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Abstract
A type of traffic analysis, website fingerprinting (WFP), aims
to reveal the website a user visits over an encrypted and
anonymized connection by observing and analyzing data flow
patterns. Its efficiency against anonymization networks such
as Tor has been widely studied, resulting in methods that
have steadily increased in both complexity and power. While
modern WFP attacks have proven to be highly accurate in
laboratory settings, their real-world feasibility is highly de-
bated. These attacks also exclude valuable information by
ignoring typical user browsing behavior: users often visit mul-
tiple pages of a single website sequentially, e.g., by following
links.

In this paper, we aim to provide a more realistic assessment
of the degree to which Tor users are exposed to WFP. We
propose both a novel WFP attack and efficient strategies for
adapting existing methods to account for sequential visits of
pages within a website. While existing WFP attacks fail to
detect almost any website in real-world settings, our novel
methods achieve F1-scores of 1.0 for more than half of the
target websites. Our attacks remain robust against state-of-
the-art WFP defenses, achieving 2.5 to 5 times the accuracy
of prior work, and in some cases even rendering the defenses
useless. Our methods enable to estimate and to communicate
to the user the risk of successive page visits within a website
(even in the presence of noise pages) to stop before the WFP
attack reaches a critical level of confidence.

1 Introduction

Over the past two decades, more and more of users’ daily
activities have moved online. As a result, online privacy has
become increasingly important. While encryption helps pro-
tect the confidentiality of user data exchanged over the Inter-
net, it does not hide the identities (i.e., IP addresses) of the
communicating parties and the relationship between them.
The latter is often abused by corporations to profile and track
Internet users, by repressive governments to engage in nation-
wide censorship, and even to track and persecute individuals

exercising their fundamental right to freedom of speech and
expression. In response, several methods for anonymous com-
munication have been proposed [31,47]. Today, Tor [15] is the
most popular low-latency anonymization network. To provide
anonymity, it uses the principle of onion routing, where users
build a virtual tunnel via a chain of three volunteer nodes,
called onion relays (ORs), and send their data encrypted in
multiple layers. This design ensures that no OR in the path
knows both the user and the destination at the same time.

Despite Tor’s promise to hide the relationship between
users and their destinations from a local passive observer (lo-
cated on the link between the Tor user and the first anonymiza-
tion node, i.e., the entry node), e.g., an Internet service
provider—one of the weakest attackers in the Tor’s adver-
sarial model [15], Tor leaks information about the number,
direction, and timing of packets transmitted. This can be ex-
ploited for sophisticated attacks such as website fingerprinting
(WFP) [24, 37, 39, 45]. WFP is a type of traffic analysis that
aims to reveal the website a user is visiting by observing and
analyzing data flow patterns. Over the years, a large number
of studies [24,38,41,43,45,48] has systematically showed the
continuous improvement in the effectiveness of WFP attacks.
Today, modern WFP methods achieve a classification accu-
racy of more than 90% in laboratory settings. However, their
real-world efficiency is highly controversial because they rely
on unrealistic assumptions and have unknown scalability due
to the huge universe size of the World Wide Web (WWW).

The main limitation of existing WFP attacks is their focus
on detecting individual pages (typically index pages) via iso-
lated page visits, rather than the websites that an accessed
page belongs to. First, these attacks omit valuable information
by ignoring typical user browsing behavior, where users usu-
ally visit multiple pages of a single website in sequence [11],
e.g., by following links. Second, fingerprinting only individ-
ual pages within the entire WWW universe results in attacks
with severely limited scalability in practice as websites are
comprised of numerous pages, making the size of the universe
even larger. Although previous research [24, 38, 41, 43, 45]
assumes silently that detecting the index page of a website is



sufficient to recognize this website as users always access the
website’s content through it, the validity of this assumption
often does not align with the current user browsing habits.
For instance, users frequently access various websites’ con-
tent through browser-cached URLs [11] or URLs received
via email or instant messaging, bypassing the index pages of
those websites. Even if the attacker attempts to enumerate all
individual pages of a given website, this is often practically
impossible due to their vast number. However, if the attacker
can exploit the additional information leaked by the set of
individual pages belonging to the same website and visited
by a user in sequence, WFP will become significantly more
accurate and scalable, and thus more dangerous than assumed.

In this paper, we provide a more realistic assessment of the
degree to which Tor users are exposed to WFP and propose
both a novel WFP attack and efficient strategies for adapting
existing classifiers to account for sequential visits to pages of
a single website. Our novel methods do not require knowing
the order of pages visited, making WFP even more realistic.
We show that two, at most three, clicks within a website allow
the attacker to increase the accuracy by more than 20% in
a closed-world scenario, bringing it into the alarming range.
Using our collected dataset, we investigate the limitations of
our methods in real-world settings and show that our attacks
achieve F1-scores of 1.0 for more than half of the websites
of interest, while existing techniques fail to detect almost any
website. Our attacks remain robust against state-of-the-art
WFP defenses, achieving up to five times the accuracy of
prior work, and in some cases even rendering the defenses
useless. Overall, our analysis shows that detecting websites
based on sequential page visits, rather than individual pages,
poses a more serious threat to Tor users in the real world, and
appeals for research to rethink the existing assumptions in
the attacker model and to reconsider existing evaluations and
WFP defenses. The contribution of this paper is as follows:

1. We perform the first systematic analysis of the suitability
of existing classifiers for website fingerprinting (i.e., de-
tecting websites by analyzing patterns from their individ-
ual pages). We evaluate several strategies and conclude
that naive methods of adapting webpage classifiers for
website fingerprinting are insufficient. Specifically, we
observe a 20 to 30% decrease in accuracy for website
fingerprinting compared to webpage fingerprinting.

2. We design a novel dedicated set-aware method for web-
site fingerprinting based on multiple instance learning,
which can naturally handle the set of pages visited by
a user sequentially. We further propose several efficient
voting-based strategies to adapt existing WFP classifiers
to take into account the set of pages of a website. We
analyze the effectiveness of both our strategies and our
set-aware WFP attack in an open-world scenario and
show that WFP poses a serious threat to users who click
on multiple links within the same website.

3. We evaluate the effectiveness of state-of-the-art defenses

in preventing our novel WFP methods. We show that
WFP defenses are up to five times less effective than ex-
pected, or even useless in some cases. Thus, considering
sets of pages is a powerful tool to successfully enhance
the WFP attack even in the context of newer defenses.

Finally, we discuss the limitations of classifiers, the weak-
nesses of existing defenses, and the need for further research.

2 Threat Model

Unlike most previous research [4, 43, 45, 46], which has con-
centrated on fingerprinting individual pages (mainly the index
pages of websites), we examine an attacker whose goal is to
identify the website visited by a user, regardless of the specific
page accessed on that website. We strictly distinguish between
a website and a page. A website comprises pages, hosted un-
der the same domain and identifiable by a unique URL. We
focus on the worst-case scenario from user’s perspective, in
which users browse a website in a single tab, visiting multiple
pages in sequence by following links. Crichton et al. [11]
have recently shown that specific user groups frequently ex-
hibit this browsing behavior in their daily routine. Thus, we
believe that some Tor users also choose to use this strategy,
in part for better performance. Nonetheless, we examine the
impact of including pages in the set of visited pages that do
not belong to the target website and discuss the effects of
multi-tab browsing on our WFP methods in Section 6.4.

