
Towards Privacy-Preserving Social-Media SDKs on Android

Haoran Lu, Yichen Liu, Xiaojing Liao, Luyi Xing

Indiana University Bloomington

{haorlu, liuyic, xliao, luyixing}@iu.edu

Abstract

Integration of third-party SDKs are essential in the devel-

opment of mobile apps. However, the rise of in-app privacy

threat against mobile SDKs — called cross-library data har-

vesting (XLDH), targets social media/platform SDKs (called

social SDKs) that handles rich user data. Given the widespread

integration of social SDKs in mobile apps, XLDH presents a

significant privacy risk, as well as raising pressing concerns

regarding legal compliance for app developers, social me-

dia/platform stakeholders, and policymakers. The emerging

XLDH threat, coupled with the increasing demand for privacy

and compliance in line with societal expectations, introduces

unique challenges that cannot be addressed by existing pro-

tection methods against privacy threats or malicious code

on mobile platforms. In response to the XLDH threats, in

our study, we generalize and define the concept of privacy-

preserving social SDKs and their in-app usage, characterize

fundamental challenges for combating the XLDH threat and

ensuring privacy in design and utilization of social SDKs.

We introduce a practical, clean-slate design and end-to-end

systems, called PESP, to facilitate privacy-preserving social

SDKs. Our thorough evaluation demonstrates its satisfactory

effectiveness, performance overhead and practicability for

widespread adoption.

1 Introduction

The integration of third-party software development kits

(SDKs), also known as libraries, third-party libraries or

TPLs, has been now essential in the mobile app development

lifecycle, enhancing app functionalities (e.g., login through

Facebook/Google/Twitter single-sign on, advertising, app

monetization, and analytics). Recent research [64] and news

reports [2, 6, 39, 52] have highlighted a concerning threat

where in-app SDKs have become victims of serious privacy

breaches. These incidents involve malicious data-harvesting

libraries within mobile apps that extensively steal user

data from other SDKs present in the same app (e.g., by

calling the latter’s functions and obtaining the return data,

or by directly accessing their data storage, see § 2). This

phenomenon, called cross library data harvesting (XLDH)

attacks, represents a significant threat to user privacy. Prior

work [64] have identified 42 XLDH libraries across more than

19,000 Google Play apps, cumulatively downloaded nine

billion times. The type of data harvested is highly sensitive

and diverse, including user ID, credentials such as Facebook

access tokens, birthday, photos, genders, page likes, and

friend lists. A notable example is OneAudience, a library

integrated in 1,738 apps with over 100 million downloads,

which was discovered collecting users’ private data from

Facebook and Twitter SDKs. In response, Facebook and

Twitter initiated legal actions to take down OneAudience

(see the lawsuit [36, 47] and media report [39, 52])

Given the rising privacy concerns of XLDH targeting mo-

bile SDKs, SDKs that manage or provide user data emerge

as prime targets. Among these, social-media SDKs (social

SDK), associated with social networks and platforms, stand

out, compared to other common SDKs like ad networks and

analytics, which primarily collect rather than offer data. No-

tably, social SDKs are exceedingly prevalent in mobile appli-

cations; for instance, Facebook and Twitter SDKs are found

in 17.82% and 1.47% of Google Play apps, respectively. This

widespread integration makes them particularly appealing to

XLDH attacks, underscoring the urgent need for robust pri-

vacy protection mechanisms to safeguard user data against

such vulnerabilities.

In addition to endangering mobile users in the wild, XLDH

has a pressing impact on legal compliance, causing serious

concerns for both app developers and social media stakehold-

ers. With XLDH, the data practices of in-app malicious li-

braries (collecting/exfiltrating data from social SDK) are gen-

erally opaque to the app vendor. However, laws (e.g., GDPR

and CCPA) and public policies (e.g., term-of-service policy

of Google Play app store and Apple app store [31]) all man-

date/assume that app vendors should conspicuously disclose

(using a privacy policy) all data practices (e.g., collection,

sharing) occurring in the app, including those performed by

third-party libraries. The violation of privacy laws/regulations

have caused billions of dollars of penalty by the Federal Trade

Commission (FTC) [42] against the app vendors, often leav-

ing the third-party code modules — the real culprit — hardly

accountable/liable. Moreover, the XLDH related attacks have

been seriously endangering user trust on mainstream social

platforms, mobile platforms, and technology supply chain

(e.g., Android, iOS with their supply chain). With significance

of the emerging XLDH problems, it is imperative to come

up with new technical design to fundamentally eliminate or

control in-app and cross-library data access channels. The

goal is to achieve privacy-preserving mobile SDKs.

Challenges to defeat XLDH and protect social SDKs. The

emerging threat of XLDH against social SDKs and the call

for privacy/compliance guarantee to keep up with citizen ex-

pectation and social norms impose specific new challenges,

which preclude direct application of prior techniques against

privacy threats or malicious code on mobile platforms. As

shown by the prior work [64], the XLDH attacks may be per-

formed by TPLs of diverse functionality categories, such as

analytics, marketing, ads, app maker [1], geofencing [4], etc.

From the defenders’ perspective, accurately predicting the

specific type of libraries responsible for XLDH is difficult. To

protect social SDKs, isolating all untrusted TPLs may not be

practical, which can significantly break or change current pro-

gramming paradigm, app design and runtime performance for

how an app invokes or interacts with its many TPLs (see de-

tailed discussion in § 4.1). Instead of sandboxing potentially

all TPLs that are untrusted, we consider that a more practi-

cal solution is to sandbox the social SDK and protect their

data. Notably, prior privacy enhancing and library-isolation

techniques [46, 48, 50, 51, 56–58, 63, 66, 71], including the

ongoing efforts of Privacy Sandbox on Android (PSoA) [30]

suffer from several key problems for effectively or practically

defeating XLDH (see below).

We note that even PSoA, in its current state, has different

protection goals and threat model from XLDH, and cannot

address XLDH. PSoA currently focuses on and only supports

advertising-related library (called ads libraries in this paper)

by restricting advertising-related library into a separate pro-

cess — called privacy sandbox. The sandbox environment

does not inherit the host app’s permissions and thus prevents

the ads libraries from getting persistent identifiers from the

underlying system (e.g., AdSplit [57]). At the design level,

PSoA does not address XLDH or support social SDK for

a few key reasons. First, PSoA cannot impose social SDK

into a privacy sandbox while still supporting their common

functionalities used by the apps. Unlike ads libraries which

usually come with limited interactions with the host app (thus

one can safely and easily isolate them), social SDKs come

with sophisticated data flows and functionality-level interac-

tions with the rest of the app, such as (1) single sign-on, e.g.,

login through Facebook, Google, Twitter, and Amazon, and

(2) in-app posting to social networks, such as sending tweets

or posting/sharing to Facebook (see a detailed survey of use

cases at § 3.2). The PSoA even assumes that the app should

not impact or interact with SDK behaviors such as contents

or operations of the SDK UI display (to protect ads display

integrity and promote anti-fraud) [13], which contradicts with

designed use cases of social SDKs (see comparison at § 4.3).

Second, PSoA and prior other techniques [54] come with no

design-level privacy guarantee. Specifically, they could not

mandate that data from social SDK be mediated from access

by other libraries or never flows to the host-app. Once a private

data flows into untrusted code space (i.e., the host app with

untrusted libraries), it becomes intractable (e.g., due to hidden

or asynchronous data flows [35], indirect calls [59] being hard

to fully resolve through state-of-the-art static and dynamic

analysis techniques [70]), being completely subject to XLDH.

Although prior techniques [46, 48, 50, 51, 56–58, 63, 71] also

attempted to completely isolate ads libraries from the rest

of the app, similar to PSoA, this is not an option for social

SDK, which requires more sophisticated interactions and data

flows with the host app (see detailed comparison with related

techniques in § 4.3).

Design for privacy-preserving social SDKs. We tackle the

above challenges and take the first step to address the XLDH

at design level under the context of social SDKs. We intro-

duce the privacy-preserving social SDK paradigm (PESP),

a clean-slate, privacy-preserving design for social SDK and

their usage in mobile apps (§ 3.2), nevertheless our design

is mostly general and can be extended to other categories

of SDKs. Specifically, we aim to fundamentally address the

data harvesting against/between libraries (XLDH) through

clean-slate design of social SDK and deployable, end-to-end,

open-source system implementation, while best preserve

expected functionalities of social SDKs. With a principled

approach, first, we propose and generalize three new, essential

properties for the design of social SDKs (by their vendors such

as Facebook, Twitter, Google) and their in-app operation (by

regular apps that adopt them), called privacy-preserving SDK

or PPS properties (§ 3): deterministic data collectors (DDC),

controllable data collectors (CDC), and auditable data collec-

tors (ADC). Further, although we envision the next generation

of social SDKs to be privacy-preserving fulfilling the prop-

erties, we also ensure that our design is backward compatible

by supporting current use cases expected by social me-

dia/platform providers and implemented by app developers,

based on a comprehensive survey in the wild (§ 3.2).

In our design, we identify, characterize and tackle key de-

sign challenges for privacy-preserving SDKs and combating

XLDH, in particular the dilemma between complete isolation

(i.e., no data flows out of the social SDK) and the functionality-

necessary data flows and interactions between the SDK and

the rest of the app (with untrusted libraries). Once a data flows

into untrusted/app code, we lose privacy guarantee (see § 4).

To fundamentally address the problem, we base our design on

rigorous isolation between social SDK and the app/untrusted

code (quarantining private data inside social SDK). Despite

the isolation, we propose a novel SDK design that effectively

enables all expected/current functionalities/workflows of so-

cial SDK in mobile apps (e.g., mobile apps can still conve-

niently support user/GUI interactions based on data from the

social SDK), while fulfilling PPS properties for the first time.

End-to-end system implementation and evaluation. We

fully implemented our design of privacy-preserving social

SDK on the recent Android (version 13, r16), and evaluated

our implementation for its effectiveness (fulfilling all PPS

properties and defeating XLDH), compatibility with all cur-

rent use cases of social SDKs, and performance overhead with

satisfactory results (§ 5). In our implementation, we made

no changes to the OS. We implemented a privacy-preserving

Facebook SDK and Twitter SDK (by easily wrapping the cur-

rent Facebook SDK v15.0.1 and Twitter SDK v3.3.0 into our

design) and used them with two demo apps released by Face-

book and Twitter respectively, fulfilling all expected/current

use cases of the SDKs and the PPS properties.

Applicability and relation with the official Privacy Sand-

box on Android. Our design and implementation did not

rely on the PSoA, evidenced by our full implementation on

Android version 13 (r16) without PSoA. Nevertheless, since

PSoA (currently only supporting ads libraries without break-

ing) is requesting feedback from the community, our design

is compatible with PSoA and expected to be easily pluggable

to PSoA to substantially enhance its privacy assurance.

Contributions. The contributions are summarized as follows.

• New understanding and principles for privacy preserv-

ing social-SDKs. We characterize fundamental challenges

in the system design level for combating the emerging pri-

vacy threat against mobile SDKs (XLDH). We generalize

privacy-preserving properties for the design of and opera-

tional practice with social SDK in mobile apps.

• New techniques to achieve privacy-preserving design and

(in-app) usage of social SDKs. We present a practical, novel,

clean-slate design and end-to-end systems to fundamentally

enhance privacy of social SDK and their in-app usage against

the emerging XLDH, enabling their privacy-preserving

properties. Our techniques are practical, implemented and

evaluated, pluggable to the state of the art system (e.g., PSoA).

