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Abstract
Database Management Systems play an indispensable role in
modern cyberspace. While multiple fuzzing frameworks have
been proposed in recent years to test relational (SQL) DBMSs
to improve their security, non-relational (NoSQL) DBMSs
have yet to experience the same scrutiny and lack an effective
testing solution in general. In this work, we identify three
limitations of existing approaches when extended to fuzz the
DBMSs effectively in general: being non-generic, using static
constraints, and generating loose data dependencies. Then,
we propose effective solutions to address these limitations.
We implement our solutions into an end-to-end fuzzing frame-
work, BUZZBEE, which can effectively fuzz both relational
and non-relational DBMSs. BUZZBEE successfully discov-
ered 40 vulnerabilities in eight DBMSs of four different data
models, of which 25 have been fixed with 4 new CVEs as-
signed. In our evaluation, BUZZBEE outperforms state-of-the-
art generic fuzzers by up to 177% in terms of code coverage
and discovers 30x more bugs than the second-best fuzzer for
non-relational DBMSs, while achieving comparable results
with specialized SQL fuzzers for the relational counterpart.

1 Introduction

Database Management Systems (DBMSs) play an indispens-
able role in ensuring effective and efficient data storage, re-
trieval, and management in modern cyberspace. The land-
scape of DBMSs has evolved significantly, with the emer-
gence of both relational (SQL) and non-relational (NoSQL)
databases catering to the diverse requirements of various appli-
cation domains [13, 16]. While relational DBMSs have been
extensively studied and employed for decades, non-relational
DBMSs such as key-value DBMS, document DBMS, and
graph DBMS have gained widespread adoption more re-
cently due to their flexibility and performance advantages
in handling large-scale, unstructured data. Considering the
prevalence and criticality of these systems, it is paramount to
strengthen the security and robustness of the diverse DBMSs.

Fuzzing, an automated software testing method that in-
jects random data as inputs to software, has proven useful
in uncovering faults in DBMSs. However, there exists a dis-
parity in the extent of fuzzing efforts directed towards non-
relational DBMSs compared to their relational counterparts.
Fuzzing frameworks and research related to relational DBMSs
[27, 28, 43, 44, 49, 56] have been developed and advanced
extensively over the years, contributing to more secure and
trustworthy systems in the relational DBMS venue. In con-
trast, non-relational DBMSs have not experienced the same
level of scrutiny. State-of-the-art generic fuzzing frameworks
such as [4, 7, 9, 14, 30, 54] all show non-promising fuzzing
performances when applied to non-relational DBMSs because
they cannot generate test cases that trigger DBMS behaviors
effectively. There is a need for an effective solution capable
of testing both relational and non-relational DBMSs.

However, multiple challenges exist when designing a fuzzer
that extends to non-relational DBMSs. First, it is hard to
generalize. The interfaces of non-relational DBMSs are di-
verse, accepting inputs ranging from key-value command
sequences [40, 45], JSON documents [2, 33] to graph pat-
terns represented in ASCII-art forms [5, 35, 41]. The diversity
of the interfaces presents a unique challenge in designing a
generic framework that handles the diverse types of DBMS
interfaces effectively, because the semantics of the interfaces
can vary drastically across different DBMS categories, putting
us in a dilemma between promoting test case quality and main-
taining the fuzzer’s generalizability. Second, semantics can
change based on the context. For example, in the graph query
language Cypher used by many graph DBMSs, one syntax
structure can either define some data or use some data, depend-
ing on the syntactic context. Also, in the key-value DBMS
redis, the type of some keys depends on the value speci-
fied in the context. For many non-relational DBMSs, failure
to model such semantics leads to semantically incorrect test
cases and can hardly reach deep logic. Existing methods used
by relational DBMS fuzzers cannot scale to non-relational
DBMSs in general because they do not consider the semantics
based on contexts. Third, random mutations tend to generate



loose data dependencies, triggering less effective behaviors.
Some fuzzers employ coverage as feedback, but the mutation
process is still random and can waste time generating test
cases triggering less effective behaviors, taking longer time
to discover new coverage. We observe that data dependency
plays an important role in effective DBMS fuzzing. With-
out data dependency, even semantically correct test cases can
demonstrate less effective behaviors. For example, a test case
that creates the same data 100 times does not trigger more
behaviors of the DBMS than a test case that first creates the
data once and then reads the data, even though they are both
semantically correct.

In this work, we systematically analyze these challenges
and propose three solutions, namely, semantics abstrac-
tion, context-sensitive constraint resolution, and dependency-
guided mutation. Then, we implement the solutions into
an end-to-end fuzzing framework, BUZZBEE, which can ef-
fectively fuzz both relational and non-relational DBMSs in
general. To solve the first challenge, BUZZBEE models the
DBMS semantics at a highly abstract level where the se-
mantic differences are neutralized. To solve the second chal-
lenge, BUZZBEE incorporates an advanced annotation system,
through which users can easily specify simple and expressive
semantics based on the context for different DBMSs. Finally,
to solve the third challenge, BUZZBEE performs novel prin-
cipled mutations utilizing data dependencies as guidance,
generating useful test cases more efficiently.

We implement BUZZBEE with 9,130 lines of code in C++
and Python, and apply it to 8 DBMSs, including relational
DBMSs and three types of mainstream non-relational DBMSs:
key-value DBMS, graph DBMS, and document DBMS. We
evaluate BUZZBEE on the DBMSs and find 40 vulnerabilities,
of which 25 have been fixed, and 4 new CVEs have been as-
signed. We also compare BUZZBEE with six state-of-the-art
fuzzing frameworks. BUZZBEE achieves up to 177% perfor-
mance in finding new program states and finds 30x more bugs
when compared with the second-best generic fuzzer.

In summary, we make the following contributions:

• We systematically analyze the challenges for fuzzing
the diverse DBMS interfaces, including relational and
non-relational ones. We propose novel solutions that
effectively tackle them.

• We implement a prototype of our solutions into an end-
to-end fuzzing framework: BUZZBEE, enabling effective
fuzzing for both relational and non-relational DBMSs.

• We perform extensive evaluations for BUZZBEE on eight
mainstream DBMSs of four data models. BUZZBEE has
identified 40 bugs in the DBMSs we tested on.

We release the source code of BUZZBEE at https://
github.com/OMH4ck/BuzzBee.

2 Problem

In this section, we first briefly discuss the diversity of DBMS
interfaces and how they handle user requests in general. Then,
we show the challenges and limitations of existing fuzzers
when applied to the various kinds of DBMS interfaces. Next,
we analyze these unique challenges and present our insights
in tackling them. Finally, we introduce our novel approaches
and framework design for solving the problem.

2.1 Diverse DBMS Interfaces
DBMSs handle user requests by exposing different kinds of
interfaces to the users. DBMSs with distinct data models
demonstrate significant variations in their interfaces. Rela-
tional DBMSs [11, 12, 36, 39] often accept inputs in Struc-
tured Query Language (SQL), through which the user can
manipulate the data stored within the database. Meanwhile,
non-relational DBMSs [2, 5, 33, 40, 41, 45] have more di-
verse interfaces, which are associated with a wide variety of
non-relational data models. They accept various input for-
mats, including command sequences, JSON documents, and
even ASCII-art. Based on how user inputs are processed, we
divide these interfaces into two main categories: query-based
interfaces and command-based interfaces. Query-based in-
terfaces accept user inputs in the form of a query language.
For example, SQL and Cypher [35] are the domain-specific
languages used to interact with relational and some graph
DBMSs respectively. Such inputs go through a parser and
a query planner before hitting the query execution stage [8].
The parser checks the syntax validity of the query, filtering out
syntax invalid inputs. The planner verifies the semantics of the
query and performs analysis to generate an optimized query
execution plan. Any input that fails to pass the parser or the
query planner will most likely fail to trigger deep logic inside
the target DBMS. Command-based interfaces accept a series
of commands from the user and evaluate them in sequence. Al-
though these commands are typically executed independently,
meaning that an error in executing one command is unlikely
to abort the remaining commands, command sequences with
semantic errors or inadequate semantic dependency may still
trigger fewer effective behaviors.

2.2 Existing Challenges and Limitations
In this section, we discuss three limitations of current ap-
proaches in fuzzing the diverse DBMS interfaces.
Non-generic. As discussed in §2.1, the test case quality is
important for DBMS testing. However, the variety of DBMS
interfaces complicates the creation of a fuzzing framework
that can generate high-quality test cases and remain easily
adaptable to different DBMS interfaces. Current research
has made significant advancements in relational DBMS test-
ing [27, 28, 43, 44, 49, 56]. SQLsmith [44] generates ran-

https://github.com/OMH4ck/BuzzBee
https://github.com/OMH4ck/BuzzBee


1 // Partial grammar rules:
2 createtbl_stmt:
3 ’CREATE TABLE’
4 tbl_name ’(’
5 ...
6 ’)’;
7

8 // The test case:
9 > CREATE TABLE t1(

10 c1 date
11 );
12

13

14 // Bind "TABLE define"
15 // to `tbl_name`.
16

17 // When we traverse to the
18 // node `t1`, we know a
19 // TABLE t1 is defined.

(a) PostgreSQL examples

1 // Partial grammar rules:
2 match_clause:
3 MATCH pattern_part where_part;
4

5 pattern_part:
6 node_pattern;
7

8 where_part:
9 WHERE node_pattern;

10

11 node_pattern:
12 ’(’ identifier ’)’ | ...;
13

14 // The test case:
15 > MATCH (n:L) WHERE
16 (n)-[]->() RETURN n.x;
17

18 // Binding "Variable define"
19 // to `identifier` won’t work.

