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Abstract
LiDAR-based perception is crucial to ensure the safety

and reliability of autonomous driving (AD) systems. Though
some adversarial attack methods against LiDAR-based detec-
tors perception models have been proposed, deceiving such
models in the physical world is still challenging. While exist-
ing robustness methods focus on transforming point clouds
to embed more robust adversarial information, our research
reveals how to reduce the errors during the LiDAR capturing
process to improve the robustness of adversarial attacks. In
this paper, we present AE-Morpher, a novel approach that
minimizes differences between the LiDAR-captured and orig-
inal adversarial point clouds to improve the robustness of ad-
versarial objects. It reconstructs the adversarial object using
surfaces with regular shapes to fit the discrete laser beams. We
evaluate AE-Morpher by conducting physical disappearance
attacks that use a mounted adversarial ornament to conceal
a car from models’ detection results in both SVL Simulator
environments and real-world LiDAR setups. In the simulated
world, we successfully deceive the model up to 91.1% of the
time when LiDAR moves towards the target vehicle from
20m away. On average, our method increases the ASR by
38.64% and reduces the adversarial ornament’s projection
area by 67.59%. For the real world, we achieve an average
attack success rate of 71.4% over a 12m motion scenario.
Moreover, adversarial objects reconstructed by our method
can be easily physically constructed by human hands without
the requirement of a 3D printer.

1 Introduction

Advancements in artificial intelligence and sensor technology
have significantly accelerated the development of autonomous
driving (AD) in recent years, bringing it closer to widespread
adoption. Presently, a considerable number of vehicles on the
road incorporate autonomous features, with their prevalence
continually expanding. Systems like Tesla’s Autopilot and
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GM’s Super Cruise can even partially take over vehicle con-
trol, handling specific driving tasks. Consequently, the safety
of autonomous driving systems has emerged as an increas-
ingly critical concern.

LiDAR sensors and LiDAR-based perception models are
critical components of AD systems’ perception modules.
However, the vulnerability of deep neural networks (DNNs)
to adversarial examples (AEs) has raised concerns regard-
ing the security of LiDAR-based perception models. Some
studies [9, 12, 13, 15, 16, 40, 43, 49] have explored the use of
adversarial object attacks to deceive LiDAR-based percep-
tion models to output incorrect perceptions that could poten-
tially lead to accidents. Nevertheless, conducting an effective
physical-world attack against LiDAR-based perception mod-
els is challenging. Because these models typically operate
in dynamic environments, deceiving them demands more ro-
bust AEs capable of handling varying relative distances and
viewing angles.

For the physical adversarial attack against camera-based
perception models, many robustness improvement methods
[17–19, 24, 25, 27, 29, 30, 32, 47] have been proposed. How-
ever, to the best of our knowledge, effective robustness im-
provement methods for physical adversarial object attacks
against LiDAR-based perception models remain limited.
Some approaches [20, 28, 33, 39, 44] introduce a surface
smoothness function during adversarial optimization. How-
ever, these methods are designed for dense 3D scanner point
clouds and are unfeasible for sparse LiDAR point clouds.
Transformation-based methods [11,45,46], such as EOT [11],
has been employed in MSF-ADV [13]. However, the effec-
tiveness is mainly proved on small objects like traffic cones
or boxes and presents additional challenges in terms of con-
vergence.

Therefore, this paper aims to propose an effective robust-
ness improvement method to enable more threatening and
realistic physical adversarial attacks against LiDAR-based
detection models. To achieve it, we need to consider the fol-
lowing two key questions:

Q1: What causes the loss in the robustness of physical
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Figure 1: Overview of AE-Morpher. The desired adversarial point cloud padv can successfully deceive the target model in the
digital realm, representing how the attack expects the original AE to be perceived by LiDAR. However, the captured point cloud
of the original adversarial object often differs from this desired representation. Therefore, we propose AE-Morpher, a method
aimed at reconstructing the original adversarial object to minimize the discrepancies between the captured point cloud and the
desired point cloud.

adversarial attacks against LiDAR-based detection models?
In order to attack a LiDAR-based perception model in the

real world, the attacker needs to generate an adversarial point
cloud padv, transform it into a 3D object x3D, and 3d print it
as x

′
3D. The LiDAR then captures the beam reflected from

x
′
3D, generating point cloud p

′
adv and feeds it to the perception

model.
Upon comparing multiple pairs of padv and p

′
adv, we have

unexpectedly found that they are likely to be quite different.
According to our analysis in Section 3, the primary factor
behind it is the difficulty of sparse laser beams in accurately
capturing the scattered perturbations of adversarial objects,
particularly those with irregular surfaces and sharp protru-
sions. We present an example to facilitate the initial under-
standing. For an object shown in Figure 2, the captured point
clouds differ when the laser beams hit various locations. We
also conduct a real-world experiment to confirm this insight,
please refer to Appendix A.2 for more details. In a physi-
cal attack scenario, due to factors such as the location offset
between the digital and physical adversarial objects during
placement, and the change in relative position between the
LiDAR and the physical adversarial objects, it is hard to en-
sure that the point cloud p

′
adv captured by the LiDAR is the

desired point cloud padv. The discrepancies between padv and
p
′
adv compromise the robustness of the adversarial object. For

a more detailed analysis, please refer to Section 3.

Figure 2: The LiDAR-captured point cloud differs when the
hit points of laser beams change.

Q2: How can we improve the robustness of physical adver-
sarial attacks against LiDAR-based perception models?

Based on Q1, scattered adversarial perturbations are diffi-
cult to effectively capture by sparse LiDAR signals and result
in the discrepancies between padv and p

′
adv, compromising

the robustness of the adversarial object. To address it, we
propose AE-Morpher, a novel AE Reconstruction method.
Rather than seeking more robust adversarial perturbations,
we aim to optimize the presentation of adversarial perturba-
tions to minimize perturbation distortions during the LiDAR



capturing process. Specifically, as depicted in Figure 1, we
first identify the effective perturbations of a given adversarial
object, scattered points on the object. Then, we expand them
by constructing adversarial surfaces for each perturbation to
make them easier to capture while eliminating redundant de-
tails of the adversarial object. With adversarial surfaces, we
construct a new adversarial object and enhance its stealthi-
ness by reducing the volume at selective positions. By doing
so, the captured point cloud can closely resemble the digital
point cloud and maintain the adversarial attack capability in
the physical world. Importantly, our method does not interfere
with the adversarial optimization stage, thereby avoiding any
additional challenges in model convergence.

We validate our proposed robustness improvement method
with disappear attacks against LiDAR-based perception mod-
els. Specifically, we generate an adversarial ornament and
attach it to a car to conceal the car from the detection of the
following cars. We conduct extensive experiments in both a
simulated environment and the real world. Our results show
that the reconstructed adversarial ornaments achieve an attack
success rate of 100% over a 20m motion scenario in Apollo.
On average, our method increases the ASR by 38.64% and
reduces the adversarial ornament’s projection area by 67.59%
compared to the original adversarial ornament. For the real
world, we achieve an average attack success rate of 71.4%
over a 12m motion scenario. Notably, our reconstructed ob-
jects do not require expensive 3D printing technology. While
a 3D printer capable of producing an object measuring approx-
imately 60*58*38 cm is priced at $29,999 on Amazon [5],
our method can be achieved through simple manual cutting
of low-cost materials, such as corrugated cardboard or wood
board, and the whole cost is less than $15.

In summary, this work makes the following contributions:

• New finding. By delving into LiDAR capturing princi-
ples, we are the first to reveal that both the sparse LiDAR
laser beams and the scattered adversarial perturbations
jointly play a crucial role in the physical adversarial
attack robustness against LiDAR-based perception mod-
els.