For our analysis, we assume that the attacker specifies a set
of targeted websites and retrieves a certain number of pages
from them. For each page, multiple traffic traces are collected
to extract potentially significant patterns, i.e., features, needed
to train a supervised machine learning (ML) method and to
create a model. The model is then used to detect an accessed
website, which corresponds to an unknown trace of a real user.
WFP is examined through two threat models: closed and open
world. In a closed-world scenario, the user is restricted to
access a limited set of websites, and the attacker has patterns
for these websites. In an open-world scenario, the attacker
has only traces for foreground websites of interest, while the
user can visit an unlimited background set of websites.

Finally, we assume the attacker is a passive observer who
does not decrypt, modify, or interrupt transmitted packets. He
is positioned either between the user and the entry node or
at the entry node itself, and monitors traffic exchanged with
a Tor user and is aware of its IP address. Similarly to other
works [24, 38, 41, 43, 45], the attacker can identify the start
and end of each page load [50].

3 Related Work

Unlike our work, most previous research has focused on de-
veloping attacks fingerprinting individual pages.

Traditional ML-based Attacks. Herrmann et al. [25] studied
the first WFP attack on Tor utilizing packet size distributions



to train a Multinomial Naïve Bayes classifier. Their results
showed a detection rate of less than 3%. Panchenko et al. [40]
enhanced the attack accuracy to nearly 55% by using Support
Vector Machines (SVM) and multiple feature sets based on
packet volume, time, and direction. They also presented the
first open-world analysis of WFP. Dyer et al. [17] proposed
a variable n-gram classifier and analyzed new feature sets
based on time and bandwidth. However, their accuracy did
not exceed [40]. Cai et al. [7] used a SVM classifier that
employed Damerau-Levenshtein edit distance between finger-
prints and increased the accuracy to over 80%. This attack was
further improved by removing Tor management cells from
traffic traces and using a new set of distance-based metrics to
distinguish between fingerprints [49]. Despite achieving a sub-
stantial accuracy improvement, these methods were rendered
impractical due to their high computational costs.

In response, a new generation of attacks was developed.
The k-Nearest Neighbor (k-NN) classifier [48] relies on a
large and diverse feature set and attained an accuracy of 91%
in a closed world and an 85% detection rate when using over
5,000 background pages in an open world. The CUMUL clas-
sifier [39] relies on a feature set comprising the cumulative
sizes of transmitted packets for a given page load and SVM.
By sampling cumulative packet sequence, it implicitly con-
siders the page load pattern in its feature space. The k-FP
method [24] uses a random decision forest classifier to pro-
duce feature vectors and a k-NN classifier for classification.
Like CUMUL, k-FP achieved an accuracy of more than 90%
in a closed world. Gálvez et al. [19] studied the use of cluster-
ing in the WFP domain. Unlike our work, where we employ
clustering to partition multiple pages within a website, Gálvez
et al. apply clustering to detect index pages of websites.

DL-based Attacks. More recent studies have examined the
use of deep learning (DL) to enable automated selection and
fine-tuning of features. The first DL-based WFP attack [2]
was based on a stacked denoising autoencoder and achieved
88% accuracy in a closed world. Rimmer et al. [42] analyzed
three different DL methods enhancing the accuracy of the
previous attack to 96%. They showed that features generated
automatically by certain DL methods are more resilient to
constantly evolving web content. Still, these methods required
a much larger number of training samples than traditional ML
classifiers. Sirinam et al. [45] first tackled this problem with
deep fingerprinting (DF). DF is based on a convolutional
neural network (CNN) with activation functions specifically
adapted to WFP and a number of precautions against overfit-
ting. Var-CNN [4] is built using a Residual Neural Network
with automated feature extraction and a set of handcrafted
features. It achieves higher accuracy than DF by including
direction and timing data from packets, especially when work-
ing with limited training data. Tik-Tok [41] represents another
DL-based attack that uses both packet directions and timing of
bursts in raw data. Recently, Shen et al. [43] proposed robust
fingerprinting (RF) comprising a traffic representation method

for capturing fine-grained features and a CNN-based classifier.
RF has shown an improved capability to overcome defenses.
Oh et al. [38] employed unsupervised DL methods solely for
automated feature extraction. They showed that traditional
ML-based classifiers (e.g., k-NN, CUMUL, k-FP) improved
in accuracy when fed with features derived automatically.

Other studies have tackled the challenge of applying WFP
with limited data. Triplet fingerprinting [46] is based on N-
shot learning and requires only a few traffic traces per page
to train a model. However, building a model for the feature
extractor using large training sets remains a necessary step in
extracting features from the raw data in its pre-training phase.
GANDaLF [37] employs a semi-supervised attack through
a generative adversarial network (GAN), which produces a
large set of synthetic traces for training a deep neural network.
It requires only a small labeled dataset, but needs a more
extensive second dataset for GAN training.

Fingerprinting Websites. A limited number of studies
have focused on detecting websites. Cai et al. [7] attempted
to fingerprint websites by analyzing multiple pages within the
same domain and the impact of clicking on embedded links.
They used a Hidden Markov Model (HMM) to simulate a typ-
ical user behavior and obtained high accuracy by examining
only two websites. Zhuo et al. [54] used a Profile HMM—an
extended HMM capable of, e.g., zero transitions—to model
websites. However, the assumption of having prior knowl-
edge of the order of pages accessed by the user questions the
scalability of these attacks in practice.

Panchenko et al. [39] analyzed the effectiveness of CU-
MUL using a small dataset when the attacker aims to detect
a visited website regardless of the specific page accessed by
the user. Oh et al. [37] performed similar evaluation on GAN-
DaLF, where the attack achieved an accuracy of up to 62%
in a closed world. In this work, we continue the research
of [37, 39] and perform the first systematic analysis of web-
page classifiers for detecting websites. We identify multiple
strategies how to adapt these methods to achieve effective
website fingerprinting attacks. Our work is the first to exam-
ine the risks of WFP when users sequentially browse multiple
pages of a single website. Once a website has been detected
by our methods, existing works such as [36, 44] can be used
to pinpoint the exact pages that were visited by the user.

Criticism on Existing WFP Attacks. WFP attacks have
been criticized for making impractical assumptions. Juarez et
al. [29] argued that prerequisites such as non-changing web
content and use of same vantage point, made by previous
work, do not necessarily hold in real world. Panchenko et
al. [39] demonstrated that current methods for fingerprinting
individual pages do not scale in realistic settings, i.e., for
every page there are at least several others that look similar
to the classifier and cause confusion. Cherubin et al. [10]
analyzed the potential of WFP attacks in the operational Tor
network. By observing real user traffic, they achieved a high
detection rate for a limited number of pages, but observed



a significant drop in accuracy as the number of monitored
pages increased. Our work tackles the scalability issue of
existing attacks through fingerprinting websites, instead of
individual pages, and using additional information obtained
by sequential visits to multiple pages belonging to a single
website.

Multi-tab Website Fingerprinting. Some research has
designed WFP attacks for multi-tab setting. A few studies
[21, 51, 52] have focused mainly on retrieving and analyzing
only those portions of transmitted packets that correspond to
single page traffic. Other works [12, 22] have used majority
voting and attention scoring to differentiate traffic chunks of
concurrently loaded pages and to classify them. In contrast,
we use different voting strategies for multiple pages to detect
the website visited. Recently, Deng et al. [14] took a different
approach to tackle the usage of multiple tabs. They considered
it as a multi-label classification problem and proposed a trans-
former model that uses several short traffic patterns extracted
from each page loaded in a tab. While these attacks show
feasibility of WFP even when using multiple tabs, our novel
methods are able to further boost these attacks and overcome
their limitations. Further implications of multi-tab browsing
on our WFP methods are discussed in Section 6.4.