(b) Cypher examples

1 > HSET k1 k1_field1 "Hello" // stores an ASCII string
2 > HSET k2 k2_field1 "123" // stores a numeric string
3

4 > HINCRBY k1 k1_field1 1 // increase the stored value
5 (error) value not an integer
6

7 // > DEL k2
8 > HINCRBY k2 k2_field1 1
9 (integer) 124

(c) redis commands

Fig.1: Static Constraint Examples. Example test cases illustrating
the problem of static constraints. While using static constraint suffi-
ciently models the semantics in Fig.1a, it does not correctly model
the scope constraints in Fig.1b and the type constraints in Fig.1c.

dom SQL queries according to predefined schema infor-
mation about certain SQL DBMSs. SQUIRREL [56] and
later works [27, 28] advance by introducing an interme-
diate representation (IR) that effectively incorporates SQL
syntax and semantics, allowing it to adapt to multiple SQL
databases. However, these frameworks still require non-trivial
adoption efforts to support a new relational DBMS, as men-
tioned in [49]. Moreover, they either have not supported non-
relational DBMS, or inherently cannot support them due to
the model design. Considering the wide use of non-relational
DBMSs, we lack a generic solution that enables efficient test-
ing for the diverse DBMS interfaces.

Static Constraints. Mutation-based fuzzing has proven suc-
cessful in fuzzing modern software. However, for DBMS
fuzzing, mutations can easily break the semantic correctness
of the test case. Recent studies [27, 28, 56] highlight the sig-
nificance of maintaining the semantic correctness of the test
cases in mutation-based DBMS fuzzing. In this work, we use
constraints to represent the semantic rules the test case should
obey to avoid a DBMS execution error. This includes scope
constraints and type constraints. Scope constraints restrict
where a variable is available for use. This is often enforced
through data operations such as define, use, and invalidate.
Type constraints further restrict the legitimate type of the vari-
able in the data operations. To model the constraints, the ap-
proach used by existing fuzzing frameworks [9, 27, 28, 56] is

HMSET k1 k1_field1 1

HMSET k1 k1_field1 1
APPEND x 413413

HMSET k1 k1_field1 1
XGROUP CREAT s g 0

HMSET k1 k1_field1 1
HRANDFIELD key1 1

...

...
( >2.6k possibilities )

...

...

Level n Mutations

(showing only 1 out of
many possibilities)

HMSET k1 k1_field1 1
HRANDFIELD k1
-9223372036854770000
withvalues

crash!

Level 1 Mutations

mutate
multiple
levels

...

...

Fig.2: Random Mutation Running Examples. This figure shows
a demo fuzzer we made for testing redis. When performing ran-
dom mutations, the level 1 mutations contain many possibilities that
cannot form a data dependency with the initial command, which con-
sequently affects the fuzzing performance at later mutation levels.

first to parse the test case using the target’s grammar specifica-
tion, and then bind a static constraint to a particular syntactic
structure, i.e., an AST node. However, in the case of fuzzing
diverse DBMS interfaces, we observe that many constraints
should not stay static, but should adapt to various contexts,
such as the node’s position in the AST, the existence of other
nodes in the AST, the text of literal nodes, etc.

We first illustrate the problem of static scope constraints.
We show the grammar for the "CREATE TABLE" statement in
PostgreSQL in lines 2-6 of Fig. 1a. A static approach binds
the constraint "TABLE define" to the AST node "tbl_name",
and enforces this constraint during the traversal of the AST.
Here, this approach is sufficient for modeling the semantics.
However, consider the MATCH clause in the graph DBMS inter-
facing language Cypher. The grammar is shown in lines 2-12
of Fig.1b. Lines 15-16 show a Cypher query that first defines
a variable n (i.e., "(n:L)"), and then uses the variable in the
path pattern (i.e., "(n)->[]->()"). Here, we cannot bind the
constraint "variable define" to the identifier AST node, be-
cause both occurrences of n are of the identifier type. Bind-
ing the constraint "variable define" to the identifier AST
node would result in both n treated as "variable define". In
fact, when an identifier is in the subtree of a pattern_part
node, it means "variable define". And when it is in the sub-
tree of a where_part node, it means "variable use". Binding
a static scope constraint to any node cannot correctly model
this semantics.

We next show the problem of static type constraints. Con-
sider the redis commands shown in Fig.1c. In redis, users
can use the HINCRBY command to increase the value of a field
in a set created by HSET. However, if the field does not contain
a numeric value, the HINCRBY command bails out. Conse-
quently, the HINCRBY command at line 4 fails to trigger the
value increasing logic because it tries to operate on k1_field1,



a field pre-defined but storing a value of an ASCII string in-
stead of a numeric string. Adopting the existing approach, we
can only let the AST node of k1 yield type "HSET key", and
let the node of k1_field1 yield type "HSET field", losing
the information that the value implicitly says k1_field1 is
an ASCII string instead of a numeric string. Here, using a
static type constraint without looking at the values (i.e., liter-
als "Hello" and "123") loses vital information to model the
semantics correctly.

Loose Data Dependencies. Existing mutation-based DBMS
fuzzers [27, 28, 56] perform mutations randomly and rely on
code coverage to explore more program behaviors. However,
we observe that random mutations can waste huge efforts in
fuzzing non-relational DBMSs, because they tend to generate
loose data dependencies that trigger thin and less effective
behaviors. The issue becomes significant when the database
interface contains many operations that are not dependency-
affiliative, which are common cases in non-relational DBMSs
such as redis. We define two operations as dependency-
affiliative when they can form a data dependency. We ob-
serve that test cases triggering deep logic require dependency-
affiliative operations often. For instance, a test case containing
two "Create key of type A" operations does not trigger more
behaviors than a test case containing one "Create key of type
A" operation and one "Delete key of type A" operation that
deletes the created key. In this case, the latter two commands
can form a data dependency and trigger deeper logic.

Fig. 1c shows a real-world example for redis. The sec-
ond HSET command is not dependency-affiliative with the
first HSET command because they cannot form any data de-
pendency. In contrast, the HINCRBY command at line 5 is
dependency-affiliative with the first two HSET commands since
it can use the data defined by them, i.e., k1, k1_field1, k2, and
k2_field1. To demonstrate the ineffectiveness of random mu-
tation, we implement a fuzzer for redis that randomly mutates
the test cases by either inserting new commands or mutating
existing commands’ arguments randomly. Fig. 2 illustrates
the mutation process. We randomly sample 2643 commands
from redis’s official test suite as the mutation source by sam-
pling at most 30 commands from each command type. The
commands are deduplicated when they are identical (i.e., shar-
ing the same type and arguments). The fuzzer starts with an
initial test case "HMSET k1 k1_field1 1". In the first round
of mutation (level 1), the fuzzer inserts a new command be-
low HMSET. At this level, there are 2643 candidates available
for insertion. However, only around 5.86% (155 / 2643) of
them are dependency-affiliative with HMSET, which can use
the variable k1 defined by HMSET. All other mutations (around
94.14% of the total) are less effective because they cannot uti-
lize existing data (i.e., they either operate on a different data
type, or do not contain any data operations at all), and thus
inserting them into the test case contributes little to exploring
deeper logics. One of the CVEs found by BUZZBEE (shown
in Fig.2) lies within the code that processes the HRANDFIELD

command, which needs a data dependency to trigger. It is
more difficult for a random fuzzer to find such bugs.

2.3 Our Insights and Solutions

In this section, we describe our insights and approaches to
solving the aforementioned challenges. We first propose Se-
mantics Abstraction to support modeling the diverse seman-
tics of DBMS interfaces. Next, we utilize Context-sensitive
Constraint Resolution to support general context-sensitive
constraints. These two solutions help to achieve generalizabil-
ity and improve the test case semantic correctness. Finally, we
design Dependency-guided Mutation to tackle the challenges
faced by random mutation, which helps to reduce wasted
efforts and achieve better fuzzing efficiency.

Semantics Abstraction. To support fuzzing the diverse
DBMS interfaces, we propose to abstract the semantics to
a point where most semantic differences are neutralized. To
achieve this goal, we first describe common DBMS opera-
tions at a highly abstract level using only three basic data
operations: Define, Use, and Invalidate, which in turn defines
a symbol, uses or updates a symbol, and deletes a symbol. We
then use constraints to constrain the highly abstract seman-
tics, such as specifying when to Define or Use, the type of
the symbol that is Defined, or the type that a Use can take,
etc. Inspired by existing works [27, 28, 56], we design an IR
to incorporate both the syntactic structures and the abstract
semantics of the inputs. Afterward, we design an Annotation
System for users to specify the semantic constraints. Follow-
ing this way, we neutralize the semantic differences across
diverse DBMS interfaces and stay generic.

Context-sensitive Constraint Resolution. To avoid the
problem of static constraints, we enable dynamic context-
based constraints with Context-sensitive Constraint Resolu-
tion. Specifically, we craft two additional features for the
Annotation System, through which users can specify the con-
straints based on the context. To achieve simplicity, we design
a lightweight domain-specific language (DSL) for the users
to query common context information with minimum effort.
To achieve expressiveness, we expose an interface for users to
write complex semantic rules based on the context. Together,
they give users the opportunity to customize context-sensitive
rules easily and effectively.

