α.

2We note that ORAM, another crucial component within SEAL, can be
used to hide the access and search pattern, and thus could probably counter
all the attacks in Table 1.
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Figure 7: Comparisons with RSA and IHOP against the
padding in CGPR [5], in Enron and Lucene.
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Figure 8: Comparisons with RSA and IHOP against the ob-
fuscation in CLRZ [10], in Enron and Lucene.

Padding in CGPR [5] injects fake documents to increase
the query volume to the nearest multiple of k. This strategy
adds noises to the volume and access pattern and at the same
time increases the communication and storage costs (see the
full version [29] for experimental results). For queries with
low volume, the padding can substantially change the ac-
cess and volume patterns, and the volume is more likely to
be “expanded" to the same “length”. But the high-volume
queries, on the other hand, are poorly protected. This is so
because, for those queries (already with a “large” volume),
the (on-top) padding volume could be relatively small. In
this case, the impact on the leakage patterns of high-volume
queries is minimal. We state that since the first two mod-
ules of Jigsaw concentrate on recovering high-volume and
high-frequency queries that are not significantly affected by
the padding, they can keep producing highly accurate pre-
dictions. By leveraging these accurate recoveries, we can
gain “more” pre-knowledge to pose a severe threat to low-
volume queries. In Figure 7, we have k ∈ {500,1000,1500}
for Enron and Lucene; while in Figure 9, k is set much larger,
∈ {50000,100000,150000}. This is because Wikipedia con-
tains a significantly higher number of documents than other
datasets.

All the tested attacks exhibit similar accuracy, about 50%
in Enron and > 60% in Lucene. In Wikipedia, the gap in accu-
racy is more noticeable, and Jigsaw demonstrates a significant
advantage over others when |W | ≥ 3000. For example, when
k = 150,000 and |W | = 3000, Jigsaw provides nearly 90%
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Figure 9: Comparisons with RSA and IHOP against the padding in CGPR [5], in Wikipedia.
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Figure 10: Comparisons with RSA and IHOP against the obfuscation in CLRZ [10], in Wikipedia.

accuracy, whereas RSA and IHOP only obtain < 60%. IHOP-
α performs slightly better than IHOP, with a 60% accuracy.
This above result is attributed to the fact that the padding
cannot protect the distinctive queries in Wikipedia, allowing
Jigsaw to recognize and further recover them, which gives
it an advantage in recovery. We clearly observe that Jigsaw
consumes significantly less runtime than IHOP and IHOP-α
in Wikipedia due to a gradually increased Re f Speed.

7.2 Against the Obfuscation in CLRZ

We showcase the experimental results of attacks against the
obfuscation in CLRZ [10], which works by indexing a key-
word to documents that do not contain the keyword with
probability FPR and removing the index of documents that do
contain the keyword with probability TPR. Since the obfusca-
tion does not involve padding, it does not affect storage costs.
However, the communication costs will increase greatly due
to a larger number of unrelated documents being retrieved
(see the full version [29] for experimental results). In Figure
8 and 10, we set T PR = 0.999 and FPR ∈ {0.01,0.02,0.05}
in Enron and Lucene and FPR ∈ {0.1,0.2,0.3} in Wikipedia.

Under the obfuscation, the accuracy of RSA drops abruptly
to below 20%. Jigsaw just experiences a minor decrease as the
FPR increases and, in most cases, maintains accuracy > 85%
in all tested datasets. IHOP and IHOP-α perform similarly to
Jigsaw in Enron and Lucene. But in Wikipedia, their accuracy
drops significantly with a large |W |. When FPR = 0.3 and
|W |= 3000, the accuracy only reaches about 80%, dropping
to 60% when |W | = 5000. In contrast, Jigsaw remains an

accuracy above 95% under the same settings.

7.3 Discussion

Under all tested countermeasures, it is evident that Jigsaw
(after the adaptations) achieves the highest accuracy, > 70%,
in most cases. On average, RSA and IHOP could closely
follow Jigsaw’s performance. But they have some pitfalls.
RSA is vulnerable to the obfuscation in CLRZ, resulting in
< 20% accuracy. IHOP and IHOP-α also experience low
accuracy against the countermeasures with a large |W |. Their
accuracy is approx. 50% against the padding in CGPR (with
k = 150,000) and about 60% against the obfuscation in CLRZ
(with T PR = 0.3) on Wikipedia with |W | = 5,000. While
one may have the option to apply the defenses to mitigate
RSA and IHOP, Jigsaw proves to be a more “robust” attack
that remains effective.