• New technique. We propose AE-Morpher, a novel ap-
proach to improve the robustness of AEs against LiDAR-
based perception models in the physical world. AE-
Morpher adjusts the geometric properties of adversarial
objects to fit the discrete LiDAR signals by reconstruct-
ing their surfaces, thereby improving the physical attack
robustness of AEs.

• We evaluate AE-Morpher by conducting physical dis-
appearance attacks on cars in both SVL Simulator envi-
ronments and the real world. The results show that our
approach can effectively improve the attack robustness of
adversarial objects. Video demonstrations can be found
at https://sites.google.com/view/ae-morpher.

2 Background and Related Work

In this section, we provide a summary of LiDAR’s devel-
opment and applications, as well as an overview of existing
attacks against LiDAR-based object detection models and
related robustness improvement methods.

2.1 LiDAR Sensors and Detection Principles

LiDAR is a remote sensing technology that employs laser
pulses to measure distances and generate 3D maps. It’s exten-
sively utilized in autonomous driving to provide precise infor-
mation about nearby objects, including vehicles, pedestrians,
road signs, and lane markings. Prominent autonomous driv-
ing platforms, including Baidu Apollo [1] and Autoware [3],
incorporate LiDAR as their principal sensor for object detec-
tion. Although there are different types of LiDAR, including
spinning LiDAR [2], rotating mirror LiDAR [6], and optical
phased array LiDAR [23], which rely on different ways of ma-
nipulating the laser beam, they all follow a similar detection
principle.
The detection principles of LiDAR. The LiDAR sensor
first emits a laser beam from a transmitter, which is directed
toward the target direction using a rotating mirror or scanning
mechanism. When the pulse encounters an obstacle, it reflects
back toward the LiDAR, where it is detected by a receiver.
The time taken for the pulse to travel back and forth can be
used to calculate the distance between the transmitter and
the obstacle, considering the speed of light is constant, as
illustrated in Figure 3.

Figure 3: LiDAR detects the position of obstacles by record-
ing the time spent on the round trip of the laser beam.

Angular (horizontal/vertical) resolution is a crucial metric
of LiDAR sensors, referring to the angular interval between
laser beams. To achieve a wider field of view, the laser emitter
rotates horizontally and emits laser light at specific intervals,
which represents the horizontal resolution. To determine the
height of obstacles, LiDAR sensors adopt an x-line design,
emitting multiple laser beams from top to bottom simultane-
ously, with a certain angle between each beam. This angle,
denoted as α in Figure 3, represents the vertical resolution of
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the LiDAR system. A higher angular resolution corresponds
to more emitted beams and a denser point cloud. Currently,
LiDAR sensors equipped on vehicles typically have an angu-
lar resolution ranging from 0.1 to 0.4 for horizontal and 0.17
to 2 for vertical. To illustrate, an angular resolution of 0.2·

implies a distance of 17.5cm between two adjacent points
at a range of 50 m. As a result, LiDAR is likely to acquire
different point clouds for an object at a distance of 50m when
its surfaces are irregular (e.g., with significant protrusions or
depressions within a 17.5cm range), even with minimal move-
ment. Therefore, the instability of point cloud acquisition may
occur when the surface irregular deformation of the object is
smaller than the radar’s resolution, which is a primary issue
our robustness improvement method aims to address in this
paper.

2.2 Attacks against LiDAR-based Object De-
tection Models

Due to the unique scanning principles of LiDAR, several
LiDAR-specific attack methods have been proposed. These
attacks can be broadly divided into three categories: spoofing
attacks [14, 21, 22, 34, 37, 38, 42], arbitrary object attacks
[48, 49] and adversarial object attack [9, 12, 13, 15, 16, 40, 43].

In spoofing attacks, the attacker employs an additional laser
emitter to project laser beams toward the LiDAR system,
thereby introducing spoofed reflection points into the point
cloud generated by the LiDAR to deceive the perception mod-
els. As for arbitrary object attacks, they utilize the location
of the objects to mislead the models. To be specific, [49] in-
tricately devises processes to identify the correct locations.
These locations are typically distributed in the space sur-
rounding the target vehicle, necessitating the use of drones.
Conversely, adversarial object attacks use the shape of the
object for this purpose. Attackers employing adversarial ob-
ject attacks need to optimize the shape of the adversarial
object. Each type of attack has its own set of advantages and
disadvantages.

In terms of practicality, spoofing attacks require a complex
attack system that includes devices such as signal generators
and laser emitters. Additionally, the attacker needs to precisely
aim the laser emitted by the laser transmitter at the vehicle’s
LiDAR. These factors introduce difficulties in launching such
attacks, reducing their practicality [26, 38]. For arbitrary ob-
ject attacks and adversarial object attacks. the arbitrary object
attack necessitates the use of multiple extra objects, while the
adversarial object attack does not. Furthermore, when the tar-
get vehicle is in motion, the drones in [49] must adjust their
position according to the vehicle to successfully mislead the
model, whereas an adversarial object attack does not require
such adjustments. However, although adversarial objects can
yield favorable results in simulators, their physical robust-
ness is lacking [41]. This prompts us to propose robustness
improvement methods.

In terms of stealthiness, spoof attacks themselves are the
most stealthy since the laser beams cannot be perceived by
humans. However, the required attack system has a relatively
large volume and may raise suspicion when placed on the
roadside. arbitrary object attacks are also stealthy as the ob-
jects are placed around the target vehicle, although the pres-
ence of multiple objects might appear unusual. These objects,
however, do not directly contact the target vehicle. The stealth-
iness of adversarial object attacks is determined by the size
of the adversarial object used, which can range from highly
stealthy to very noticeable. This consideration compels us
to take stealthiness into account when proposing robustness
improvement methods.

2.3 Robustness-improvement Method for At-
tacks against LiDAR-based Object Detec-
tion Models

In recent years, several robustness improvement methods
specifically designed for point clouds have been proposed
[20,28,33,39,44]. These methods employ techniques such as
surface smoothness loss functions or limiting the magnitude
of point cloud deformation. However, they primarily focus
on dense point clouds generated by 3D scanners, which are
substantially different from the sparse point clouds produced
by LiDAR. For instance, a 3D scanner-generated point cloud
of a car may comprise more than 100k points, while LiDAR-
generated point clouds typically contain only hundreds or
thousands of points due to resolution differences (millimeter-
level for 3D scanners vs centimeter or even ten-centimeter
level for LiDAR). Sparse point clouds imply large intervals
between points and a loss of detailed structural information.
Assessing the smoothness of a region with insufficient proxim-
ity points is challenging, rendering these methods unsuitable
for LiDAR attack scenarios.

For classical generic robustness improvement methods
[11,45,46], exemplified by EOT [11], these methods improve
the generalization of adversarial objects by applying various
transformations, making them robust against small discrepan-
cies between the original point cloud and the captured point
cloud. They perform well in some situations [13], but they
are initially designed for images and lack targeted optimiza-
tion for LiDAR scenes, potentially causing difficulties in the
convergence of adversarial objects [11].

This situation prompts us to design a robustness improve-
ment method utilizing LiDAR’s detection principles to further
improve obstacle robustness beyond existing methods.

3 Preliminary Analysis

A 3D object, whether it is a benign object or an adversarial
object, is typically described by two main components: ver-
tices, which define the points in 3D space that make up the



object, and faces, which define the polygons connecting these
vertices, as shown in Figure 4. Based on this background
knowledge, we further discuss the three limitations that the
mainstream adversarial objects may have that compromise
their robustness and stealthiness.

Figure 4: A 3D object consists of vertices (i.e., point clouds)
and faces (i.e., polygons). And vertices here are not necessar-
ily to be the corner of the object.