Our techniques are expected to significantly elevate privacy

assurance and legal-compliance for users and stakeholders

of social media/platforms, and app developers.

2 Background

Emerging privacy attacks between in-app libraries. Fig-

ure 1 illustrates a data-harvesting library (in a mobile app),

which first checks the presence of the Facebook, Twitter and

Google SDKs in the same app, and, if the SDKs exist, it in-

vokes the API functions in those SDKs to acquire the user’s

Facebook/Twitter/Google access token, profile, groups, fa-

vorites, etc. Notably, cross-library data harvesting (XLDH)

in mobile apps can occur through multiple attack vectors be-

sides direct function calls between libraries (and this paper

aims at fundamentally eliminating all XLDH attacks). For ex-

ample, we found that the Facebook SDK maintains app users’

Facebook identifiers and other personal data in a local JSON

file, which can be easily accessed by any libraries in the same

app, presenting a general problem on both Android and iOS.

Essentially, as mentioned earlier, it is hard for the operating

system to impose complete isolation between each individual

library which will seriously break current functionalities and

introduce intolerable programming/performance overhead.

Actually, in modern software development, libraries normally

invoke functions of other libraries (see the principle of modu-

larization for software development [49], which each library

fulfills an independent functionality/task) and hence it is un-

natural to completely isolate each individual library (e.g., one

may no longer call another conveniently and efficiently).

mobile app

Facebook

library

malicious

library

ads library

Twitter library

analytics library

return data

call API

malicious
Server

 upload data

Facebook
Server

 user login

user data

Figure 1: A Cross-Library Data Harvesting attack (XLDH)

Threat model. We consider that third-party libraries (TPLs)

in mobile apps may intend to harvest user data from other li-

braries in the same app, particularly from social SDK, without

awareness/consent of the app developers, users or the social

SDK vendor. Although social SDKs may also collect user data

from the app or from the underlying OS, this paper focuses

on threats (XLDH) where social SDKs are the targets/victims

of data harvesting. We consider that the social SDK vendors

intend to defeat XLDH against them, which can be a means

to improve user trust or at least mitigating possible trends of

deteriorated user trust. In this regard, we consider the social

SDK is benign. Since XLDH is often opaque to app developers

leading to their privacy noncompliance based on current laws,

we consider that app developers intend to prevent opaque data

collection behaviors in their apps such as XLDH.

3 Goals and Definition for Privacy-Preserving

Social-Media SDK

Current software engineering practices and underlying mobile

systems provide low assurance for the traceability of user

data, not to mention control who has access, especially in

an era full of data brokers and data-harvesting sprees. To

fundamentally address the data harvesting against/between

libraries (XLDH), we propose and generalize three simple

but essential properties for the design and in-app operation of

social SDK, called privacy-preserving SDK (PPS) properties.

Under the context of XLDH, a social SDK that fulfills the

properties is entitled privacy-preserving SDK.

We summarize the PPS properties in § 3.1. Further, al-

though we envision the next generation of social SDKs and

apps to be privacy-preserving fulfilling the properties, for

convenient adoption and migration, we aim that a practical

design should be backward compatible by supporting current

use cases expected by mainstream social media and platform

providers (§ 3.2).

3.1 Properties for Privacy-Preserving SDKs

PPS property 1: deterministic data collectors (DDC). Com-

pared to XLDH attacks in which it is opaque or hardly known

which party in an app (e.g., a library provided by a certain

data-broker, ads network, analytic platform or any third-party)

collects user data from the target SDK, the DDC property

requires that any party that collects data from the SDK is

deterministic.

PPS property 2: controllable data collectors (CDC). Com-

pared to XLDH attacks in which the SDK provider and the

app developers have little or no control regarding which party

in the app is allowed to collect data from the SDK, the CDC

property requires the SDK design to enable the app developers

and SDK owners to fully control which party can collect data

from the SDK. Note that based on the current laws (GDPR,

CCPA, etc.) and public policies, app developers that failed

to disclose data collection by third-parties in XLDH are li-

able for the privacy noncompliance, and SDK owners such

as Facebook tend to be considered liable for failing to fully

control user data it maintains [3].

PPS property 3: fine-grained, publicly auditable data col-

lectors (ADC). In prior XLDH attacks and other privacy

issues (e.g., partial, inaccurate or inconsistent privacy poli-

cies [14, 15]), key challenges remain for privacy compliance

and audit: (1) the parties that actually collect user data are

undisclosed or not fully disclosed to the users; (2) the dis-

closure granularity is too coarse-grained for effective audit

(e.g., GDPR); (3) the disclosure format (i.e., usually being

natural languages in privacy policies) is difficult for automatic

machine audit. To fundamentally address the problems un-

der the context of XLDH, the ADC property requires that (1)

the list of parties that collect user data from the SDK is pub-

licly auditable, i.e., being available/disclosed to normal users,

app/SDK developers and policymakers, and easily readable

by human and interpretable by machines, (2) the disclosure is

at specific-data level with respect to specific data collectors

Consider two real examples in our study: in

the app com.fairytale.fortune, the XLDH li-

brary com.umeng.socialize collects Twitter User

ID/E-mail from the Twitter SDK and sends it

to http://plbslog.umeng.com; in another app

com.africasunrise.skinseed, the XLDH library

com.revmob collects Facebook users’ AccessToken

Table 1: Use Case Stats

Social Media Provider # of use cases # number of type I workflow # number of type II workflow

Google Play Game Services 19 12 19

Twitter Kit 13 9 13

Vkontakte 16 11 16

Kakao 19 8 19

Snap login, bitmoji kit 9 9 9

Tiktok 18 8 18

Wechat 20 17 20

Alipay 14 12 14

Weibo 20 12 20

Facebook 13 13 13

from the Facebook SDK and sends it to https:

//android.revmob.com. In these cases, the ADC property

requires the (app-specific) disclosure to be as fine-grained as

a mapping from the data to all data collectors:
{

Twitter user ID/email 7→ domain plbslog.umeng.com
{

Facebook access token 7→ android.revmob.com

Notably, with the CDC property, the above disclosure is

determined by the app developers and SDK vendors and thus

practical (see the design that fulfills all PPS properties in § 4).

3.2 Backward Compatibility for Privacy-

Preserving Social-SDK Design

As mentioned earlier, a key challenge for designing privacy-

preserving SDK systems is that, prior/strict isolation

techniques [30, 46, 48, 50, 51, 56–58, 63, 71] do not restrict

between-library data access and easily break functionalities

of social SDK whose major use cases feature sophisticate

data flows and interactions with the rest of the app. On

the other hand, allowing user data to flow out of the SDK

immediately makes the data intractable — a fundamental

loss of privacy guarantee. That is, to ensure the design

of privacy-preserving SDK and its runtime environment

fulfill the PPS properties without breaking current use cases

of social SDK is a serious challenge, and we tackle this

imperative problem in our study (see our design in § 4).

In this section, we report a comprehensive survey of social

SDK use cases that are expected by 10 mainstream social

platforms (e.g., Facebook, Twitter, Snap, Google Play, most

popular worldwide in terms of user numbers, see Table 1),

whose SDKs have been integrated into 0.01% to 17.86% of

Google Play apps [7]. To comprehensively summarize their

use cases, our approach includes two complementary efforts.

(1) We manually inspected the developer manuals released

by the social platform vendors, with a total of more than 20

MB HTML documents describing the intended usage of APIs

provided by the 10 social SDKs (fully released online [5]).

(2) We thoroughly inspected code level behaviors of 200 pop-

ular real-world apps (with a total of 100B+ downloads [5])

that used these SDKs (20 apps for each SDK, see data collec-

tion below). Specifically, we inspected the apps at the Java

and Smali code level (decompiled through the tools Jadx

and NinjaDroid) and user level with end-to-end app/UI op-

erations. This effort leverages both state-of-the-art program

http://plbslog.umeng.com
https://android.revmob.com
https://android.revmob.com

analysis tool Flowdroid [32] and thorough manual efforts to

inspect the code that accesses APIs of social SDKs and handle

their data (see below).

In the manual efforts, after collecting all the 200 app sam-

ples, we have two researchers install the apps on rooted An-

droid phones, grant all permissions asked by the apps, and

manually explore and trigger all possible functionalities in

the apps. We manually interacted with the app UI and pin-

pointed possible usages based on the service descriptions and

descriptions in the app UI. During the app execution, we use

Frida [41] to hook invocations of social SDK APIs and then

manually analyze the subsequent control and data flows with

respect to usage of the social SDKs an their data in the app. In

this regard, we also adopt Flowdroid to complement manual

analysis and help us more comprehensively identify control

flows starting from where social SDK APIs are called in the

apps, navigating through the code space and identify data and

control flows related to how the apps use the social SDKs.

Based on the survey, this section below summarizes all

functional use cases of social SDKs in the wild into two

generalized types. We elaborate on our data collection, use-

case survey results as follows. We released the full data set

online [5] for reproducible experiments. The two researchers

that perform this survey and summarize the survey results

are considered co-authors of this work. This is aligned with

common practices of research where intellectual contributors

are acknowledged as co-authors, and their research results go

through evaluation or related artifacts are released at [5] for

experiment reproduction.

Data collection. We selected 10 most popular social SDK

according to the ranking published by two app intelligence

providers, i.e., AppBrain [7] and 42Matters [8]. For each SDK,

we selected the 20 most popular apps based on the rankings

released by the most popular app markets operating in the

corresponding region of the social SDKs (i.e., Google Play

for 7 SDKs and Huawei App Market for the other 3 SDKs

from China). The full list of the 200 apps can be found in [5].

Generalization of workflow patterns for using social SDKs

in mobile apps. Summarizing all use cases of social SDK

expected/implemented by SDK providers and app developers,

we generalize two work-flow patterns that are essential for so-

cial SDKs to interact with the rest of the app to fulfill expected

functionalities as follows. We base our privacy-preserving

SDK design in § 4 by fully regulating the two work-flow

patterns to fulfill the above PPS properties, while preserving

expected functionalities.

Type I workflow of social SDK usage in mobile apps:

Once the app invokes APIs of a social SDK, data flow out

of the social SDK (to the app’s graphical user interface or

GUI) for interactions with the user, including (1) the display

of information to users, (2) letting users choose or edit the

information from a social SDK (before sending to a remote

server). High-level examples are shown in Appendix Figure 4

for more specific use cases including single-sign on (e.g., the

Figure 2: Design Overview of Privacy-Enhancing Social SDK

user identifiers, names obtained from Facebook are shown

in the app GUI) or posting (e.g., sharing/twitting) to a social

platform or to a specific friend/group on the social platform.

Before displaying the data in the app GUI, code developed by

the app or third-parties may transform the data (e.g., using an

image processing library to process a profile photo obtained

from the social network before showing it in the app GUI).

Essentially, Type I work flow is for user interactions on the

app’s user interface.

Type II workflow of social SDK usage in mobile apps:

Once the app invokes APIs of a social SDK, data flow out

of the social SDK into the app space, and eventually flow to a

remote server, either the app server, the social SDK server, or

a third-party’s server (also called Remote Host). For example,

after login with Facebook, Twitter or Google, the user’s

access token, email, names, etc., provided by the social SDK

are sent to the app’s sever, or sent to third-party analytics

platforms and app-monetization platforms (by the app itself

or third-party libraries in the app). Before sending the data

out of the app, code developed by the app or third-parties may

transform the data into their needed format (e.g., wrapping

into a JSON or customized string). Essentially, Type II work

flow is for data sharing with a remote server (the apps’ or

third-parties’ servers).