4 Our Novel Fingerprinting Methods

The novelty of our WFP attacks is their ability to incorporate
previously ignored leakage obtained from a user’s sequen-
tial browsing activity across multiple pages within a website.
Thus, our methods can more accurately detect the visited web-
site, regardless of the individual pages accessed, resulting in
increased scalability in the real world. We first suggest strate-
gies to empower existing webpage classifiers to deal with
websites and, then, introduce our novel set-aware method.

4.1 Our Novel Voting-based Strategies
Consecutive page visits can expose valuable information,
which can be combined with individual page predictions made
by webpage classifiers, to identify websites. We examine six
different voting-based strategies that incorporate predictions
for individual pages within a given website, without even the
need to consider their visiting order. For all of our strategies,
we assume the usage of a webpage classifier that is trained on
multiple website classes and can compute a set of probability
values for each testing page, determining the likelihood of the
given page to originate from each of these websites.

Our most basic strategy, majority voting, counts the number
of pages predicted to be associated with each website class
and selects the most frequently predicted website class as
the final choice. If two or more website classes have equal
numbers of predictions, we randomly select one of them as
the final prediction. In probability voting, we multiply the
probabilities assigned by the classifier to each page in the

testing set. For each website class, we compute a probability
for each testing set of pages and the website class with the
highest probability is then chosen as the final prediction. The
mean voting is similar to probability voting, except that it
entails adding the probabilities of the testing pages instead of
multiplying them.

Contrary to the methods above, we propose three additional
strategies that account for varying levels of confidence in sep-
arate predictions. The weighting methods employed in these
strategies ensure that predictions of individual pages within
a testing set, which stem from a decision made with high
confidence, carry more weight in the final prediction than
predictions based on less certain classifier’s decisions. We
use three metrics to weight each probability value when com-
puting the average for our mean voting strategy: (i) variance,
(ii) standard deviation, and (iii) Gini coefficient [9, 34]. We
refer to the corresponding voting-based strategies as variance-
weighted mean voting, standard deviation-weighted mean
voting, and Gini-weighted mean voting, respectively. The met-
rics are computed over the list of probability values assigned
to a given page indicating the likelihood that the page belongs
to each of the target websites. High values for one or more of
these metrics indicate significant discrepancy between proba-
bility values for different website classes of a given page and
point out strong confidence in the classifier’s decision.

4.2 Multiple Instance Learning for WFP

Our voting-based strategies strongly depend on the efficacy of
the underlying webpage classifiers that were not specifically
tailored to fingerprint websites. Alternatively, we propose to
apply a special branch of supervised learning, called multiple
instance learning (MIL) [8]. In MIL, a group of instances
is referred to as a bag and is treated as a single instance
similar to the classical instance-based methods. The main
goal is to extract features that capture essential patterns of
the entire set and to train a classifier capable of predicting a
single label for each bag, rather than separate labels for the
individual instances. In our work, we propose a MIL-based
WFP attack that employs an architecture inspired by a state-
of-the-art attention-based MIL approach [27]. Our MIL-based
attack utilizes weights to identify particular pages in each bag,
which can improve the confidence of the classifier’s decision
and, thus, increase the accuracy of associating a given set of
pages with a given website. The novelty of our method is
its flexible, multi-layered neural network that computes the
weighted average from the traffic traces of all pages in a bag.

Figure 1 illustrates the architecture of our method. Initially,
the method is provided with several website classes containing
a subset of pages. We adhere to the data representation used in
previous work [42, 45, 46], where each traffic trace comprises
a sequence of +1 and −1, indicating outgoing and incoming
packets, respectively, and excludes the size and timestamps
of those packets. Similar to [4, 45, 46], the traffic traces are
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Figure 1: A general overview of the architecture of our MIL-based WFP attack.

either truncated or padded with zeroes to conform to a fixed
packet length of 5,000. The traffic traces are then inputted into
the feature generator, which closely corresponds to the CNN
model developed in DF [45]. The feature generator includes
eight convolutional layers, followed by batch normalization
and activation functions to prevent overfitting. It also includes
four max-pooling layers for input data reduction and four
dropout layers for overfitting mitigation during the reduction.
Instead of using a fixed learning rate drop-off scheme with a
fixed number of epochs, as done in [45], we employ a learn-
ing rate that varies and adjusts during training based on the
performance of the validation set. Finally, we replace the fully
connected layers and output prediction previously developed
in DF with a single softmax layer, permitting intermediate
evaluation of the data in reduced dimension.

Once the dimensions of the initial traffic traces have been
reduced, our method proceeds to bag creation. During this
stage, the traces are grouped into multiple bags and each bag
is labeled with the corresponding website class to which the
pages belong. We ensure that each bag contains traces of dif-
ferent pages. If the initial website class has multiple traces
from a single page, they are distributed to multiple bags. The
resulting bags are fed into the final stage of our method, called
weights learner. To develop the weights learner, we first intro-
duce a custom layer that computes and optimizes the weights
derived from traces in a single bag. Similar to [27], this layer
implements the hyperbolic tangent function to consider incom-
ing and outgoing packets in separate traces. The activation
function softmax is utilized to ensure all page weights in a
bag sum to one, avoiding the influence of different bag sizes.
The computed weights are then employed in the following
layer for the multiplication with the initial traces in a bag and
the output is flattened. Before making predictions for the final
website label, additional measures are taken to prevent over-
fitting in this stage. We use batch normalization and dropout
techniques and also employ a variable learning rate that is
adjusted during training. Further details regarding the archi-
tecture of our MIL-based WFP attack, data dimensions, and
selection of hyperparameters are provided in Appendix A.

4.3 Use of Hidden Markov Model
While our preceding set-aware methods account for succes-
sive visits to multiple pages within a website, they do not
consider their exact visiting order. To check whether this

additional leakage can further improve the accuracy of the at-
tack, we create another set-aware method based on an HMM.
Although Cai et al. [7] previously used an HMM to model
certain user behavior, their study was limited in scope, failing
to analyze the effect of the number of pages within a website
accessed by the user or the impact of different user behaviors.
While we rely on different sources to obtain potential page
visiting orders, it is worth noting that such browsing patterns
are very user-specific and we argue that it is unrealistic to
fully exploit such leakage. As shown in Section 6.2, high
accuracies can be obtained by using merely sets of pages
without regard to their visiting order.

We create an individual HMM model for each website,
where the pages correspond to different states and the state
transition probabilities indicate the likelihood of a user mov-
ing from one page to another. As most websites comprise
a large number of pages, implementing a separate state for
each individual page does not scale. Thus, we use clustering
to group multiple pages that share similar appearances and
link connectivity with other pages on the same website into a
single HMM state. To account for varying number of clusters
across different websites, we implement the DBSCAN cluster-
ing method [18], which does not require any prior knowledge
of the number of clusters. The resulting clusters represent hid-
den states in our HMM model. A separate webpage classifier
is then trained on each of these clusters.