Dependency-guided Mutation. To avoid generating test
cases of loose data dependencies, we propose Dependency-
guided Mutation. Specifically, the mutator prioritizes muta-
tions that can form new data dependencies by favoring opera-
tions that are dependency-affiliative with the data existing in
the context. For instance, when mutating a test case that cre-
ates some data in the DBMS, the mutator favors inserting an
operation that reads the created data, instead of an operation
that creates the data again or operations doing nothing related
to the created data. Through dependency-guided mutation,



we can reduce the redundant efforts and minimize the time
wasted by the fuzzer, achieving better fuzzing efficiency.

3 Overview of BUZZBEE

We incorporate the proposed solutions into an end-to-end
fuzzing framework named BUZZBEE. Shown in Fig.3 is an
overview of BUZZBEE. Overall, BUZZBEE takes as input the
corpus (i.e., initial test cases) and input specs (i.e., the anno-
tation file and grammar file) of the target DBMS interface.
Afterward, it performs mutation on the test cases and uses the
mutated test cases to test the target DBMS. Guided by cover-
age feedback, BUZZBEE continuously tries to discover test
cases covering new program states and outputs the ones trig-
gering bugs along the process. Specifically, the user provides
the grammar file to describe the syntax and the annotation
file to constrain the abstract semantics of the target DBMS
interface. Next, BUZZBEE conducts semantic analysis and
performs principled mutations using data dependencies as
the guidance. Lastly, BUZZBEE validates the semantics by
fixing the errors introduced by mutation and generates new
test cases for testing the DBMS.

In the next sections, we discuss in detail how the compo-
nents of BUZZBEE are designed and how they collaborate
together to support Generalizability §4, Context-sensitive Con-
straints §5, and Principled Mutation §6, which address the
three aforementioned challenges respectively.

4 Generalization

Mutation can easily break the semantic correctness of a test
case, as mentioned in many related works [27, 56]. BUZZBEE
uses the abstract semantic model to check for the semantic
correctness of the mutated test case. Similar to existing works,
when BUZZBEE detects semantic errors, it tries to fix them
before sending them to the fuzzing runtime. In this section,
we discuss in detail how BUZZBEE stands out by modeling
the semantics of the various DBMS interfaces at a highly
abstract level to neutralize their differences.

BUZZBEE abstracts the DBMS interface semantics with
three basic data operations: Define, Use, and Invalidate. Each
operation is associated with a data type and name.
Define. Define represents data creation. For instance,
in Fig. 1c, the first redis command HSET Defines
data k1 with type "HSET key", and k1_field1 of type
"HSET field of k1". Similarly, in Fig. 1a, the PostgreSQL
query CREATE TABLE Defines two data: t1 of type table, and
c1 of type "col_of_t1" meaning it’s a column of t1. No-
tice that these data can have subordination relations, e.g.,
k1_field1 is subordinate to k1, meaning it cannot exist with-
out k1. The same applies to t1 and c1. Such relations can be
modeled through our DSL Context Query Language (CQL),
and Custom Resolvers, which we will detail later. The gen-

eral idea is that we put concrete symbol names in the type of
the data, e.g., the type of k1_field is "HSET field of k1",
which contains the concrete symbol name k1, meaning that
k1_field is affiliated to k1.
Use. Use represents data access and update operations on
already Defined data. For example, the HINCRBY commands
at lines 4 and 8 in Fig. 1c Use data k1, k1_field1, k2, and
k2_field1 which are Defined by the two HSET commands.
Use of un-Defined data is considered a semantic error.
Invalidate. Invalidate represents data deletion operations on
already Defined data. Once data is Invalidated, it cannot be
Used again. Notice that data deletion should honor the subor-
dination relations. For instance, in Fig.1c, if we uncomment
the DEL command at line 7, it will delete k2. Since k2_field1
has a subordination relation with k2, k2_field1 should also
be deleted. Similarly, in Fig.1a, if we delete table t1, its col-
umn c1 should also be deleted. After an Invalidate operation,
any Use of already Invalidated data will become a semantic
error. Consequently, if we uncomment the DEL command at
line 7 in Fig.1c, line 8 will yield two semantic errors, since
k2 and k2_field1 are both invalidated.

We design an IR to carry both the syntactic and seman-
tic information specified by the user. Inspired by existing
works [27, 28, 56], BUZZBEE’s IR is a tree structure with a
one-to-one mapping to the abstract syntax tree of the origi-
nal test case. Besides, the IR captures the abstract semantics
specified by the user. This allows us to conveniently lift the
original test case into the IR, perform semantic analysis, mu-
tations, and validations on the IR in a unified fashion, and
compile the IR back to a new test case for fuzzing. We detail
the structure of the IR in Fig.8.

5 Semantics Constraining

After BUZZBEE models the DBMS interfaces at a high level,
it uses constraints to further express richer semantics. In this
section, we introduce how BUZZBEE enforces flexible yet
lightweight context-sensitive semantic constraints for differ-
ent DBMS interfaces. Overall, BUZZBEE first uses the An-
notation System powered by CQL and Custom Resolvers to
accept customized semantics information from the user for
different DBMS interfaces. Then, the Semantics Analyzer of
BUZZBEE analyzes the (mutated) test cases according to the
user-specified semantics information and get the semantics of
the test cases. Having the semantics of the test cases, the Se-
mantics Validator enforces the specified semantic constraints
of the test cases, before sending them to the fuzzing runtime.

5.1 Annotation System

To handle different semantics across different DBMS in-
terfaces, we design the Annotation System to let the user
annotate the semantics of a target DBMS within our abstract
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Fig.3: Overview of BUZZBEE. BUZZBEE takes as input the corpus and input specs, performs advanced semantic analysis and mutations
with semantics validation on the input, and uses the mutated input to test the target DBMS.

semantic model.We design the Annotation System with two
objectives in mind: simplicity and expressiveness. Simplicity
ensures that the system is lightweight, intuitive, and easy to
use so that it can apply to many DBMS interfaces with ease,
while expressiveness allows it to convey complex semantics
effectively. Generally, the system allows the user to annotate
the basic semantic properties of a certain AST node. That
is, whether this node Defines, Uses, or Invalidates a certain
symbol, and how such semantics will relate to the context
of the input. To achieve the first objective, we design CQL,
a lightweight domain-specific language that can be used to
query various context information when resolving semantic
constraints. Next, to achieve the second objective, BUZZBEE
exposes an interface to the user, allowing the user to design
Custom Resolvers capable of describing arbitrarily complex
rules to resolve the semantic constraints. Shown in Fig.4 are
concrete artifact examples involved in the annotating process.
Next, we show through this figure how the system distills the
semantic information provided by the user.

Grammar Tags. For the user to directly assign semantics to
an AST node, BUZZBEE uses grammar tags to correlate the
syntactic structures and the semantic information through the
grammar rules. Specifically, we use a markup language that
allows the user to tag the elements inside the grammar rules,
which will be parsed into AST nodes. Afterward, the user can
write specific semantics for tagged AST nodes in an annota-
tion file. Fig.4b shows the partial grammar rules for redis
that are tagged with the markup language. For demonstration
simplicity, we use circled numbers to represent tagged rule
elements. For example, key at line 2 of Fig.4b is tagged with
1 . Then, in lines 1-4 of the annotations shown in Fig.4d, we

specify specific semantics for 1 , which maps to the element
key under the grammar rule hset. After parsing, this corre-
sponds to an AST node key under a parent AST node hset.
With grammar tags, BUZZBEE can effectively correlate the
semantic information with the AST nodes of the input, allow-
ing the user to conveniently annotate the semantic properties

directly through the grammar.
Annotation. The annotation consists of multiple entries.
Each entry describes the semantics of a specific tagged syntax
node and contains the following fields:

• operation: decides which abstract operation to perform.
• args: provide the arguments specific to the operation.
For scope constraints, operation specifies the abstract se-

mantic operation to perform, i.e., Define, Use, or Invalidate.
An annotation entry can have multiple operations that should
be selected under different contexts. For type constraints, we
can use args to specify the data type of an operation, e.g.,
what type a node Defines or should Use.

The unique aspect of our design is that all the constraints
can be dynamically resolved based on the context, including
deciding which operation to perform based on the context,
and how to resolve the arguments (e.g., types) of an opera-
tion based on the context. This is crucial to our solution to
the second challenge described in §2.3. It enables BUZZBEE
to enforce context-sensitive constraint resolution on the in-
put. Next, we introduce how BUZZBEE achieves this through
Context Query Language and Custom Resolver, which are de-
signed to achieve simplicity and expressiveness respectively.
Context Query Language. To resolve a constraint based on
the context, we need to be able to fetch information from the
context. To fetch certain information from the context, we
need to know where to fetch and what to fetch. The former
specifies which part of the context we care about, and the latter
states what property of that part we are interested in. For exam-
ple, in line 5 of Fig.4a, to resolve the data type of k1_field1,
which is "HSET numeric field of k1", we need to know the
text (what) of its left-side node (where), which is k1. This is
to specify that we can only use an "HSET numeric field"
that belongs to k1. We develop a lightweight query language
for BUZZBEE, Context Query Language (CQL), that can be
used directly in the operation arguments to query such con-
text information. We attach the grammar for CQL in Fig.9.
CQL offers navigator and property for specifying where and



1 HSET k1 k1_field1 "Hello"
2 HSET k2 k2_field1 "123"
3 HSET k3 k3_field1 "456"
4 // DEL k1
5 HINCRBY k1 k1_field1 1

(a) Example commands for redis.

