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Abstract
BGP is the de facto inter-domain routing protocol to ensure
global connectivity of the Internet. However, various reasons,
such as deliberate attacks or misconfigurations, could cause
BGP routing anomalies. Traditional methods for BGP routing
anomaly detection require significant manual investigation of
routes by network operators. Although machine learning has
been applied to automate the process, prior arts typically im-
pose significant training overhead (such as large-scale data la-
beling and feature crafting), and only produce uninterpretable
results. To address these limitations, this paper presents a
routing anomaly detection system centering around a novel
network representation learning model named BEAM. The
core design of BEAM is to accurately learn the unique prop-
erties (defined as routing role) of each Autonomous System
(AS) in the Internet by incorporating BGP semantics. As a
result, routing anomaly detection, given BEAM, is reduced to
a matter of discovering unexpected routing role churns upon
observing new route announcements. We implement a proto-
type of our routing anomaly detection system and extensively
evaluate its performance. The experimental results, based on
18 real-world RouteViews datasets containing over 11 billion
route announcement records, demonstrate that our system can
detect all previously-confirmed routing anomalies, while only
introducing at most five false alarms every 180 million route
announcements. We also deploy our system at a large ISP
to perform real-world detection for one month. During the
course of deployment, our system detects 497 true anomalies
in the wild with an average of only 1.65 false alarms per day.

1 Introduction

The Border Gateway Protocol (BGP) is the de facto inter-
domain routing protocol to achieve global connectivity in
the Internet. BGP establishes Internet-wide routing paths by
exchanging route announcements among the networks oper-
ated by different organizations, referred to as Autonomous
Systems (ASes). Each route announcement carries AS-level

path information for reaching certain prefixes (i.e., a block
of IP addresses). At its steady state, every AS learns an AS-
path to reach every globally routable Internet prefix. Despite
its global adoption, BGP itself has no built-in authentication
mechanism. As a result, a misbehaved AS can announce arbi-
trary routes in the Internet, either due to deliberate attacks or
misconfigurations. These bogus routes form serious threats
to routing security, namely BGP hijacking (i.e., forcing cer-
tain traffic to go through a malicious AS) and BGP route
leaks (i.e., redirecting traffic over unintended links). Over the
past decade, the Internet has witnessed several severe BGP
incidents. For example, a Swiss company leaked over 70,000
routes in 2019 [1] and a British company hijacked more than
31,000 prefixes in 2021 [2]. A cryptocurrency platform re-
cently confirmed the loss of $1.9 million after a BGP hijacking
attack [3]. Although several security extensions have been
proposed to counter these threats, e.g., BGPsec [4], psBGP [5]
and S-BGP [6], they are not widely deployed, possibly due to
incompatibility with the current Internet architecture. Besides,
while RPKI [7] has gained traction in providing authoritative
information about IP prefix ownership, its effectiveness is
largely limited by the incomplete deployment of ROV [8].
More importantly, RPKI is not designed to mitigate route
manipulation attacks or route leaks.

Detecting routing anomalies in the global Internet is the
first step towards secure Internet routing. The community
has proposed significant research in this regard [9–18]. How-
ever, they typically rely on extensive analysis of routing data
from multiple sources. More crucially, these methods require
non-trivial human supervision to produce reasonable results.
The advance in Machine Learning (ML) motivates the com-
munity to apply ML techniques to automate and simplify
anomaly detection by recognizing different patterns of route
announcements [19–29]. However, existing methods require
large datasets with manual labels and/or handcrafted features,
imposing significant overheads on data collection and model
update. Moreover, many of these methods learn deep latent
features for classification, producing largely uninterpretable
results. As a consequence, these methods provide limited prac-



tical guidance for network operators to fix routing anomalies.
To address these challenges, we present a routing anomaly

detection system centering around a novel network representa-
tion learning model, BEAM (BGP sEmAntics aware network
eMbedding). Instead of learning any latent or opaque features,
BEAM enables interpretable and accurate routing anomaly
detection based on the intrinsic routing characteristics of ASes
that are derived from the domain specific knowledge of BGP
semantics. Specifically, we propose the concept of AS rout-
ing role to meaningfully characterize ASes in BGP route
announcements. The design of routing role is derived from
the AS business relationship graph (rather than any hand-
crafted features), because an AS’s business relationship with
its neighboring ASes determines how the AS chooses to up-
date the route announcements received from neighbors, and
how the newly generated route announcements are further
propagated [30]. Given accurate modeling of ASes’ routing
roles, anomaly detection is reduced to a matter of detecting
unexpected AS routing role churns from the original route to
the new route announcement.

The key design challenges in obtaining routing roles are
two-fold. First, the available dataset of route announcements
could contain non-trivial noises due to the unrevealed routing
anomalies in the Internet [31]. For instance, AS 4134 leaked
over 70,000 routes in 2019 [1] and AS 55410 hijacked more
than 31,000 prefixes in 2021 [2]. As a result, computing
routing roles directly from the noisy route announcement
dataset (using either raw announcements or statistical features)
could lead to high false positive rates [20, 24, 25]. Second,
due to the dynamism and scale of Internet routing, AS routing
roles are evolving over time.

To address the above challenges, BEAM employs a novel
embedding mechanism to learn an embedding vector for each
AS based on the AS graph constructed from AS relationships.
The key of BEAM’s embedding is to preserve an AS’s prox-
imity and hierarchy properties that are essential to its routing
role. The exact definitions of proximity and hierarchy are
given in §3.2. The embedding vectors are further employed
to uniquely represent and interpret the routing roles of ASes,
based on which our routing anomaly detection system re-
ports routing anomalies upon observing abnormal routing
role churns. Further, we design our learning mechanism to en-
sure that the embedding vectors can properly capture routing
roles despite the ever-changing Internet routing and topology.

We validate our system on 18 real-world route announce-
ment datasets collected from global vantage points1. The
entire datasets include over 11 billion route announcement
records spanning from 2008 to 2021. The experimental results
show that BEAM produces interpretable results regarding AS
routing role changes, based on which our system correctly
identifies all previously-confirmed routing anomalies, while
only incurring at most five false alarms every 180 million

1A vantage point is a BGP participant (e.g., a router) that provides public
access to its routing table and/or its received route announcements.
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Figure 1: Illustrations of BGP anomalies. In BGP hijacking,
the adversary can either (I) falsely claim the ownership of a
prefix, or (II) announce a fake yet more preferable route. In
BGP route leak, routes are propagated to unintended ASes.

route announcements (about 1.61 false alarms per day). We
also deploy our system at a large ISP to detect routing anoma-
lies over a one-month period. We further visualize AS routing
roles to achieve interpretable routing behavior analysis. Our
work can serve as a complement to existing BGP security ex-
tensions, such as RPKI, to protect against both BGP hijacking
and BGP route leaks.

To summarize, our contributions are four-fold:

• We design the first BGP semantics aware network repre-
sentation learning model, BEAM, that accurately captures
the routing roles of ASes.

• We develop an unsupervised routing anomaly detection
system based on BEAM, which achieves real-time detec-
tion in an interpretable manner without requiring labeled
routing data or feature engineering.

• We validate our system by conducting experiments on 18
RouteViews datasets with more than 11 billion route an-
nouncement records. Our system can detect all confirmed
anomalies with minor false alarms.

• We deploy our system at a large ISP to collect real-world
detection results for a month. The system detects 497 true
anomalies in the wild from over 150 million live route an-
nouncements, with only 1.65 daily false alarms on average.

2 Background

Inter-domain Routing Protocol. The Internet contains over
73,000 advertised Autonomous Systems (ASes) as of Jun
2023. Each AS consists of several networks under the manage-
ment of the same organization and is identified by a uniquely
allocated non-negative integer called AS Number (ASN).
BGP is the de facto inter-AS routing protocol to achieve
global connectivity of the Internet. BGP is a path-vector rout-
ing protocol that maintains AS-level path information, which
gets updated as BGP announcements propagate in the net-
work. Upon receiving a BGP announcement, an AS, following



its routing policy, may stop further propagating the announce-
ment, or append its ASN to the AS-path and send the updated
announcement to a selective set of neighbors.