Beside the set of hidden states, we also need to define the
set of observations, the set of transition probabilities indicat-
ing the likelihood of generating a given observation upon
transitioning to a certain hidden state, the set of initial proba-
bilities, and the set of observation probabilities to complete
the HMM model for each website. The set of observations
corresponds to the set of cluster labels predicted for each test-
ing page. To derive the set of transition probabilities, we use
two sources of data: a sitemap graph of each website con-
taining available pages with the link relationships between
them, and automatically-generated user browsing sessions
describing sequences of pages (see Appendix B). The set of
start probabilities is the frequency of clusters, counted for a
set of training sessions, containing the first page in a session.
The set of observation probabilities contains the probability
values obtained by the webpage classifier and indicating the
likelihood that a given testing page belongs to each of the
possible classes. Then, we apply the Viterbi algorithm to find
the most likely sequence of hidden states given the sequence



of observations in the HMM for each website. Finally, we
sum the predicted probability values of each page for each
website and multiply the aggregated probabilities of the pages
in the sequence. The website class with the highest likelihood
is our final prediction.

4.4 Strengthening Webpage Classifiers
While increasing the number of pages per website and traces
per page improves the accuracy of traditional ML-based WFP
attacks (see Section 6.1), they only achieve moderate accuracy
when fingerprinting websites instead of individual pages. This
may be because the manual feature sets used by these methods
are not suitable for detecting websites, or since there are too
many page types within a single website class, leading to
divergent traffic patterns interfering with the classifiers.

To verify our first assumption, we extended our feature
generator, presented in Section 4.2, to enable the independent
storage of extracted feature vectors in files. We have opted for
the set of 100 features per traffic trace as a good choice for our
evaluation. Although we explored the use of the autoencoder
suggested by Oh et al. [38] and a variational autoencoder, we
were unable to achieve any improvement with the features
extracted from these methods in our evaluation settings.

To validate our second assumption, we suggest the use of
clustering. We cluster training traces of pages that belong
to a single website prior to inputting them into a webpage
classifier. Intuitively, traces assigned to a single cluster share
a high level of similarity. Each of the clusters then forms a
separate class for training the classifier. During testing, if a test
trace is predicted to belong to a particular cluster, it is assigned
to the website associated with that cluster. We tested several
clustering methods, including DBSCAN [18], OPTICS [3],
ShiftMean [28], Gaussian Mixture Model [53], k-Means [23].
Based on our empirical analysis, we identify k-Means as the
most suitable clustering method for our evaluation.

5 Experimental Setup

We present our evaluation setup to allow for verifiable results.
Datasets. Our analysis requires a set of multiple websites,

each represented by its respective pages. As there is no such
existing dataset, we compiled a new dataset including 100
websites from the Alexa Top list of the most popular web-
sites [16]. To confirm the representativeness of our Alexa list
and the soundness of our findings, we created a second valida-
tion dataset comprising 100 websites1 from the latest Tranco
Top list of the most popular websites [33]. Both samples con-
tain websites from various categories (e.g., news, social media,
online shops) with diverse layouts and content from many
regions worldwide. For each website, we selected 80 unique
URLs of accessible pages by following links from the index

1https://tranco-list.eu/download/X53GN/500

page and using the method presented in [39]: We choose a
link with a probability of 0.5 from the first, 0.25 from the
second, 0.125 from the third, and 0.0625 from the fourth and
fifth result pages of that website. As websites can be accessed
from different sources, e.g., visting a browser-cached URL or
performing a search engine query [11, 32], we used the same
method from [39] to query Google—one of the most popular
search engines—and further retrieved ten unique URLs of
accessible pages per website. In total, we gathered the URLs
of index pages from 100 unique websites, and the URLs of
90 unique non-index pages for each of these websites. We
refer to the datasets as ALEXA-WSC-FG and TRANCO-WSC-FG.

We also visited the 5,000 most popular Alexa websites,
excluding the 100 websites in ALEXA-WSC-FG, and collected
nine unique pages for each website using the same method
from [39]. We call this dataset ALEXA-WSC-BG and mainly
use it for our open-world analysis. The last dataset we cre-
ated for evaluating our HMM-based method is called ALEXA-
WSC-HMM. While it includes the same websites as those in ALE-
XA-WSC-FG, ALEXA-WSC-HMM comprises URLs of 50 unique
non-index pages per website and uses a sitemap graph for
each website and automatically-generated user browsing ses-
sions to record the exact page visiting order. Due to space
constraints, we refer the reader to Appendix B for details
regarding the creation of sitemap graphs and user sessions.

Network Traffic Collection. As in related work [39,42,45],
we excluded page loads denying requests coming from Tor,
showing a CAPTCHA, having no content, or pointing to a
client or server error. We also omitted pages that require user
authentication to access their content, as they are usually not
compatible with Tor’s default configuration2. The attacker is
not interested in fingerprinting such page loads as none of
them can be considered successful in accessing the content.
We used the automated approach presented in [39] to gather
metadata, such as TCP packet sizes, their direction and timing,
for all pages in our datasets. Then, we reconstructed the Tor
cells using a data extraction method from [39]. We used the
Tor Browser 7.5.6 for all ALEXA-* datasets and the latest Tor
Browser 12.5.3 for gathering TRANCO-WSC-FG. The validation
of our results across different Tor Browser versions is essential
to establish their soundness (see Section 6.4). In total, we
collected 90 traffic traces for each non-index page and 20
traffic traces for each index page in ALEXA-WSC-FG, and one
traffic trace for each page in ALEXA-WSC-BG and TRANCO-
WSC-FG. We further gathered 10 user sessions per website
from ALEXA-WSC-HMM, with each session consisting of 10
pages and 20 traffic traces per page.

Evaluation Setup. We use four modern webpage classi-
fiers: CUMUL [39], k-FP [24], DF [45], and Var-CNN [4].
We refer the reader to the original papers for more details on
them. For all experiments, unless otherwise stated, we con-
duct 10-fold cross-validation (CV) based on either the number

2As Tor often changes the exit node, and, hence, the IP address visible
for these pages, this causes the pages to activate their security mechanisms.

https://tranco-list.eu/download/X53GN/500


of traces per page or the number of pages per website.

6 Evaluation and Discussion

This section analyzes the efficacy of our novel WFP meth-
ods. We consider two main evaluation strategies. In the first
strategy, called website with known pages, we assume that
the attacker can obtain fingerprints of all pages belonging
to a target website, i.e., traces from all pages of a website
are used for training a classifier. In this strategy, we conduct
the CV based on the number of available traces per page for
each website. While this strategy is suitable for websites with
a small number of pages that seldom change, fingerprinting
each page of a large website with many pages that frequently
change content is practically unfeasible. Thus, we consider a
second strategy, called website with unknown pages, in which
the attacker can only use a portion of the pages available on
a website to train a classifier, while the testing is conducted
on pages that the classifier has not yet encountered. Here, we
conduct the CV based on the number of available pages per
website. We computed the accuracy, i.e., the probability of a
correct prediction (either a true positive or a true negative), for
our closed-world analysis and the F1-score, i.e., the harmonic
mean of precision and recall, for our open-world experiments.

Section 6.1 begins with identifying a suitable training strat-
egy and amount of data for state-of-the-art webpage classifiers
for our threat model to enable a fair comparison with our meth-
ods. Section 6.2 provides insights into the efficiency of our
novel fingerprinting methods in both closed- and open-world
scenarios. Section 6.3 presents the level of security provided
by state-of-the-art WFP defenses when our novel WFP meth-
ods are employed. In Section 6.4, we summarize our main
takeaways and discuss potential limitations and future work.