Scattered perturbations are difficult for LiDAR to capture.
The adversarial perturbations are mainly introduced into the
vertices of the adversarial object, which are scattered points
on the object’s surface. In the physical world, LiDAR captures
points based on laser signals reflected from the surfaces of
the object. Due to the sparsity of laser beams, they are more
likely to hit the faces of the adversarial object rather than the
vertices. However, these faces are not well-designed and do
not carry effective perturbations. This means that many effec-
tive adversarial perturbations are missed during the LiDAR
capturing process.
Irregular surfaces amplify errors during the LiDAR cap-
turing process. Since the vertices carry adversarial pertur-
bations, the ideal adversarial point cloud should exclusively
consist of vertices. However, the captured point cloud con-
sistently deviates from the ideal one due to discrepancies
between the laser beams’ hit points and the object’s vertices
(as shown in Figure 5). Moreover, irregular surfaces and sharp
protrusions can exacerbate these discrepancies. Compared to
flat surfaces, the disparity between the coordinates of two ad-
jacent points on an irregular surface with sharp protrusions is
more pronounced. Consequently, more errors are introduced
when the laser beams do not hit the vertices but instead hit
adjacent points on the surface. Ultimately, these discrepancies
undermine the physical robustness of the adversarial object.

Figure 5: The LiDAR-captured point cloud (left) usually dif-
fers from the desired one (right).

Redundant vertices enlarge the volume of adversarial ob-
jects. During the adversarial optimization process, not all ver-

tices of the original object are involved, which means many
of these vertices are actually redundant, and carry minimal ad-
versarial information. Nevertheless, these redundant vertices
introduce additional surface details, such as sharp protrusions,
on the adversarial object. While these protrusions contribute
less to the effectiveness of the adversarial attack, they add
unnecessary volume to the object and pose challenges during
the physical creation of the adversarial object. As a result, the
presence of these protrusions undermines the stealthiness and
practicality of the adversarial object.

4 Approach Overview

In this section, we describe our high-level intuition for im-
proving the physical attack robustness of adversarial objects
and the threat model of our method.
Key intuition. Our approach is derived from the analysis
discussed in Section 3. We recognize that the scattering of
perturbations and the irregularity of surfaces play a joint role
in compromising the robustness of the adversarial object in
the physical world. Additionally, the presence of redundant
vertices results in unnecessary volume in the adversarial ob-
ject, compromising the robustness of the adversarial object
in the physical world. Intuitively, if we can solve these prob-
lems, both the physical robustness and the stealthiness of the
adversarial object will increase.

Firstly, we identify and remove vertices with minimal con-
tribution to the attack efficacy from the original adversarial
object in order to decrease its volume. To accomplish this, we
simulate the LiDAR capture process by sampling multiple
times from all vertices of the original adversarial object. We
evaluate the attack performance of these sampled vertices and
select the ones that are most effective.

Secondly, we incorporate adversarial perturbations from
vertices into edges or surfaces, so the adversarial perturbations
are not limited to discrete spots but expand to continuous lines
and areas, which makes the adversarial perturbations more
easily captured by LiDAR. To achieve this, we reconstruct
the surface of the adversarial object using flat polygons, as
illustrated in Figure 6. The coordinates of these polygons
are derived from the remaining vertices, thereby inheriting
the adversarial perturbations. Consequently, the new object
exhibits adversarial perturbations using surfaces instead of
vertices.

Figure 6: The original (left) and the reconstructed (right)
adversarial object.



Threat Model. We assume that the attacker has successfully
generated a digital adversarial object using a known method.
To apply our method and enhance the object’s robustness in
the physical world, the attacker requires additional informa-
tion. This information includes the position of the LiDAR
on the victim vehicle, as well as its vertical and horizontal
angle resolution. Acquiring these details is relatively straight-
forward since the attacker can refer to the public manual of
the target LiDAR to obtain its performance parameters and
examine similar vehicles to determine its installation position.
Additionally, for the adversarial object to function effectively,
the attacker must have the capability to physically create the
object and position it as desired.
Overview. As depicted in Figure 1, AE-Morpher consists
of four main steps: (1) Identifying effective adversarial ver-
tices: Given an original adversarial object M, we identify
the vertices that carry effective adversarial perturbations. (2)
Constructing adversarial faces: We generate an adversarial
face fadv for each effective vertex, ensuring that each point on
fadv possesses the corresponding adversarial perturbation. (3)
Constructing the adversarial object: We obtain an adversar-
ial surface by connecting the adversarial faces into a folded
surface. This surface is then translated in space to give it
thickness, ultimately resulting in a 3D object. (4) Enhancing
stealthiness: We fine-tune the size of the surface to strike
a balance between the object’s robustness and stealthiness.
This enables customization of the object according to specific
requirements.

5 Approach Details

5.1 Identifying Effective Adversarial Vertices
The first step is identifying effective vertices from the orig-
inal adversarial object. Since not all vertices of the original
adversarial object effectively attack the LiDAR-based detec-
tion model M, there is no need to generate adversarial faces
for all vertices. Furthermore, by using fewer vertices, we can
construct a smaller adversarial object, thereby enhancing its
stealthiness. Our objective is to select a set of fewer vertices
that can effectively attack M.

We utilize Ray Cast rendering [7] to help select effective
vertices from all vertices of a given original adversarial object.
Ray casting simulation emulates the LiDAR capture process
to generate the rendered point cloud of the original adversarial
object. It selectively preserves specific vertices of the 3D ob-
ject and utilizes them to generate a point cloud corresponding
to the 3D object. The vertex selection process primarily takes
into account the object’s position, angle, and occlusion. Next,
we input the rendered point cloud into M and analyze the
output of M. If the rendered point cloud successfully deceives
M, we consider the vertices comprising the rendered point
cloud as the effective vertices.

To avoid missing effective vertices and further improve the

robustness of the reconstructed adversarial object, we render
the original adversarial object at various distances and collect
the effective vertices for each distance. More specifically, we
divide the interval where we expect the adversarial object to
be effective into N equal segments, determining N positions
at the center of these segments. We then render the adversarial
object at these N positions. At each position, we slightly move
the adversarial object to generate a series of point clouds.
From these, we select the point cloud that has the minimum
number of points while still capable of fooling the model.
By leveraging the correspondence between the points of the
selected point clouds and the vertices of the object, we can
identify effective vertices at each position. Then, we take the
union of effective vertices at all positions to obtain a set of
effective vertices, denoted as V =

{
v
′
1,v

′
2, ...,v

′
n

}
.

Figure 7: From all possible vertices (left), we identify the
effective adversarial ones (right).

5.2 Constructing Adversarial Faces

With the set of effective vertices V , we can construct the ad-
versarial surface to enhance the robustness of the adversarial
object in the physical world. The question is, how to create a
reasonable and effective adversarial surface?

Assume an ideal position for the LiDAR, where all laser
beams precisely hit the effective vertices, thereby capturing
an effective adversarial point cloud. However, when there
is relative motion between the LiDAR and the adversarial
object, such as the LiDAR approaching the object, the hit
points of laser beams deviate from the effective vertices and
shift towards their adjacent points, resulting in a new LiDAR
reflection signal with altered coordinates. Notably, when the
effective vertex is located on sharp protrusions, the dispar-
ity between its coordinates and those of its adjacent point
becomes substantial. Conversely, if the effective vertex is
positioned on flat surfaces, the discrepancies between its coor-
dinates and those of its adjacent point are minimal. Therefore,
we create a flat region centered around each effective vertex
as an adversarial surface to reduce the discrepancies between
the captured point cloud and the desired point cloud, thus
improving the physical robustness.