4 Design for Privacy-Preserving, Social-Media

SDKs

In this section, we present privacy-preserving social SDK

paradigm (PESP), a clean-slate, privacy-preserving design

for social SDK and their usage in mobile apps. We also

provide end-to-end implementation of our design, and

elaborate on how the design defeats XLDH and fulfills the

PPS properties (§ 3.1) while practically enable all expected,

current use cases of social SDK (i.e., the two generalized

types of workflows in § 3.2).

4.1 Design Overview of PESP

As mentioned earlier, a fundamental design challenge for

privacy-preserving, social SDKs that combat XLDH is the

dilemma between complete isolation (i.e., no data flows out of

the social SDK) and the necessary data flows and interactions

between the SDK and the rest of the app (with third-party

libraries that are untrusted). Once a data from a social SDK

flows into untrusted code space, it is not fully tractable and

we lose privacy guarantee (i.e., the data can be sent to the

Internet/third-parties easily and stealthily bypassing state-of-

the-art defenses including static code analysis, dynamic code

analysis, traffic analysis [53]). To fundamentally address the

problem, we base our design on complete isolation between

social SDKs and the app/untrusted code (by adopting Linux

UID based and process-level isolation of data, runtime,

and GUI guaranteed by the operating system, see § 4.4),

quarantining private user data inside a social SDK itself

and never flowing to the untrusted/app code space. Despite

complete isolation, our key novelty includes new system

design to still enable expected, sophisticated interactions

between the SDK and untrusted/app code (§ 3.2), a security

design goal never achieved before.

System architecture and core components. Figure 2 out-

lines the core systems components under PESP including its

isolation foundation and runtime backed by the Android OS.

In an app, the social SDK and the rest of the app code (simply

referred to as “the app”, denoting all code/components of the

app itself and TPLs excluding the social SDK) are strictly

isolated (based on different Android Runtime (ART) and thus

Linux UIDs, see § 4.4). Upon the app execution, the social

SDK runs in a new Android Runtime process, called SDK

runtime, separated from the app which runs in its original

runtime (Android Runtime) provided by the Android OS.

• App runtime. The app code runs in the app runtime like

a regular mobile app, except that it does not directly obtain

any data from social SDK in the SDK runtime. App code

in the app runtime invokes APIs of the social SDK through

the exposed interface (called trusted API service of the SDK

runtime, see below), and no longer directly gets the data but

rather gets a data handle, called opaque handles with refer-

ence to the SDK data in the SDK runtime (here we adapt and

generalize the concept of opaque handle [38, 44] to mobile

SDKs). PESP ensures that necessary operations and interac-

tions with the social SDK data are all performed inside the

restricted SDK runtime, fully controlled and enforced by SDK

runtime based on the data-sharing policies (see below).

• PESP SDK runtime. The social SDK runs in a separate

Android Runtime process, similar to a regular service process.

Essentially, the SDK runtime encapsulates the original social

SDK (with zero change, see our demo and thorough evaluation

of functionality and privacy on Facebook and Twitter SDKs

in § 5). The invocation from the app runtime to the original

social SDK functions is encapsulated as a simple IPC call to

the SDK runtime, handled by a component called trusted API

service (based on the Android Service class [23]), which

relays the calls to the original social SDK. Once the social

SDK returns the data, the trusted API service maintains the

data but never returns the data to app runtime (to fulfill the

privacy properties). The trusted API service instead returns

a data handle (a kind of opaque handle) to app runtime or

invokes related callback functions in the app runtime.

Despite the data quarantine in SDK runtime, in expected

usages of social SDKs (§ 3.2), an app may want customized

handling of the data (e.g., transformation, sharing to remote

parties, display on UI for user operations). PESP securely en-

ables any customized handling of the data inside the SDK run-

time, specifically inside an internal sandbox (based on isolated

process of Android [20]) called sensitive module sandbox (see

Figure 2). Specifically, during app development, the app de-

velopers can develop certain code modules (e.g., some classes)

or adopt specific TPLs, and compile them into a package (in

the Android-common .dex format [18]) called a Sensitive

Module in PESP, which is separate from the app’s regular ex-

ecutable or package. The Sensitive Modules are to run inside

the sensitive module sandbox (see examples in § 5 and exam-

ple implementations online [5]). A Sensitive Module directly

handles private data of social SDKs (exchanged with the SDK

runtime), but cannot expose it. This is because sensitive mod-

ule sandbox is based on isolated process of Android [20],

which has least privileges such as the lack of network permis-

sions (guaranteed by SE Android [27]) and only communicate

with its creator process, the SDK runtime or specifically the

trusted API service. To serve all functionality requests from

the app runtime while preserving privacy, trusted API service

just provides three simple but generic APIs facing the app

runtime (detailed in § 4.2). The APIs allow the app runtime

to specify which Sensitive Module to use to handle which

data (see API details in § 4.2). In a Sensitive Module, the app

developer’s own code can invoke a TPL to help process data,

and such a TPL is not expected to be changed due to PESP.

In SDK runtime only the trusted API service can decide to

share specific data to a remote party upon the app runtime

requests, based on data-sharing policies of the app and social

SDKs (see data-sharing policies below).

• Privacy-preserving UI paradigm. In the Type I workflow

of original usages of social SDKs, the SDK data was expected

to flow to the app’s UI for the users to view, operate or interact

with: for example, during login with Facebook, the user’s

identifiers, names, etc. from Facebook are filled into the app’s

login window or account creation window (Figure 4c). To

securely support app-specified, UI-based user interactions

with the social SDK data, we introduce a privacy-preserving

UI paradigm (or PESP UI paradigm) — note that this was

not a common use case for ads libraries and thus unsupported

by prior isolation techniques such as PSoA. Specifically, the

app can securely designate a portion of the screen (called s-

screen) to the SDK runtime and the SDK runtime can populate

data into s-screen, and allow users to operate on it without

ever exposing data to the app runtime. How to customize the

view and actions in s-screen is completely implemented in

a Sensitive Module provided by the app and executed with

privacy guarantee in the SDK runtime (inside the sensitive

module sandbox based on isolated process). We elaborate on

technical details in § 4.2 and end-to-end implementation and

demo with Facebook and Twitter SDKs in § 5.

• Data-Sharing Policies. The data-sharing policies are

specified by the app/SDK developers to fulfill the privacy

properties (§ 3.1). In particular, the policy specifies for the

specific app (or app vendor/domain) the specific date items

that are allowed to be shared with specific data collectors

(see the DDC property and CDC property). The data-sharing

policies should/can be made publicly available under the app

vendor’s domain (e.g., example.com/PA_policy.json), signed

by the app vendor. The social SDK has the authority to addi-

tionally impose a policy overriding part/all of the app vendor’s

policy, fulfilling its data sharing policies. See an example pol-

icy in our supporting websites [5].

With privacy by design, all parties that can collect the data

from social SDK are deterministic, controllable and auditable,

significantly elevating the privacy and compliance assurance

of the social SDK, apps, and the underlying operating system.

Usability for app users. Our entire design is transparent

to app users, who experience no changes. For example, the

app user can operate on the s-screen populated with Face-

book/Twitter SDK data, make selection, edits, and further

submits the data to app/Facebook servers, e.g., during Face-

book/Twitter based app login or account creation, or posting to

the social networks. Figure 3 shows a screenshot in our end-to-

end implementation/evaluation of a privacy-preserving Face-

book SDK used in a demo app, fulfilling all expected/current

use cases of Facebook SDK.

Discussion. Instead of sandboxing potentially all TPLs that

are untrusted, the design of PESP chooses to sandbox so-

cial SDKs, which can be more practical while fulfilling our

protection goal (defeating XLDH attacks). Otherwise (sand-

boxing all non-social libraries), all simple app-to-sdk or sdk-

to-sdk function calls will go with inter-process communica-

tions, which will significantly break current programming

paradigms, runtime performance and app design (a regular

mobile app may utilize tens of third-party SDKs for diverse

functionalities [34]). Further, based on the PESP design, spe-

cific TPLs (e.g., an image processing library) adopted by the

app to process social SDK data are packaged and sandboxed

in a Sensitive Module, while other non-trusted TPLs run in

the app runtime.

4.2 PESP SDK Runtime

We elaborate on design of key components for the SDK run-

time as follows.

Trusted API Service: interface between the app runtime

and SDK runtime The trusted API service provides three

generic APIs facing app code in the app runtime:

• API 1: getDataHandle(original_SDK_API_name,

arguments, optional_callback_function). Similar

to using the original API of the social SDK, the app can

use the original SDK API name and arguments in this

getDataHandle, which will return to the app runtime

data_handles to specific data items. Note that the trusted

API service never returns actual data of social SDKs to the

app runtime. The last argument is optional and specifies

a callback function in the app runtime for the trusted

API service to invoke asynchronously if the original SDK

API cannot return immediately (e.g., delayed by Internet

communication with the social SDK server).

• API 2: sendSensitiveData(data_handles,

remote_host, sensitive_module,

optional_callback_function). API 2 is directly re-

lated to the Type II workflow (§ 3.2), where app developers

intend to send data from the social SDK out to third-party

partners or the app servers. To support this workflow, the app

code from app runtime can use API 2 to let the trusted API

service send specific data (referenced by the data_handles

argument) to specified remote server endpoint (the second

argument).

The third argument sensitive_module is optional and if

specified, the trusted API service will launch the Sensitive

Module (in an isolated process, see below) to process the

data before sending them out to remote servers. Notably, the

Sensitive Module can implement flexibly customized function-

alities or operations on the data of social SDK (texts, images,

videos, or binary data without limitation). This API return

new data_handles referencing to the data after customization.

As mentioned earlier, the trusted API service enforces the

data-sharing policies and determines whether sharing the spe-

cific data with the domain is allowed before sending data to

remote parties. Similar to API 1, the last argument is optional

and specifies a callback function in the app runtime for the

trusted API service to invoke asynchronously.

• API 3: launchSensitiveModuleView(data_handles,

sensitive_module). Recall the Type I workflow where

the app may want display of the social SDK data in the

app specific UI for the user to view or operate. Upon this

API request, the trusted API service launches a GUI view,

implemented by the sensitive module (the second argument)

to display the data (the first argument) — a sensitive module

runs as an isolated process considered as the sensitive

module sandbox. In such a case, the Sensitive Module can be

implemented as a typical Android GUI view (based on the

android.view.View class [29], with UI elements such as

text-boxes and labels defined and laid out like programming

a regular Android UI [25]), including code logic that can

populate provided data to the view’s UI elements (Figure 2)

and further take customized actions on the data.

Implemented by the Sensitive Module, this GUI view uses

a portion (or entirety) of the screen (see Figure 2), referred

to as s-screen in this design proposal. Note that the Sensi-

tive Module is customized by the app developers (in con-

trast to social SDK vendors) and provided to the SDK run-

time at app packaging time (see § 4.1). This API returns

a SurfaceControlViewHost.SurfacePackge type handle

referencing the view s-screen (returning to the app runtime

that invokes this API). As detailed below, app runtime with

the view’s handle cannot access contents in the view at all

(based on how the Android’s System Display Service [19]

works and how Android manages screens).