Business relationship largely determines one AS’s routing
policy [30, 32]. Two neighboring ASes typically have three
types of business relationships2: provider-to-customer (P2C),
peer-to-peer (P2P) and customer-to-provider (C2P), where
a customer AS pays its provider for connectivity while two
peering ASes forward traffic to each other free of charge.
Thus, the inter-domain routing system of the Internet can be
reconstructed as an AS graph based on AS relationships. This
AS-level topology exhibits hierarchy [30], with several well
recognized Tier-1 (large-scale) ASes. However, the topology
is not strictly hierarchical and is flattening over time [34].
BGP Anomalies. Although widely deployed, BGP lacks built-
in authentication, i.e., one AS can broadcast virtually arbitrary
BGP announcements to disrupt the security and reliability of
Internet routing. BGP anomalies can be classified into two cat-
egories: hijacking and route leak, as illustrated in Fig. 1. BGP
hijacking itself has two subcategories: (i) falsely claiming the
ownership of a prefix or (ii) announcing fake paths (usually
more preferable than real paths) to prefixes. The first type of
hijacking is solvable by Route Origin Validation (ROV) [7],
which is experiencing gradual deployment. Yet, the second
type of hijacking usually needs per-hop path validation pro-
tocols such as BGPsec [4] that has very limited deployment.
Also, BGP hijacking can be classified as prefix hijacking (tar-
geting a prefix of others) or subprefix hijacking (targeting a
subset of others’ prefix, i.e., subprefix).

The other category of BGP anomalies is route leak: a
misbehaved AS propagates BGP announcements to another
AS in violation of the intended policies, resulting in traf-
fic forwarded through unintended links. The Gao-Rexford
model [30] describes the restrictions on BGP route propa-
gation and can be used to identify BGP route leak (i.e., the
valley-free criterion). For example, in 2019, AS 21217 (Safe
Host) broke the valley-free criterion by propagating announce-
ments received from its providers (e.g., AS 13237 (euNet-
works GmbH)) to another provider AS 4134 (China Telecom),
redirecting large amounts of Internet traffic destined for Euro-
pean mobile networks through China Telecom [1].

3 Semantics Aware Analysis

3.1 BEAM Overview
We propose a novel network representation learning model,
BEAM, to learn the routing roles of ASes. The routing roles
meaningfully characterize the ASes in BGP route announce-
ments and are utilized to detect Internet routing anomalies. As
shown in Fig. 2, BEAM takes the AS business relationships
as the input and generates the embedding vector for each AS

2We ignore complex AS relationships [33]. They are much more unusual
and play a minor role in defining the overall routing behavior of an AS.
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Figure 2: Learning AS routing roles via BEAM. BEAM
takes AS relationships as the input and outputs the embedding
vectors that represent AS routing roles. (II.1) BEAM charac-
terizes the proximity between ASes by p_score. If two ASes
are directly connected and have the same business relation-
ships with many common neighbors, their proximity tends to
be high, i.e., a lower p_score. (II.2) BEAM characterizes the
hierarchy among ASes by h_score. If an AS must traverse
multiple consecutive P2C links to reach another AS, their hier-
archy difference should be large, i.e., a higher h_score. (II.3)
BEAM utilizes one joint objective to optimize both p_score
and h_score; negative sampling is also applied. (II.4) The
function Dlll,rrr measures the routing-role difference between
two ASes. A higher Dlll,rrr value means higher difference.

by (i) constructing an AS graph, and (ii) performing AS em-
bedding. To compute AS embedding vectors, BEAM designs
distance functions to measure two routing characteristics of
the ASes: the proximity (see Fig. 2(II.1)) and the hierarchy
(see Fig. 2(II.2)). The exact definitions of the two character-
istics are given in §3.2. We design a dedicated optimization
objective such that BEAM preserves both the proximity and
the hierarchy through the embedding (see Fig. 2(II.3)). After
obtaining the optimized embedding vectors, we can further
measure the pairwise AS difference in terms of their routing
roles (see Fig. 2(II.4)).



To our best knowledge, BEAM is the first dedicated net-
work representation learning model that fully integrates BGP
semantics into the training process and enables meaningful
and accurate representation of ASes’ routing roles. Apply-
ing network representation learning, rather than using “raw”
AS business relationships, is essential to characterize ASes’
routing roles. In particular, our network representation learn-
ing model can capture the global routing characteristics of
each AS and translate them into embedding vectors, while the
original AS business relationships can only indicate the local
routing policy between two directly connected ASes. Further,
with the embedding vectors, we can quantify the difference in
routing roles between any pair of ASes, regardless of whether
they are connected or not. This enables us to detect the un-
expected AS routing role churns in the global Internet that
capture routing anomalies.

3.2 Model Formulation

Definition 1 (AS Graph). An AS graph is a directed graph
G=(V,E) where each vertex v∈V represents an AS and each
directed edge e = (u,v) ∈ E represents a P2C relationship
from u to v.

We regard each unique AS (identified by its ASN) as a
vertex, and the P2C relationship between two vertices as a
directed edge from provider to customer. Accordingly, a C2P
relationship is viewed as a reversed P2C one, and a P2P rela-
tionship is represented via two edges in opposite directions.

We define two types of AS proximity to represent the sim-
ilarity between two ASes according to their local connec-
tions/relationships with their neighbors.

Definition 2 (First-Order AS Proximity). The first-order prox-
imity between two ASes is their pairwise connection in the
AS graph. For a pair of vertices (u,v), the first-order prox-
imity between them is 1 if they are connected by an edge
e = (u,v) ∈ E; otherwise it is 0.

Definition 3 (Second-Order AS Proximity). The second-order
proximity between two ASes is the similarity between their
neighborhood network structures. Given vertices u,v, let pppuuu =
⟨wwwu,1, . . . ,wwwu,|V |⟩ denote the first-order proximity of AS u with
other ASes, the second-order proximity between u and v is
quantified based on the consistency between pppuuu and pppvvv.

While the concept of proximity has been proposed be-
fore [35], BEAM is the first to extend its interpretation to
BGP semantics. As illustrated in Fig. 2(II.1), ASes C and D
have high first-order proximity due to the P2P relationship
(i.e., two edges in the AS graph), and also high second-order
proximity since they provide Internet transit services for a
similar set of customers. We also confirm our interpretation
via a real-world example: AS 8903 and AS 12541, owned by
cloud service provider Evolutio, serve as each other’s backup
and hence have very similar routing roles. In terms of proxim-
ity, they have 25 common customers and their neighbor AS

sets are highly similar (with a Jaccard index of 86.2%); thus,
the proximity is consistent with routing role similarity.

As discussed in §2, the Internet topology exhibits hierarchy.
Typically, a provider AS is considered on a higher level than
its customers. Thus, we define AS hierarchy as follows:
Definition 4 (AS Hierarchy). The hierarchy of an AS is its
tendency to establish P2C relationship with other ASes. For
two vertices u,v, if there exists a directed edge e = (u,v), the
hierarchy from u to v is positive.

In real world, AS 7018 (AT&T) lies on the top of the In-
ternet since it establishes either P2C or P2P relationship with
other ASes, while AS 140061 (China Telecom) is a stub AS
without any customers. Thus, AS 7018 and AS 140061 have
very different routing roles in BGP, which is aligned with the
positive hierarchy between them.

To quantify the AS proximity and hierarchy, we embed
ASes into low-dimensional representations.
Definition 5 (AS Embedding). Given G = (V,E), AS em-
bedding is to map each vertex v ∈V into a low-dimensional
vector space Rd , i.e., learn a mapping function fG;θ : V →Rd ,
where θ contains learnable parameters and d ≪ |V |.

Finally, we define our BEAM model as follows:
Definition 6 (BGP Semantics Aware Network Embedding).
Given AS relationships, the BEAM model constructs the AS
graph G = (V,E) and performs AS embedding, such that the
embedding vectors xxx = {xxxvvv|v ∈V,xxxvvv = fG;θ(v)} preserve the
first- and second-order proximity and the hierarchy of ASes.

3.3 AS Graph Construction
The first step of training BEAM is to construct the AS graph.
We use the real-world CAIDA AS relationship dataset [36]3

to construct the AS graph G. A business relationship between
two ASes can be denoted as a tuple (u,v, t), where u and v are
two ASNs and t ∈ {P2P,P2C,C2P} refers to the relationship
type. For each tuple (u,v, t) in the CAIDA dataset, if t = P2C,
we add a directed edge e = (u,v) into E. If t = C2P, we add
a directed edge e = (v,u) into E. And if t = P2P, we add two
directed edges e = (u,v) and e′ = (v,u) into E.

The rationale for using AS business relationship to con-
struct the AS graph is that it primarily determines how an AS
chooses to update the routing paths received from neighbors,
and how the new generated route announcements are prop-
agated [30]. Hence, it has direct impacts on ASes’ routing
roles. Moreover, the AS business relationship is a relatively
stable property determined by real-world commercial agree-
ments between connected ASes. Thus, it is challenging to
impersonate a specific AS without simultaneously changing
or faking multiple AS relationships. Besides, unlike histor-
ical route announcement data, the AS business relationship
dataset contains fewer incorrect entries [34].

3CAIDA is not the only source of AS business relationships. Other sources
like TopoScope [37] are also available for training our system.