Formally, we provide a definition for the adversarial face
fadv, which is represented as a rectangle. We consider fadv as
a rectangle because the LiDAR scans an object in rows, and
using a rectangle maintains consistency in both horizontal



and vertical directions. The rectangle can be represented by
its four vertices, as shown in Equation 1.

fadv = [v
′
n1,v

′
n2,v

′
n3,v

′
n4]

v
′
n1 = t(v

′
n, l1,d1)

v
′
n2 = t(v

′
n, l2,d2)

v
′
n3 = t(v

′
n, l3,d3)

v
′
n4 = t(v

′
n, l4,d4)

(1)

Here, v
′
n denotes the original adversarial vertex, and the

function t(·) represents the translation operation. v
′
n1, v

′
n2, v

′
n3

and v
′
n4 are the new vertices generated by translating v

′
n in

the direction of d1, d2, d3 and d4 by distances l1, l2, l3 and l4,
respectively.

Figure 8: Translate the effective vertices to create adversarial
faces.

We adopt a right-hand coordinate system, where the victim
vehicle moves from the negative direction of the Y-axis to
the positive direction, and the laser beams are emitted from
the same negative direction of the Y-axis. As depicted in
Figure 8, all effective vertices are expanded to form faces.
These faces are perpendicular to the XOZ plane and oriented
towards the Y-direction. In this scenario, d1 = [0,0,1], d2 =
[0,0,−1], d3 = [1,0,0] and d4 = [−1,0,0]. Here, l1, l2, l3 and
l4 represent the translation magnitudes in the d1, d2, d3 and d4
directions, respectively. In this case, l1 and l2 are the same for
all vertices, considering that the height of all adversarial faces
should be equal. l3 and l4 are adjusted based on individual
vertices to ensure that adjacent adversarial faces do not block
each other.

5.3 Constructing Adversarial Object

In the previous step, we generate a series of adversarial faces
corresponding to the effective vertices, all sharing the same
orientation. Subsequently, these faces need to be connected
to form a single continuous surface. As depicted in the right
half of Figure 8, the adversarial faces are initially scattered.
To achieve a continuous surface, we connect the two closest
pairs of vertices between each pair of adjacent faces, creating
new quadrilateral faces. The result is illustrated in the left half
of Figure 9.

Next, we proceed to construct a 3D object using this surface.
We duplicate the surface and then translate the duplicated
surface along the position direction of the Y-axis by a distance
d. The original surface and the duplicated surface are then
connected using quadrilateral faces, which can be constructed
by connecting the closest vertices on the outer edges of both
surfaces. The value of d determines the thickness of the newly
created 3D object and can be minimized based on stealthiness
requirements.

Figure 9: Transform adversarial faces into a 3D object.

As shown in the right half of Figure 7, the effective vertices
are arranged in rows. Figure 9 shows the reconstruction result
of one of these rows. We can reconstruct each row and stack
them like layers of a cake to obtain the reconstructed adver-
sarial object. Furthermore, we can modify the back side of the
adversarial object (the side not facing the LiDAR) to enhance
its practicality in the physical world. For example, we can flat-
ten the back side to facilitate its physical production or attach
hooks to it, allowing the object to be hung somewhere. These
modifications are feasible because the LiDAR sensor does not
capture the back of the object, ensuring that the robustness of
the adversarial object remains unaffected.

5.4 Stealthiness Enhancement

To enhance the stealthiness of the adversarial object, we can
adjust the height of each layer. While generating adversarial
faces in Section 5.1, we establish the translation magnitude
as the margin between adjacent vertices. However, as shown
in the right half of Figure 7, there is a noticeable gap between
two vertically adjacent vertices, allowing us to moderately
reduce the value of l1 and l2 to improve the stealthiness of the
adversarial object.

More specifically, as depicted in Figure 10, when the Li-
DAR approaches or moves away from the adversarial object,
the hit points of the laser beams move up and down along its
surface. Consequently, by maximizing l1 and l2 (as depicted
in Figure 8) up to the full margin to enlarge the LiDAR reflec-
tion surface, we can enhance the robustness of the adversarial
object. Conversely, reducing l1 and l2 to decrease the volume
of the adversarial object improves its stealthiness.



Figure 10: The hit points of the laser beams move up and
down along the surface of the adversarial object.

6 Evaluations in Simulated World

In this section, we apply our method to the adversarial object
generated by Tu’s method [41]. The process of generating
the adversarial object is discussed in detail in Section 6.2.
Our method can also be employed with other attack methods,
provided that an effective adversarial object is available. We
evaluate the effectiveness of our method in enhancing the sur-
vival rate of digital adversarial objects, and the attack success
rate in dynamic scenarios with and without deflection an-
gles. All experiments presented in this section are conducted
within a simulator environment. Furthermore, the adversarial
ornaments in this section solely utilize their shape to convey
adversarial information. For physical experiments, please re-
fer to Section 8. Additionally, we assess the printability of
adversarial objects both before and after applying our method,
please refer to Section A.3.

6.1 Concepts in Evaluations
Before presenting our experiments, we clarify several key
concepts used throughout this section:
Original adversarial ornaments: These are the adversarial
ornaments directly transferred from the digital adversarial
object.
Reconstructed adversarial ornaments: These adversarial
ornaments are reconstructed based on the Original adversarial
object.
Victim vehicle: This is the car equipped with a LiDAR and
the corresponding LiDAR-based perception model, which we
aim to deceive using adversarial objects.
Target vehicle: This is the car attached with an adversarial
object, and we intend to make it disappear from the victim
vehicle’s detection results.
SVL Simulator: The SVL Simulator is an open-source au-
tonomous vehicle simulator developed by LG Electronics
America R&D Lab. Researchers can create their own maps
and control cars within the simulator to obtain sensor data
closely resembling real-world conditions. Numerous papers
have successfully conducted their experiments using the SVL
Simulator [12–14, 21]. Our experiments mentioned in this

section are also performed in the SVL Simulator environment
to acquire a relatively large amount of experimental data that
closely approximates real-world conditions. Additionally, we
showcase the results of our physical experiments in Section
8.
Apollo: Apollo is an open-source autonomous driving frame-
work capable of receiving data from sensors and detecting
vehicles, pedestrians, and other obstacles within the sensor
data. We used Apollo 7.0 to conduct our dynamic experiment,
as described in Section 6.4 and 6.5.

6.2 Evaluation Setup

Attack scenarios. We consider an attacker who generates
an adversarial object to deceive the LiDAR-based perception
model of an autonomously driving vehicle. The generated ad-
versarial object is attached to the target vehicle as an ornament,
causing the model to fail in detecting the target vehicle. The
LiDAR and the target vehicle may be in a stationary position
at varying distances or in motion with different angles.
Generate the adversarial object. We basically follow Tu’s
method [41] to construct the original adversarial ornament.
After the adversarial optimization process, we obtain an effec-
tive adversarial object with a complex surface, where the coor-
dinates of its vertices carry the adversarial information. How-
ever, LiDAR cannot accurately capture such objects, which
can cause discrepancies between the LiDAR echo signals and
the physical object, thereby reducing its adversarial robust-
ness, as explained in Section 3.
Reconstruct the adversarial object. To improve the robust-
ness of the generated adversarial object in the physical world,
we apply our method described in Section 5. In practice, we
find that the points of the LiDAR point cloud are relatively
dense in the horizontal direction. For instance, considering
the "00000.bin" file in the KiTTi dataset. At a distance of
about 5.95m, the horizontal gap between adjacent points mea-
sures approximately 0.17m, while the vertical gap is around
0.49m. Therefore we set l3 and l4 (the horizontal translation
magnitude) to zero. Under such conditions, adversarial faces
are reduced to adversarial edges. Additionally, we set l1 + l2
to 50% of the margin between adjacent vertical vertices to
increase the stealthiness of the adversarial object.

6.3 Efficacy in Static Attack

In this experiment, we select two widely used models: Point-
Pillars [10] and PointRCNN [36], as our target models. These
two models represent the two mainstream approaches in the
field of object detection for autonomous driving systems,
namely voxel-based object detection and point-based object
detection. Notably, PointPillars has been adopted in Apollo
and Autoware, which are among the world’s leading open-
source software projects for autonomous driving.