6.1 Webpage versus Website Fingerprinting
Webpage Classifiers for Website Fingerprinting. First,
we examine the efficacy of existing webpage classifiers
in detecting websites in a closed world, using our dataset
ALEXA-WSC-FG. Similar to previous work [4,39,45], we chose
to use 90 traces for each website class. Beside the classical
webpage detection done in previous research that we call indi-
vidual page, we also study another evaluation scenario, where
traces of a different page, not seen by the classifier before, are
used for testing. We further distinguish between two training
strategies. While the first strategy, called website with single
page training, entails a classifier learning a single page per
website, the second strategy, called website with milti-page
training, involves a classifier being trained on multiple pages
of a single website (with one trace per page)3. As shown in
Table 1 (rows one and two), the accuracy of all methods de-
creases by around 50% when using a single page for training

3Both cases correspond to our strategy website with unknown pages.

Table 1: Accuracy (in %) of webpage classifiers for finger-
printing individual pages vs. websites.

Scenario CUMUL k-FP DF Var-CNN
Individual page 82.75 88.81 92.91 95.80

Website with single page training 39.20 33.06 44.10 54.00
Website with multi-page training 56.14 62.98 70.57 76.36

and aiming to detect a website. This drop indicates that exist-
ing attacks lack the robustness needed to make them viable.
The use of only one page per website for training is particu-
larly highly insufficient for identifying websites. On the other
hand, training the classifiers on multiple pages per website,
while keeping the same number of traces per website class
(row three in Table 1), leads to an accuracy increase from
about 20% (for CUMUL and Var-CNN) to nearly 30% (for
k-FP and DF). Overall, the classification results of webpage
classifiers, obtained in our more realistic evaluation setting,
remain notably lower than expected, demanding dedicated
methods to fingerprint websites.

Number of Available Pages for Website Fingerprinting.
Next, we examine how the number of available pages for each
site impacts the accuracy of the webpage classifiers. For our
website-with-known-pages strategy, Figure 2 shows that all
methods attain higher accuracy with a larger number of pages
per site and traces per page in a closed world. Both DL-based
attacks can learn a website and achieve over 90% accuracy
already with 30 pages, each containing 10 traces. When using
even more traces for these pages, the accuracy improves to
over 96% for DF and 98% for Var-CNN. Contrariwise, the
traditional ML-based methods CUMUL and k-FP achieve
around 10% less accuracy than DF and Var-CNN when train-
ing on a larger number of pages and traces per page.

For our website-with-unknown-pages strategy, Figure 3
shows an overall lower accuracy for all attacks, compared
to the first strategy. It is especially significant when the clas-
sifiers learn fewer than 10 pages per website. Although in-
creasing the number of traces for this set of pages improves
accuracy by roughly up to 40% for DF and Var-CNN and up
to 20% for CUMUL and k-FP, the highest achieved detection
rate for the attacks remains below 60% for CUMUL and k-FP,
around 70% for DF, and less than 80% for Var-CNN. All web-
page classifiers require a minimum of 50 pages per website,
each containing at least 10 traces, to effectively learn web-
sites. This indicates a substantial rise in the amount of data
needed to train these classifiers, requiring about 500 or more
traces per class instead of 90. While the DL-based methods
DF and Var-CNN can achieve over 95% accuracy with a large
number of pages per site and traces for them, both traditional
ML-based methods CUMUL and k-FP attain an accuracy of
less than 80% for all sets of pages and traces per page. Still,
none of these attacks scales when used to detect websites in
real-world settings (see Section 6.2.3).

More Training Pages vs. More Training Traces per Page.
We assess the importance of the number of pages vs. the num-
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Figure 2: Existing WFP methods with varying number of pages per website and traces per page for website with known pages.
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Figure 3: Existing WFP methods with varying number of pages per website and traces per page for website with unknown pages.

ber of traces per page to achieve higher accuracies. We only
consider the results from Figures 2 and 3 that are obtained
when the classifiers cumulatively rely on the same number
of training samples, but with varying numbers of pages and
traces per page, e.g., 10 pages per site with 90 traces per page
vs. 30 pages per site with 30 traces per page. The trend of
improved accuracy with the use of larger number of pages
noted in Table 1 is less evident, when the size of the training
data increases. Thus, we conclude that a variety of training
pages per site is crucial when dealing with smaller datasets.

Index Pages for Training. We evaluated whether the use of
the index pages is particularly important to detect websites, as
doubted in [39]. Based on our analysis (see Appendix C), we
conclude that the inclusion of index pages in training does not
affect the accuracy of the attacks in either evaluation strategy.

Timing Information for Website Fingerprinting. Two
of the evaluated classifiers, k-FP and Var-CNN, rely not only
on packet order and size, but also on timing information. As
shown in Figures 2 and 3, both classifiers achieve higher accu-
racy for very small datasets, i.e., less than 10 pages per site and
less than 10 traces per page. The increase in accuracy is par-
ticularly evident in the results for k-FP. The k-FP’s accuracy
surpasses 40% for our website-with-known-pages strategy and
is more than 20% higher than the accuracies of the other at-
tacks when the website-with-unknown-pages strategy is used.
Although Var-CNN has only a slightly increased accuracy
for very small datasets, it still achieves over a 30% higher

accuracy when using 5 pages per site and 5 traces per page
than its DL-based competitor DF. As the number of pages per
site and the number of traces per page increase, the effect of
additional timing information on accuracy disappears.

Strengthening Traditional ML-based Classifiers. As
stated in Section 4.4, the moderate accuracy of both tradi-
tional ML-based attacks can be attributed to suboptimal fea-
ture sets or too dissimilar traffic patterns across distinct pages
of a website. We analyze whether the use of new feature sets
or applying clustering methods in these attacks to account for
diverse website structures can enhance their effectiveness. We
conducted multiple experiments using our strategy website
with unknown pages and a dataset of 90 pages per website
with 15 traces per page. The dataset size is suitable for this
evaluation as the attacker can already achieve high accuracy
in detecting websites using both DL-based competitors with
such a dataset. While the first experiment involved learning
all training pages of a given site in a single class (as previ-
ously done), the second experiment included grouping the
training pages into multiple clusters and learning each cluster
separately (see Section 4.4). Both experiments are performed
using the original features of the corresponding webpage clas-
sifiers. Then, we replicated these experiments, but this time
with the feature set produced by our feature generator (see
Section 4.4). Table 2 shows the results obtained. Regardless
of the feature set used, the use of clustering does not improve
the accuracy of both classifiers. However, the newly generated
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(b) Voting (k-FP) vs. MIL-based
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(c) Voting (DF) vs. MIL-based
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Figure 4: Accuracy achieved by our voting-based strategies with state-of-the-art webpage classifiers and our MIL-based method.

Table 2: Accuracy (in %) of traditional ML-based classifiers
in combination with clustering and new feature sets.

Without clustering With clustering

Original New Original New
feature set feature set feature set feature set DF Var-CNN

Website with CUMUL 79.59 95.73 77.35 95.78
94.74 96.65

known pages k-FP 79.18 93.62 78.56 93.50

Website with CUMUL 74.17 93.83 70.43 93.86
93.11 95.11

unknown pages k-FP 75.21 91.69 74.50 91.46

features increase their accuracy by almost 20%, making them
as efficient as the DL-based methods. This suggests that the
original feature sets may not be suitable for detecting websites
as opposed to individual pages, and thus need to be revised.