3.4 AS Embedding
With a constructed AS graph, we embed ASes into a vector
space while preserving proximity and hierarchy. To this end,
we design two distance functions to measure the difference be-
tween ASes regarding proximity and hierarchy, respectively.
Proximity Distance. The proximity distance, indicated by
p_score, models the first-order proximity between ASes: a
small distance between two ASes means that their proximity
is large. Per Def. 2, given a pair of directly linked vertices
(u,v) and another pair of vertices (u′,v′) without a direct edge,
p_score should reflect the difference between their first-order
proximity, i.e., p_score(u,v)< p_score(u′,v′). Therefore, we
define p_score as follows:

p_score(u,v) = (xxxvvv − xxxuuu)
⊺((xxxvvv − xxxuuu)⊙ lll

)
, (1)

where xxxuuu,xxxvvv ∈ Rd denote the embedding vectors of u,v, re-
spectively. lll ∈ Rd is a learnable weight vector for the d com-
ponents. ⊺ and ⊙ denote matrix transpose and Hadamard
product, respectively. Intuitively, lll projects the embedding
vectors into a subspace intended for preserving the proximity.
To explicitly preserve the first-order proximity, BEAM learns
xxx, lll by decreasing the p_score of two vertices with an edge,
while increasing the p_score of two vertices that are not di-
rectly connected. Since this training strategy also preserves
the second-order proximity implicitly (elaborated later in this
section), we do not define a dedicated distance function for
the second-order proximity.
Hierarchy Distance. The hierarchy distance, indicated by
h_score, quantifies the hierarchical difference between ASes.
Per Def. 4, given a pair of vertices (u,v) where (u,v) ∈
E,(v,u) /∈ E, and another pair of vertices (u′,v′) without a
directed edge, i.e., (u′,v′) /∈ E, the h_score should reflect
the difference between their hierarchy, i.e., h_score(u,v) >
h_score(u′,v′). To this end, we design h_score as follows:

h_score(u,v) = (xxxvvv − xxxuuu)
⊺rrr, (2)

where xxxuuu,xxxvvv ∈ Rd denote the embedding vectors of u,v, re-
spectively. rrr ∈ Rd is a learnable unit vector indicating the
descending direction of hierarchy. Intuitively, rrr projects the
embedding vectors into a subspace intended for preserving the
hierarchy, and thus the h_score calculates the projected length
of xxxvvv−xxxuuu on the specific direction vector rrr such that it has two
important properties, i.e., h_score(u,v) =−h_score(v,u) and
h_score(u,v) = h_score(u,w)+h_score(w,v). To explicitly
preserve the hierarchy of ASes, BEAM learns xxx,rrr by increas-
ing the h_score of two vertices with a directed edge (i.e., a
P2C relationship), while decreasing h_score of two vertices
not directly connected. Since ASes with P2P relationship is
connected by two edges in opposite directions, their h_score
would approach zero under this training strategy, which is
consistent with the BGP semantics that two peering ASes are
typically on the same hierarchy of the Internet.

Training Objective. With the two distance functions, we de-
sign the training objective of BEAM to ensure that a trained
BEAM preserves both proximity and hierarchy. We consoli-
date the two distance functions as follows:

score(u,v) =−p_score(u,v)+h_score(u,v). (3)

Since a small p_score means large proximity and a large
h_score means large hierarchy, we subtract p_score in Eq.(3)
so that score increases monotonically with the difference be-
tween ASes in terms of proximity and hierarchy. This design
allows BEAM to preserve the two routing characteristics bet-
ter. Although score may become zero in some cases, it will
not affect BEAM ’s training since the training objective is to
enlarge the difference of score between observed edges and
nonexistent edges. Per Def. 2 and 4, given an observed edge
(u,v) and a nonexistent edge (u′,v′), our model should assign
score(u,v)> score(u′,v′) with the optimal xxx, lll and rrr. To this
end, we formulate the optimization problem as follows:

argmin
xxx,lll,rrr

L = ∑
(u,v)∈E
(u′,v′)/∈E

− logσ(score(u,v)− score(u′,v′)), (4)

where E is the edge set of the AS graph, σ(z) = 1
1+exp(−z)

is the sigmoid function, and L is the objective function to
be minimized. We solve this problem via a fully connected
neural network, which has an embedding layer and two linear
layers. The embedding layer generates the embedding vectors
(xxx) that represent ASes’ routing roles and the two linear layers
project the embedding vectors into two subspaces that pre-
serve proximity (lll) and hierarchy (rrr), respectively. For each
edge (u,v) ∈ E, we sample 10 negative (nonexistent) edges
(u′,v′) /∈ E and each ((u,v),(u′,v′)) forms one training in-
stance. The neural network generates the embedding vectors
of u and v, computes the loss via Eq.(4), and uses SGD [38]
to optimize itself. When the training is complete, the neural
network learns the ASes’ routing roles. We empirically set
d = 128 and train the network for 1,000 epochs. The batch
size is 1024 and the initial learning rate is 10−5.
Computing Pairwise AS Difference. The pairwise AS dif-
ference represents their difference in the routing roles, which
we define between the embedding vectors of two ASes using
the BEAM model (including its parameters xxx, lll, and rrr):

Dlll,rrr(u,v) = |p_score(u,v)|+ |h_score(u,v)|
=(xxxvvv − xxxuuu)

⊺((xxxvvv − xxxuuu)⊙ lll)︸ ︷︷ ︸
the first-order proximity

+ |(xxxvvv − xxxuuu)
⊺rrr|︸ ︷︷ ︸

the hierarchy

. (5)

Note that this pairwise AS difference directly reflects the first-
order proximity and the hierarchy between ASes. Moreover,
per the definition of the second-order proximity (Def. 3), the
pairwise AS difference between two vertices should be small
if their neighbors and the business relationships with their
neighbors are similar. In Appendix A, we prove a theorem



that this pairwise AS difference does preserve the second-
order proximity between ASes. Thus, our BEAM model can
preserve the first-order proximity, the second-order proximity
and the hierarchy between ASes.

3.5 Embedding Results Analysis

We train BEAM with the CAIDA AS relationship dataset
collected on 06/01/2018 to study the routing roles of ASes.
The dataset contains 61,549 ASes and 439,981 business rela-
tionships, and is randomly selected from the CAIDA datasets
collected before historical BGP incidents (see §5).
Visualizing Embedding Vectors. We visualize the embed-
ding vectors computed by BEAM in a 3-D space to illustrate
the overall characteristics of AS routing roles. Since BEAM
learns the unit direction vector rrr that represents the descend-
ing direction of hierarchy, we decompose each embedding
vector into two parts: the projection on rrr, and the projec-
tion on the plane orthogonal to rrr (i.e., the rejection). We use
the length of the projection as the coordinate value of the
Z-axis to represent the hierarchy level of each AS. We further
transform the rejection into a 2-D space by the widely used
dimension reduction method t-SNE [39], and hence obtain
the coordinate values of the X-axis and the Y-axis.

We visualize all embedding vectors in Fig. 3(A), where
each vertex represents a unique AS and the color of the vertex
indicates the AS hierarchy level. We observe that a few ver-
tices are densely located (i.e., high proximity) on the highest
and the lowest levels of the Internet, while more medium-level
vertices are sparsely distributed (i.e., low proximity). For a
better illustration, we show the terrain plot of the same 3-D
space in Fig. 3(B) via Inverse Distance Weight [40], which is
an interpolation metric widely used for estimating the spatial
distribution of scatter points. The observations are consistent
with the BGP fact that a small number of ASes on the high-
est hierarchy level have similar routing roles, since they all
provide transit services for other ASes and establish P2P rela-
tionships with the ASes on the same level to form “Internet
backbone”. On the contrary, it takes multiple C2P links for
another small set of ASes to reach the backbone ASes. Thus,
they lie on the lowest hierarchy level, forming several clusters
with lower Z-axis coordinate values. The rest ASes are lo-
cated on the medium hierarchy. They have different providers
and customers, and serve diverse routing roles.
Routing Role Analysis. We further study the routing roles
of specific ASes to check if the computed embedding vectors
reflect their actual routing properties in the Internet. In partic-
ular, we choose 16 Tier-1 ASes (e.g., AT&T), 9 major yet not
Tier-1 ASes (e.g., Telstra), and 50 other randomly selected
stub ASes (i.e., the ASes connected to only one other AS). We
present the projections of their routing roles on both YZ-plane
(Fig. 3(C)) and XY-plane (Fig. 3(D)). The results show that
the Tier-1 ASes form dense clusters on the highest hierarchy
level, the major yet not Tier-1 ASes form several dense clus-