In the evaluation (§ 5), we demonstrate that the three simple

yet versatile APIs are capable of satisfying all the use cases of

both Facebook and Twitter SDKs. We showcase this through

an example app provided by Facebook and a proof of concept

app that we developed, incorporating the Twitter SDK. PESP

supports multiple social-SDKs used by one app in respective

runtimes. The app interacts with each SDK-runtime similarly.

We evaluated and released an example app using both the

Facebook and Twitter SDKs under PESP in § 5.4.2.

Security discussion. With XLDH attack surfaces signifi-

cantly reduced by PESP, a potential remaining threat is that

a malicious TPL adopted by the app leverages API 2 to post

sensitive data to public remote hosts, and then the attackers

can monitor the specific endpoints and harvest data there.

Such a threat can be prevented based on data-sharing policies

of PESP or existing privacy enhancing techniques (PETs).

Specifically, thanks to enforcement of data-sharing policies,

the remote hosts targeted in such an attack are considered

to be either hosts of the app or the online social network

(OSN) behind the social SDK. Targeting the former, the at-

tack must be app-specific, which is not an XLDH and has

significantly more limited attack surface than XLDH. If OSN-

owned endpoints are targeted, the OSN’s data-sharing policies

may disallow SDK data to be posted to its public endpoints.

Also, thanks to PESP, the data must be sent to the OSN before

the attacker can harvest them, and thus prior PETs such as

anomaly detection [9] can identify the attack: for example,

massive data of diverse identities are sent to specific OSN

endpoints or timelines, apparently being abnormal.

PESP Privacy-preserving UI paradigm. To securely sup-

port app-specific, UI-based user interactions with the social

SDK data, and enable Type I workflows (SDK data flow into

the app UI), we adapt uses of Android’s System Display Ser-

vice (d-Service) and propose a novel GUI rendering technique,

called PESP-GUI. The core idea is that PESP-GUI enables

the trusted SDK runtime and the untrusted app runtime to each

render and operate a portion of the entire screen; SDK runtime

(i.e., the Sensitive Module with API 3) shows the SDK’s pri-

vate data only in its screen portion (called sdk-screen portion

or just s-screen) without ever exposing SDK data to the app

runtime. PESP is aligned with and leverages the design of

Android’s System Display Service, which manages how differ-

ent views, overlays, and windows are stacked at the z-axis to

form a user-facing screen. Specifically, we leverage Android

d-Service to securely stack the s-screen (owned by Sensitive

Module in the SDK runtime) on top of specific position of

the app runtime’s screen (at z-axis, see Figure 3), forming a

user-facing window — users see a normal app window with

social SDK data to view and edit.

More specifically, the API 3 returns to the app runtime a

view handle called surfaceView (of type SurfaceView [28]),

referencing the s-screen operated by the Sensitive Mod-

ule confined in the SDK runtime. The app code in the

app runtime can then call the Android framework API

surfaceView.setChildSurfacePackage [28] to designate

that it wants its specific screen portion (up to 100%) to be

stacked with and thus overwritten (on the z-axis) using the par-

ticular surfaceView. Note that since both the Sensitive Module

(with view layout in the s-screen) and the app window are de-

veloped by the app developers, the final combined user-facing

GUI will look normal for users.

Security discussion. Note that the above screen stacking

technique is based on the true intention of (1) the app (by call-

ing the above API to inform the Android d-Service about the

target screen to use on its top and specific position), and (2) the

SDK runtime by returning reference to the s-screen to the app

(through API 3). Hence, this has key differences from prior

overlay attacks [40] where a malicious app put its overlap or

screen on top of another (victim) app — placing an overlay

on other apps is now strictly restricted by Android requiring

a signature level permission System_Alert_Window and by

Google Play in app vetting [24]. Also note that, in the design

of PESP, despite the screen stacking, the app code or the app

runtime cannot access contents in the s-screen owned by the

SDK runtime. We provide implementation details in § 4.4.

Sensitive Modules. Upon invocation of API 2 and API

3 with a Sensitive Module name specified, a Sensitive

Module is launched by the trusted API service as an isolated

process [20] — called a sensitive module sandbox. Like a

regular isolated process, the Sensitive Module has a Binder

object [17] to communicate and exchange data with its

creator process (the SDK runtime), but is restricted for other

IPC or permissions (e.g., no Internet access). The process

terminates once the related function being launched returns.

Sensitive Storage. Despite the three APIs and the trusted API

service only return data handles, and never return the actual

data, the trusted API service keeps a private storage inside

the SDK runtime for the specific data and its data handles in

the format of {data_handle, data type, data value}. Note that,

with API 3, after a Sensitive Module performs transformation

on a set of multiple data items, it can produce new data and

return them to the trusted API service (through IPC between

an isolated process and its creator process). Then trusted API

service can store the new data, assign new data handles and

record data type as the set of the original data types. This

enables the trusted API service to enforce the data-sharing

policies based on the data types when sending data to remote

parties (API 2).

Generality of SDK runtime. Our design of SDK runtime is

potentially general for all social SDKs. Our implementation

(§ 4.4) is open-source can be easily used by social SDK ven-

dors to wrap their current social SDKs without changes (see

our demo and evaluation for Facebook and Twitter SDKs in

§ 5). § 5 further encompasses our evaluation of the practical

efforts required for app developers to adopt the new privacy-

preserving paradigm of social SDKs.

4.3 Comparison with Related Work

Comparison with PSoA. There are key design-level differ-

ences between PESP and Google’s ongoing development of

PSoA for the privacy assurance and functionality.

• Privacy assurance. While PSoA aims to separate SDK

permissions from the app, by design, PSoA simply allows

SDK-runtime to return data to untrusted app-runtime (by

invoking SDK APIs) [30] (subject to XLDH-attacks). In sharp

contrast, PESP confines SDK data (in SDK-runtime), thus

elevating privacy assurance (against XLDH).

• Enabling social-SDK functionalities. Confining SDK data

while enabling app-to-SDK functional workflows is challeng-

ing. Such a property is achieved by the PESP UI paradigm

(§ 4.1), securely enabling app-specific, app-implemented op-

erations on the SDK data inside SDK runtime. In contrast,

the PSoA (with its remote-view feature [11]) does not enable

such a key property: operations/implementations in PSoA

remote-views are done by the SDK, and apps just determine

the views’ on-screen location. PSoA currently only focuses

to support advertising-related SDKs [12]. The PSoA even

assumes that the app should not impact or interact with SDK

behaviors such as UI contents or operations of SDK-runtime

(to protect ads display integrity and promote anti-fraud) [13],

which contradicts with designed use cases of social SDKs.

Comparison with other related work. Generally, prior tech-

niques for library isolation, restriction or protection suffer

from several key problems for effectively or practically de-

feating XLDH attacks (Table 4).

• Problem 1: Isolation targets. Many prior techniques aimed

to isolate libraries from the host app [26, 48, 50, 51, 56–58]

(e.g., with separate permissions, processes, storage, or run-

time). They were designed to isolate specific types of TPLs

(e.g., ads related libraries) from the host app, and were usu-

ally not intended or designed to isolate social SDKs or many

libraries. Using their approaches to generally isolate many

libraries may significantly change app-to-library or library-to-

library interactions, programming paradigms, and app designs

(see discussion in § 4.1), thus being less practical. Addition-

ally, adopting their approaches to isolate social SDK or ad-

dress XLDH can incur Problem 2 or Problem 3 discussed

below.

• Problem 2: Incomplete isolation (privacy assurance). Al-

though many prior techniques come with certain levels of

isolation [45, 54, 55, 60, 73] (e.g., permission isolation which

ensures that libraries do not directly inherit permissions of the

host app), like PSoA, they usually come with no design-level

guarantee that data from social SDKs (or generally an SDK

that offers data) never flows to the untrusted, non-isolated

space (e.g., app runtime), directly violating our XLDH secu-

rity goals.

• Problem 3: Functionality compatibility for social SDKs.

Unlike previous works’ assumption [45,46,50,57,58,71] that

ads-related or other SDKs expected little or no functionality

interactions with the host app, thus being more easily isolated

without breaking their functionalities, social SDKs come

with sophisticated or app-specific interactions with the app.

Quarantining SDK user data (inside a social SDK or poten-

tially any SDK that offers data) while enabling necessary,

sophisticated interactions between the SDK and untrusted/app

code is a unique contribution and advantage of PESP.

4.4 Implementation

Privacy-preserving UI paradigm. The type (class) of

the view returned by API 3 to the app runtime is

SurfaceControlViewHost.SurfacePackage [28], which

serves as a reference to the s-screen operated by the Sen-

sitive Module that includes the data of social SDKs. When

the view of the Sensitive Module is created, it is stored in the

screen drawing buffer of Android, shared between the Android

SurfaceFlinger service and the sensitive module sandbox

process (where Sensitive Module runs). Then, an instance

of the class SurfaceControlViewHost.SurfacePackge

is created as a reference to that buffer, and returned

to the app runtime by API 3. Once the app code

in the app runtime receives the reference, it can use

the reference as the parameter to invoke the Android

API SurfaceView.setChildSurfacePackage which es-

sentially tell the SurfaceFlinger service to take the content

of the drawing buffer owned by the Sensitive Module to stack

on specific position of its own screen and overwrite the con-

tent of its own drawing buffer or SurfaceView. Note that, the

overwrite happens in the trusted Android SurfaceFlinger

process, which synthesize the drawing buffer to finalize dis-

play of the user-facing screen, and neither the app runtime nor

the SDK runtime can access contents of each other’s screen

contents (i.e., contents in their respective SurfaceViews).

When the app wants to reclaim the display area

taken by the s-screen, it can simply invoke the Android

ViewGroup.removeView API to remove the SurfaceView

of the SDK runtime from its screen. Hence, data of social

SDK in the SDK runtime is never exposed to the app runtime,

but allowing the app to control how, when and where the

data is shown to the user on the screen. Note that it’s possi-

ble that apps leverage the Android’s MediaProjectManager

API to take screenshot of the whole display, but every invoca-

tion of MediaProjectManager for whole-display screenshot

requires user consent [21].

SDK runtime. In our current implementation, the trusted

API service is similar to a regular Android service based on

the class Service. The SDK runtime wrapping the origi-

nal social SDK (Figure 2) is packaged with its own pack-

age name. The sensitive module sandbox is created using

the IsolatedProcess flag of Android Service which as-

signs the sandbox process a restrictive uid that has IPC

limitations and strict SELinux policies enforced [20]. The

Sensitive Modules are loaded from the file system using

the DexClassLoader Android API to load all the necessary

Classes in to the sandbox process.

The Sensitive Module in the isolated process can use the

Binder to exchange information and perform IPC with the

trusted API service. The Binder instance was created and ac-

cessible to the Sensitive Module when the trusted API service

create the isolated process. Besides the three public APIs

facing app runtime (§ 4.2), the trusted API service internally

implemented a few more functions to serve requests (through

the IPC) of the Sensitive Module, especially when the Sensi-

tive Module wanted to make HTTPS requests to the remote

servers (sensitive module sandbox cannot access the Internet).

Once a Sensitive Module finishes its code execution, its iso-

lated process terminates. Considering that multiple apps may

use the same social SDK (e.g., the Facebook SDK), in our im-

plementation, the system installs the social SDK as a unique

service that can be invoked and shared by multiple apps.