6.2 Analysis of Our Fingerprinting Methods
This section evaluates the efficiency of our novel fingerprint-
ing methods, proposed in Section 4.1 and 4.2. We focus on
our more realistic and, at the same time, more difficult evalua-
tion strategy website with unknown pages. We assume that the
attacker uses multiple pages per website to train a classifier.
We consider the results from Table 1, row three, as the base-
line for our closed-world analysis and use the same dataset
consisting of 90 pages per website and one trace per page.

6.2.1 Use of Voting-based Strategies

Efficiency of Different Voting-based Strategies. Figure 4 shows
the accuracies achieved by combining each webpage classifier
with each of our voting-based strategies. Regardless of the
chosen strategy, we observe an overall significant increase in
the detection rates of all webpage classifiers as the number
of successively visited pages belonging to a single website
increases. We further notice that the majority voting—our
simplest strategy—already provides a significant increase in
accuracy (up to 90%) for three of the classifiers (k-FP, DF, and
Var-CNN) for six consecutive page visits. Still, for short sets
of visited pages we observe only a slow increase in accuracy,
while for two consecutive pages the accuracy of three of the
classifiers (k-FP, DF, and Var-CNN) even slightly decreases.
The main reason is that more often there is no predominant

website class in a set of two pages, and the final decision
should practically be guessed in controversial cases.

When the mean voting is used, all classifiers experience a
boost in accuracy of roughly 10% to 20% compared to major-
ity voting as the number of visited pages increases. For k-FP,
this increase is notably evident for a set of two page visits
where we see a detection rate over 20% higher compared
to the one obtained with majority voting. The accuracies at-
tained by the variance, standard deviation, and Gini-weighted
mean strategies closely approximate those achieved by mean
voting. The Gini-weighted mean strategy performs better than
the other two strategies on most sets of pages, but the differ-
ences in accuracy compared to mean voting are negligible.
When employing the probability voting, a notable boost in
accuracy is evident among all classifiers in comparison to
the other strategies discussed above. The probability voting
differs from majority voting in that it only requires two clicks
on a website for nearly 90% accuracy using DF and Var-CNN.
With one more click, both DL-based classifiers improve to
a detection rate of 95% accuracy and k-FP achieves more
than 90%. Additionally, DF and Var-CNN achieve an accu-
racy of almost 100% for sets of more than seven page visits.
Although probability voting has shown higher detection rates
than the other voting-based strategies when used with CU-
MUL, DF, and Var-CNN, accuracy degradation occurs with
k-FP when test sets contain more than five pages. This may
arise because k-FP produces zero probabilities for website
classes, which can harm the computation of probability voting.
Therefore, we selected probability voting as the most effective
voting-based strategy for CUMUL, DF, and Var-CNN in all
subsequent experiments. Mean voting was selected for k-FP.

Impact of Different Training Tactics. We also examine how
the number of training pages per website impacts the accuracy
of our best voting strategy employed with every webpage clas-
sifier. We conduct experiments where we change the number
of training pages, ranging from one to 90 pages per website,
while maintaining the same testing set as mentioned above. As
shown in Figure 5, achieving a higher accuracy requires more
user clicks per website when the number of training pages
decreases. When there are 90 training pages available, the
user can be deanonymized with nearly 95% accuracy when
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Figure 5: Accuracy achieved by our best voting strategy per classifier, when the number of training pages increases.
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Figure 6: Accuracy achieved by our MIL-based attack in different evaluation settings.

visiting only three pages on a website using k-FP, DF, and
Var-CNN. However, this number increases for k-FP and Var-
CNN to five pages, and for DF to seven pages, when relying
on 50 training pages. When using only 30 training pages, the
attacker needs up to nine pages for k-FP and Var-CNN to
achieve a similar detection rate. It can be also seen that 70
training pages are enough to obtain the same accuracies for
all the classifiers as those obtained with 90 training pages.
Further training tactics are discussed in Appendix D.

6.2.2 Our MIL-based Attack

We proceed with the evaluation of our MIL-based method.
Figure 4 shows the accuracy achieved by it compared to our
voting-based strategies. Similar to the voting-based methods,
we see a significant increase in the accuracy of our MIL-based
attack as the number of sequentially accessed pages within a
website increases. In particular, it achieves an efficiency that
is comparable to that of our voting-based strategies when four
or more pages per website are accessed. Still, this increase is
smaller for a set of two or three pages per website. While the
number of training bags used by our MIL-based method is
always the same in all experiments, we have fewer traces per
bag due to the smaller number of pages accessed per website,
which reduces the accuracy for smaller numbers of user clicks.

Number of Training Bags per Website. In response, we
examine the influence of the number of training bags on the
accuracy of our MIL-based attack. For this analysis, we use a
variable number of training bags for our weight learner while

maintaining the same testing set as in the previous experiment.
In addition, our feature generator is trained with all possible
traces that can be found in the training bags, eliminating any
potential bias in our results. As shown in Figure 6a, we see
that one training bag is already sufficient to obtain a detection
rate of over 90% when accessing eight or more pages within a
website. As the number of training bags increases, the number
of pages that need to be consecutively visited to achieve high
accuracy decreases. In particular, just one additional training
bag is necessary to reduce the set of observed user clicks to
four and to still reach over 90% accuracy. Overall, the use
of two training bags increases the detection rate by nearly
20% for sets of up to four pages, and by about 10% for larger
sets of five or more pages. While the accuracy of smaller sets,
up to four pages, is boosted by almost 10% when using five
training bags, this boost begins to degrade gradually for larger
numbers of training bags. Concurrently, our MIL-based attack
achieves 100% accuracy for bigger sets consisting of seven,
eight, or nine pages when using 15 training bags or more.

Number of Training Pages per Website. Finally, we analyze
how the number of training pages per website affects the ac-
curacy of our MIL-based attack. In particular, we examine
how many training bags are needed for different number of
training pages per website to achieve a high accuracy. Similar
to the experiments above, we use an increasing number of
training bags for each set of training pages, while keeping
the test set the same. We also focus on the detection rates
achieved when the user accesses two and three pages consecu-
tively (in Section 6.2.1, we discovered that two, at most three,
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Figure 7: F1-score for our MIL-based attack and out best voting stategy compared to the F1-score for webpage fingerprinting.

user clicks are sufficient to achieve more than 90% accuracy
with our voting-based strategies). As shown in Figure 6b, the
attacker can deanonymize a user with nearly 70% accuracy
by observing only two consecutive pages that a user visits
and solely two training bags for a training set of 30 pages per
website. Figure 6c also shows that an additional user click can
boost this accuracy by around 10%. While this result is simi-
lar to the one achieved by using a combination of k-FP with
our voting-based methods and an equal number of training
pages per website and testing user clicks, it is about 10% and
20% greater than the detection rates obtained for Var-CNN
and CUMUL, respectively. Moreover, it is up to sixteen times
higher than the accuracy obtained for DF. In particular, we
see that for a set of 30 training pages per website, the attacker
can achieve almost up to 93% and 97% accuracy when using
25 or more training bags. Furthermore, we observe that the
detection rate of our MIL-based attack improves by about 7%
to 10% for all sets of training bags when the attacker uses a
set of 50 training pages per website. For larger numbers of
training pages per website, the accuracy increase is negligible.
Overall, it is evident from Figures 6b and 6c that the accuracy
of our MIL-based attack is primarily affected by the number
of training bags, rather than the number of different training
pages per website.