ters on the levels relatively lower than those of Tier-1 ASes,
and the stub ASes are dispersed on the much lower levels.
This confirms that the computed embedding vectors preserve
both the proximity and hierarchy of ASes. Figure 3(C), how-
ever, does not exhibit distinct hierarchies, which is expected
since the Internet topology is not strictly hierarchical [34];
for example, AS 4134 (China Telecom) has P2P relationship
with the Tier-1 AS 1299 (Arelion), yet it also keeps a route
with 2 consecutive C2P links to reach AS 1299.
Pairwise AS Difference Comparison. We measure the differ-
ence of routing roles between two ASes. We choose AS pairs
in three categories: (i) We randomly sample a subset S0 from
all pairs of ASes with the P2P relationship while enforcing
the following constraint. In particular, given an AS pair, we
obtain the neighbor AS set of each AS in the pair. The AS
pair is eligible only if the Jaccard index (i.e., the similarity)
of the two neighbor AS sets is between 0% and 10%. We also
sample another subset S1 without enforcing this constraint.
(ii) We randomly sample six subsets (denoted as N0 to N5)
from all pairs of ASes that are not connected directly, where
the Jaccard indices of the two neighbor AS sets are between
0% and 10%, 0% and 20%, 20% and 40%, 40% and 60%,
60% and 80%, and 80% and 100%, respectively. (iii) We ran-
domly sample seven subsets (denoted as H0 to H6), where the
shortest path between two ASes in one pair is a direct P2P
link, and 2, 3, 4, 5, and 6 consecutive P2C links, respectively.
For instance, if two AS pairs (e.g., AS1 and AS2, AS2 and
AS3) are both in the P2C relationship, then AS1 and AS3
form two consecutive P2C links. Please see Appendix B for a
summary of these sampled subsets.

For each sampled subset, we compute the difference of
routing roles between two ASes and obtain Cumulative Dis-
tribution Function (CDF) curves. We make three types of
comparisons among the CDF curves of different subsets. The
comparisons of the P2P AS pairs (S0), P2C AS pairs (H0) and
no-relationship AS pairs (N0) show that S0 has the smallest dif-
ference and N0 exhibits the largest difference (see Fig. 3(E)).
It reveals that BEAM preserves the first-order proximity. The
comparisons among the subsets with different degrees of
neighbor intersection (N1 to N5) show that if two ASes have
more common neighbors (i.e., high second-order proximity),
they tend to have similar routing roles (see Fig. 3(F)). In
Fig. 3(G), the difference of routing roles increases with the
number of consecutive P2C links between two ASes, which
is consistent with the nature of AS hierarchy.

4 The Anomaly Detection System

In this section, we develop a semantics aware routing anomaly
detection system built upon BEAM4.

4Our system is open source at this GitHub repository.

https://github.com/yhchen-tsinghua/routing-anomaly-detection
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Figure 3: Embedding results. (A) All embedding vectors visualized in a 3-D space. The Z-axis represents the hierarchy level
and the XY-plane reflects the proximity. (B) The terrain plot of the embedding vectors. The estimated spatial distribution shows
the overall characteristics of AS routing roles. (C) The YZ-plane projection of the embedding vectors. The X-axis and the
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XY-plane projection of the embedding vectors. (E) The routing role difference regarding the sampled subset S0, H0 and N0. (F)
The routing role difference regarding the sampled subset N1 to N5. (G) The routing role difference regarding S1 and H1 to H6.

4.1 System Overview

Our routing anomaly detection system is designed to detect
global-scale Internet routing anomalies. As shown in Fig. 4,
our detection system consists of three components: the rout-
ing monitor, the BEAM engine, and the anomaly detector. The
routing monitor establishes connections with global vantage
points to capture route changes in real time. The BEAM en-
gine utilizes our BEAM model to compute the path difference
scores of the route changes, which quantifies the routing role
difference between the new and the original routing paths.
Based on the path difference scores, the anomaly detector
identifies suspicious route changes, and groups the suspicious
route changes sharing the same prefix into anomalous prefix
events. This is necessary to identify the prefixes impacted
by widespread routing anomalies. It further locates the ASes
responsible for each anomalous prefix event and correlates
the events caused by the same set of responsible ASes. Since
the BEAM model used in our detection system is pretrained
with AS relationship data (instead of labeled routing anomaly
data), our detection is unsupervised.

4.2 BEAM Engine

Not all route changes are caused by routing anomalies. For
instance, different ASes of the same organization may claim

the ownership of a specific prefix simultaneously, thus gen-
erating two routing paths with different origin ASes. This is
called multiple origin AS (MOAS) [41] and should not be
considered as anomalous. Thus, the BEAM engine relies on
path difference score to identify suspicious route changes.

To compute the path difference score for a route change,
we design a method based on the dynamic time warping
(DTW) algorithm [42], an effective way of measuring the
overall difference between two ordered sequences of unequal
length. Specifically, given two routing paths S = ⟨v1, . . . ,vm⟩
and S′ = ⟨v′1, . . . ,v′n⟩, the DTW algorithm repeatedly selects
a pair of ASes from S and S′, and generates eligible se-
quences of AS pairs by satisfying the following conditions:
(i) Each AS in S (S′) should be paired with one or more
ASes from S′ (S). (ii) The first (last) AS in S should be
paired with the first (last) AS in S′. (iii) Given i < j, if vi
and v j from S are paired with v′k and v′l in S′, then there
keeps k ≤ l; S and S’ are symmetric. For example, if S =
⟨v1,v2,v3⟩, S′ = ⟨v′1,v′2,v′3⟩, then ((v1,v′1),(v2,v′2),(v3,v′3))
and ((v1,v′1),(v1,v′2),(v2,v′2),(v3,v′3)) are both eligible, but
((v1,v′1),(v1,v′2),(v2,v′1),(v3,v′3)) is ineligible because the
two pairs (v1,v′2) and (v2,v′1) violate the condition (iii). For
each eligible sequence, we sum the pairwise AS difference
(given by BEAM) of its AS pairs. Then, we choose the min-
imum value from all summed values as the path difference
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score. The sequence of AS pairs with the minimum value is re-
ferred to as the optimal sequence. Let S[1 : i] (S′[1 : j]) denote
the first i ( j) ASes in S (S′). We apply dynamic programming
to obtain the optimal sequence of AS pairs for S[1 : i] and
S′[1 : j] based on prior states as follows:

• Given the optimal sequence for S[1 : i] and S′[1 : j−1], add
a new AS pair (S[i],S′[ j]) to the sequence.

• Given the optimal sequence for S[1 : i−1] and S′[1 : j], add
a new AS pair (S[i],S′[ j]) to the sequence.

• Given the optimal sequence for S[1 : i−1] and S′[1 : j−1],
add a new AS pair (S[i],S′[ j]) to the sequence.

We choose the operation yielding the minimal sum of pairwise
AS difference as the optimal AS pair sequence for S[1 : i] and
S′[1 : j]. The induction base, i.e., the optimal AS pair sequence
for S[1 : 1] and S′[1 : 1], is trivial to compute. For details of
this algorithm, please see our additional technical report [43].

4.3 Anomaly Detector

Detecting Suspicious Route Changes. The anomaly detector
first identifies suspicious route changes caused by routing
anomalies. Specifically, for a route change, the anomaly de-
tector checks whether its path difference score is greater than
a threshold thd , which is dynamically computed using histori-
cal legitimate route changes (detailed in §5.2). If so, the route
change is regarded as suspicious.
Identifying Anomalous Prefixes. It is necessary to prioritize
the widespread routing anomalies captured by multiple van-
tage points. Towards this end, the anomaly detector groups
the suspicious route changes that impact the same prefix into
different prefix events, where each event is associated with a
specific prefix and sorts the suspicious route changes by their
occurrence time. For each event, the anomaly detector applies
a sliding window to count the number of individual vantage
points that observe suspicious route changes within the win-
dow. If this number is above a threshold thv (detailed in §5.2),
we consider the prefix event is associated with a widespread
routing anomaly and regard the event as anomalous.
Locating Responsible ASes. The misbehaved ASes that
are responsible for routing anomalies may impact multiple

prefixes simultaneously. To obtain comprehensive informa-
tion about the affected prefixes in each routing anomaly, the
anomaly detector correlates all anomalous prefix events based
on their responsible ASes. In particular, for each suspicious
route change associated with an anomalous prefix event, our
detector identifies the ASes that either appear in the new path
or in the original path. Then, we compute the intersection of
these ASes from all route changes as the responsible ASes for
the anomalous prefix event. Given two prefix events, if their
time ranges have overlaps and they have common responsible
ASes, we consider they are correlated. Thereby, we can divide
all anomalous prefix events into multiple sets, where each
event only correlates with the other events in the same set
(i.e., no cross-set correlation). Finally, our anomaly detector
treats each set as an individual routing anomaly and outputs
an alarm that specifies both the affected prefixes and the re-
sponsible ASes. Due to space limitations, the implementation
details are provided in our additional technical report [43].