App runtime. The app code runs in app runtime, which is

exactly the same as the Android Runtime (ART)(with its pre-

decessor as Dalvik runtime) [22] capable of running Dex byte-

code. Since the trusted API service with the SDK runtime is

implemented as a standard Android service [23], invocations

to the three APIs of trusted API service follow the standard

IPC process like invoking any service APIs (using the An-

droid API bindService [16]). In our implementation, for

app code to more easily use the trusted API service APIs,

we additionally provide a convenient client SDK wrapper (of

trusted API service), which is just a trivial wrapper offering

the same function signatures as the three trusted API service

APIs; the app code can import the client SDK wrapper as

an SDK and invokes the three APIs just like invoking nor-

mal SDK functions and the client SDK wrapper consequently

makes the IPC calls.

Isolation in PESP. Our rigorous isolation between the SDK

runtime and app runtime and between the SDK runtime and

Sensitive Module is based on mature techniques, i.e., Linux

UID [26] and Android isolated process [20] respectively. In

our current implementation, similar to and compatible with

Google’s PSoA [30] and the new SDK distribution model [10],

when installing an app utilizing social SDK, the system in-

stalls the app and the social SDK as two separate packages,

assigning different app identifiers and Linux UIDs. Android

package name/identifier serves as a basic building block when

it comes to differentiating the app and social SDK. Note that

different social SDKs have different package names and iden-

tifiers, because we do not assume there exist trust between

different social SDKs in our threat model.

Distribution. Being compatible with the distribution model

of PSoA [10], a social SDK is packaged as a self-contained

package with its transitive dependencies. As mentioned earlier

(§ 4), a Sensitive Module with its dependencies is built into

a self-contained package (.dex format), which is loaded by

SDK-runtime into isolated processes.

5 Evaluation

In this section, we thoroughly evaluate effectiveness, usability,

and performance overhead of PESP. Specifically, we use two

open-source Android apps released by Facebook and Twitter

that integrated the Facebook login SDK [37] and Twitter Kit

SDK [61] respectively: the two apps originally implemented

functionalities for major use cases related to the SDKs such

as login with Facebook and Twitter. In our evaluation, we

implemented our design PESP into the two example apps

while keeping the original functionalities; this is done by

wrapping the in-app Facebook and Twitter SDKs into our SDK

runtime and migrate the app code that originally invokes the

SDK functions into code that invokes the trusted API service.

In the following, we provide three demonstration examples

of the new apps (with PESP) that have implemented key use

cases of Facebook and Twitter SDKs: login with Facebook

(§ 5.1), in-app display of Facebook user profile information

(§ 5.2), login with Twitter (§ 5.3). For each use case, we

evaluate the effectiveness of privacy protection and usability

(efforts needed for the app developers to migrate this app to

the PESP paradigm).

In § 5.4, we report evaluation of end-user facing perfor-

mance overhead under PESP. The evaluation is based on the

above two apps (released by Facebook and Twitter) equipped

with PESP, and we additionally evaluated multiple app sce-

narios with each app integrating multiple social SDKs under

PESP. The results showed that PESP is efficient and practical.

All apps used in our experiments were released with source

code online [5].

5.1 Case Study and Security Analysis: Login

with Facebook under PESP

Login with social SDK is a common use case that is a

prerequisite step for accessing sensitive user data from

the Social Network platform based on the OAuth protocol,

adopted by all 200 apps surveyed in our use case study (§ 3.2).

Originally the login is implemented by the app developers

through placing a Login Button provided by the Facebook

SDK which wrapped the function call to Facebook SDK APIs.

Once clicked, it will initiate the login flow by navigating

to the web browser on the user’s device (or the Facebook

app) to input the users’ login credential on facebook.com

and finish the authorization to the app. After the login

process ends, the app checks whether the user is logged

in by calling AccessToken.getAccessToken, a Facebook

SDK API that will return the sensitive AccessToken if

the user login is successful. Note that, AccessToken is a

sensitive data because it could be used for fetching additional

sensitive information (e.g., user emails, profile images) from

Facebook’s remote server. If the login succeed, the app will

navigate the user to a new Activity for more functionalities;

otherwise the user will stay in the current Activity that has

the Login Button for user to attempt login again.

Usability evaluation: migration efforts for app develop-

ers. We made 279 lines of code (LOC) changes for this

login functionality, including 47 LOC for implementing a

Sensitive Module (see below). We additionally developed a

data-sharing policy with 5 LOC that only allows the Face-

book data to be sent to the app server (see the policy at [5]).

The Facebook demo app originally has more than 1,200

LOC. Specifically, we made the following two code logic

changes for the app. First, we replace the app’s function

calls to the Facebook SDK API behind the Login Button

with an invocation to the getDataHandle API (API 1) pro-

vided by our new SDK runtime (i.e., trusted API service),

and upon the invocation, the trusted API service will relay

the call and actually invoke the APIs in the original Face-

book SDK. Then the login process continues, allowing the

user to enter their Facebook login credentials in the web

browser (or in the Facebook app if already installed on the

device) and authorize the developer’s app. The second change

needed is to refactor the app’s code logic that navigates to

different activities based on the login results. Specifically,

we implemented a Sensitive Module (47 LOC) that uses

the Facebook SDK API LoginManager.getLoginStatus

or AccessToken.getCurrentAccessToken (by calling API

1 of the trusted API service and pass in the SDK API names):

the former returns login success or failure, and the latter re-

turns AccessToken whose value exists only after a success-

ful login. Our Sensitive Module then requests the trusted

API service to send the login result to the app’s server

using the API 2: sendSensitiveData(data_handles,

remote_host). Then, extra code logic in the app runtime

that pulls from the developer’s server the actual login result

is added to the app.

Effectiveness evaluation: privacy enhance-

ment. In the original app, calls to the sensitive

AccessToken.getCurrentAccessToken function is

used to check whether the login is successful or not by the

app. This exposes the token from the Facebook SDK to the

app code space; also any third-party library in the app can

invoke this Facebook SDK API to get the user’s Facebook

access token. In addition, the function calls to initiate the

login process has to be replaced with the invocation to the

getDataHandle (compared to the original app that directly

invokes Facebook SDK API), also ensuring that sensitive

information stayed in the SDK Runtime, not exposed to

the app runtime. In our PESP enhanced version of the app,

Facebook SDK data cannot flow out to the app runtime

regardless of how the app invokes trusted API service or the

SDK runtime, all confined in the SDK runtime.

5.2 Case Study and Security Analysis: Display

of Facebook User Profile under PESP

Another common use case used by 169 apps out of the 200

apps we found in the use case survey (§ 3.2) is to display user-

names and email addresses obtained from the social network

inside the app’s UI. To implement this use case, app develop-

ers would first acquire the sensitive user profile information

from the Facebook SDK with an invocation to the SDK API

Profile.getCurrentProfile, whose return value contains

the username and email address. After that, the username

and email are used to update the content in the Android View

objects to display them in the UI, so the user can check the

profile information they are going to use with this app, and

modify them on the UI as needed. If the user confirmed the

profile information, the app will send the profile information

to the app server for persistent storage.

Usability evaluation: migration efforts for app develop-

ers. We changed 196 lines of code (LOC) for this functional-

ity, including a Sensitive Module (73 LOC). This demo app

of Facebook originally has more than 1,200 LOC. Specif-

ically we make the following code changes for the app to

adopt PESP. We replaced the invocation to the sensitive SDK

API Profile.getCurrentProfile with an invocation to

the getDataHandle API of the trusted API service, which

returns an opaque data handle to the Profile object (the

actual value is stored in the SDK Runtime’s in its Sensi-

tive Storage). Next, we removed the original app code logic

that updates the View objects with the sensitive user infor-

mation and instead developed a Sensitive Module (73 LOC)

that implemented a GUI view to display the user informa-

tion (also see the “PESP privacy-preserving UI paradigm”

in § 4.2). Further, the app code logic of sending the user

profile information to the app server is replaced. Instead,

the view of the Sensitive Module includes action code that

sends the user data to its app server. This involves invoca-

tion of the API 2 of the trusted API service, i.e., API 2:

sendSensitiveData(data_handles, remote_host) by

the Sensitive Module. The data-sharing policy includes 5

LOC that only allows the Facebook data to be sent to the app

server (released online [5]).

Effectiveness evaluation: privacy enhancement. Thanks

to the Sensitive Module and PESP privacy-preserving UI

paradigm, sensitive user profile are displayed in the UI with-

out being exposed in the app runtime at any time after the

migration, eliminating the XLDH. In addition, the trusted

API service of the SDK runtime can enforce the data-sharing

policies whenever the Sensitive Module tries to (through the

trusted API service) send any data out to any remote hosts.

5.3 Case Study and Security Analysis: Login

with Twitter under PESP

We changed 125 lines of code (LOC) for this functionality,

including a Sensitive Module (52 LOC). This demo app

of Twitter originally has more than 1,300 LOC. The

design of Twitter Kit (SDK) for Android is very similar

to the Facebook SDK for implementing the Login with

Twitter use case. Specifically, Twitter Kit also provided

a Login Button that wrapped the actual OAuth based

user login process and provided Call Back interface

such that the app developer could trigger their own code

logic depending on the success or failure of the login.

Different in the Twitter Kit case is that Twitter uses a pair

of oauth_token and oauth_token_secret inside the

TwitterSession object as the credentials for pulling user

private information from the Social Network platform. The

TwitterSession object also contains sensitive user infor-

mation like the user id and user name. In addition, the demo

app included an extra step of calling Twitter Kit SDK API

TwitterAuthClient.requestEmail, which essentially

sends a HTTP Get request to the Twitter’s server to retrieve

the user’s email address, to verify the credentials are valid.

Usability evaluation: migration efforts for app developers.

The Twitter Kit’s API TwitterAuthClient.requestEmail

original implementation takes an app developer implemented

Call Back interface and return the user’s email in the suc-

cess clause of the Call Back. After adopting our design, an

opaque data handle is returned whether the login is successful

or not to avoid privacy leakage. As a result, we developed a

Sensitive Module (19 LOC) to check the existence of user

email with the opaque data handle and report the result to

the app’s server (which is registered in advance and approved

by the data-sharing policies), then the app code retrieves the

results with a network request. The data-sharing policy in-

cludes 4 LOC that only allows the Twitter data to be sent to

the app server (released online [5]).

Effectiveness evaluation: privacy enhancement. In the orig-

inal app, the TwitterSession object returned by the original

Twitter Kit API that could have leaked user email, user id

and sensitive Twitter API credentials to the untrust app space

exposing malicious libraries. With the PESP paradigm in the

app, this is protected based on opaque data handles and the ac-

tual data never went from the Twitter SDK to the app runtime.

Further, the Sensitive Module design ensures the sensitive user

email to be accessible for app functionalities while the data

flows are fully controlled based on the data-sharing policies.

Table 2: Performance overhead (single social SDK per app)

Use Case Original (ms) PESP-migrated (ms) ∆ (ms)

Login with Facebook 66.45±5.60 138.88±13.24 72.42

Display User Profile 50.01±0.38 89.19±6.732 39.19

Login with Twitter 167.50±6.02 230.10±16.52 62.60

Assuming Normal Distributions, Intervals for 95%

confidence

5.4 Performance Overhead

5.4.1 Evaluation for the Three Use Cases

We conducted our experiment on a Google Pixel 6 phone

running stock Android 13 (r16). We used the three migrated

use cases (with PESP adopted in the two apps) above to

evaluate performance overhead of our design. Since the three

use cases’ original implementation in the sample apps is

mainly for demo purpose (Facebook and Twitter released the

sample apps to show how to use their SDKs and for what use

cases) with no code logic for other app functionalities (i.e.,

functionalities unrelated to Facebook or Twitter) in place, our

evaluation is thus conservative and approximates the potential

upper bound of the performance overhead. We run the test

20 times for both the original and migrated, PESP-based app

implementation and Table 2 summarized the results.