Experimental Setup. We generate 200 adversarial orna-
ments using Tu’s method [41] for both PointPillars and
PointRCNN. All of these adversarial ornaments are tested
to be effective in the digital world at a distance of 15m, which
is the braking distance [8] when the vehicle speed is 50 km/h,
a common speed on city roads. The confidence thresholds
for each model are set to their default values, i.e., 0.1 for
PointPillars [50] and 0.3 for PointRCNN [35].

Subsequently, we reconstruct these adversarial ornaments
with our methods and place the reconstructed ornaments at
the back of the target vehicle in the SVL Simulator’s map.
Then, we control the victim vehicle equipped with a LiDAR to
record the LiDAR signal points of the adversarial ornaments
and the target vehicle from different distances, as shown in
Figure 11. Finally, we export the recorded point cloud data
and feed them into PointPillars or PointRCNN and observe
how many adversarial ornaments can still deceive these two
models.

Figure 11: Screenshot of the target and the victim vehicle.
The target vehicle with an adversarial ornament is positioned
at the front, and the victim vehicle is positioned at the back.

Evaluation Metrics. Considering practical application sce-
narios, we adopt the survival rate as the evaluation metric
for our proposed method. The survival rate refers to the pro-
portion of the 200 adversarial ornaments that maintain their
effectiveness, successfully concealing the car at the specified
distance, when transitioning to a more realistic environment.
A high survival rate indicates that a significant portion of
the adversarial ornaments maintain their effectiveness in a
more realistic environment. This, in turn, enables attackers to
execute large-scale attacks more easily and efficiently.
Evaluation Results. The results of this experiment are pre-
sented in Table 1. The experiment demonstrates that our
method enhances the survival rate of adversarial ornaments
by 38% for PointPillars and 22% for PointRCNN when they
are placed at their designed distance, i.e., 15m, in the physical
world. This distance is equivalent to the braking distance [8]
when a vehicle’s speed is 50 km/h, a common speed on city
roads. Failing to detect the target car within a 15m distance
leaves the victim vehicle with insufficient time to slow down
and avoid a collision. In other words, the survival rate within

this distance is positively correlated with the crashing rate.
Furthermore, our method also improves the survival rate of
the adversarial ornaments at other distances.

This experiment demonstrates the effectiveness of our pro-
posed method across models utilizing different detection prin-
ciples, further solidifying its applicability and value in en-
hancing the robustness of adversarial objects.

Methods Model
Distance

10m 14m 15m 16m

Original
PointPillars 46.5% 45.5% 46.0% 34.5%
PointRCNN 38.5% 55.0% 58.0% 44.5%

Reconstruction
PointPillars 51.5% 65.0% 84.0% 41.0%
PointRCNN 41% 80.0% 80.0% 50.5%

Table 1: Percentage of adversarial objects that are still ef-
fective in the simulator environment with and without our
method.

6.4 Efficacy in Dynamic Attacks
In this experiment, we aim to evaluate the effectiveness of our
methods in scenarios where there is relative motion between
the victim and target vehicles. The evaluation is conducted
using a combination of the SVL Simulator and Apollo.
Experimental Setup. First, we establish a connection be-
tween the SVL Simulator and Apollo 7.0. Next, we position
the victim vehicle at various distances behind the target ve-
hicle and move the victim vehicle towards the target vehicle.
Finally, we analyze Apollo’s detection results. We record
frames every 0.13m and calculate the number of frames in
which the target vehicle is detected and the number of frames
in which it is not detected as the victim vehicle moves to-
wards the target vehicle. This experiment is conducted only
on PointPillars, as Apollo does not integrate PointRCNN. We
test three distinct starting distances: 10m, 15m, and 20m and
the ending distance is 2m.
Evaluation Metrics. To assess the effectiveness and stealth-
iness of our method, we employ the attack success rate and
projection area as evaluation metrics, respectively. The attack
success rate is calculated as the ratio of the number of missing
detection frames to the total number of frames. The projec-
tion area represents the size of the adversarial ornament as
viewed by the driver of the victim vehicle, and is determined
by projecting the ornament onto the XOZ plane.
Evaluation Results. The results of this experiment are pre-
sented in Table 2. Our method demonstrates notable improve-
ments in the attack success rate of adversarial ornaments at
different distances. On average, the attack success rate in-
creases by 38.64%, 21.8%, and 15.7% at each distance, re-
spectively. Additionally, our method significantly reduces the



Figure 12: Visualization of Apollo’s detection results: The
model successfully detects the target (top left) equipped with
the original adversarial ornament (bottom left), yet fails to
detect the target vehicle (top right) equipped with the recon-
structed adversarial ornament (bottom right).

Methods
Distance (m)

Projection (m2)
10m→2m15m→2m20m→2m

Original 54.7% 66.4% 71.9% 2.79
Reconstruction 100.0% 85.0% 82.2% 0.78 (↓72.04%)

Original 62.7% 69.0% 71.1% 2.59
Reconstruction 97.3% 88.5% 88.9% 0.83 (↓67.95%)

Original 68.0% 68.1% 71.9% 2.83
Reconstruction 92.0% 89.4% 91.1% 1.00 (↓64.66%)

Original 42.7% 58.4% 65.2% 3.32
Reconstruction 100.0% 89.4% 85.3% 1.02 (↓69.28%)

Original 68.0% 69.9% 72.6% 2.53
Reconstruction 100.0% 88.5% 83.7% 0.91 (↓64.03%)

Table 2: The attack success rates in different distances with
and without our method.

projection area by 67.59% on average, thereby enhancing the
stealthiness of the adversarial object. Notably, if we do not
apply our method but restrict the projection area during the
adversarial optimization stage, the generated adversarial or-
naments cannot deceive the perception model, Consequently,
achieving adversarial ornaments with such a level of stealthi-
ness is challenging without employing our methods.

Figure 12 shows one of the screenshots during the experi-
ment. We observe that even though the original adversarial
ornament is much larger than the reconstructed one and ap-
pears to obstruct more details of the target vehicle , it fails
to deceive the perception model while the reconstructed one
succeeds. This is because the point cloud of the original ad-
versarial ornament captured by the LiDAR is quite different
from the effective adversarial point cloud and does not carry
enough adversarial information. The captured point cloud of

the reconstructed adversarial ornament, the original adver-
sarial ornament, and the desired adversarial point cloud, are
shown in our website. We observe that the shape and contour
of the LiDAR signal points of the reconstructed adversarial
ornament are well preserved during motion and are similar to
the desired adversarial point cloud. In contrast, the LiDAR
signal points of the original adversarial ornament are not.

As described in Section 5, LiDAR captures an object’s in-
formation through multiple laser beams rather than providing
a panoramic view like a camera. The hit points of the laser
beams change as the distance between the LiDAR and the
object varies, resulting in variations in the generated point
cloud. The reconstructed adversarial ornament maintains a
simple and smooth structure, whereas the original adversarial
ornament does not. As a result, our reconstructed adversarial
ornament can preserve the relative stability of the LiDAR
reflection points when the distance between the object and
the LiDAR changes, while the original adversarial ornament
cannot. Our method demonstrates a consistent attack success
rate across various distances in this experiment, indicating its
robustness in different scenarios.

6.5 Efficacy in Angle Robustness
In this experiment, we aim to evaluate the effectiveness of our
method in different angles. The evaluation is also conducted
using a combination of the SVL Simulator and Apollo.
Experiment Setup. To simulate real driving behavior, we
did not fix the relative angles of the target and victim vehicle.
Instead, we control the victim vehicle to approach the target
vehicle in the adjacent lane, as shown in Figure 13. The angle
between the victim and the target vehicle is dynamic during
this process, which is more realistic. All other settings were
similar to those in Section 6.4.