5 Experimental Results

In this section, we evaluate the path difference scores and per-
form experiments with real-world BGP data. We also deploy
our system at a large ISP to verify its effectiveness in practice.

5.1 Measuring Path Difference Score
We use real-world route announcements to analyze both le-
gitimate and anomalous route changes in terms of path dif-
ference scores. We collect 18 reports on historical routing
anomalies spanning from 2008 to 2021, including 15 BGP
hijacking (2 prefix and 13 subprefix hijacking) and 3 BGP
route leak incidents. For each anomaly, we obtain manually
confirmed information (e.g., the time of anomalies and the
affected prefixes) from two authoritative sources, the Oracle
blogs [44] and the BGPStream monitor [45]. Based on the in-
formation, we fetch all route announcements 12 hours before
and after the anomalies from RouteViews [46] and obtain 18
datasets. The total number of collected route announcements
is 11,861,377,951. In each dataset, we identify the anomalous
route changes with the confirmed information of the anomaly.
The anomalous route changes in our datasets cover both ori-
gin change (i.e., two routing paths have different origin ASes)
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Figure 5: Statistical comparisons of path difference scores between anomalous and legitimate route changes.

and path change (i.e., two routing paths share the same ori-
gin yet traverse different ASes). We name each dataset (e.g.,
PObrazil) accordingly. We also locate legitimate route changes
such as origin changes incurred by the multiple origin AS
issue [41]. See details in our additional technical report [43].

Figure 5 shows the path difference scores measured by
the BEAM engine on the 18 datasets. The path difference
scores of anomalous route changes are much higher than
those of legitimate ones, indicating that routing anomalies
would significantly change the routing roles of ASes on the
routing paths. For instance, the anomalous route changes in
SOpakistan changed the origin AS from AS 36561 (YouTube)
to AS 17557 (Pakistan Telecom). These two origin ASes are
significantly different in their neighbors, geographic locations
and hierarchical levels in the Internet. In contrast, the different
origin ASes in a legitimate route change often belong to the
same organization and their neighbors are more similar (e.g.,
the same upstream AS), resulting in much smaller routing
role churn between the original and new routes.

5.2 Routing Anomaly Detection Results

We now validate the performance of our detection system.
Since RouteViews archives the RIB data (i.e., the snapshot
of routing table) of global vantage points bi-hourly, for each
dataset, we fetch the most recent RIB data before the con-
firmed anomaly to initialize the routing tables that our detec-
tion system monitors. Then we use the route announcements
observed within two hours as input, which include all routes
associated with the confirmed anomaly and enough legitimate
route changes. We set the sliding window length to two hours
for the same reason. The thresholds thd and thv are decided by
historical data. Specifically, we use the observed path differ-

ence scores for all legitimate route changes two hours before
the current window as a reference distribution, and set thd as
the knee point of its CDF curve. thv is determined similarly.
The calculation of the knee point is automated via kneed [47].

To systematically evaluate our system, we substitute the
BEAM engine with other commonly used features or repre-
sentation learning models to create variants of our detection
system. In particular, we create 6 variants: ED uses the edit
distance [48] to measure path difference; JI uses the Jaccard
index of neighbor AS sets to measure the similarity of two
ASes; Li, Ma, NV and SD uses the general network repre-
sentation model Line [35], Marine [49], node2vec [50] and
SDNE [51] to train embedding vectors, respectively, and uti-
lize Euclidean distance of embedding vectors to measure the
similarity of two ASes. All these variants are well-trained and
use the same settings as our detection system. Moreover, we
compare our system with two state-of-the-art ML-based BGP
anomaly detection approaches: AV [28] and LS [22]. AV and
LS identify anomalous route changes and the time intervals
where anomalies occur, respectively. For fair comparisons, we
apply our anomaly detector to aggregate their detection results
into different alarms (see Appendix C). We do not compare
our work with the active probing-based systems like [10, 15]
because they heavily rely on the real-time probing results col-
lected by many data-plane facilities. These real-time probing
results are not available for our historical datasets.

Each detection system may raise multiple alarms for a
dataset. Each alarm reports a potential routing anomaly. If
any alarm matches the confirmed information, i.e., the tar-
get prefix is reported as one of the anomalous prefixes and
the misbehaved ASes are also identified as responsible, we
consider the confirmed anomaly in this dataset as detected.
Besides the confirmed anomaly, there could be other alarms



Table 1: Detection results on the 18 real-world datasets. The ✓/✗ indicates whether the confirmed anomaly of a dataset is
detected. If detected, the number of all raised alarms (#Alarms) and that of false alarms (#FalseAlarms) are presented in bold.

Dataset Detected #Alarms(#FalseAlarms)
ED JI Li Ma NV SD LS AV Ours ED JI Li Ma NV SD LS AV Ours

SPbackcon_5 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ 18(5) 12(3) 21(4) 15(3) 17(2) 9(1) 62(31) 5(1) 34(2)
SPbackcon_4 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ 14(1) 8(1) 15(2) 13(1) 12(1) 7(1) 42(17) 22(6) 21(0)
SPbackcon_2 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ 29(7) 21(7) 24(5) 25(7) 21(4) 8(3) 38(13) 23(18) 37(1)
SPbitcanal_1 ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ 16(0) 16(0) 14(0) 18(0) 17(0) 7(0) 67(36) 30(10) 16(0)
SPpetersburg ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ 22(3) 14(0) 21(3) 20(1) 16(0) 12(2) 66(28) 37(16) 24(0)
SPde f con ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ 7(2) 7(2) 9(3) 9(3) 9(3) 2(2) 28(10) 17(9) 7(1)
SOiran ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ 15(1) 8(1) 24(5) 12(2) 16(3) 0(0) 21(11) 19(10) 31(2)
SObitcanal_3 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ 26(4) 24(3) 29(6) 25(3) 26(5) 7(0) 44(19) 17(8) 40(1)
SObackcon_3 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ 32(8) 23(4) 27(6) 34(8) 34(9) 6(1) 49(27) 19(9) 35(5)
SObackcon_1 ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ 19(6) 16(4) 35(14) 18(4) 17(7) 0(0) 63(35) 25(11) 18(3)
SObitcanal_2 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ 16(1) 15(1) 17(2) 15(1) 16(1) 12(2) 39(14) 29(8) 24(0)
SOh3s ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ 11(1) 3(0) 15(3) 12(2) 9(0) 5(1) 38(22) 27(8) 14(0)
SOpakistan ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ 12(4) 8(2) 9(2) 10(4) 8(1) 1(0) 26(14) 2(0) 10(1)
PObrazil ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ 30(5) 32(4) 30(5) 37(5) 25(3) 11(2) 52(25) 28(11) 51(1)
POsprint ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ 20(0) 18(0) 16(0) 22(2) 19(2) 10(2) 84(24) 33(8) 29(0)
RL jtl ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ 17(1) 16(1) 21(2) 16(2) 17(1) 6(3) 60(40) 21(11) 46(5)
RLstelkom ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ 25(4) 21(2) 34(6) 26(3) 23(3) 4(0) 284(225) 17(8) 43(3)
RLitregion ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ 25(0) 21(1) 23(0) 20(0) 21(3) 6(2) 74(44) 23(9) 44(4)

Overall 11/18 11/18 12/18 13/18 14/18 0/18 9/18 4/18 18/18 354(53) 283(36) 384(68) 347(51) 323(48) 113(22) 1137(635) 394(161) 524(29)

that indicate unrevealed routing anomalies or are simply false
alarms. It is difficult to contact the operators to further con-
firm these potential anomalies since most anomalies occurred
long ago. To verify these unknown alarms, we define four
anomalous route change patterns that represent typical routing
anomalies based on domain knowledge and authorized data
such as RPKI validation states. If an alarm matches at least
one pattern, we consider it a true alarm with high confidence,
otherwise it is a false alarm. These patterns are as follows:

• P1 (Unauthorized Route Change): The origin ASes before
and after the route change belong to different organizations
and have different RPKI validation states, i.e., one in the
invalid_ASN state and the other in the valid state [7].

• P2 (Route Leak): The routing path before or after the route
change violates the valley-free criterion [30].

• P3 (Path Manipulation): The routing path before or after the
route change contains reserved ASNs or adjacent ASes that
have no business relationship records between them [11].

• P4 (ROA Misconfiguration): The origin ASes before and af-
ter the change are from the same organization but have dif-
ferent RPKI validation states, i.e., one in the invalid_length
or invalid_ASN state and the other in the valid state [52].

These patterns are endorsed by the domain experts from a
large ISP where we deployed our system. They also apply
these patterns to verify our real-world detection results (see
§5.5). Note that these patterns alone should not be used to de-
tect routing anomalies directly because they cannot correlate
massive route changes with the same root cause, which would

result in too many false alarms. We discuss the rationale be-
hind these patterns in our additional technical report [43].