1 hset:
2 HSET key 1 (field 2 value)+;
3

4 hincrby:
5 HINCRBY key 3 field 4 increment;
6

7 del:
8 DEL key 5 ;
9

10 cmd:
11 hset | hincrby | del ;
12

13 cmds:
14 cmd (’\n’ cmd)*;
15

16 testcase:
17 cmds 6 ;

(b) Partial grammar rules for redis.

1 ...
2 node_pattern:
3 ’(’ identifier 1 ’)’;
4 ...

(c) Partial grammar rules for Cypher.

1 1 : "default": {
2 operation: Define,
3 args: { type: "HSET key" }
4 }
5

6

7 2 : "default": {
8 operation: Define,
9 args: {

10 type:
11 hset_field_type_resolver
12 }
13 }
14

15

16 3 : "default": {
17 operation: Use,
18 args: { type: "HSET key" }
19 }
20

21

22 4 : "default": {
23 operation: Use,
24 args: {
25 type: "HSET numeric field
26 of {.lsib(1)@text}"
27 }
28 }
29

30

31 5 : "default": {
32 operation: Invalidate,
33 args: { type: ANY }
34 }

(d) Partial annotations for the tags in (b).

1 1 : {
2 "selector": ident_selector_resolver,
3 "operation_0": { operation: Define, ...},
4 "operation_1": { operation: Use, ... }
5 }

(e) Partial annotations for the tags in (c).

cmds

hincrbyhset

testcase

HINCRBY key field increment

k1 k1_field1 1

...

.lsib(1)

...
.parent

.child(0)

navigatorNon-terminal IR Terminal IR

@text

property

...

(f) CQL on the IR program.

Fig.4: Annotation System Internals. The circled numbers represent tags to specific syntax structures. Annotation System uses these tags to
track which syntax nodes should be assigned which semantics.

what. Generally, we can use navigator to navigate to the
target node, and then use property to specify what infor-
mation to query. For the previous example of resolving the
field’s type for the HSET command, we annotate the type argu-
ment of 4 as "HSET numeric field of {.lsib(1)@text}".
BUZZBEE will dynamically resolve this type by first evalu-
ating the CQL query within the curly braces, and then for-
matting the evaluated value into the type string. During CQL
evaluation, the navigator performs relative addressing from
the current node. Fig. 4f shows a running example of how
CQL is evaluated on the IR program for Fig. 4a. The eval-
uation for {.lsib(1)@text} starts from the IR node field
tagged by 4 . Then it uses the navigator ".lsib(1)" to reach
the left first sibling node: key, and finally uses the property
@text to retrieve the source code text of key, which is "k1".
Thus, this CQL evaluates to "k1", and the argument will re-
solve to "HSET numeric field of k1". We show some other
navigators in Fig.4f, including .parent which navigates to
the parent IR node, .child which navigates to a child node,
etc. When stacked together, navigators can be used to reach
any node within the IR program to query any part of the
context. We also predefine several frequently used proper-
ties such as @id to retrieve the IR node’s id when creating a
scope, @sym_type to retrieve the symbol type for enforcing
type coherence, etc.

With CQL, users can directly put dynamic, context-

dependent values in the argument of the operations. Annotat-
ing with CQL is intuitive and easy thanks to its simple design
and direct integration into the arguments. However, CQL is de-
signed to handle common context-sensitive type constraints,
and it is limited in expressiveness because both navigator and
property are hard-coded elements in the grammar and can
convey only limited semantics. For instance, CQL currently
does not support conditional behaviors, and is hard to use for
selecting the appropriate operation when a node has multi-
ple operations (context-sensitive scope constraints). We solve
this by Custom Resolvers, which can resolve more complex
semantics for different DBMS interfaces.

Custom Resolver. To support more complex semantics,
BUZZBEE exposes an application interface to the user, allow-
ing the user to customize programmatically how to resolve
a constraint (e.g., the operation to perform, the type to use)
through Custom Resolvers. Custom Resolvers can be writ-
ten in high-level programming languages like C++ and act
as plugins to the annotation system. Within a Custom Re-
solver, users can access all the context information visible
to BUZZBEE and customize the resolution rules as needed.
Specifically, BUZZBEE passes all the context information
(e.g., symbol tables, the IRNodes in the program) to a Custom
Resolver, and then waits for it to return a resolved value.

For instance, to resolve the type constraint of the field
in the HSET command at line 1 of Fig. 4a, we annotate



2 with the name of a custom resolver we implement,
hset_field_type_resolver, at line 8 of Fig. 4d. With ac-
cess to the context information, this custom resolver first
goes to the right first sibling of the field node, which is
value that contains the string of the field. Then, it checks
if the string is a numeric string, which is false. Next, to
follow the subordination rule, it goes to the left first sib-
ling of the field node, which is the key associated with
this field, and obtains the text of the key: k1. And finally,
it returns "HSET field of k1". This resolution is complex
since we need to check whether the value is a numeric string
or not. Similarly, this Custom Resolver resolves the type of
k2_field1 at line 2 as "HSET numeric field of k2", since
"123" is a numeric string.

Moreover, Custom Resolvers can easily support context-
sensitive scope constraints by returning the appropriate
operation to select based on customized rules. For in-
stance, for the example previously mentioned in Fig. 1b,
we tag the identifier node with 1 , as shown in
Fig. 4c, and annotate it with multiple operations, as
shown in Fig. 4e. Then, we implement a Custom Re-
solver ident_selector_resolver as the selector that returns
"operation_0" or "operation_1" or NULL based on the con-
text. Specifically, in ident_selector_resolver, we return
"operation_0" when detecting that the current IRNode is in
the subtree of an IRNode of type pattern_part, i.e., this node
should Define a variable. We return "operation_1" when de-
tecting the node is in the subtree of a where_part, resolving
the scope constraint to a Use. We return NULL for other cases
to signal no matching operation. Then, BUZZBEE selects the
operation based on the value returned.

BUZZBEE also maintains local states for each test case and
allows all the Custom Resolvers to access the states. This
provides the opportunity for modeling stateful semantics.

Regardless of its complexity, the customized rules will
eventually resolve a value plugged into the Annotation Sys-
tem, allowing BUZZBEE to manage the semantics within its
abstract model.

5.2 Semantic Analysis and Validation
Semantics Analyzer is the component that checks for semantic
correctness within our abstract semantic model, according
to the user-specified constraints. To check the semantics, the
analyzer performs an Execution Simulation on the IR program,
which executes the abstract semantic operations in the IR
program, following the correct order.

The analyzer achieves this through two analysis stages:
the Dependency Analysis stage, which tries to figure out the
correct execution order, and the Execution Simulation stage,
which executes the semantic operations.
Dependency Analysis. BUZZBEE first performs a depen-
dency analysis on the IR program before executing any oper-
ations. It goes over every operation, gathers the contexts each

operation depends on, and constructs a dependency graph ac-
cordingly. Next, it performs topological sorting on the graph
to rank all the IR nodes in the IR program. When two IR
nodes do not have any dependency relation, BUZZBEE ranks
them according to their sequence in the preorder traversal of
the IR program. In this way, the dependency analysis can out-
put a safe and correct execution order the IR nodes in the IR
program, which will be followed in the execution simulation.
Execution Simulation. Once the correct execution order
is determined, BUZZBEE performs execution simulation by
executing the semantic operations. That is, for the operation
Define, BUZZBEE tries to define a symbol of the specified
type and name in the current scope. For Use, it tries to find a
symbol in the scope tree that matches the specified type and
name and then use it. And for Invalidate, it does the same thing
as Use, plus invalidating the symbol so that it cannot be used
again. During this process, the semantics analyzer evaluates
the CQL queries used in the operation arguments, and invokes
the Custom Resolvers if they are specified to resolve certain
values. Meanwhile, symbol re-Define, Use before Define, or
Use after Invalidate will all be considered semantic errors.
Moreover, if the context an operation depends on contains
semantic errors, this operation will also be set as a semantic
error. BUZZBEE maintains symbol tables and scope trees to
track successfully executed operations (i.e., operations with
no semantic errors). Finally, the semantics analyzer returns all
the symbol and scope information, along with the semantic
errors as the analysis result.

Lastly, the Semantics Validator tries to fix the semantic
errors in the test case before BUZZBEE sends it to the DBMS.
For Use before Define, Use after Invalidate errors, it finds
another available data to use. For re-Define errors, it tries to
define the data with an undefined name. When the validator
fails to fix the errors, BUZZBEE drops the test case.

6 Principled Mutation

As discussed in §2.3, with dependency-guided mutation,
we can reduce the redundant efforts and minimize the time
wasted by the fuzzer, thus achieving better fuzzing efficiency.
The way BUZZBEE abstracts the semantics naturally enables
dependency-guided mutation as a principled mutation strategy.
Overall, the principled mutator takes a lifted IR program as
input. Then, it queries the dependency information about the
IR program from the semantics analyzer, and then performs
guided mutations accordingly, as illustrated in Fig.3.

Specifically, the mutator asks the semantics analyzer to
perform semantic analysis on the IR program. It then retrieves
the symbol and scope information, i.e., what symbols are
defined at which locations and scopes. Then, the mutator
performs correctness-preserving syntax mutation, which are
mutations that will not break the syntax correctness, including



Table 1: Lines of code for a breakdown of BUZZBEE, summing
up to 9,130 lines. As we integrate with AFL++, for Fuzzing Run-
time, we only count the code that we add into AFL++.