Figure 13: The angle (α) between the target vehicle (white)
and the victim vehicle (yellow) dynamically changes as the
distance (d) varies.

Evaluation Results. The results of this experiment are pre-
sented in Table 3. Compared to moving straightforwardly
toward the target vehicle, approaching the target vehicle in the
adjacent lane and deceiving the perception model is a more
challenging scenario, particularly when the victim is close
to the target vehicle, which implies a relatively large angle
between the victim and the target vehicle. Nevertheless, our
method demonstrates notable improvements in the attack suc-

https://sites.google.com/view/ae-morpher#h.eg5pvp8rcdef


cess rate of adversarial ornaments at different distances. On
average, the attack success rate increases by 23.72%, 23.86%,
and 23.70% at each distance, respectively. Additionally, re-
stricting the projection area during the adversarial optimiza-
tion stage still results in ineffective adversarial ornaments.
This experiment showcases the robustness of our method
against varying angles.

Methods
Distance (m)

Projection (m2)
10m
(19.29◦)

15m
(13.13◦)

20m
(9.93◦)

Original 54.7% 67.3% 68.1% 2.88
Reconstruction 80.0% 86.7% 88.9% 0.86 (↓70.14%)

Original 62.7% 54.9% 60.7% 3.50
Reconstruction 82.7% 86.7% 88.9% 0.76 (↓78.29%)

Original 62.7% 54.0% 56.3% 3.26
Reconstruction 89.3% 85.8% 88.1% 0.87 (↓73.31%)

Original 60.0% 55.8% 58.5% 3.22
Reconstruction 82.7% 82.3% 85.1% 0.96 (↓70.19%)

Original 65.3% 62.8% 63.7% 2.38
Reconstruction 89.3% 72.6% 74.8% 0.71 (↓70.17%)

Table 3: The attack success rates in different angles with and
without our method

6.6 Efficacy Compared with Other Methods
In this experiment, we compare our proposed method with an
existing attack method, denoted as AdvLo [49], which aims to
conceal the target vehicle from the LiDAR-based perception
model’s detection results. The method is proposed by Miao
et al., where they employ drones to fill several calculated
positions around the vehicle to attack the model.
Experiment Setup. For AdvLo, we utilize the data men-
tioned in their paper, where they achieve a 74% success rate
against PointPillars in 100 examples. Specifically, they use
the algorithm AdvLo to generate adversarial locations for
each example and 74% of all examples are attacked success-
fully. In comparison, we generate 100 adversarial ornaments
following the steps outlined in Section 6.2 and reconstruct
these ornaments using our method. The success rate of the
adversarial ornaments before reconstruction is denoted as
"Original" while the success rate after reconstruction is de-
noted as "Reconstruction" Since AdvLo does not specify the
distance used in their experiment, we considered their 74%
success rate as their best result for PointPillars and compared
it with our best results.
Evaluation Results. The results of this experiment are pre-
sented in Table 4. The effective rates for the three conditions
are 45.0%, 83.0%, and 74.0%, respectively. We can see that be-

Methods Success Rate

Original 45.0%

Reconstruction 83.0%

AdvLo [49] 74.0%

Table 4: A comparison of the attack success rate of our method
and AdvLo [49].

fore reconstruction, the original adversarial ornament does not
achieve a competitive result. However, after reconstruction,
the reconstructed adversarial ornament outperforms AdvLo
by 9.0%. Additionally, Our approach does not need to hover
several drones exactly at some specified locations above the
target vehicle, like what AdvLo does, which can facilitate the
attacker when the target vehicle is in motion.

7 Evaluations on Fusion Attack

In this experiment, we investigate the potential of employ-
ing the reconstructed adversarial object to conduct a fusion
attack against both LiDAR-based and camera-based percep-
tion models simultaneously. As previously mentioned, our
method generates adversarial objects with flat surfaces, which
are subsequently colored to convey adversarial information to
camera-based perception models. To summarize, we utilize
the shape of these adversarial ornaments to carry adversarial
information against LiDAR-based perception models, while
their color is employed to transmit adversarial information
against camera-based perception models.
Experiment Setup. The fusion attack evaluations involve
both camera-based and LiDAR-based perception models. The
LiDAR-based perception model used remains PointPillars,
similar to the dynamic attack evaluations. As for the camera-
based perception model, we choose SMOKE [31], a state-of-
the-art camera-based perception model. SMOKE is also the
default camera-based perception model used in Apollo 7.0.
To convey adversarial information against SMOKE, we adopt
an existing method [40] to optimize the texture of the adver-
sarial ornament, resulting in a colorful adversarial ornament
as shown in Figure 14. We then conduct experiments in the
SVL Simulator, maneuvering the victim vehicle to approach
the target vehicle. During this process, we record the number
of frames in which Apollo fails to detect the target vehicle.
Similar to Section 6.4, we use the attack success rate to mea-
sure the effectiveness of the colorful adversarial ornament.
The attack success rate is calculated as the ratio of the number
of missing detection frames to the total number of frames.
Evaluation Results. We observe that the flat surface gen-
erated by our method effectively serves as a carrier of ad-
versarial information against camera-based models. During



Figure 14: The white adversarial ornament does not carry
adversarial information against SMOKE, while the colorful
adversarial ornament is designed to convey adversarial infor-
mation specifically targeting SMOKE.

Lidar’s movement from 20m away towards the target vehicle,
we achieved a 75.6% attack success rate against the fusion
perception module.

8 Evaluations in Real World

In this section, we evaluate the attack’s effectiveness and
feasibility in the physical world. The attack aims to hide the
target vehicle from the LiDAR detection system.

8.1 Nighttime Experiments
Experiment Setup. We utilize the RS-LiDAR-16 to collect
point clouds during the experiment. The adversarial object
used in this experiment is cut from cardboard without the
involvement of a 3D printer. The target model is PointPillars
and the target vehicle is a Toyota Levin. The adversarial
ornament is placed on the roof of the target vehicle as shown
in Figure 15. We put the LiDAR around 12m away from the
target vehicle and move it towards the target vehicle slowly.
We record the point cloud data captured during this process
and feed them to the model to calculate the attack success
rate. Under the same condition, we also design a comparison
experiment, i.e., placing a benign cardboard on the roof of the
car. More detailed pictures can be found in our website.

Figure 15: The adversarial ornament is placed on the roof of
the target vehicle.

Evaluation Results. Our method achieves a 71.4% attack
success rate during this process. In contrast, when a benign

cardboard is attached, the LiDAR consistently detects the
car. Figure 16 illustrates the scan results of the surrounding
environment by the LiDAR centered on the victim vehicle.
The detection results of the model are highlighted with black
bounding boxes. We observe that the model successfully de-
tects the target car with the benign ornament (left), but fails
to detect the same target car with the adversarial ornament
(right). It is worth noting that the total cost of physically cre-
ating an adversarial ornament reconstructed by our method
is less than $15. This implies that adversarial ornaments can
be produced quickly and inexpensively in large quantities,
posing a significant threat in the real world.

Figure 16: The detection results of the target vehicle with the
benign (left) and the adversarial ornament (right).

8.2 Daytime Experiments
To comprehensively evaluate the effectiveness of our method
and enhance the diversity of experimental settings, we conduct
an additional real-world experiment during daylight hours.
In this experiment, we target a new vehicle and place the
adversarial ornament in new locations.
Experiment Setup: For this experiment, we select the Aion
S as the target vehicle. The reconstructed adversarial orna-
ments are positioned on the trunk lid, as depicted in Figure 17.
We continue to employ the RS-LiDAR-16 for collecting point
clouds. All other settings remain identical to those described
in Section 8.1. Extra pictures can be found in our website.

Figure 17: The adversarial ornament is placed on the truck lid
of the target vehicle.