Table 1 shows that all previously-confirmed 18 routing
anomalies are correctly detected by our system within tens
of alarms. Further, our system reports no false alarms for 6
datasets that cover the confirmed anomalies, and only 5 false
alarms in the worst case. These false alarms are mainly related
to route engineering practices such as AS prepending [53],
while some involve stub ASes with limited connections. In
contrast, the baselines cannot detect all these anomalies and
raise more false alarms than ours (except for SD that cannot
detect any anomalies). Besides, the baselines require many
extra data to train the models, e.g., AV needs RIB entries in ev-
ery two hours and LS requires a large amount of training data
to eliminate the negative impacts of label noises. Moreover,
AV cannot detect transient anomalies and LS incurs high FP
due to per-minute anomaly detection. Please see the details in
Appendix C. Overall, our detection system outperforms these
baselines by significant margins. In summary, (i) our system
addresses the key challenges of ML-based detection methods
and realize effective Internet routing anomaly detection. (ii)
compared with our BEAM model, general network represen-
tation learning models are not able to effectively capture BGP
semantics for routing anomaly detection.

5.3 Runtime Overhead

Our system runs on a Linux server with Intel Xeon E5-2650v4
(2.20GHz). We present its runtime overhead in Fig. 6. The
X-axis displays the datasets in their chronological order, with
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Figure 6: The runtime overhead of our detection system.

the later datasets containing more ASes in operation. The
number of ASes in our datasets increases from 27,588 to
73,014 over the entire period. The top figure shows the av-
erage time it takes to process every 15 minutes of data from
each dataset. The error bar reflects the 95% confidence in-
terval. The variance in processing time is mostly caused by
the variance in the sizes of 15-minute data. The processing
time is less than 100 seconds in most cases, indicating that the
increase of ASes only slightly impacts our system’s runtime
overhead. The largest processing time (∼140s in RL jtl) is still
much smaller than 15 minutes, meaning that our system can
effectively process the stream of global route announcements
in real time. The bottom figure plots the average time it takes
to process every 1,000 route changes. Due to the caching
employed by our system (e.g., the caching of path difference
scores), the anomaly detector spends much less time at the
steady state (∼0.05s per 1,000 route changes), compared with
the cold start (∼0.2s).

5.4 Robustness Analysis
We analyze the robustness of our system given noisy AS rela-
tionship data, which is created by modifying or deleting the
original AS relationships in the CAIDA dataset. We consider
four types of noisy datasets. In particular, given a noise ra-
tio r, we first randomly select r% AS relationships, and then
flip their labels (i.e., changing P2P to P2C and P2C to P2P)
to produce the R1 dataset, or delete them to create the R2
dataset. R1 and R2 represent the noisy dataset caused by inac-
curate and incomplete AS relationship inference, respectively.
To create another two types of noisy datasets, we first select
top-r% AS relationships with the fewest BGP routes that use
their underlying AS-to-AS links and create the W1 dataset
by flipping their labels and W2 by deleting them. These two
types of noisy data are common in the Internet because the
AS relationships serving fewer routes are more likely to be
mislabeled due to their limited Internet visibility.

We train our system with each noisy dataset independently
and evaluate its detection performance following the same
steps in §5.2. We repeat each experiment for 5 times to avoid
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bias and plot the results in Fig. 7. The error bar shows the
95% confidence interval. Even when the noise ratio reaches
20%, our system still detects at least 17 true anomalies (18 in
total) and only generates less than 40 false alarms across all
datasets. Note that such a high noise ratio is rare in practice.
These results demonstrate the robustness of our system under
noisy AS relationship data.

5.5 Real-World Deployment
We deploy our detection system in the main operational AS
of a large ISP to evaluate its performance in practice. Based
on the customer cone size, the AS rank is in the global top
100 [54]. At the time of our deployment, the AS maintains
live BGP sessions with about 500 neighbors, including 14
Tier-1 ASes. Thereby, the AS has a fairly comprehensive view
on the Internet-wide routing paths. We set up our detection
system in a server that receives real-time incoming route
announcements from all BGP routers within the AS via the
iBGP protocol. We train the BEAM engine of our system
using the latest CAIDA AS relationship dataset collected at
the time of our deployment, which includes 74,923 ASes
and 505,927 AS business relationship records. The sliding
window length of our system is one hour. We use the same
parameter settings and the method of identifying false alarms
as described in §5.2. To reduce the repetitive alarms raised in
different time windows, we aggregate the alarms sharing the
same anomalous prefix and responsible AS.

The system is online since Jaunary 1, 2023. We analyze the
generated results from January 1 to February 1, 2023. In total,
the system processes 152,493,303 live route announcements
during this month, detects 5,106,442 route changes and raises
548 alarms. We show the alarms’ impact and daily statistics
in Table 2 and Fig. 8, respectively. On average, our system
identifies 17.68 alarms per day. The domain experts of the ISP
carefully verify the correctness of each alarm based on the
patterns described in §5.2. They find that most alarms (497
out of 548) indicate real routing anomalies, i.e., true alarms.
These true alarms, not detected by the ISP’s existing routing
security mechanisms, include 84 unauthorized route changes



Table 2: The overall impact of the detected anomalies.
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Figure 8: Daily alarm number in real-world deployment.

(P1), 123 route leaks (P2), 270 path manipulations (P3) and
20 ROA misconfiguration (P4). The interpretability of these
alarms greatly facilitates the identification of anomaly sources
(see §6 for detailed case study). More importantly, our system
only raises an average of 1.65 false alarms per day. These
false alarms can be further eliminated with minimal interven-
tion (see discussions in §7). Overall, our detection system
demonstrates promising results in real-world deployment.

We further investigate how many anomalies are caught by
an existing security mechanism but not our system. First, we
check whether our system misses the anomalies detected by
the ISP’s existing security mechanism. The ISP detects invalid
routes based on its customers’ IRRs. However, due to the in-
complete coverage of prefixes, the ISP’s security mechanism
does not generate any alarm during our system’s deployment.
Thus, our system does not miss any alarm raised by the ISP it-
self. Next, we check whether there are real routing anomalies
missed by both our system and the ISP itself. This requires
a reliable source for BGP incidents. Although BGPstream
is a promising candidate, we cannot use it in our paper be-
cause its vantage points are quite different from those of the
ISP, which would introduce non-negligible experimental bias.
Therefore, we use the RPKI validation results as a reference.
Specifically, among all the RPKI-invalid announcements that
are generated during our system’s deployment, our system
only misses about 2.25% of them and most of the missed
ones are due to the limited Internet visibility, i.e., only a few
vantage points observe these invalid announcements. Overall,
this result indicates our system has very low false negatives.
Ethics. We operate our detection system in compliance with
the ISP’s policy/agreement and under the close supervision
of ISP’s administrators. Our evaluation does not involve any
sensitive or privacy data. We only collect results for analysis
and do not interfere with Internet routing operations.

6 Case Study

In this section, we illustrate the interpretability of our detec-
tion results by analyzing four detected anomalies: three from
historical events (Cases 1-3) and one from our real-world de-
ployment (Case 4). Cases 1-3 each cover a different category
of routing anomalies, i.e., origin change, path change, and
route leak. In each case, we compare a representative anoma-
lous route change with a legitimate one that occurred on the
same day. To interpret the difference between routing paths,
we apply two visualization techniques: the heat map of the
path difference scores and the embedding map of the routing
roles. In particular, the heat map shows the path difference
scores for the eligible sequences of AS pairs and marks the
optimal sequence identified by DTW. The embedding map,
generated by t-SNE [39], visualizes the routing roles of the
ASes to illustrate the deviations between two paths.
Case 1. Figure 9(A) shows the origin change in SOpakistan,
where AS 17557 (Pakistan Telecom) hijacked a subprefix
of AS 36561 (YouTube) by announcing 208.65.153.0/24.
Figure 9(A)(I) sees the anomalous pattern that most ASes
on the new path are different from those on the old path. The
two origin ASes, AS 17557 and AS 36561, are far apart in
the embedding map with few common neighbors, indicating
very different routing roles. Thus, their route announcements
would traverse quite different paths before they eventually
converge on AS 5503. This pattern also appears in the heat
map, where the path difference score rises sharply as the
AS pairing operation proceeds, because the ASes from two
paths are completely different after a few steps. In contrast,
Fig. 9(A)(II) shows a legitimate route change on the same day
with low path difference scores and almost overlapping paths
in the embedding map, because the legitimate route update
changes the origin from AS 6198 to AS 6197, both operated
by BellSouth Network and with similar routing roles.
Case 2. Figure 9(B) shows the path change in SPbackcon_2,
where AS 203959 (BackConnect) hijacked a subprefix of AS
25761 (Staminus Comm.) by faking a nonexistent routing path
to the real origin AS. The embedding map reveals that the fake
path detours significantly from the real one, as AS 203959 is
neither on the real path nor similar to any ASes on it in terms
of routing roles. The heat map also indicates an upsurge in the
path difference score in the AS pairing. The optimal sequence
of AS pairs greatly deviates from the diagonal of the heat map
because no AS is similar to AS 203959 in the counterpart. In
contrast, the paths in the legitimate route change are similar
in routing roles; we leave the analysis to the reader.
Case 3. Figure 9(C) shows the route leak in RLJT L, where
AS 36866 (JTL) received the route to 156.0.233.0/24 from its
provider AS 8966 (Emirates Tel.) and leaked it to its another
provider AS 37662 (WIOCC). The leaked route results in a
much longer path through AS 37662 that detours significantly
from the original one. It also violates the valley-free criterion.
Accordingly, the heat map shows high path difference scores
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Figure 9: Typical anomalous/legitimate route changes. In each plot, the heat map (left) displays the path difference score at
each AS pairing step of DTW in a top-to-bottom and left-to-right order. The white arrows show the optimal sequence of AS pairs.
The embedding map (right) represents embedding vectors in a 2-D plane. The purple dots denote the common neighbors of the
two routing paths, while the orange and cyan dots correspond to the exclusive neighbors for the new and old paths, respectively.