Module Language LOC
Semantics Analyzer C++ 4,966
Semantics Validator C++ 214
Lifter Generator Python 823
Principled Mutator C++ 1,961
Fuzzing Runtime C++ 185
Other Utilities C++ 981

Total C++/Python 9,130

replacing a node A in the IR program with another node
B of the same IR type from the IR pool (node replacing),
inserting a node B from the IR pool into the IR program (node
insertion), and removing a node in the IR program (node
deletion). Here, the IR pool is where the mutator collects
the unique IR nodes it has seen triggering new coverage in
the DBMS. Additionally, the mutator adds guidance to these
mutations. For node replacing, it will first get the symbols
si ∈ S that are available at A, where S are symbols Defined but
not yet Invalidated before A. Then, when randomly selecting
B from the IR pool, BUZZBEE favors B containing IRs tagged
with actions Use or Invalidate whose type can match the type
of any si ∈ S. This is because such B can form a dependency
relation with existing symbols in the test case, and thus can
often trigger deeper program states. Node insertion follows
the same logic to find the B for insertion. We do not design
guidance for node deletion at the moment.

Moreover, to cover more behaviors, BUZZBEE prioritizes
the candidates of B, based on whether the candidate already
exists in the test case or not. For instance, in Fig.4a, assume
HINCRBY and DEL are the only two redis commands that con-
tain actions Use and Invalidate for the data defined by HSET.
Then, at line 4, BUZZBEE prioritizes inserting DEL over insert-
ing another HINCRBY, because there is already an HINCRBY at
line 5. This is achieved by assigning weights to the semantic
actions. If an action appears more times in the current test
case, it gets assigned a lower weight. BUZZBEE randomly se-
lects an action based on its weight, and searches for B from the
IR pool containing this action. Eventually, the number of dif-
ferent actions in the mutated test case (e.g., DEL and HINCRBY)
will be uniformly distributed, covering more behaviors.

In conclusion, BUZZBEE uses the knowledge readily avail-
able in the annotation system to guide the mutation prior to the
input’s execution in the fuzzing runtime, favoring dependency-
affiliative mutations and driving the mutation towards discov-
ering deeper program states more efficiently.

7 Implementation

We implement a prototype of BUZZBEE with 9,130 lines of
code mainly in C++ and Python. Table 1 shows the breakdown
of the major components. We implement the Lifter Genera-

tor to generate the lifter that lifts the input into BUZZBEE’s
IR. The generator takes as input an ANTLR4 [1] grammar
and a JSON annotation file. We pick ANTLR4 in our im-
plementation because there already exists many ANTLR4
grammars for various DBMS interfaces on the Internet. The
annotation is implemented as a separate JSON file, which
maps to the tagged rules in the grammar file. We build the
Fuzzing Runtime of BUZZBEE on top of AFL++ [14]. Specif-
ically, BUZZBEE, which focuses on generating high-quality
test cases, integrates itself into AFL++ as a Custom Mutator,
allowing it to inherit AFL++’s well-tested instrumentation
module, execution module, feedback collection module, etc.

8 Evaluation

We evaluate BUZZBEE to answer the following questions:
• Can BUZZBEE apply to the diverse DBMS interfaces

(generalizability and portability)?
• Can BUZZBEE find real-world bugs and vulnerabilities

(effectiveness)?
• How does each proposed solution contribute to the per-

formance of BUZZBEE?
• How does BUZZBEE compare to state-of-the-art tools?

8.1 Environment Setup

Hardware. We perform all our evaluations on a machine
that runs Ubuntu 22.04.2 LTS with two AMD EPYC 7452
32-core Processors and 1,024GB RAM.
Benchmark. We evaluate BUZZBEE on three types of main-
stream non-relational DBMSs (i.e., key-value, graph, docu-
ment DBMSs) and relational DBMSs (i.e., SQL DBMSs). We
choose the targets based on their popularity and choose C/C++
targets because the current fuzzing runtime (AFL++) best sup-
ports them. Table 5 shows the DBMSs we evaluate BUZZBEE
on. Specifically, we choose redis and KeyDB from the key-
value category, RedisGraph and AgensGraph from the graph
category, MongoDB and ArangoDB from the document category,
and PostgreSQL and MySQL from the relational category.

For real-world bug-hunting evaluation, we evaluate
BUZZBEE on the latest release version or the dev branch
of the chosen targets. We then perform a comprehensive
evaluation of the effectiveness of the proposed solutions in
terms of semantic correctness, code coverage, and bug de-
tection capability on four targets, namely redis, ArangoDB,
RedisGraph, and PostgreSQL. We choose them over the other
four DBMSs because they demonstrate higher fuzzing stabil-
ity and cover all four categories we evaluate. We also compare
BUZZBEE with state-of-the-art tools. We compare BUZZBEE
with general-purpose fuzzers that support all four DBMS cat-
egories: AFL++ [14], REDQUEEN [4], POLYGLOT [9], and
Grammarinator [22], to understand BUZZBEE’s generaliz-
ability and effectiveness. We then compare BUZZBEE with



Table 2: Adoption effort for each target. Doc means we collect
the grammar by preprocessing the DBMS’s documentation. Exist
means there already exists an ANTLR4 grammar for that DBMS
interface online. Annotation size is the total number of lines in the
JSON file, CQL and Custom Resolvers.

DBMS Corpus Grammar Annotation Size
redis Test Suite Doc 496
KeyDB Test Suite Doc 100
ArangoDB Test Suite Exist 82
PostgreSQL SQUIRREL-repo Exist 71
MySQL SQUIRREL-repo Exist 71
RedisGraph Test Suite Exist 69
MongoDB Test Suite Doc 51
AgensGraph ANTLR4-repo Exist 42
Average 123

well-established SQL fuzzers SQUIRREL and SQLANCER
to further understand BUZZBEE’s ability to handle relational
targets. Some fuzzers do not support certain DBMSs and we
detail this information in Table 6. For all the fuzzers we eval-
uate, we feed them with the same input (if they need one)
and constrain the computing power to one CPU core. For bug
detection evaluations, we roll back the DBMSs to the versions
where all bugs remain unfixed. We run each experiment for
24 hours, repeat five times, and report the average results.

8.2 Generalizability and Portability

We apply BUZZBEE to eight real-world DBMSs to under-
stand its generalizability and portability in terms of adoption
effort. We collect the grammar and input corpus for each
DBMS interface from publically available sources such as
official documentation pages, GitHub repositories, or other
fuzzers’ open-sourced artifacts. Afterward, we manually add
the annotation for each DBMS interface. Table 2 shows a
breakdown of the artifact details we collect for BUZZBEE.
The average number of lines in the annotation artifacts is 123.
Thanks to BUZZBEE’s highly abstract semantic modeling,
most parts of the annotation are simple semantics such as
"Node A in the grammar Defines symbol s", and "Node B
can Use symbol s", which is easy and intuitive to write by
a human analyst. Having familiarity with each DBMS as
an average DBMS user, it takes us less than one hour on
average to draft a 100-line annotation for a target. We show
in later evaluations that spending such little adoption effort is
enough for BUZZBEE to achieve a great fuzzing performance.

In conclusion, BUZZBEE demonstrates great general-
izability for major DBMS interfaces, and the adoption
effort is reasonable for major DBMS interface cate-
gories, demonstrating decent portability.

1 GRAPH.QUERY g "WITH 1 AS x MATCH (m),(n) WITH * ORDER BY m \
2 SKIP 0 LIMIT 90 WHERE m = 0 RETURN 0"

(a) Assertion Failure in RedisGraph

1 HMSET k1 k1_field1 1
2 HRANDFIELD k1 \
3 -9223372036854770000 \
4 withvalues

(b) Integer Overflow in redis

1 HSET set1 k 549236
2 EXPIRE set1 0
3 HINCRBYFLOAT set1 k -inf
4 HRANDFIELD set1 -3 WITHVALUES

(c) Assertion Failure in redis

Fig.5: Case studies. Three bugs found by BUZZBEE demonstrate
how BUZZBEE’s ability to maintain constraints helps find real-world
bugs. The examples are manually reduced for demonstration.

8.3 Real-world Bug Hunting

BUZZBEE finds bugs in all eight DBMSs of the four DBMS
categories we have tested. BUZZBEE finds bugs in the latest
versions of the DBMSs except for PostgreSQL. We present
the full bug list in Table 7 in the appendix. As of writing,
BUZZBEE has discovered 40 bugs in the latest DBMSs, out
of which 38 are confirmed by the vendors, 25 are fixed, and
4 are assigned new CVE IDs. BUZZBEE has yet to discover
bugs in the latest PostgreSQL. In fact, no fuzzers we evalu-
ate can find bugs in the latest PostgreSQL using well-tested
corpus in our experiment, including SQL-specialized fuzzers
SQUIRREL and SQLANCER. Rolling PostgreSQL back to a
legacy version, BUZZBEE finds a known bug (ID 37).