Evaluation Results. Our method achieves a success rate of
80.8% during motion from 12m to 3m right behind the target

https://sites.google.com/view/ae-morpher/%E9%A6%96%E9%A1%B5#h.anmr96hj0s1s
https://sites.google.com/view/ae-morpher/%E9%A6%96%E9%A1%B5#h.hzdu7fu3pvh1


vehicle. This value is slightly higher than that of the nighttime
experiment. One possible contributing factor is the use of a
greater layer height for reconstructing adversarial ornaments
(about 18cm per layer in this experiment compared to about
14cm per layer in the nighttime experiment), which highlights
the trade-off between robustness and stealthiness once again.

8.3 Analysis
It has been observed that there is a discrepancy between the
attack success rate observed in simulated experiments and
real-world experiments. We consider that the following fac-
tors contribute to this gap.
The position of adversarial ornaments. When generating
and placing adversarial ornaments in the digital realm, these
ornaments can be affixed to any part of the target vehicle
to pursue the best performance, disregarding gravitational
forces and other physical constraints. However, in the real
world, adhesive tape is often insufficient for this purpose, ne-
cessitating compromises in the placement of these ornaments.
Consequently, we are often unable to place the ornaments
in the most optimal locations, which compromises their per-
formance. This issue can be mitigated through the use of
improved adhesive solutions.
The complexity of the environment. On the one hand, the
real-world environment is significantly larger than the simu-
lated environment (about 450,000 LiDAR reflection points
versus about 7,000 LiDAR reflection points). Influencing a
considerably larger environment presents greater challenges.
On the other hand, the simulated environment remains rel-
atively static, with no pedestrian or other moving vehicles
present. In contrast, the real-world environment is dynamic,
with passing cars and people. These factors have the potential
to disrupt the effectiveness of adversarial ornaments and influ-
ence the experimental outcomes. This issue can be mitigated
through the use of more realistic simulators.
The resolution of the LiDAR. The simulator employs a 64-
line LiDAR, whereas the real-world LiDAR consists of 16
lines. While our method is effective for LiDARs with varying
resolutions, there may be some performance differences.

9 The Effect of Reconstructed Adversarial Or-
naments’ Volume

In this section, we analyze the effect of the volume of re-
constructed adversarial ornaments. Intuitively, increasing the
volume is expected to enhance robustness while diminishing
stealthiness, and vice versa. We replicate the experiments con-
ducted in Section 6.4 and Section 6.5 to validate this intuition.
Experiment Setup. In this experiment, we utilize the same
reconstructed adversarial ornaments as those employed in Sec-
tion 6.4 and 6.5. Subsequently, we adjust the volume of these
reconstructed adversarial ornaments by modifying the height,
represented by the values of l1+ l2, for each layer. Specifically,

we set the height of each layer of the reconstructed adversarial
ornaments to a different percentage of the margin between
the layers of the point clouds, as illustrated in Figure 18. All
other configurations remain consistent with those described
in Section 6.4 and 6.5.

Figure 18: Reconstructed adversarial ornaments with different
layer heights.

Evaluation Metrics: Two metrics, namely the attack suc-
cess rate and the stealthiness, are utilized in this experiment.
The definition of the attack success rate remains the same
as the one provided in Section 6.4 and 6.5, (i.e. the ratio of
the number of missing detection frames to the total number
of frames). As for the stealthiness, it is defined as 1−Rarea,
where Rarea represents the area ratio between the back view
of the adversarial ornament and the back view of the target
vehicle.

Figure 19: Trade-off between robustness and stealthiness in
dynamic attacks (left) and angle attacks (right).

Evaluation Results: The results of this experiment are pre-
sented in Figure 19. Each color represents a distinct recon-
structed adversarial ornament. The solid line represents the
change in its attack success rate during the motion from 20m
to 2m with respect to the height percentage, while the dotted
line represents the change in its stealthiness with respect to
the height percentage. It can be observed from both line charts
that as stealthiness decreases, the attack success rate increases.
In other words, there exists a trade-off between robustness and
stealthiness. Decreasing stealthiness can effectively increase
robustness, and vice versa. However, even with the highest
observed stealthiness (83.27%, indicating that the back view
of the reconstructed adversarial ornament accounts for only
16.73% of the back view of the vehicle), the ornament still
achieves a dynamic attack success rate of 80.7%. Similarly,
for angle attacks, the success rate with the highest stealthiness
is 68.9%, which is also considered acceptable.



10 Discussion

D1: What are the differences in robustness loss of adver-
sarial objects for LiDAR- and camera-based perception
models?

Discrepancies between the captured information and the
physical object are among the primary causes of robustness
loss in both situations. However, the sources of these dis-
crepancies in capture processes differ significantly between
cameras and LiDAR. For cameras, discrepancies stem from
occlusions, lighting conditions, printing inaccuracies, and en-
vironmental factors like weather and glare. These factors
make it difficult to capture accurate color and shape informa-
tion of adversarial patches, thereby compromising the effec-
tiveness of these patches. In contrast, LiDAR-based models
are less affected by environmental factors, but discrepancies
occur due to missing details caused by the sparse laser beams.

Based on the above analysis, our proposed method recon-
structs the surface of adversarial objects to help LiDAR cap-
ture more adversarial details, thus preserving the attack effec-
tiveness of adversarial objects in the physical world.
D2: What are the differences between the existing robust-
ness improvement methods and our method?

Existing robustness improvement methods aim to enhance
the generalization of adversarial objects by applying trans-
formations to the digital object to tolerate the discrepancies
between the digital and the captured object, as shown in the
left half of Figure 20. In contrast, our approach focuses on
reducing the discrepancies between the digital and captured
object by reconstructing the surface of the original object to
fit the sparse laser beams, as shown in the right half of Figure
20. Our method improves the robustness of the adversarial
object without interfering with the adversarial optimization
stage, allowing it to be applied to various attack methods as
long as a digital adversarial object is available.

Figure 20: The red part represents the attack effectiveness
of the captured object. Existing methods enhance the effec-
tiveness by improving the generalization of the digital object,
whereas our method focuses on reducing the disparities be-
tween the digital and captured objects.

D3: How do real humans perceive the stealthiness of re-
constructed adversarial ornaments?

To assess the stealthiness of our physical reconstructed or-
naments, we have devised a questionnaire with pictures like
the ones in Section 8.2 attached. The questionnaire encom-
passes four aspects: 1) Does the cardboard attached to the

ornament strike you as unusual or abrupt; 2) Do you think
the cardboard ornament can lead to a car crash; 3) Do you
perceive this ornament as a personalized decoration chosen
by the car owner; 4) Would you feel compelled to notify the
driver if their vehicle displayed such an ornament. We also ask
participants to self-evaluate their knowledge of AI security
and adversarial examples.

In total, we collect 25 questionnaires, with 28% of partici-
pants being unfamiliar with adversarial objects, 28% having
some familiarity, and 44% being very familiar with adversar-
ial objects. We observe that 84% of all participants do not
think our ornaments have the potential to cause a car crash,
even among those who are very familiar with adversarial ob-
jects. Furthermore, 72% of participants regard the ornaments
as personalized decorations chosen by the car owner, while
only 40% think it is abrupt. Through further communication
with these individuals, we found that most of them believe
the apparent abruptness is due to the bare cardboard being
too ugly, and they think we can alleviate people’s suspicion
by painting and drawing on the cardboard. Finally, only 32%
feel it necessary to remind the car driver. The statistical data
mentioned above indicate that the majority of individuals do
not exhibit excessive concern regarding our reconstructed
adversarial ornaments. This finding suggests that our orna-
ments possess stealthiness and practical viability. Our studies
receive approval from the IRB of our affiliations.
D4: What are the limitations of our method?