and the optimal sequence forms a hump-like pattern away
from the diagonal. In contrast, the legitimate route change
has minor path difference; we leave the analysis to the reader.

Case 4. We represent the first alarm reported by our system
during its real-world deployment in Fig. 10. This alarm, la-
beled Alarm 0, starts at 01:04:40, January 1, 2023, and lasts
about 1 hour and 24 minutes, affecting three prefixes and six
routes observed by two individual vantage points. The top part
of Fig. 10 provides an overview of this alarm. The bottom part
of Fig. 10 further plots a representative route change event
captured by this alarm observed from AS 6453. In this event,
AS 42440 (RDG-AS) announces 185.88.179.0/24, which is
owned by AS 201691 (WEIDE), without authorization (its
RPKI validation state is invalid_ASN). Moreover, AS 42440
is also on the path before the route change, indicating a Type-5
route leak as described in RFC 7908 [55]. This pattern also ap-
pears in the heat map. The optimal sequence before AS 42440
follows the diagonal and the path difference score increases

sharply after AS 42440, indicating a significant change of rout-
ing roles. The embedding map also demonstrates the clear
difference between AS 42440 and AS 201691.

7 Discussion

Per-Prefix Threshold. Our system uses the same detection
threshold values (i.e., thd and thv) for all prefixes. Assign-
ing an individual threshold for each prefix may gain better
results. But it will incur significant computational overheads
and large detection delays due to the large number of prefixes
in the Internet (i.e., over 940k IPv4 and 200k IPv6 prefixes in
November 2023), which is inappropriate for online detection.
Reducing False Alarms. We can apply two heuristics to
further reduce our system’s false alarms. (i) Since most route
hijacks and route leaks are short-lived [10], we can label the
long-lived routes as normal. (ii) The different origin ASes
in a legitimate MOAS event usually have similar routing
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Figure 10: An anomaly report in real-world deployment.

characteristics [41] (e.g., from the same organization) while
the malicious ASes do not. We leave the application of both
heuristics in our system to future work.
Adaptive Attacks. An adaptive attacker may attempt to by-
pass our system by mimicking the normal ASes’ routing roles,
yet it is very difficult in practice. Specifically, to imitate a nor-
mal AS’s routing role, a malicious AS has to establish busi-
ness relationships with the normal AS’s neighbors, which is
time-consuming and would reduce the malicious AS’s stealth-
iness due to the possible scrutiny required for establishing
neighboring relationships. Further, to make the routing roles
of a forged path similar to those of a real path, the attacker
has to control multiple ASes on the forged path. Our empiri-
cal study (presented in detail in Appendix D) reveals that it
requires the attacker to control at least two ASes and estab-
lish hundreds of new AS relationships to make the routing
roles of a forged path similar to those of a real path. This is
considerably intractable in practical scenarios.
Evolving Routing Roles. AS routing roles evolve as ASes
update routing policies. Our system is resilient against routing
role evolution. Per §5, even if the time gap between training
and detection is over 30 days (i.e., the dataset update cy-
cle), our system still performs well. Moreover, we can retrain
BEAM with latest AS relationships to keep up with the rout-
ing role evolution. It takes ∼10 hours to train the model on
our platform with GeForce RTX 2080 Ti, which is acceptable
since CAIDA releases a new dataset roughly every month.
Detection with Unknown ASes. BEAM cannot learn rout-
ing roles of ASes whose relationships with other ASes are
unknown (i.e., unknown ASes). Fortunately, the existing
study [34] has revealed AS relationships for most ASes ab-
sent in the dataset. For instance, there are only 368 unknown
ASes in the most recent events that we analyze, which is only
0.5040% of the total ASes. Further, our measurement study
discovered that some unknown ASes use the AS numbers that
are reserved for private use [56]. The routing paths containing
such unknown ASes should be regarded as anomalous.

8 Related Work

Traditional Routing Anomaly Detection. The existing stud-
ies consist of the control-plane based [11, 17, 18], the data-
plane based [9, 14, 16] and the hybrid methods [10, 12, 13,
15]. The control-plane based methods maintain the nor-
mal/authoritative route information for each prefix and check
if the newly received route contradicts it. The data-plane
based methods identify routing anomalies by analyzing the
reachability from multiple hosts to the target prefix. However,
these traditional approaches require non-trivial manual inves-
tigation from network operators, e.g., collecting the normal
route information of each prefix, and deploying vast network
probes to monitor the prefixes in the world, which incurs
unacceptable operation overhead for deployment.
ML Based Routing Anomaly Detection. Machine learning
is utilized to detect routing anomalies [19–29]. Shapira et
al. [28] (AV) use unsupervised word embedding to model
routes. But AV fails to detect transient anomalies due to its
reliance on RIB snapshots and suffers from non-trivial retrain-
ing overheads. Dong et al. [22] and Hoarau et al. [27] perform
supervised classification on BGP time series. Both require
large-scale labeled datasets, which is hard to achieve in prac-
tice. Moreover, all these methods cannot provide interpretable
results, incurring great manual efforts for validation.
Application of Network Representation Learning. Net-
work representation learning (NRL) [57] aims to learn latent,
low-dimensional representations of network vertices, while
preserving network characteristics, e.g., the structure infor-
mation and vertex content, where the learnt representations
can be used for downstream tasks. NRL has been applied in
various domains, e.g., social network analysis [58], recom-
mendation system [59], and anomaly detection [60]. In this
paper, we develop a BGP semantics aware NRL model to
measure ASes’ routing roles for routing anomaly detection.

9 Conclusion

In this paper, we present a routing anomaly detection sys-
tem centering around a novel network representation learn-
ing model named BEAM. The core design of BEAM is to
accurately learn the routing roles of Internet ASes by incor-
porating the BGP semantics. As a result, routing anomaly
detection, given BEAM, is reduced to discovering unexpected
routing role churns upon observing new route announcements.
We implement a prototype of our routing anomaly detection
system and extensively evaluate its performance using 18
real-world RouteViews datasets containing over 11 billion
route announcement records. The results demonstrate that our
system can detect all previously-confirmed routing anomalies
within an acceptable number of alarms. We also perform one
month of real-world detection at a large ISP and detect 497
true anomalies in the wild with only 1.65 daily false alarms on
average, demonstrating the practical feasibility of our system.
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A Preservation of the Second-Order Proximity

In practice, we derive the weight vector lll (see Def. 2) from the
softmax transformation of a learnable variable lll′′′ ∈ Rd , and
ensures that the minimum value of its components is above α

(α > 0) to avoid trivial solutions:

lll = [l0, . . . , ld−1]
⊺ =

(
so f tmax(lll′′′)

)
α+

. (6)

Accordingly, lll is differentiable with respect to lll′′′ and satisfies
the following criteria:

∥lll∥1 =
d−1

∑
i=0

|li|= 1, lmin = min{l0, . . . , ld−1} ≥ α. (7)

In practice, we set α = 1
d ×10−6, a rather small positive num-

ber. Now, we prove the theorem that the pairwise AS differ-
ence does preserve the characteristics of the second-order
proximity between ASes5.

Theorem 1. The distance function (5) preserves the second-
order proximity.

Proof. Given two vertices u,v (u ̸= v) having similar neigh-
bors and business relationships, there must exist at least one
vertex w (w ̸= u,w ̸= v) such that (u,w)∈ E,(v,w)∈ E. Then
after sufficient optimization of the objective function, there
must exist two thresholds ε1,ε2 > 0 such that

0 ≤ p_score(u,w), p_score(v,w)≤ ε1,

h_score(u,w),h_score(v,w)≥ ε2.