Login with Facebook. We measure the time the app needs to

receive the login success result after the login button is clicked.

In the workflow, once the user clicks the in-app login button,

she is redirected to Facebook.com in the browser (or the

Facebook app if installed), authorizes the app, and is finally

redirected back to the app’s specific UI window with success-

ful login results. For measurement purpose, we subtracted the

time the user needed to authorize the app in the Web browser

(or in the Facebook app), which can be influenced by the

user’s reaction speed and network latency. The subtracted

time is measured by inserting code for timestamp logging in

the apps related to UI operations (e.g., when the login button

is clicked) and activity switching (e.g., right upon the app is

switching to the browser and right after the login success UI

activity is triggered following the authorization). The average

overhead for the migrated implementation is 72.42 ms.

Display Facebook User Profile. We measure the time

needed starting from in-app invocation of the function that

retrieves user profile information to when the rendering of

the views containing the sensitive information is finished. In

the workflow, once the app triggers the API GraphRequest

of the Facebook SDK (using the API getDataHandle of

PESP), the SDK will retrieve the user data from the Facebook

server, and then display the data on a UI activity implemented

by the app (running in a Sensitive Module). We subtracted the

time spent on network requests for the user information from

the Facebook server to exclude the impact of network latency

variations. The subtracted time is measured by inserting code

in the open-source Facebook SDK for timestamp logging

at corresponding network request callbacks (i.e., before and

after the request). The result shows an overhead of 39.19 ms.

Login with Twitter. Same as the Login with Facebook

case, we measure the time the app need to receive the login

successful result after the login button is clicked excluding

the time the user spent in the browser. The result shows a

overhead of 62.60 ms.

5.4.2 Apps with Multiple Social SDKs

In the above experiments, each app comes with one social

SDK. We further evaluated performance overhead on multiple

apps, with each app using both Facebook and Twitter SDKs

under PESP. Specifically, by combining the above two PESP-

enabled apps that use either the Facebook or Twitter SDK

(§ 5.1 to § 5.3), we developed an app that uses both social

SDKs under PESP. We take this app as the evaluation target

app. As its control group, by combining the two original exam-

ple apps (provided by Facebook and Twitter), we developed

an app using both the Facebook and Twitter SDK (without

PESP). The evaluation target app and its control group share

exactly the same functionalities with both the Facebook and

Twitter SDKs. For the evaluation, we performed experiments

under three scenarios as follows (each result is based on the

average of 20 trials, shown in Table 3).

Scenario 1: multiple PESP-enabled apps use the same

social SDK (Facebook or Twitter SDK). We launch two

instances of the target app (compiled and built under dif-

ferent package names, treated by the Android OS as dif-

ferent apps). We refer to the two instances as PESP In-

stance 1 and 2 respectively. For each use case (Login in

with Facebook, Display User Profile and Login with

Twitter), we run PESP Instance 1 and then Instance 2, with

their performance overhead measured respectively (Table 3).

There is no obvious performance difference between the two

instances. Similarly, we also run two instances of the con-

trol group app (Original Instance 1 and 2 in Table 3). The

performance overhead compared to the control group is low;

e.g., Instance 1 shows an average overhead of about 74.79ms,

38.47ms, 59.91ms compared to Original Instance 1 for the

three use cases respectively.

Scenario 2: single PESP-enabled app uses multiple so-

cial SDKs (Facebook and Twitter SDKs). We launch

one instance of the target app, run the two use cases

sequentially (Login in with Facebook and Login with

Twitter) and measure the time consumed for both use cases.

Compared to the control group, the performance overhead

for executing the two use cases is low (74.0ms and 60.7ms

respectively for the two use cases), which is about the same

with Table 2 that evaluates single social SDK in each app.

Scenario 3: multiple PESP-enabled apps use multiple so-

cial SDKs (Facebook and Twitter SDKs). Similar to Sce-

nario 1, we launch two instances of the target app. Then in

each instance we run the two use cases (Login in with

Facebook and Login with Twitter) and measure the time

(PESP Instance 1 followed by PESP Instance 2). Compared

to the control group, the average performance overhead for

executing the two use cases is around 85.6ms and 63.6ms

(PESP Instance 1). There is no obvious performance differ-

ence between the two PESP app instances.

6 Discussion

Long-term maintenance and updates. As mentioned in

§ 4.1, the design and implementation of PESP is directly

compatible with PSoA of the official Android. PESP can sup-

plement PSoA to protect social SDKs, while PSoA currently

only supports ads-related SDKs. Notably, in PESP, the indi-

vidual social SDKs are wrapped under the SDK runtime and

the original social SDKs expect minimum or no changes. The

design and implementation of such a SDK runtime is general,

not specific to individual social networks (our implementa-

tion that can directly wrap the Facebook, Twitter or other

social SDKs is released online [5]). With future emerging

threats against the SDKs, one may just update the general

SDK runtime, which can be maintained with the Android or

community efforts including ours. We expect that PESP will

motivate more research and development efforts that tackle

hard defense problems or emerging privacy threats and im-

prove privacy assurance for mobile apps and TPLs.

Sensitive information returned from the app server. After

collecting user data from the SDK runtime, benign app servers

might hand the data to the app runtime, flowing private data

into untrusted code space. Although we acknowledge that

this presents a privacy threat (similar to prior studies show-

ing that malicious libraries can harvest the host-app’s data

from the app-specific UI or server), it is not a XLDH threat

and has significantly more limited attack surface than XLDH.

Specifically, from the attackers’ perspective (a data-harvesting

library that has sneaked into mobile apps), with XLDH, the

malicious library can succeed in all apps using the same attack

vector/approach (accessing the same function/interface of the

target social SDK); in contrast, the other threat in question

has to target app-specific UI components, code modules or

interfaces to find the private data, which is significantly less

effective and more costly for the attackers. Hence, our design

defeats XLDH, significantly reduces privacy attack surfaces

and elevates privacy assurance.

Generalizability to other types of SDK. Our design is gen-

eral (not relying on social SDKs), and may be applicable to

potentially all SDKs that provide or manage data, or want to

protect their data. Also note that to ensure the privacy assur-

ance against XLDH while supporting in-app functionalities

of social SDKs, our design is based on a thorough survey of

in-app use of 20 popular social SDKs (§ 3.2). To use PESP

or extend it for protecting more types of SDKs, a thorough

survey of their functionality use cases are necessary, which we

leave for our future work. Moreover, PESP and PSoA share

Table 3: Performance overhead (multiple social SDKs per app)

Use Case Original Instance 1 Original Instance 2 PESP Instance 1 (ms) ∆ (ms) PESP Instance 2 (ms) ∆ (ms)

Login with Facebook (Scenario 1) 65.91±1.92 67.69±2.69 140.7±3.93 74.79 142.3±5.91 74.61

Display User Profile (Scenario 1) 50.33±0.33 50.55±0.53 88.8±1.81 38.47 89.25±3.93 38.7

Login with Twitter (Scenario 1) 167.04±12.51 173.95±17.68 226.85±13.45 59.91 240.15±20.59 66.2

Login with Facebook/Twitter (Scenario 2)
FB:70.2±8.48

−
FB:144.2±11.69 74.0

− −
TW:159.9±24.90 TW:220.6±25.40 60.7

Login with Facebook/Twitter (Scenario 3)
FB:62.0±3.73 FB:70.3±15.11 FB:147.6±25.38 85.6 FB:149.1±36.3 78.0

TW:158.7±21.1 TW:185.4±25.56 TW:222.3±20.2 63.6 TW:251.2±26.69 65.8

Assuming Normal Distributions, Intervals for 95% confidence (FB: Login in with Facebook; TW: Login with Twitter)

Table 4: Comparison with prior privacy protection techniques

Year Name Techniques Category P1 P2 P3

2012 Aurasium [66] App Compartmentalization n/a ✗ ✔

2013 AppGuard [33] App Compartmentalization n/a ✗ ✔

2013 LayerCake [54] App Compartmentalization n/a ✗ ✔

2014 COMPAC [65] App Compartmentalization n/a ✗ ✔

2016 DroidDisintegrator [60] App Compartmentalization n/a ✗ ✔

2016 CASE [73] App Compartmentalization n/a ✗ ✔

2017 FineDroid [72] App Compartmentalization n/a ✗ ✔

2017 CompARTist [45] App Compartmentalization n/a ✗ ✗

2018 BreakApp [62] App Compartmentalization n/a ✗ ✔

2021 SEApp [55] App Compartmentalization n/a ✗ ✔

2011 AppFence [43] Taint Tracking n/a ✗ ✔

2012 DroidScope [68] Taint Tracking n/a ✗ ✔

2016 TaintART [59] Taint Tracking n/a ✗ ✔

2016 PIFT [69] Taint Tracking n/a ✗ ✔

2017 TaintMan [70] Taint Tracking n/a ✗ ✔

2018 NDroid [67] Taint Tracking n/a ✗ ✔

2012 AdDroid [50] TPL Isolation ✗ ✗ ✗

2012 AdSplit [57] TPL Isolation ✗ ✗ ✗

2013 AFrame [71] TPL Isolation ✗ ✗ ✗

2013 Sanadbox [46] TPL Isolation ✗ ✗ ✗

2014 NativeGuard [58] TPL Isolation ✗ ✗ ✗

2015 PEDAL [48] TPL Isolation ✗ ✗ ✔

2016 FLEXDroid [56] TPL Isolation ✗ ✗ ✔

2016 LibCage [63] TPL Isolation ✗ ✗ ✔

2021 LibCapsule [51] TPL Isolation ✗ ✗ ✔

2022 PSoA [30] TPL Isolation ✔ ✗ ✔

2023 PESP (This Work) TPL Isolation ✔ ✔ ✔

fundamentals in the runtime and distribution model, partic-

ularly isolating the SDK in a runtime separate from the app.

With shared fundamentals, PESP can be incorporated into

PSoA to support social use cases and potentially all SDKs

that offer data. Note that currently PSoA primarily focuses

on supporting ads-related SDKs, which, compared to social

SDKs, expect much less or no functionality interactions with

the host app.

Applicability to other OS. Our design isn’t limited to An-

droid. Android implemented the easy-to-use isolation and

flexible UI composition (Section 4.4), which were needed

to implement our design. These features/flexibilities were

designed for better engineering/security/testing. Other OSes

may also implement such features, enabling implementation

of our design.

7 Related Work

Third-party library (TPL) isolation. To enable privilege

separation, the TPLs are isolated in these techniques through

various design. In all the prior approaches [46, 48, 50, 51, 56–

58, 63, 71], the design usually focused on preventing TPLs

from accessing the Android system resource (by restricting

their permissions), without restricting them from accessing

data from social SDKs. Those prior techniques generally suf-

fered from the Problem 1 and 2 summarized in § 4.3.

App compartmentalization. App compartmentalization re-

lated techniques provides finer granularity by differentiat-

ing inner parts of an app from other parts when enforcing

access control and isolation (e.g., attributing API calls or

resource access to individual SDKs, classes, or processes,

depending on the designed granularity of individual ap-

proaches) [33, 45, 54–56, 60, 62, 65, 66, 72, 73]. Those prior

techniques generally suffer from Problem 2 summarized in

§ 4.3.