There are several countermeasures that might defend
against Jigsaw. ORAM [45], a popular solution to SSE attacks,
conceals the access pattern and the derived co-occurrence ma-
trix, reducing the effectiveness of Jigsaw’s second and third
modules. But this comes with an Ω(logN) amortized blowup
of communication cost for databases of size N. Providing sim-
ilar efficacy on the access pattern, PIR [21] is another potential
option. However, it requires heavy server-side computation
and does not support private updates by the client. Apart
from completely hiding the access pattern, strong padding
techniques may infuse noise into the volume pattern of the
high-volume queries, making Jigsaw’s first module unable to
produce sufficient correct recoveries - resulting in low accu-



racy. A drawback of this solution is the necessity to pad a con-
siderable amount of files, especially for high-volume queries.
It remains an intriguing challenge to develop a padding tech-
nique that is both efficient and secure.

8 Conclusion

We propose the Jigsaw, a new similar-data attack against SSE,
which works by first recovering the most distinctive queries
and utilizing them to recover all queries further. We test Jig-
saw in different datasets and showcase the stable accuracy of
around 95% in query recovery. Moreover, our attack can pro-
vide an accuracy of about 60% and 85% against padding [5]
and obfuscation [10], respectively, outperforming existing
works [13, 26, 31, 32]. The proposed attack exposes the vul-
nerabilities of existing SSE schemes. Developing secure and
practical SSE schemes that are resistant to such attacks is an
open problem.
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Figure 11: The distribution of queries in normalized volume
and frequency. The figures own the same format as Figure 1.

(a) Enron (b) Lucene (c) Wikipedia

Figure 12: The distribution of queries (showing their ranks
based on volume and frequency). The dot and dashed lines
share the same meaning as in Figure 1. Those at further to
the right indicate higher rankings in volume; those moving
upwards represent elevated ranking in frequency.

A Query Distribution and Simple Attack

We present a simple attack and its evaluation to showcase the
relationship between query distribution and query recovery.
The attack employs knowledge of frequency and volume in-
formation to pair queries with the keywords having the most
similar frequency and volume. We assume the attacker knows
a similar dataset Ds and generates a keyword universe Ws =
[w1,w2, . . . ,wm]. Then, it generates the corresponding vol-
ume Vs = [vw1 ,vw2 , . . . ,vwm ] of each keyword from Ds. It also
knows a historical query frequency Fs = [ fw1 , fw2 , . . . , fwm ]
of Ws. Also, the attacker can observe the volume and search
pattern of queries the user issues and generate the frequency
Fr and volume Vr of them. After normalizing the Fs, Vs, Fr,
and Vr, it pairs each query tdi with keyword w j which has the
smallest value of |vw j − vtdi |+ | fw j − ftdi |.

We test the attack in Enron, Lucene, and Wikipedia. The
results are shown in Figure 11 and 12. In Figure 11, we nor-
malize the volume and frequency of each query. The hori-
zontal dashed line divides the top 10% queries on volume
from other queries, and the vertical dashed line divides the
top 10% queries on frequency from other queries. The two
lines divide the queries into four quadrants, i.e., the HVHF,
HVLF, LVHF, and LVLF. The blue dots denote the queries,
and the red dots denote the queries successfully recovered
by the simple attack. In all tested datasets, the queries in the
HVHF quadrant are sparse, and the attack has a high accuracy
there. On the other hand, in the LVLF quadrant, the queries
are nearly indistinguishable and hard to be recovered. We can
zoom out the left low corner to show this more clearly. We
rank the queries according to their volume and frequency and
show the queries according to their rank in Figure 12. As the
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Figure 13: The results of RSA and IHOP with (+Adp) / with-
out the adaptations on similar data against the padding in
CGPR [5], the obfuscation [10], the cluster-based padding
[3, 43], and the padding in SEAL [14].

queries have a higher rank in volume or frequency, the red
dot is denser, showing a higher accuracy in recovery.

In Section 4, we provide the definition of differential dis-
tance dtd of a query. The distinctiveness of a query increases
as its differential distance becomes larger. Based on dtd , we
define the number K of distinctive queries in a dataset as:

K = |{i :
dtdi

∑td j∈W dtd j/|W |
> λ}|. (7)

In Enron, Lucene, and Wikipedia, setting λ = 5, we have that
the number is roughly 18, 20, and 33, which can concur with
the results in Section 5, 6, and 7.