Next, we conduct case studies of three fixed bugs found
by BUZZBEE to understand its capabilities further. We have
manually minimized the test cases for demonstration.
Case Study A. Fig.5a shows a graph query that crashes the
RedisGraph server v2.10.8 by triggering a runtime assertion
failure. The crash originates in the function that handles star
projection (i.e., the "WITH *" part). However, to trigger this
bug, a correct data dependency needs to be satisfied. Here,
if we change the variable m in "ORDER by m" to an undefined
variable (e.g., v0), the server returns "(error) v0 not defined"
and does not crash. Through the annotation system, BUZZBEE
recognizes the defined variables m and n and maintains the
correct data dependency, eventually finding this bug.
Case Study B. Fig. 5b shows a test case that crashes the
redis server by triggering an integer overflow. This is the bug
demonstrated earlier in Fig.2. The HMSET command creates
a hash set k1 and stores a field/value pair (k1_field1, 1) in
it. The HRANDFIELD command returns one or more random
fields from a hash set. In this case, the processing logic of
HRANDFIELD has an integer overflow bug when handling the
specially crafted command. Regardless of its seemingly sim-
ple structure, we trace back the relevant code and confirm
the bug has been in the code base hidden for at least three
years. Finding such bugs in redis is non-trivial due to the
large number of operations that are not dependency-affiliative.
To solve this problem, when there exists an HMSET command
inside the test case, BUZZBEE proactively searches for opera-
tions that can form new data dependencies and quickly finds



the bug with the help of dependency-guided mutation.
Case Study C. Fig. 5c shows another interesting test case
that crashes the redis server by triggering an assertion failure.
This test case first creates a hash set named set1 and then
calls EXPIRE to invalidate it. Next, at line 3, the HINCRBYFLOAT
command fails to handle an expired symbol and wrongly
implements the error handler, leaving the DBMS in a vulner-
able state, which can then be crashed by another HRANDFIELD
command shown at line 4. Interestingly, this bug requires a
use-after-invalidate data dependency to trigger. We manually
modified the annotation for the EXPIRE command from In-
validate to Use to test the DBMS’s handling of invalidated
data and discovered this one bug. Based on this finding, in
the future, we plan to introduce a new mode into BUZZBEE
that automatically modifies certain annotations to find bugs
that partially violate data dependency rules, such as use-after-
invalidate and use-before-define bugs.

In conclusion, BUZZBEE successfully finds bugs
in eight popular real-world targets from four major
DBMS categories. Its effectiveness has been acknowl-
edged by both its strong bug-finding capability and
bug confirmations from the DBMS vendors.

8.4 Contributions of the Solutions
To understand the contribution of each solution we propose,
we compare BUZZBEE with three variants of BUZZBEE by
turning off the solutions gradually. Specifically, we make:
BUZZBEE!g by turning off the dependency-guided muta-
tion of BUZZBEE and making the mutations purely random;
BUZZBEE!gc by turning off the context-sensitive constraint
resolution routines of BUZZBEE!g, which is achieved by mak-
ing all CQLs and custom resolvers return static values and
thus ignoring the context; BUZZBEE!gcs by completely strip-
ping the semantic validator of BUZZBEE!gc, shutting down
the Annotation System as a whole.

We evaluate the four fuzzers on real-world targets, and com-
pare the fuzzing performance differences in terms of the test
case semantic correctness, coverage, and bug-finding capabil-
ities. Evaluating semantic correctness allows us to understand
how BUZZBEE improves the fuzzing performance under the
hood. We dump the test cases during a 24-hour fuzzing ses-
sion, send them to the target DBMS, and then wait for the
execution result provided by the DBMS. When the DBMS
finishes executing the test case without reporting an error, we
regard the test case as semantically correct. Otherwise, the
test case is considered semantically incorrect.
Semantic Correctness. As shown in Table 3, BUZZBEE
achieves a 0.22 to 626 times higher semantics correctness rate
than the other fuzzers. BUZZBEE!gcs has the lowest semantic
correctness rate, because it does not enforce any semantics.
BUZZBEE!gc improves over BUZZBEE!gcs by enforcing se-

Table 3: Semantic correctness rates of test cases generated by
the four versions of BUZZBEE in 24 hours.

Fuzzers v.s. / DBMSs redis RedisGraph ArangoDB PostgreSQL

BUZZBEE 98% 62.7% 31.6% 9.8%
BUZZBEE!g 90.8% 38.5% 25.2% 8.4%
BUZZBEE!gc 85.5% 0.3% 18.2% 4.5%
BUZZBEE!gcs 79.7% 0.1% 13.6% 1.7%
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Fig. 6: Edge coverage found by each version of BUZZBEE in
24h. BUZZBEE!g is BUZZBEE without dependency-guided muta-
tion. BUZZBEE!gc is BUZZBEE!g without context-sensitve constraint
resolution. BUZZBEE!gcs is BUZZBEE!gc with the whole annotation
system turned off. We repeat the experiments five times and report
the average results.

mantics (without context-sensitivity), and thus the test cases
it generates have a higher semantic correctness rate. After
introducing context-sensitivity, BUZZBEE!g generates more
semantic correct test cases. Interestingly, BUZZBEE improves
the semantic correctness over BUZZBEE!g, which means the
guided mutation also helps increase the test case semantic
correctness. We manually examine the test cases and dis-
cover the reason: with dependency-guided mutation, the mu-
tator favors mutations that form data dependencies, which are
semantics described in the annotation. Then, the semantics
validator can fix the errors introduced in the mutation and
promote semantic correctness. Without guidance, however,
the mutator randomly mutates the input and will more likely
generate semantics not described in the annotation. For this
case, BUZZBEE cannot fix the potential errors, resulting in
lower semantic correctness rates. Meanwhile, the semantic
correctness rate on redis is higher than the other DBMSs.
This is because redis employs more flexible type checks.
As shown in Table 2, even BUZZBEE without validating any
semantics (BUZZBEE!gcs) achieves a 79.7% correctness rate.
Other DBMSs enforce stricter checks and achieve a lower
correctness rate.

Coverage. As shown in Fig.6, BUZZBEE finds on average
29.2%, 8.2%, 22.6%, and 36.8% more edges than the other
fuzzers in redis, RedisGraph, ArangoDB, and PostgreSQL, re-



spectively. In general, for the targets we evaluate, the edge
discovering capability of BUZZBEE degrades when we strip
off the component implementing each solution, effectively
showing the contribution of each solution to BUZZBEE in
discovering more program states.

Interestingly, the performance gain of some solutions vary
on different targets. BUZZBEE outperforms other versions
best on the target redis shown in Fig. 6a, which adds a
35.5% increase over the non-guided version BUZZBEE!g,
but it only adds 4.1%, 7.3%, and 6.7% coverage increase
to BUZZBEE!g on RedisGraph, ArangoDB, and PostgreSQL re-
spectively. This is because redis offers more operations that
are not dependency-affiliative, which are operations that can-
not form any data dependency and trigger deeper program
behaviors. Mutating test cases containing such operations has
a high chance of wasting time generating operation sequences
with no data dependency and is less likely to be efficient. In
comparison, other DBMS interfaces contain more operations
that are dependency-affiliative. For example, the tables and
columns defined in SQL DBMSs can be used in many oper-
ations (e.g., SELECT, UPDATE, DELETE, COUNT, SUM, JOIN), and
forming data dependencies becomes easier. This shows that
the principled mutation performs better at DBMSs containing
many operations that are not dependency-affiliative.

Moreover, BUZZBEE!gc brings only a 3.8% coverage in-
crease over BUZZBEE!gcs for RedisGraph, as shown in Fig.6b.
Interestingly, with the help of context-sensitive constraint
resolution, BUZZBEE!g then outperforms BUZZBEE!gcs

with a 14.4% coverage increase. This is because context-
sensitive constraints are necessary to model the semantics of
RedisGraph effectively. The underlying reasons are two-fold.
First, the grammar specification readily available on the In-
ternet is written in ways that one node could be shared by
multiple parent nodes, which requires the context to determine
the correct scope constraint. Second, the operation arguments
(type constraints) also depend heavily on the context to re-
solve the correct values. Therefore, without context-sensitive
constraint resolution, BUZZBEE!gc fails to model the seman-
tics effectively and achieves non-promising results.
Bug Finding. As shown in Table 4, BUZZBEE finds 12
bugs within 24 hours in the targets, the most among the four
variants. Without guided mutation, BUZZBEE!g finds only
8 bugs, which are all covered by BUZZBEE. And without
context sensitivity, BUZZBEE!gc finds only 2 of the bugs, be-
cause it fails to model the semantics correctly without context.
BUZZBEE!gcs finds one bug that others cannot find, because
this bug does not comply with the semantic properties spec-
ified in the annotation. For further insights, we categorize
the bugs by their triggering conditions. Specifically, we mark
the property of the bug as Data when it is semantically cor-
rect and contains data dependency relations. When the test
case is semantically correct but contains no data dependen-
cies (e.g., a single De f ine or consecutive De f ines of different
symbols), we mark the bug as Sem. For the bug that is only

Table 4: Bugs found in 24 hours by each fuzzer on four DBMSs.
We run each fuzzer five times for 24h and report the bugs it finds
during this period. Property Data means the bug needs correct data
dependencies to trigger. Sem means the bug does not need data de-
pendencies to trigger, but the triggering test case is semantically
correct. Syn means the bug is not semantically correct but is syntac-
tically correct. ⊖ means the fuzzer does not support the DBMS.
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redis 2 Sem ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✗ ⊖ ⊖
redis 3 Data ✔ ✔ ✔ ✗ ✗ ✗ ✗ ✗ ⊖ ⊖
redis 5 Data ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ⊖ ⊖
redis 6 Data ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✗ ⊖ ⊖
redis 7 Data ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ⊖ ⊖
redis 8 Syn ✗ ✗ ✗ ✔ ✗ ✔ ✗ ✗ ⊖ ⊖
redis 12 Sem ✔ ✔ ✔ ✗ ✗ ✗ ✗ ✗ ⊖ ⊖