Taint based approaches. Taint based approaches [35, 43, 59,

67–70] are not sufficient as a protection method against XLDH

due to their incomplete coverage and incomplete modeling of

the implicit flow, leading to sensitive user information leak

without privacy guarantee that our design achieves.

8 Conclusion

In this paper, we generalize and define privacy-preserving so-

cial SDK and their uses, characterize fundamental challenges

for combating the XLDH threat and guaranteeing privacy.

Specifically, we present a practical, clean-slate design and

end-to-end systems to enable privacy-preserving social SDK.

Our evaluation demonstrates its satisfactory effectiveness,

performance overhead and feasibility for adoption. Our

techniques will contribute to significantly elevating privacy

and compliance assurance for multiple stakeholders. Our

efforts will help policymakers better understand, define and

regulate the privacy-preserving mobile software supply chain.

Acknowledgments

We would like to thank the anonymous reviewers for their

insightful comments. The authors are supported in-part by

Indiana University’s IAS Collaborative Research Award and

by NSF CNS-2330265, 1850725.

References

[1] Appsgeyser App generator. https://appsgeyser.

com/.

[2] Facebook and twitter profiles silently slurped by shady

code. https://www.theregister.com/2019/11/

26/facebook_twitter_data_loss/.

[3] Facebook–cambridge analytica data scandal -

wikipedia. https://en.wikipedia.org/wiki/

Facebook-Cambridge_Analytica_data_scandal.

[4] Radar sdk. https://radar.com/.

[5] Support Materials. https://sites.google.com/

view/socialsdk.

[6] Two third-party sdks allowed secret har-

vesting of twitter and facebook user

data. https://www.zdnet.com/article/

two-third-party-sdks-allowed-secret-harvest\

ing-of-twitter-and-facebook-user-data/.

[7] Android Social Library Statistics and Market Share.

https://www.appbrain.com/stats/libraries/

social-libs, March 2022.

[8] Mobile Sdks Explorer. https://42matters.com/

sdks, March 2022.

[9] Wasim A Ali, KN Manasa, Malika Bendechache, Mo-

hammed Fadhel Aljunaid, and P Sandhya. A review of

current machine learning approaches for anomaly detec-

tion in network traffic. Journal of Telecommunications

and the Digital Economy, 8(4):64–95, 2020.

[10] Andorid. New trusted distribution model

for SDKs. https://developer.android.

com/design-for-safety/privacy-sandbox/

sdk-runtime#trusted-sdk-distribution, March

2023.

[11] Andorid. SDKRuntime API. https:

//developer.android.com/design-for-safety/

privacy-sandbox/guides/sdk-runtime#

prepare-sdk-app, March 2023.

[12] Andorid. SDKRuntime FAQ. https:

//developer.android.com/design-for-safety/

privacy-sandbox/sdk-runtime#faq, March 2023.

[13] Andorid. SDKRuntime Goals. https:

//developer.android.com/design-for-safety/

privacy-sandbox/sdk-runtime#goals, March

2023.

[14] Benjamin Andow, Samin Yaseer Mahmud, Wenyu

Wang, Justin Whitaker, William Enck, Bradley Reaves,

Kapil Singh, and Tao Xie. {PolicyLint}: Investigating

internal privacy policy contradictions on google play. In

28th USENIX security symposium (USENIX security

19), pages 585–602, 2019.

[15] Benjamin Andow, Samin Yaseer Mahmud, Justin

Whitaker, William Enck, Bradley Reaves, Kapil Singh,

and Serge Egelman. Actions speak louder than

words:{Entity-Sensitive} privacy policy and data flow

analysis with {PoliCheck}. In 29th USENIX Security

Symposium (USENIX Security 20), pages 985–1002,

2020.

[16] Android. Android bind service. https:

//developer.android.com/guide/components/

bound-services#Binding, March 2022.

[17] Android. Android binder. https://source.android.

com/docs/core/architecture/hidl/binder-ipc,

March 2022.

[18] Android. Android dex format. https://source.

android.com/docs/core/runtime/dex-format,

March 2022.

[19] Android. Android graphics. https://source.

android.com/docs/core/graphics, March 2022.

[20] Android. Android IsolatedProcess. https:

//cs.android.com/android/platform/

superproject/+/master:system/sepolicy/

private/isolated_app.te?q=isolatedProcess,

March 2022.

[21] Android. Android mediaprojection class.

https://developer.android.com/reference/

android/media/projection/MediaProjection,

March 2022.

[22] Android. Android runtime (art) and dalvik. "https:

//source.android.com/docs/core/runtime,

March 2022.

[23] Android. Android service class. https://developer.

android.com/reference/android/app/Service,

March 2022.

[24] Android. Android system alert window permission.

https://developer.android.com/reference/

android/Manifest.permission#SYSTE_ALERT_

WINDOW, March 2022.

[25] Android. Android UI Development. https://

developer.android.com/develop/ui, March 2022.

https://appsgeyser.com/
https://appsgeyser.com/
https://www.theregister.com/2019/11/26/facebook_twitter_data_loss/
https://www.theregister.com/2019/11/26/facebook_twitter_data_loss/
https://en.wikipedia.org/wiki/Facebook-Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook-Cambridge_Analytica_data_scandal
https://radar.com/
https://sites.google.com/view/socialsdk
https://sites.google.com/view/socialsdk
https://www.zdnet.com/article/two-third-party-sdks-allowed-secret-harvest\ing-of-twitter-and-facebook-user-data/
https://www.zdnet.com/article/two-third-party-sdks-allowed-secret-harvest\ing-of-twitter-and-facebook-user-data/
https://www.zdnet.com/article/two-third-party-sdks-allowed-secret-harvest\ing-of-twitter-and-facebook-user-data/
https://www.appbrain.com/stats/libraries/social-libs
https://www.appbrain.com/stats/libraries/social-libs
https://42matters.com/sdks
https://42matters.com/sdks
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime#trusted-sdk-distribution
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime#trusted-sdk-distribution
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime#trusted-sdk-distribution
https://developer.android.com/design-for-safety/privacy-sandbox/guides/sdk-runtime#prepare-sdk-app
https://developer.android.com/design-for-safety/privacy-sandbox/guides/sdk-runtime#prepare-sdk-app
https://developer.android.com/design-for-safety/privacy-sandbox/guides/sdk-runtime#prepare-sdk-app
https://developer.android.com/design-for-safety/privacy-sandbox/guides/sdk-runtime#prepare-sdk-app
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime#faq
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime#faq
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime#faq
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime#goals
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime#goals
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime#goals
https://developer.android.com/guide/components/bound-services#Binding
https://developer.android.com/guide/components/bound-services#Binding
https://developer.android.com/guide/components/bound-services#Binding
https://source.android.com/docs/core/architecture/hidl/binder-ipc
https://source.android.com/docs/core/architecture/hidl/binder-ipc
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/graphics
https://source.android.com/docs/core/graphics
https://cs.android.com/android/platform/superproject/+/master:system/sepolicy/private/isolated_app.te?q=isolatedProcess
https://cs.android.com/android/platform/superproject/+/master:system/sepolicy/private/isolated_app.te?q=isolatedProcess
https://cs.android.com/android/platform/superproject/+/master:system/sepolicy/private/isolated_app.te?q=isolatedProcess
https://cs.android.com/android/platform/superproject/+/master:system/sepolicy/private/isolated_app.te?q=isolatedProcess
https://developer.android.com/reference/android/media/projection/MediaProjection
https://developer.android.com/reference/android/media/projection/MediaProjection
"https://source.android.com/docs/core/runtime
"https://source.android.com/docs/core/runtime
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/Manifest.permission#SYSTE_ALERT_WINDOW
https://developer.android.com/reference/android/Manifest.permission#SYSTE_ALERT_WINDOW
https://developer.android.com/reference/android/Manifest.permission#SYSTE_ALERT_WINDOW
https://developer.android.com/develop/ui
https://developer.android.com/develop/ui

[26] Android. Application sandbox. https://source.

android.com/docs/security/app-sandbox, March

2022.

[27] Android. SEandroid. https://selinuxproject.

org/page/SEforAndroid, March 2022.

[28] Android. SurfaceControlViewHost. https:

//developer.android.com/reference/android/

view/SurfaceControlViewHost.SurfacePackage,

March 2022.

[29] Android. View. https://developer.android.com/

reference/android/view/View, March 2022.

[30] Android. Privacy sandbox sdk runtime on an-

droid. https://developer.android.com/

design-for-safety/privacy-sandbox/

sdk-runtime, March 2023.

[31] Apple. Apple Privacy Detail. https://developer.

apple.com/app-store/app-privacy-details/,

2022.

[32] Steven Arzt, Siegfried Rasthofer, Christian Fritz,

Eric Bodden, Alexandre Bartel, Jacques Klein, Yves

Le Traon, Damien Octeau, and Patrick McDaniel. Flow-

droid: Precise context, flow, field, object-sensitive and

lifecycle-aware taint analysis for android apps. Acm

Sigplan Notices, 49(6):259–269, 2014.

[33] Michael Backes, Sebastian Gerling, Christian Ham-

mer, Matteo Maffei, and Philipp Von Styp-Rekowsky.

Appguard–enforcing user requirements on android apps.

In International Conference on TOOLS and Algorithms

for the Construction and Analysis of Systems, pages

543–548. Springer, 2013.

[34] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar,

and Michael Backes. Keep me updated: An empirical

study of third-party library updatability on android. In

Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, pages 2187–

2200, 2017.

[35] William Enck, Peter Gilbert, Seungyeop Han, Vasant

Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon

Jung, Patrick McDaniel, and Anmol N Sheth. Taint-

droid: an information-flow tracking system for realtime

privacy monitoring on smartphones. ACM Transactions

on Computer Systems (TOCS), 32(2):1–29, 2014.

[36] Facebook. Facebook Taking Legal

Action Against OneAudience Abuse.

https://about.fb.com/news/2020/02/

taking-action-against-platform-abuse/,

February 2020.

[37] Facebook. Facebook sdk demo app. https:

//github.com/facebook/facebook-android-sdk/

tree/main/facebook-login, March 2022.

[38] Earlence Fernandes, Justin Paupore, Amir Rahmati,

Daniel Simionato, Mauro Conti, and Atul Prakash.

{FlowFence}: Practical data protection for emerging

{IoT} application frameworks. In 25th USENIX

security symposium (USENIX Security 16), pages 531–

548, 2016.

[39] Forbes. Facebook Sues Analytics Firm It Says

Was Harvesting User Data. https://www.

forbes.com/sites/emmawoollacott/2020/02/28/

facebook-sues-analytics-firm-it-says-was-h\

arvesting-user-data/, February 2020.

[40] Yanick Fratantonio, Chenxiong Qian, Simon P Chung,

and Wenke Lee. Cloak and dagger: from two permis-

sions to complete control of the ui feedback loop. In

2017 IEEE Symposium on Security and Privacy (SP),

pages 1041–1057. IEEE, 2017.

[41] Frida. Frida Android. https://frida.re/docs/

android/, March 2022.

[42] FTC. FTC Civil Penalty Amounts.

https://www.ftc.gov/news-events/

news/press-releases/2022/01/

ftc-publishes-inflation-adjusted-civil-pena\

lty-amounts-2022, 2022.