B Adaptations to Similar Data

It seems that the countermeasures such as padding and ob-
fuscation do not consider the protection of the parameters.
If gaining access to the parameters, the attacker will be able
to make adaptations to similar data to weaken the counter-
measures. For example, in the case of padding in CGPR, the
attacker can utilize the parameter k to pad the similar data,
thereby minimizing the disparity between the similar data
and the padded data. We say that this effectively mitigates the
adverse effects of padding on query recovery. Specifically, our
adaptations applied to Jigsaw, RSA, and IHOP are as follows.
• Padding in CGPR [5]. This strategy pads the query vol-
ume to the nearest multiple of k. We here employ the same
padding approach with a different parameter, ksim, on similar
data. We calculate ksim as k multiplied by the ratio of the sizes
of the similar dataset (Ds) and the original dataset (D), i.e.,
ksim = k · |Ds|/|D|. Accordingly, this adjustment modifies IDs,
which subsequently affects the Cs and Vs in the attacks. We
also apply the same strategy for RSA and IHOP.
• Padding in SEAL [14]. In SEAL, the volume distribution of
the padded queries is closely related to the size of the dataset.
The varying sizes of similar data to the user’s data result in
different volume distributions after padding. To adapt Jigsaw
against the SEAL’s padding, we generate a new similar data
D′s with the size |D| (aligning with the size of the user’s data
D) by expanding Ds with its own data “copies" to keep the

volume distribution of Ds.
• Cluster-based padding [3, 43]. We generate a new similar
dataset D′s by padding Ds with the same parameter and replace
Ds with D′s in attacks.
• Obfuscation [10]. We have two phases for this adaptation.
Firstly, we apply the co-occurrence matrix (in Equation 8)
in [32] to adapt the influence of obfuscation in similar data.

Cob f
s [i, j] =


T PR2 ·Cs[i, j]+FPR2 ·Cnot

s [i, j]+

T PR ·FPR · (1−Cs[i, j]−Cnot
s [i, j]), i ̸= j;

T PR ·Cs[i, j]+FPR ·Cnot
s [i, j], i = j.

(8)
where Cnot

s = (1−IDs)(1−IDs)
⊤/|Ds|. Then, we revise Vs as

V ob f
s [i] = T PR ·Vs[i]+FPR ·(1−Vs[i]) for further adaptation.

We then adopt the same padding strategy on D′s and replace
the Ds with the D′s in attacks.

We test Jigsaw, RSA [13], and IHOP [32] with/without
the adaptations on Enron against the CGPR’s padding [5]
(k = 1500), the obfuscation [10] (TPR= 0.999, FPR= 0.05),
the cluster-based padding [43] (α = 8), and the SEAL’s
padding [14] (x = 4). The parameters are the same as in
Section 7. The results are presented in Figure 13. For ob-
fuscation, RSA with/without the adaption performs poorly
(< 10% accuracy). On the other hand, under three padding
strategies, the proposed adaptations optimize the accuracy of
RSA and IHOP significantly. Noticeably our Jigsaw attack
with adaptations still takes the lead in most cases, see Section
7 for comparison details.

C Results Against Other Padding Strategies

Against the cluster-based padding. Recall that the cluster-
based padding [3, 43] first divides all the keywords into clus-
ters with each containing no less than α keywords. Then, this
countermeasure pads each keyword to the largest volume in
its cluster. To improve the padding efficiency, we sort all key-
words in ascending order based on their volume and assign
each continuous α keywords to the same cluster. We set α to
2, 4, and 8 and present the results in Figure 14. We set the α

in Jigsaw to 0.1 (considering the cluster-based padding that
injects more noise to high-volume queries) and keep other
parameters the same as in Section 7.

We observe that the average accuracy of all the attacks
exceeds 75%. But Enron consists of fewer distinctive queries
than other datasets, leading to exceptional cases in the per-
formance. As keywords with similar volumes are assigned to
the same cluster, they become indistinguishable in terms of
volume, which negatively impacts the accuracy of Jigsaw’s
first module. Beyond that, the cluster-based padding addition-
ally brings instability in attacks’ performance (see outliers
in the figure). However, the average accuracy still remains
practical.
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Figure 14: Comparisons with RSA and IHOP against the cluster-based padding [3, 43] in Enron, Lucene, and Wikipedia.
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Figure 15: Comparisons with RSA and IHOP against the padding in SEAL [14] in Enron, Lucene, and Wikipedia.

Against the Padding in SEAL. We present the results against
the padding in SEAL [14], which pads the volume of key-
words to the nearest power of an integer x. We note again
that our attack only targets the padding strategy in SEAL.
We set x to 2, 3, and 4 for the padding and demonstrate the
results in Figure 15. Note that other parameters remain con-
sistent with those previously configured. As x grows, the
average accuracy of Jigsaw maintains above 70%, although
there are a few outliers in the results. The padding also af-
fects the performance of RSA and IHOP, causing an unstable
and dropping trend. We summarise that though the results
contain outliers when against the padding in SEAL and the
cluster-based padding, the tested attacks provide fine accuracy
in most cases under our settings.
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