RedisGraph 19 Data ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✗ ⊖ ⊖
RedisGraph 20 Sem ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✗ ⊖ ⊖
RedisGraph 21 Data ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ⊖ ⊖
ArangoDB 35 Data ✔ ✗ ✗ ✗ ✗ ✗ ⊖ ✗ ⊖ ⊖
ArangoDB 36 Data ✔ ✔ ✗ ✗ ✗ ✗ ⊖ ✗ ⊖ ⊖
PostgreSQL 37 Data ✔ ✔ ✗ ✗ ✗ ✗ ⊖ ✗ ✗ ✗

Count 12 8 2 1 0 1 0 0 0 0

triggerable by syntax correct but semantic incorrect test cases,
we mark it as Syn. As we can see in Table 4, BUZZBEE
finds more Data bugs than BUZZBEE!g. For bugs 2 and 20
that are marked as Sem, BUZZBEE!g successfully finds them,
but BUZZBEE!gc cannot, showing that Context-sensitive Con-
straint Resolution helps in enforcing the correct semantics of
the test cases. Moreover, BUZZBEE!gc finds two more bugs
than BUZZBEE!gcs, which are bugs that require semantic cor-
rectness to trigger. This demonstrates the effectiveness of the
Annotation System as a whole in enforcing semantic correct-
ness. Finally, BUZZBEE!gcs finds one bug (ID 8) that only se-
mantic incorrect test cases can trigger. Other versions cannot
find this bug because they will enforce semantic correctness
and filter out such test cases.

In conclusion, BUZZBEE’s success comes from all
the solutions we have proposed. The contribution of
each solution varies when applied to different DBMS
targets that have distinct characteristics.

8.5 Comparison with Existing Tools
In this section, we compare BUZZBEE with state-of-the-art
works regarding code coverage and bug detection capabilities.

We compare BUZZBEE with general-purpose fuzzers
AFL++ [14], REDQUEEN [4], syntax-aware fuzzers POLY-
GLOT [9], Grammarinator [22], and SQL-specialized SQUIR-
REL [56] and SQLANCER [43]. AFL++ and REDQUEEN are
widely used coverage-guided fuzzers that perform syntax-



0 4 8 12 16 20
0

12

24

36

48

60

Ed
ge

Co
v 

(1
E+

02
)

BuzzBee AFL++ RedQueen PolyGlot Grammarinator

0 4 8 12 16 20
0

12

24

36

48

60

Ed
ge

Co
v 

(1
E+

02
)

(a) redis
0 4 8 12 16 20

0

16

32

48

64

80

Ed
ge

Co
v 

(1
E+

02
)

(b) RedisGraph

0 4 8 12 16 20
0

4

8

12

Ed
ge

Co
v 

(1
E+

03
)

BuzzBee AFL++ PolyGlot Squirrel SQLancer Grammarinator

0 4 8 12 16 20
0

6

12

18

24

Ed
ge

Co
v 

(1
E+

03
)

(c) ArangoDB
0 4 8 12 16 20

0

4

8

12
Ed

ge
Co

v 
(1

E+
03

)

(d) PostgreSQL

Fig.7: Edge coverage comparison with existing fuzzers in 24h.

unaware mutations. REDQUEEN does not support fuzzing
C/S programs, and we skip its evaluation on ArangoDB and
PostgreSQL. POLYGLOT is a coverage-guided fuzzer tailored
for fuzzing compilers such as Clang. It models the seman-
tics of language processors effectively, but cannot model the
semantics of DBMS interfaces due to its insensitivity to the
context. It is a great tool to compare against because it acts as
a coverage-guided syntax-aware mutator for targets outside
its support range. We also compare against Grammarinator, a
fuzzer currently used by RedisGraph, that generates random
programs from a grammar without coverage guidance. For re-
lational DBMSs, we compare BUZZBEE with SQUIRREL [56]
and SQLANCER (PQS [43]), two DBMS fuzzers specialized
in SQL DBMS fuzzing. We also evaluate SQLANCER on
ArangoDB because SQLANCER recently adds support for it.
Table 6 shows the DBMSs each fuzzer supports. In this eval-
uation, we feed the same input to all fuzzers and the same
grammar specification to POLYGLOT and Grammarinator.

Coverage. As shown in Fig.7, BUZZBEE achieves the best
edge coverage in 24 hours in all targets except PostgreSQL.
BUZZBEE achieves 69.2%, 19.8%, and 76.9% more cover-
age in redis, RedisGraph, and ArangoDB than the second-
best fuzzer POLYGLOT. This performance gain demonstrates
BUZZBEE’s contribution to the non-relational DBMS fuzzing
venue. On PostgreSQL, BUZZBEE achieves 92.7% code cov-
erage of the state-of-the-art SQL fuzzer SQUIRREL, showing
comparable abilities considering BUZZBEE generalizes to
many DBMS categories. In Table 3, we notice BUZZBEE
achieves a correctness rate of 9.8% on PostgreSQL. This is
also comparable with SQUIRREL. Referring to SQUIRREL’s
paper [56], it achieves a semantic correctness rate of 11.7%
on PostgreSQL, which is only 1.9% higher than BUZZBEE.

Bug Finding. As shown on the right side of Table 4, out of
the six existing fuzzers we evaluate, only POLYGLOT finds
one bug in redis, which falls into the category of Syn, mean-
ing this bug only needs syntax awareness to discover. AFL++

and REDQUEEN cannot find any bugs during this period.
None of BUZZBEE, SQUIRREL, and SQLANCER can find
bugs in the latest version of PostgreSQL within 24 hours. We
roll back PostgreSQL to an older version, and BUZZBEE finds
one legacy bug missed by SQUIRREL and SQLANCER. No-
tice that BUZZBEE does not perform as well as SQUIRREL
and SQLANCER in terms of code coverage. To understand the
reason, we manually analyze this bug and find that it involves
a syntax structure SQUIRREL does not model, potentially lead-
ing to its missing the bug. SQLANCER focuses on finding
logic errors using specific syntax structures and does not dis-
cover the bug as well. The result demonstrates the capability
of BUZZBEE in discovering real-world bugs that existing
tools cannot discover, proving its fuzzing effectiveness and
contribution to real-world bug detection.

In conclusion, BUZZBEE outperforms existing generic
solutions in non-relational DBMS fuzzing, while
achieving comparable results with tools specialized in
relational DBMS fuzzing, in terms of code coverage
and bug-finding capabilities.

9 Discussion

9.1 Complex Semantics and Completeness
Some DBMS semantics can be very complex. For instance,
the foreign key constraint in SQL DBMSs requires us to track
the column reference relations. BUZZBEE can model complex
constraints like this through custom resolvers. Specifically
for foreign key constraints, we can use custom resolvers to
resolve the type constraints of columns and tables, and track
the foreign key relation, i.e., which column is a foreign key to
which foreign column. Then, if we want to honor the foreign
key constraints in "INSERT INTO" statements, we can use cus-
tom resolvers to resolve the scope constraints of the inserted
values. That is, when the value is inserted into a foreign key
column, we resolve the operation as a Use of existing values
in the foreign column. Otherwise, we resolve the operation
as a Define of a new column value.

However, as shown in Table 3, BUZZBEE does not achieve
100% semantic correctness under its abstract semantic model
for any of the targets. In fact, BUZZBEE does not claim
to mimic all the semantics of a DBMS perfectly. Instead,
BUZZBEE proposes to generically model and enforce the
basic but vital DBMS semantics that impacts fuzzing perfor-
mance. As shown in the evaluation, BUZZBEE achieves a
decent fuzzing performance with this methodology.

9.2 Common Database Interface
Common database interfaces (DBIs) have been proposed
decades ago and are used extensively nowadays. They provide



a unified layer for developers to integrate storage engines into
their products without worrying about the underlying DBMS
that actually powers it, which offers advantages in many ways.
One may intuitively develop the idea of using common DBIs
for fuzzing the diverse DBMS interfaces. During our research,
we realized they are unsuitable for fuzzing for several rea-
sons. First, DBIs tend to use a limited number of APIs of the
underlying DBMS, and we cannot test the functionalities of
the unused ones. Second, many modern DBIs enforce sanity
checks before invoking the underlying DBMS for security
reasons, adding another impeding layer. We propose solutions
that let users annotate abstract semantics of the target DBMS
to enable effective DBMS fuzzing.