On one hand, our method aims to enable LiDAR to accu-
rately capture the adversarial perturbations of the adversarial
object. In other words, our goal is to ensure that the captured
point clouds resemble the desired point clouds. However, the
effectiveness of the desired point cloud is contingent upon
other attack methods and may be compromised by certain
defense methods. On the other hand, our current method only
involves one LiDAR and its performance may be compro-
mised in scenarios with multiple LiDARs. We will further
investigate this aspect in future work. Additionally, the recon-
structed adversarial object can only hide one vehicle at a time,
and it is visible, which may raise suspicion among drivers and
other pedestrians — these are also limitations.

11 Conclusion

This paper presents the first endeavor to utilize LiDAR prin-
ciples to enhance the robustness of adversarial objects. We
reconstruct the surface of the original adversarial object to
fit the sparse laser beams, thereby reducing errors during the
LiDAR capturing process and improving the robustness of
the adversarial object. Experimental results demonstrate sig-
nificant achievements in both simulated environments and
real-world scenarios. Furthermore, our method does not rely
on expensive 3D printing technology and can be implemented
using simple manual cutting of affordable materials like card-
board.
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A Appendix

A.1 Adaptive Defense
Our method is the first to enhance the robustness of adversar-
ial objects by reducing the discrepancies between the digital
point clouds and the captured point clouds. To the best of
our knowledge, there are no existing countermeasures specif-
ically designed for this. Therefore, we propose a potential
countermeasure and evaluate its performance.

A.1.1 Point Clouds Smooth Defense

We observed that, although our reconstructed adversarial ob-
ject allows for a more stable LiDAR capturing of adversarial
perturbations, it exhibits irregular lines in LiDAR scans that
differ from those of normal vehicles. Therefore, we naturally
consider utilizing a smoothing algorithm on LiDAR scan re-
sults, which affects irregular lines more substantially than
regular ones. Through the smoothing of irregular lines, we
can disrupt adversarial perturbations and lead the attack to
failure.
Experiment Setup. We implement a smoothing algorithm
and apply it to both the point cloud files generated in Section
6.3 and the KITTI dataset. The former is utilized to assess the
attack performance degradation resulting from the smoothing,
while the latter is employed to evaluate the impact on AP
(Average Precision) of detecting benign objects. The target
model is the PointPillars.

Figure A1: The ASR and the AP before smoothing (left) and
after smoothing (right).

Evaluation Results. The results of this experiment are de-
picted in Figure A1. It is observed that the attack performance
decreases from 84% to 22.5%, concurrently leading to a de-
cline in AP for cars from 86.64% to 80.81%, for pedestrians
from 51.46% to 42.52%, and for cyclists from 81.86% to
62.91%. While the smoothing algorithm effectively mitigates
the impact of reconstructed adversarial objects, it does some-
what reduce the AP of detecting benign objects, especially
those with complex surfaces such as pedestrians or cyclists.

This trade-off between defending against adversarial attacks
and the decline in AP for benign objects is non-negligible, as
this reduction persists even in the absence of our reconstructed
adversarial obstacles.

A.1.2 Multiple-LiDAR Defenses

As observed in the above experiments, point clouds captured
at an angle exhibit a lower overall attack success rate com-
pared to point clouds captured directly from behind. Addition-
ally, utilizing multiple LiDAR-based perception models to
detect obstacles simultaneously can help mitigate the risk of
being misled. Building upon these intuitions, we propose a de-
fense strategy: utilizing two LiDARs to capture point clouds
from different perspectives and inputting these captured point
clouds to separate models. This approach aims to minimize
the risk of misdirection. We design an experiment to evaluate
this defense strategy.
Experiment Setup. The experiment is conducted in the sim-
ulator. We utilize two LiDARs and two separate PointPillars
models. If either of the two models successfully detects the
target vehicle, we consider it a failure in terms of misleading
the perception model. we employ the same five reconstructed
adversarial ornaments as those used in Section 6.4, all other
settings remain consistent with those mentioned in Section
6.4.
Evaluation Results. The results of this experiment are pre-
sented in Figure A2. It is observed that the utilization of two
LiDARs reduces the attack success rate of our method by a
maximum of 10.39%, thereby demonstrating the effectiveness
of the adaptive countermeasure. However, this reduction is
insufficient to render our method practically unexploitable.
Additionally, equipping vehicles with multiple LiDARs and
multiple models increases production costs for autonomous
vehicles. Balancing safety and cost is a significant concern
for carmakers.

Figure A2: Evaluation results of our proposed countermea-
sure.



A.1.3 Other Defenses

Another potential countermeasure is to leverage the new IOV
(Internet of Vehicles) and CVIS (Cooperative Vehicle Infras-
tructure System) technologies. With these technologies, ve-
hicles no longer solely rely on their own obstacle-detection
capabilities. Instead, they can receive obstacle information
from other vehicles and even roadside streetlights. Attempt-
ing to deceive multiple sensors and models simultaneously
becomes challenging, if not impossible, which limits the us-
age of our method. However, it is important to note that both
IOV and CVIS require additional communication time, which
can introduce delays.

A.2 Confirming of the Insight in the Prelimi-
nary Analysis

In this section, we compare the changes in point clouds of
different objects when the LiDAR moves to confirm the in-
sight mentioned in Section 1, namely, that it is difficult for
sparse laser beams to accurately capture the scattered pertur-
bations of adversarial objects, particularly those with irregular
surfaces and sharp protrusions.

Firstly, we place an object with a complex surface - a PVC
figurine - on the desk (as illustrated in the left half of Figure
A3) and move the LiDAR back and forth to capture the point
clouds.

Figure A3: Different objects were considered.

The point clouds before and after the LiDAR’s moving
differs a lot.

Next, we position a regular object - a box - on the desk
(as depicted in the right half of Figure A3) and proceed to
move the LiDAR back and forth once more. This time, the
point clouds captured before and after the LiDAR’s movement
exhibited minimal differences.

The pictures of captured points can be found in our website:
https://sites.google.com/view/ae-morpher.

A.3 Printability Analysis

In this section, we assess the printability of adversarial orna-
ments reconstructed by our proposed method. Our evaluation
focuses on two primary aspects: 1) the compatibility of these

objects with widely-used 3D printers, and 2) the ease of 3D
printing these objects.
Experiment Setup. To assess the printability of the adver-
sarial object, we conducted an analysis before and after the sur-
face reconstruction process using PreForm [4], a commercial
tool for printability assessment. PreForm determines whether
a given 3D mesh can be printed using their 3D-printing ser-
vice. In addition, we utilized watertightness as another metric
to evaluate the object. Watertightness assesses whether the ob-
ject’s mesh can hold water when filled, it requires the object to
have a close and complete surface. That’s to say, A 3D object
must exhibit watertightness to have a valid volume and exist in
the physical world. These two criteria are important metrics
for evaluating the printability of meshes [13]. Furthermore,
we computed the self-intersection ratio as an indicator of
the ease of printing adversarial objects. The self-intersection
ratio represents the proportion of all faces of an object that
intersects each other. A higher surface self-intersection rate
indicates a more complex surface and makes printing more
challenging.

Printable
Self-intersection

Preform Watertight

Original Error False 1987.50%

Reconstruction Success True 0.00%

Table A1: The printability of the original and the reconstruc-
tion adversarial object.

Evaluation Results. The evaluation results for adversarial
ornaments, with and without our method, are presented in
Table A1. Before reconstruction, the adversarial ornament
fails PreForm’s test and is not watertight, indicating that it
is difficult to 3D print. However, after reconstruction, our
method not only enables the adversarial ornament to pass
these tests but also reduces its self-intersection ratio from
1987.5% to 0%. Some other methods can also decrease the
self-intersection ratio. For example, MSF-ADV [13] achieves
a self-intersection ratio of 0.46% in their situation. However,
these methods simultaneously decrease the attack success rate
of the adversarial object (8% for MSF-ADV), whereas our
method does not.
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