6.2.3 Open-World Evaluation

This section assesses the efficiency of both our best voting-
based strategy and our MIL-based method in an open world.
For our experiments, we train a separate classifier for each
foreground website (taken from ALEXA-WSC-FG as in the pre-
vious experiments) that the attacker aims to detect and use an
increasing number of websites from ALEXA-WSC-BG as back-
ground, representing the universe. As described in Section 5,
each background website comprises nine pages, resulting in
a universe size of up to 45,000 traffic traces—a magnitude
commonly used in related work [43, 45]. For the baseline
and our voting-based strategy, we report only those classi-
fication results obtained with the best performing webpage
classifier due to space constraints. Based on our analysis in

Section 6.2.2, we further choose to use 40 training bags for
each foreground website for our MIL-based method. Figure 7
illustrates the obtained results. We see that for the largest
number of background websites, only three clicks are suffi-
cient to deanonymize a user with a F1-score of 1.0 for roughly
60% of the foreground websites, while traditional webpage
fingerprinting cannot detect almost any website. As the num-
ber of consecutive page visits increases, the percentage of
foreground websites detected with a F1-score of 1.0 increases
to almost 75%. This huge gain in the detection rate through
our methods remains also for smaller values of F1-score. Us-
ing our novel fingerprint methods, the percentage of websites
detected with a 90% or higher F1-score increases by over
50%. Overall, despite the increasing background sizes, both
our best voting-based strategy and our MIL-based method
achieve a steady and constant F1-score.

6.2.4 Evaluation of our HMM-based Strategy

Finally, we analyze our HMM-based method, proposed in Sec-
tion 4.3. To do this, we use the dataset ALEXA-WSC-HMM and
combine the worst-performing classifier CUMUL (cf. Sec-
tion 6.1) with our HMM-based method. As our evaluation
shows, such classifiers benefit most from observing the se-
quence of visited pages. In the first evaluation strategy, we
assume that the attacker can learn all user sessions, i.e., the
HMM contains transition information for all possible user
sessions. This strategy is an adapted version of website with
known pages, where we test WFP attacks using different
traces of the known pages per website. As shown in Figure 8,
the accuracy increases significantly for all test sets of pages
of length of two or higher. In the second evaluation strategy,
we assume that user sessions used for testing are unknown to
the attacker. In most of the cases, this scenario leads to testing
on pages per website that are also unknown to both CUMUL
and HMM. The accuracy decreases slightly compared to the
scenario when the sessions are known. Still, we see a sim-
ilar positive trend from the use of sequence of pages. The
negative effect of unknown sessions is prominent for short
sets of pages and decreases when using longer sessions. For
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Figure 8: Accuracy achieved by our HMM-based strategy.

a session of nine pages, the accuracy is 96.8% compared to
97.8% when all sessions are known. Finally, instead of learn-
ing transition probabilities from user sessions for HMM, we
use the sitemap graphs of the target websites. As shown in
Figure 8, the use of sitemap graphs to compute the transition
probabilities is beneficial for user sessions of at most four
pages. Still, the differences in accuracy across the different
use cases are negligible. Despite the improvements in accu-
racy, our HMM-based method is not able to surpass our best
voting strategy, leading to the conclusion that knowing the
exact order of the visited pages does not primarily affect the
classifier’s accuracy.

6.3 Effectiveness against WFP Defenses
This section analyzes the robustness of our novel fingerprint-
ing attacks against WFP defenses. We consider six state-ot-
the-art methods: Tamaraw [6], CS-Buflo [5], WTF-PAD [30],
TrafficSliver-Net [13], FRONT [20], and RegulaTor [26].
While TrafficSliver-Net currently stands as one of the most
effective and prominent practical defenses [35], CS-Buflo and
Tamaraw are among the state-of-the-art methods that result
in one of the lowest accuracies for WFP attacks, despite be-
ing developed only as a simulation. WTF-PAD refers to a
group of WFP defenses that offer easy practical deployment
while having a lower level of security. FRONT and Regu-
laTor are newer WFP defenses that promise both increased
security and low implementation costs. For our analysis, we
created defended traces for each defense using their public
implementations with the optimal performing parameters re-
ported in the original papers. We also used the ALEXA-WSC-FG
dataset, which consists of 90 pages per website, with 15 traces
per page and considered the evaluation strategy website with
unknown pages. We train the webpage classifiers with a suffi-
ciently large number of traces, ensuring that we achieve high
accuracy for our baseline. As shown in Table 3, the accuracy
of our novel methods increases when the user sequentially
browses multiple pages on a website despite the use of a WFP
defense. Although the detection rate for the strong defense
Tamaraw remains under 20%, the increase is still concern-
ing, having risen almost fivefold (i.e., from 4.61% to nearly
20%). CS-BUFLO shows a similar increase in accuracy as
Tamaraw. Even worse, here the attacker’s accuracy is over
50% for a set of nine sequentially accessed pages. For all sets

Table 3: Accuracy (in %) of our attacks against WFP defenses.
Defense Classifier Set of pages

1 2 3 4 5 6 7 8 9

Tamaraw Voting 4.61 7.20 9.93 12.47 12.67 14.07 16.27 17.80 18.93
MIL-based – 5.37 7.25 8.81 10.79 12.19 13.77 14.73 16.36

CS-Buflo Voting 10.89 18.13 23.33 33.27 37.40 43.93 46.93 52.47 56.00
MIL-based – 12.89 19.25 24.77 29.62 34.19 37.18 40.21 43.17

TrafficSliver-Net Voting 19.92 29.93 34.48 38.73 40.45 42.79 43.80 44.85 46.55
MIL-based – 10.40 14.48 18.62 22.06 25.67 28.69 32.18 35.21

WTF-PAD Voting 90.72 99.20 99.73 100.00 100.00 100.00 100.00 100.00 100.00
MIL-based – 98.28 99.61 99.89 99.99 99.99 99.99 100.00 100.00

RegulaTor Voting 17.17 27.67 38.27 44.20 50.20 56.20 61.53 63.60 64.87
MIL-based – 16.11 22.83 27.77 31.89 36.19 40.29 43.44 46.48

FRONT Voting 67.00 88.60 96.87 98.73 99.40 99.67 99.87 99.93 100.00
MIL-based – 86.41 94.82 97.70 98.85 99.38 99.55 99.77 99.86

of visited pages, the attacker achieves about a 10% higher
detection rate with RegulaTor compared to CS-BUFLO. Al-
though the accuracy achieved for the different sets of pages
in the case of TrafficSliver-Net is still below 50%, it has ap-
proximately doubled. Both defenses WTF-PAD and FRONT
become practically useless when the number of user clicks
within a website increases. These results indicate that our
attacks are not only more realistic, but also more dangerous.

6.4 Discussion and Limitations

Unlike previous research that aim at detecting only individual
pages via isolated page loads, our methods are able to (i)
account for sequential visits to pages of a single website and
(ii) detect the website a user visits, regardless of the page ac-
cessed within that website. If further desired, existing works
such as [36, 44] can be used to conduct webpage detection in
a secondary step, once our methods have detected the web-
site. We present a more realistic assessment of the degree to
which Tor users are vulnerable to WFP, in contrast to previous
work that downplays the threat of WFP in Tor and gives an
overestimated impression of the level of security provided.