10 Related Work

10.1 General Fuzzing Strategies
Fuzzing strategies are mainly divided into two cate-
gories: generation-based fuzzing and mutation-based fuzzing.
Generation-based fuzzing creates test cases from scratch using
a specification of the input format [6, 17, 19, 23, 24, 34, 38,
38, 44, 46, 47, 51, 51, 52]. These fuzzers do not require a seed
corpus and are well-suited for testing systems with restricted
input formats. Mutation-based fuzzing modifies existing test
cases to explore new ones [14, 18, 18, 29, 31, 50, 53, 54].
They rely on a seed corpus and mutate the seeds to create new
test cases. Mutations are typically guided by coverage feed-
back. Fuzzers such as AFL [54], AFL++ [14], libFuzzer [29],
and Honggfuzz [18] use coverage obtained during code execu-
tion to guide the fuzzing process. AFL employs a lightweight
yet effective instrumentation technique to track code coverage.
AFL++ maintains the core principles of AFL while improv-
ing performance by introducing several optimizations. Re-
searchers also develop more efficient feedback mechanisms.
DDFuzz [32] incorporates the coverage in the data depen-
dency graph to guide fuzzing. MemFuzz [10] uses memory
accesses to guide fuzzing. BUZZBEE is a mutation-based
fuzzer that extends AFL++ and focuses on the unique chal-
lenges in generic DBMS fuzzing. We believe it can benefit
from the advancements in feedback mechanisms as well.

10.2 Language Processors Fuzzing
Fuzzing language processors (e.g., interpreters and compilers)
faces unique challenges. These targets require structural in-
puts with specific semantic properties to be fuzzed effectively.
For instance, to fuzz JavaScript engines, CodeAlchemist [21]
uses code bricks to maintain semantic correctness during mu-
tation. DIE [37] and Fuzzilli [20] propose strategies to main-
tain the semantics stressing the just-in-time (JIT) engines.
For compilers, CSmith [51] specializes in modeling C seman-
tics to produce entirely correct test cases for C compilers.
Tools such as Nautilus [3] and Superion [48] propose generic

grammar-based solutions to fuzz more language processors.
POLYGLOT [9] further advances using a semantic validation
strategy that performs well when no context-sensitive con-
straint is required. BUZZBEE focuses on the challenges in
fuzzing the diverse DBMS interfaces effectively in general.

10.3 DBMSs Fuzzing
Fuzzing DBMSs has been an active research area in recent
years [15, 25–27, 43, 44, 49, 56]. Tools like SQLancer [42],
SQLsmith [44], and Squirrel [56] have emerged to test re-
lational DBMSs. SQLsmith generates random SQL queries.
Squirrel employs semantic validation and coverage feedback
to test SQL DBMSs. SQLancer uses differential testing tech-
niques to report inconsistencies in query results. They have
been proven successful in finding vulnerabilities in widely
used relational DBMSs. Researchers also propose some solu-
tions targeting non-relational DBMSs [26, 55]. Existing tech-
niques present unique solutions targeting specific DBMS cat-
egories, but fail to exhibit decent fuzzing performance for the
diverse DBMS interfaces in general. As a result, BUZZBEE
is designed to address this with a focus on generalizabil-
ity and effectiveness. Some optimizations proposed in SQL
fuzzers seem effective and generalizable to other DBMSs.
DynSQL [25] combines the dynamic feedback from SQL
DBMSs with fuzzing. Ratel [49] tackles the challenges of
fuzzing DBMSs in real-world settings. Griffin [15] mutates
the input without relying on grammar by tracking dependen-
cies among SQL statements. These optimizations are orthog-
onal research, and we think BUZZBEE can potentially benefit
from them to improve its performance.

11 Conclusion

In this work, we identify the unique challenges in fuzzing the
diverse DBMS interfaces. We propose our solutions and in-
corporate them into an open-source end-to-end fuzzing frame-
work: BUZZBEE. We conduct a comprehensive evaluation
for BUZZBEE, in which BUZZBEE achieves up to 177% code
coverage compared with state-of-the-art fuzzers and finds 40
real-world vulnerabilities in mainstream DBMSs, demonstrat-
ing its generalizability and effectiveness.
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A Appendix

1 // BuzzBee’s IR is a tree structure formed by IRNodes.
2 // An IRNode has the following properties:
3 IRNode(id, type, text, annotation, children, parent, ...);
4

5 // BuzzBee lifts the example shown in Fig.4a into the following
6 // IRNodes, forming the IR program shown in Fig.4d:
7 node0(id=0, type=testcase, text=NULL, annotation={},
8 children={&node1}, parent=NULL);
9 node1(id=1, type=cmds, text=NULL, annotation={},

10 children={&node2,&node12,&node22,&node32}, parent=&node0);
11 node2(id=2, type=cmd, text=NULL, annotation={},
12 children={&node3}, parent=&node1);
13 node3(id=3, type=hset, text=NULL, annotation={},
14 children={&node4, &node5, &node7, &node9}, parent=&node2);
15 ...
16 node33(id=33, type=hincrby, text=NULL, annotation={},
17 children={&node34, &node35, &node37, &node39},
18 parent=&node32);
19 node34(id=34, type=terminal, text="HINCRBY", annotation={},
20 children={}, parent=&node33);
21 node35(id=35, type=key, text=NULL,
22 annotation={"default":{operation:Use,
23 args:{type:"HSET key"}}},
24 children={&node36}, parent=&node33);
25 node36(id=36, type=terminal, text="k1", annotation={},
26 children={}, parent=&node35);
27 node37(id=37, type=field, text=NULL,
28 annotation={"default":{operation:Define,
29 args:{type:hset_field_type_resolver}}},
30 children={&node38}, parent=&node33);
31 node38(id=38, type=terminal, text="k1_field1", annotation={},
32 children={}, parent=&node37);
33 node39(id=39, type=increment, text=NULL, annotation={},
34 children={&node40}, parent=&node33);
35 node40(id=40, type=terminal, text="1", annotation={},
36 children={}, parent=&node39);

Fig. 8: BUZZBEE’s IR structure and the IR program of the ex-
ample in Fig.4a. The IR program is a tree structure, which is also
illustrated in Fig.4f. When lifting, BUZZBEE parses the test case,
traverses over the AST of the test case, collects the corresponding
annotations, and then creates the IRNodes forming the IR program.
The complete source of the test case is stored in the text property
of the IRNodes of the type terminal. When compiling, BUZZBEE

traverses over the IR program, collects the terminal IRNodes, and
concatenates their texts into a test case.

1 cql:
2 navigator* property ;
3

4 navigator:
5 ’.parent’
6 | ’.child’ arg | ’.lsib’ arg | ’.rsib’ arg
7 | ... ;
8

9 arg:
10 ’(’ num ’)’ ;
11

12 property:
13 ’@text’ | ’@id’ | ’@sym_type’ | ... ;

Fig.9: Context Query Language (CQL)



Table 5: Real world targets we test BUZZBEE on. Popularity is
the number of Stars of the DBMS’s GitHub repository. X* in Data
Model means the DBMS supports other models but we only test the
interface for its primary model X.

DBMS LOC Popularity Data Model
redis 281K 60.1K Key-value*
MongoDB 8.7M 23.8K Document*
ArangoDB 6.8M 13K Document*
PostgreSQL 1.6M 12.5K Relational*
MySQL 5.5M 9.6K Relational*
KeyDB 348K 7.6K Key-value
RedisGraph 1.7M 1.9K Graph
AgensGraph 1.4M 1.3K Graph

Table 6: DBMSs supported by fuzzers.

Fuzzer v.s. / DBMS redis RedisGraph ArangoDB PostgreSQL

BUZZBEE ✔ ✔ ✔ ✔
AFL++ ✔ ✔ ✔ ✔

POLYGLOT ✔ ✔ ✔ ✔
REDQUEEN ✔ ✔ ✗ ✗

Grammarinator ✔ ✔ ✔ ✔
SQUIRREL ✗ ✗ ✗ ✔

SQLANCER ✗ ✗ ✔ ✔

Table 7: Real-world bugs found by BUZZBEE. BUZZBEE found
40 bugs in latest DBMSs during evaluation. * means BUZZBEE

found the bug in the latest DBMS, but it was already known by the
vendors when we reported it. † means the bug is known and not in
the latest DBMS.

DBMS ID Version Status CVE

redis

1 cb1fff3 Fixed
2 395d801 Fixed* CVE-2022-35977
3 1ec82e6 Fixed CVE-2023-22458
4 7.0.7 Fixed CVE-2023-22458
5 7.0.8 Fixed CVE-2023-25515
6 7.0.8 Fixed CVE-2023-25515
7 7.0.8 Fixed CVE-2023-25515
8 7.0.8 Fixed CVE-2023-28425
9 af0a4fe2 Confirmed

10 7.0.10 Fixed* CVE-2023-28856
11 7.0.8 Fixed*
12 af0a4fe2 Fixed

KeyDB

13 6.3.2 Fixed
14 6.3.2 Fixed
15 6.3.2 Fixed
16 6.3.2 Fixed
17 6.3.2 Fixed
18 6.3.2 Fixed

RedisGraph

19 v2.10.8 Fixed
20 c425ad8 Fixed CVE-2023-25310
21 v2.10.9 Confirmed
22 v2.10.9 Fixed
23 v2.10.10 Confirmed
24 v2.10.10 Confirmed
25 v2.10.9 Confirmed
26 v2.10.9 Reported
27 v2.10.9 Reported
28 v2.10.9 Confirmed
29 v2.10.9 Confirmed
30 v2.10.9 Fixed
31 v2.10.9 Fixed*

AgensGraph
32 v2.13.1 Confirmed
33 v2.13.1 Confirmed

MongoDB 34 87d48e1 Fixed

ArangoDB
35 v3.11.0 Fixed
36 v3.11.0 Fixed

PostgreSQL 37 v11.12 Fixed†

MySQL

38 v8.1.0 Confirmed*
39 v8.1.0 Confirmed*
40 v8.1.0 Confirmed*
41 v8.1.0 Confirmed
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