[43] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart

Schechter, and David Wetherall. These aren’t the droids

you’re looking for: retrofitting android to protect data

from imperious applications. In Proceedings of the 18th

ACM conference on Computer and communications

security, pages 639–652, 2011.

[44] Jie Huang, Michael Backes, and Sven Bugiel. A11y

and privacy don’t have to be mutually exclusive: Con-

straining accessibility service misuse on android. In

30th USENIX Security Symposium, 2021.

[45] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael

Backes. The art of app compartmentalization: Compiler-

based library privilege separation on stock android. In

Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, pages 1037–

1049, 2017.

[46] Hideaki Kawabata, Takamasa Isohara, Keisuke Take-

mori, Ayumu Kubota, Junya Kani, Harunobu Agematsu,

and Masakatsu Nishigaki. Sanadbox: Sandboxing

third party advertising libraries in a mobile appli-

cation. In 2013 IEEE International Conference on

Communications (ICC), pages 2150–2154. IEEE, 2013.

https://source.android.com/docs/security/app-sandbox
https://source.android.com/docs/security/app-sandbox
https://selinuxproject.org/page/SEforAndroid
https://selinuxproject.org/page/SEforAndroid
https://developer.android.com/reference/android/view/SurfaceControlViewHost.SurfacePackage
https://developer.android.com/reference/android/view/SurfaceControlViewHost.SurfacePackage
https://developer.android.com/reference/android/view/SurfaceControlViewHost.SurfacePackage
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/View
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime
https://developer.apple.com/app-store/app-privacy-details/
https://developer.apple.com/app-store/app-privacy-details/
https://about.fb.com/news/2020/02/taking-action-against-platform-abuse/
https://about.fb.com/news/2020/02/taking-action-against-platform-abuse/
https://github.com/facebook/facebook-android-sdk/tree/main/facebook-login
https://github.com/facebook/facebook-android-sdk/tree/main/facebook-login
https://github.com/facebook/facebook-android-sdk/tree/main/facebook-login
https://www.forbes.com/sites/emmawoollacott/2020/02/28/facebook-sues-analytics-firm-it-says-was-h\arvesting-user-data/
https://www.forbes.com/sites/emmawoollacott/2020/02/28/facebook-sues-analytics-firm-it-says-was-h\arvesting-user-data/
https://www.forbes.com/sites/emmawoollacott/2020/02/28/facebook-sues-analytics-firm-it-says-was-h\arvesting-user-data/
https://www.forbes.com/sites/emmawoollacott/2020/02/28/facebook-sues-analytics-firm-it-says-was-h\arvesting-user-data/
https://frida.re/docs/android/
https://frida.re/docs/android/
https://www.ftc.gov/news-events/news/press-releases/2022/01/ftc-publishes-inflation-adjusted-civil-pena\lty-amounts-2022
https://www.ftc.gov/news-events/news/press-releases/2022/01/ftc-publishes-inflation-adjusted-civil-pena\lty-amounts-2022
https://www.ftc.gov/news-events/news/press-releases/2022/01/ftc-publishes-inflation-adjusted-civil-pena\lty-amounts-2022
https://www.ftc.gov/news-events/news/press-releases/2022/01/ftc-publishes-inflation-adjusted-civil-pena\lty-amounts-2022

[47] Court Listener. Facebook, Inc. v. OneAu-

dience LLC (3:20-cv-01461). https:

//www.courtlistener.com/docket/16898689/

facebook-inc-v-oneaudience-llc/, February

2020.

[48] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govin-

dan. Efficient privilege de-escalation for ad li-

braries in mobile apps. In Proceedings of the 13th

annual international conference on mobile systems,

applications, and services, pages 89–103, 2015.

[49] Alessandro Narduzzo, Alessandro Rossi, et al. Mod-

ularity in action: Gnu/linux and free/open source soft-

ware development model unleashed. Technical report,

Department of Computer and Management Sciences,

University of Trento, Italy, 2008.

[50] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and

David Wagner. Addroid: Privilege separation for ap-

plications and advertisers in android. In Proceedings

of the 7th ACM Symposium on Information, Computer

and Communications Security, pages 71–72, 2012.

[51] Jun Qiu, Xuewu Yang, Huamao Wu, Yajin Zhou, Jinku

Li, and Jianfeng Ma. Libcapsule: Complete confinement

of third-party libraries in android applications. IEEE

Transactions on Dependable and Secure Computing,

2021.

[52] The Register. Facebook fires sueball at ’malicious’ app

SDK makers, accuses them of gobbling up people’s per-

sonal information. https://www.theregister.com/

2020/02/28/facebook_sues_developer/, February

2020.

[53] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Ar-

naud Legout, and David Choffnes. Recon: Reveal-

ing and controlling pii leaks in mobile network traf-

fic. In Proceedings of the 14th Annual International

Conference on Mobile Systems, Applications, and

Services, pages 361–374, 2016.

[54] Franziska Roesner and Tadayoshi Kohno. Securing

embedded user interfaces: Android and beyond. In

USENIX Security Symposium, pages 97–112, 2013.

[55] Matthew Rossi, Dario Facchinetti, Enrico Bacis, Marco

Rosa, and Stefano Paraboschi. {SEApp}: Bringing

mandatory access control to android apps. In 30th

USENIX Security Symposium (USENIX Security 21),

pages 3613–3630, 2021.

[56] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin,

and Taesoo Kim. Flexdroid: Enforcing in-app privilege

separation in android. In NDSS, 2016.

[57] Shashi Shekhar, Michael Dietz, and Dan S Wallach.

{AdSplit}: Separating smartphone advertising from

applications. In 21st USENIX Security Symposium

(USENIX Security 12), pages 553–567, 2012.

[58] Mengtao Sun and Gang Tan. Nativeguard: Protecting

android applications from third-party native libraries. In

Proceedings of the 2014 ACM conference on Security

and privacy in wireless & mobile networks, pages 165–

176, 2014.

[59] Mingshen Sun, Tao Wei, and John CS Lui. Tain-

tart: A practical multi-level information-flow track-

ing system for android runtime. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and

Communications Security, pages 331–342, 2016.

[60] Eran Tromer and Roei Schuster. Droiddisintegra-

tor: Intra-application information flow control in an-

droid apps. In Proceedings of the 11th ACM on

Asia Conference on Computer and Communications

Security, pages 401–412, 2016.

[61] Twitter. Twitter kit demo app. https://github.com/

twitter-archive/twitter-kit-android/tree/

master/samples/app, March 2018.

[62] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan

Dautenhahn, André DeHon, and Jonathan M Smith.

Breakapp: Automated, flexible application compartmen-

talization. In NDSS, 2018.

[63] Fabo Wang, Yuqing Zhang, Kai Wang, Peng Liu, and

Wenjie Wang. Stay in your cage! a sound sand-

box for third-party libraries on android. In European

Symposium on Research in Computer Security, pages

458–476. Springer, 2016.

[64] Jice Wang, Yue Xiao, Xueqiang Wang, Yuhong Nan,

Luyi Xing, Xiaojing Liao, JinWei Dong, Nicolas Ser-

rano, Haoran Lu, XiaoFeng Wang, et al. Understanding

malicious cross-library data harvesting on android. In

30th USENIX Security Symposium (USENIX Security

21), pages 4133–4150, 2021.

[65] Yifei Wang, Srinivas Hariharan, Chenxi Zhao, Jiaming

Liu, and Wenliang Du. Compac: Enforce component-

level access control in android. In Proceedings of the

4th ACM Conference on Data and Application Security

and Privacy, pages 25–36, 2014.

[66] Rubin Xu, Hassen Saïdi, and Ross Anderson. Aurasium:

Practical policy enforcement for android applications. In

21st USENIX Security Symposium (USENIX Security

12), pages 539–552, 2012.

https://www.courtlistener.com/docket/16898689/facebook-inc-v-oneaudience-llc/
https://www.courtlistener.com/docket/16898689/facebook-inc-v-oneaudience-llc/
https://www.courtlistener.com/docket/16898689/facebook-inc-v-oneaudience-llc/
https://www.theregister.com/2020/02/28/facebook_sues_developer/
https://www.theregister.com/2020/02/28/facebook_sues_developer/
https://github.com/twitter-archive/twitter-kit-android/tree/master/samples/app
https://github.com/twitter-archive/twitter-kit-android/tree/master/samples/app
https://github.com/twitter-archive/twitter-kit-android/tree/master/samples/app

[67] Lei Xue, Chenxiong Qian, Hao Zhou, Xiapu Luo, Yajin

Zhou, Yuru Shao, and Alvin TS Chan. Ndroid: Toward

tracking information flows across multiple android con-

texts. IEEE Transactions on Information Forensics and

Security, 14(3):814–828, 2018.

[68] Lok Kwong Yan and Heng Yin. {DroidScope}: Seam-

lessly reconstructing the {OS} and dalvik semantic

views for dynamic android malware analysis. In 21st

USENIX security symposium (USENIX security 12),

pages 569–584, 2012.

[69] Man-Ki Yoon, Negin Salajegheh, Yin Chen, and Mihai

Christodorescu. Pift: Predictive information-flow track-

ing. In Proceedings of the Twenty-First International

Conference on Architectural Support for Programming

Languages and Operating Systems, pages 713–725,

2016.

[70] Wei You, Bin Liang, Wenchang Shi, Peng Wang, and

Xiangyu Zhang. Taintman: An art-compatible dynamic

taint analysis framework on unmodified and non-rooted

android devices. IEEE Transactions on Dependable and

Secure Computing, 17(1):209–222, 2017.

[71] Xiao Zhang, Amit Ahlawat, and Wenliang Du. Aframe:

Isolating advertisements from mobile applications in

android. In Proceedings of the 29th Annual Computer

Security Applications Conference, pages 9–18, 2013.

[72] Yuan Zhang, Min Yang, Guofei Gu, and Hao Chen. Re-

thinking permission enforcement mechanism on mobile

systems. IEEE Transactions on Information Forensics

and Security, 11(10):2227–2240, 2016.

[73] Suwen Zhu, Long Lu, and Kapil Singh. Case:

Comprehensive application security enforcement on

cots mobile devices. In Proceedings of the 14th

Annual International Conference on Mobile Systems,

Applications, and Services, pages 375–386, 2016.

Appendix

Due to space limit, more Appendix can be found at [5].

Figure 3: A screenshot of a privacy-preserving Facebook

SDK used in a demo app, fulfilling the Display User Profile

use cases of Facebook SDK (Sensitive Information masked,

the area with gray background indicates the displayed filled

by the privacy-preserving Facebook SDK)

(a) Login with Facebook (b) To authorize the app

(c) Display of user profiles

(d) In-app posting to social

networks

Figure 4: Prominent examples of social SDK usage in mobile

apps (personal information blurred in red frames, including

user profile information and names of the group being joined

	Introduction
	Background
	Goals and Definition for Privacy-Preserving Social-Media SDK
	Properties for Privacy-Preserving SDKs
	Backward Compatibility for Privacy-Preserving Social-SDK Design

	Design for Privacy-Preserving, Social-Media SDKs
	Design Overview of PESP
	PESP SDK Runtime
	Comparison with Related Work
	Implementation

	Evaluation
	Case Study and Security Analysis: Login with Facebook under PESP
	Case Study and Security Analysis: Display of Facebook User Profile under PESP
	Case Study and Security Analysis: Login with Twitter under PESP
	Performance Overhead
	Evaluation for the Three Use Cases
	Apps with Multiple Social SDKs

	Discussion
	Related Work
	Conclusion