According to Equation (7), we have

p_score(u,w)≤ ε1 (8)
=⇒ (xxxwww − xxxuuu)

⊺((xxxwww − xxxuuu)⊙ lll)≤ ε1. (9)

=⇒∥xxxwww − xxxuuu∥2 ≤
√

ε1

lmin
≤
√

ε1

α
. (10)

Similarly, we have ∥xxxwww − xxxvvv∥2 ≤
√

ε1
α

. Thus |h_score(u,v)|
is upper bounded:

|h_score(u,v)|= |h_score(u,w)−h_score(v,w)|
≤ |h_score(u,w)|+ |h_score(v,w)|
= |(xxxwww − xxxuuu)

⊺rrr|+ |(xxxwww − xxxvvv)
⊺rrr|

≤ ∥xxxwww − xxxuuu∥2 · ∥rrr∥2 +∥xxxwww − xxxvvv∥2 · ∥rrr∥2

≤ 2
√

ε1

α
.

Also, p_score(u,v) is upper bounded by 2ε1:

p_score(u,v)≤ p_score(u,w)+ p_score(v,w)≤ 2ε1

5Note that this is a theoretical proof under ideal conditions. In the actual
training process, the convergence of the embedding vectors would also be
affected by initial values and sampling techniques.

Thus, we have Dlll,rrr(u,v)= |p_score(u,v)|+ |h_score(u,v)| ≤
2ε1 +2

√
ε1
α

. That is, there exists an upper bound for the dis-
tance between u,v in terms of the distance function (5). More-
over, when the objective function is sufficiently optimized, ε1
is a rather small positive number approaching zero and α is
a constant, and then the distance Dlll,rrr(u,v) should approach
zero, which means the two vertices u,v are at a close distance
to each other in the low-dimensional vector space.

B Sampled AS Pair Datasets

Notation in the table: No rel stands for no relationship. Ngbr
JI refers to the Jaccard index of two neighbor AS sets.

Feature Name #AS pair Sampling rule

1st-order
proximity

S0 10,000 P2P, Ngbr JI ∈ [0%,10%)
H0 10,000 P2C, Ngbr JI ∈ [0%,10%)
N0 10,000 no rel, Ngbr JI ∈ [0%,10%)

2nd-order
proximity

N1 2,000 no rel, Ngbr JI ∈ [0%,20%)
N2 2,000 no rel, Ngbr JI ∈ [20%,40%)
N3 2,000 no rel, Ngbr JI ∈ [40%,60%)
N4 2,000 no rel, Ngbr JI ∈ [60%,80%)
N5 2,000 no rel, Ngbr JI ≥ 80%

hierarchy

S1 10,000 with a direct P2P
H1 10,000 with a direct P2C
H2 10,000 with 2 consecutive P2C
H3 10,000 with 3 consecutive P2C
H4 10,000 with 4 consecutive P2C
H5 10,000 with 5 consecutive P2C
H6 10,000 with 6 consecutive P2C

C Comparison with ML-based Methods

We implement two baselines, i.e., AV and LS, according to
their papers [22, 28]. Here, we describe their experimental
setup and compare them to our system in detail.
AV Setup. In accordance with the original setup in the pa-
per [28], for each dataset, we train an AV detection model
based on the most recent RIB snapshots collected from all van-
tage points before the confirmed anomaly occurs, and perform
detection on the next RIB snapshots in the next two hours. To
reduce the training time, the model is trained offline on all
two-hour RIB snapshots in parallel. Note that this strategy is
not realizable for an AV model deployed for real-world online
detection task, because the model has to be trained on the
RIB snapshot collected 2 hours earlier and perform detection
on the latest RIB snapshot. We set the hyperparameters the
same to the original paper. The outputs of the AV detection
model are anomalous route changes. For fair comparisons,
we further apply our anomaly detector (see §4.3) to aggregate
these route changes into alarms, i.e., identifying anomalous
prefixes and locating responsible ASes.
LS Setup. The LS method aggregates all BGP announce-
ments in each two minutes into a time interval and extracts



Table 3: Comparison with ML-based methods. Vol., Req. and Ann. are short for Volume, Requirement and Announcement.

Method Training Detection

Training Data Training Data Vol. Retraining Req. ML Model Type Detection Data Anomaly Type

Ours AS relationships ∼500K Monthly Unsupervised Ann. Short & Long-lived
AV [28] RIB entries ∼10M Bihourly Unsupervised RIB entries Long-lived
LS [22] Ann. time series ∼100M Unknown Supervised Ann. time series Short & Long-lived

86 features. Note that LS is a supervised detection method.
Thus, for each dataset, we use the other 17 datasets as the
training data to train an LS model, and then classify the time
intervals (i.e., normal or anomalous) in this dataset. The label-
ing method of the training data and the parameters of the LS
detection model are the same to the original paper. All route
changes in the detected anomalous time intervals are consid-
ered anomalous. Finally, we also utilize our anomaly detector
to aggregate these anomalous route changes into alarms.
The Comparison. We compare our system with AV and LS
in Table 3. Specifically, since AV performs detection in the
RIB snapshots of every two hours, it cannot detect transient
routing anomalies that occur within the period between two
RIB snapshots. Besides, AV requires frequent model updates
because tens of millions of RIB entries are updated bihourly,
which incurs significant retraining overheads. To the best
of our knowledge, there is no technique that can be directly
applied to accelerate the training of AV. By contrast, our
system directly checks every route change collected from
each real-time BGP announcement such that it can detect
both transient and long-lived routing anomalies. Further, our
system only requires the AS relationship data for training,
which is much smaller than the RIB snapshots and more
stable, ensuring a small retraining overhead.

LS characterizes announcements as time series and applies
a supervised neural network to detect if each data point in the
time series is associated with routing anomalies. However,
each data point in the time series, e.g., the data in a two-minute
time interval, may include a large number of legitimate an-
nouncements, leading to much more false alarms than our
system. Besides, since LS utilizes a supervised model, it re-
quires a large amount of BGP anomaly data for training, e.g.,
more than 2,000 BGP anomaly events [22], which is difficult
to achieve in practice. By contrast, our system performs de-
tection in an unsupervised manner and gets rid of the reliance
on anomalous training data.

D An Empirical Study on Adaptive Attacks

We empirically study how many ASes an adaptive attacker
needs to control and how many AS relationships need to be
established to make the routing roles of a malicious path6 sim-
ilar to those of a legitimate path. Specifically, for each legiti-

6A malicious path refers to a routing path that contains the known mali-
cious AS in the BGP anomaly event.

mate routing path from the 18 real-world datasets (described
in §5.1), we start from the vantage point of the legitimate path
and search for the malicious path that has the most overlap-
ping segments with the legitimate path. Then, we choose the
ASes that appear on the malicious path but not on the legiti-
mate path. These ASes have to be controlled by the attacker
to mimic the legitimate path ASes’ routing roles. Next, we
compare the neighbors of the malicious and the legitimate
path and calculate the minimum number of relationships that
need to be established to make 10% neighbors the same. In
this study, we assume that having 10% common neighbors is
sufficient to make the routing roles of a malicious path similar
to those of the legitimate path. This reduces the difficulty for
the attacker, such that the result is a lower-bound estimate.

We show the result in Fig. 11, where the top and bottom
figures display the average number of ASes that must be con-
trolled and the average number of AS relationships that need
to be established, respectively. The error bar shows the 95%
confidence interval. In most cases, an adaptive attacker has to
control at least two ASes and establish hundreds of new AS
relationships to make the routing roles of a malicious path
and a legitimate path similar. Note that, the cost for an adap-
tive attacker to bypass our system in practice would be much
higher than the above result, because our system monitors
multiple vantage points simultaneously, i.e., the attacker has
to make the routing roles of multiple malicious routing paths
similar to those of normal paths. Thus, it is very difficult for
adaptive attackers to bypass our system’s detection.
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Figure 11: The empirical estimate of the cost for an adap-
tive attacker to make the routing roles of a malicious path
and a legitimate path similar.


	Introduction
	Background
	Semantics Aware Analysis
	BEAM Overview
	Model Formulation
	AS Graph Construction
	AS Embedding
	Embedding Results Analysis

	The Anomaly Detection System
	System Overview
	BEAM Engine
	Anomaly Detector

	Experimental Results
	Measuring Path Difference Score
	Routing Anomaly Detection Results
	Runtime Overhead
	Robustness Analysis
	Real-World Deployment

	Case Study
	Discussion
	Related Work
	Conclusion
	Preservation of the Second-Order Proximity
	Sampled AS Pair Datasets
	Comparison with ML-based Methods
	An Empirical Study on Adaptive Attacks