Limitations. The main limitation of our work is the as-
sumption that the attacker can distinguish and segregate con-
secutive visits to multiple pages associated with a given web-
site. We argue that this is the worst-case scenario for a Tor
user who is fixated on the content of a single website, and the
segmentation of the visited pages from said website is also
possible (e.g., using [50]). We further evaluate what happens
if this assumption does not hold, i.e., how noise pages im-
pact the accuracy of our methods. Noise pages refer to one
or more pages in the set of visited pages that do not belong
to the target website. Similar to Section 6.2, we examine the
website-with-unknown-pages strategy, use multiple pages per
website (excluding noise pages) to train a classifier, and use
the dataset comprising 90 pages per site and one trace per
page. We compute the accuracy for a set of nine accessed
(i.e., testing) pages in a closed world, while the number of ran-
domly selected noise pages in this set ranged from one to four.
As shown in Table 4 (rows one and two), the more noise pages
are present, the lower accuracy our methods achieve. Still, the
accuracy of our best voting-based method is only minimally



Table 4: Accuracy (in %) of our MIL-based method and our
voting-based stategies for increasing number of noise pages.

Classifier Pages from a website + noise pages Pages from a website

8+1 7+2 6+3 5+4 8 7 6 5

MIL-based 96.30 92.90 77.50 68.80 98.80 97.60 98.20 96.90

Our best voting 99.50 98.30 93.20 80.80 99.70 99.50 99.20 98.30

Gini-weighted
99.40 99.10 98.40 97.00 99.40 99.00 98.60 97.70mean voting

impacted when up to three noise pages are present in the set,
resulting in no more than a 6% decrease. On the other hand,
our MIL-based method is slightly more affected with a 5%
reduction in accuracy for two noisy pages and almost a 20%
decrease for three noisy pages. In case of four noise pages, the
accuracies of both methods notably decrease, i.e., by around
20% for our best voting-based method and almost 30% for
our MIL-based method. However, it should be noted that in
the latter case the four noise pages are already almost half of
the whole set of visited pages, which is a significant amount
of noise. It is also noteworthy that according to research on
user browsing behavior [11], on average users navigate to
the first noise page after clicking five times within the target
website, which is already enough for our methods to detect
that target website without any confusion from noise pages
(see Figure 4). We also check whether one of our three voting-
based strategies using weighting methods are the better choice
for this evaluation setting. As shown in row three in Table 4,
the use of the Gini-weighted mean voting is already sufficient
to filter out all possible noise pages and, thus, not negatively
affect the accuracy of the attack. We believe that—in future
work—the performance our MIL-based method can be further
optimized.

Our work further focused on a scenario where a user visits
websites in a single tab—the worst case from user’s perspec-
tive. However, there are user groups that browse the web in
multiple tabs. As our voting-based strategies are classifier-
independent, they can be combined with existing webpage
classifiers [21, 51, 52] that focus on multi-tab detection of
individual pages, thus boosting their otherwise limited accu-
racy for website fingerprinting. Based on the lessons learned
from [14], our MIL-based method can be further improved to
account for more appropriate patterns for detecting websites
in a multi-tab environment, which we leave for future work.

Different Datasets & Tor Browser Versions. To validate
the soundness of our evaluation results, we repeated some
of our key experiments using the dataset TRANCO-WSC-FG
collected with the Tor Browser 12.5.3. Our verification shows
no significant difference in the evaluation results, which again
confirms our findings. Worse, we observe higher accuracies
achieved with TRANCO-WSC-FG compared to ALEXA-WSC-FG.
We refer the reader to Appendix E for more details.

Takeaways. In a closed world, existing state-of-the-art
DL-based webpage classifiers can detect a website with high

accuracy without considering the set of visited pages of that
website at the cost of using a huge amount of training data. In
contrast to our novel fingerprinting methods, they require for
website fingerprinting five times or more traces for training—
often unavailable in practice—than reported in the original
papers for webpage fingerprinting. Further, existing state-of-
the-art traditional ML-based webpage classifiers can only
achieve moderate classification results, regardless of the num-
ber of training traces, when applied to detecting websites.
While the use of clustering did not improve the accuracy of the
original implementations, the newly created features increase
the accuracy of the classifiers by about 20%, making them
competitive with the state-of-the-art DL-based WFP attacks.
Despite these closed-world results, all existing webpage clas-
sifiers fail to detect almost any website in real-world settings.
Contrary to that, we have shown that both our voting-based
strategies and our MIL-based attack are effective measures
to enhance WFP and increase its feasibility in the real world.
Our novel methods achieve F1-scores of 1.0 for more than
60% of the target websites. Although previous work [10, 39]
showed limited scalability of WFP attacks in the real world,
our results suggest the need to reconsider these evaluations in
the context of our revisited evaluation settings.

We have shown that the worse the performance of the
webpage classifier is, the more its performance can be im-
proved by considering a set of visited pages and using our
voting-based strategies. Hence, webpage classifiers trained
with little data (or not so efficient ones) benefit significantly
from our methods. The use of training traces corresponding to
different pages of a website is also critical when dealing with
small datasets, regardless of the fingerprinting methods used.
Finally, the effectiveness of state-of-the-art defenses is drasti-
cally hampered by our improved attacks. Defenses with lower
deployment costs, which make them attractive candidates for
adoption in Tor, are particularly affected by our methods.

7 Conclusion

Understanding the feasibility and limitations of WFP attacks
is crucial to assess the degree of protection offered to Tor users.
Prior work mainly focused on detecting individual pages via
isolated page loads, rather than websites, and ignored infor-
mation regarding consecutive user visits to pages within a
website. In response, we proposed both a novel WFP attack
and effective strategies that leverage information on consecu-
tive page visits within a website and aim at detecting websites,
regardless of the specific page accessed. With our methods,
we showed that merely two, at most three, clicks within a
website are sufficient to successfully deanonymize a Tor user
with nearly 100% accuracy in a closed world. In real-world
settings, our methods achieve F1-scores of 1.0 for over half
of the target websites, whereas existing classifiers fail to de-
tect nearly any website. Finally, we showed that our novel
methods remain robust against WFP defenses, achieving 2.5



to 5 times the accuracy of prior work, and in some cases even
rendering the defenses useless. Overall, our work showed that
WFP presents a much greater risk to the privacy of Tor users
who visit multiple pages within a website and the need for
further research to provide adequate protection. The source
code of our methods is available online [1].
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A Selection of Hyperparameters and Imple-
mentation of our MIL-based Method

We used Tensorflow4 to implement our MIL-based method.
Similar to [43,45], we relied on the extended candidate search
method to identify the optimal hyperparameters for our model.
For the hyperparameter tuning, we divided the dataset into
training, validation, and testing with an 8:1:1 ratio using 10-
fold CV and executed multiple experiments in a closed-world
scenario utilizing the validation accuracy (i.e., the probability
of a correct prediction in the validation set) as the performance
metric. Table 5 summarizes the search ranges for the different
hyperparamers and the values selected for them.

4https://www.tensorflow.org/
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Table 5: Hyperparameter selection for our MIL-based method.

Hyperparameters Search Range Selected Value

Dimension of input traces [5000] 5000
Optimizer [Adam, Adamax, SGD] Adamax

Training epochs [10, ..., 70] 60
Learning rate [0.001, ..., 0.01] [0.002, 0.003]
Weight decay [0.0001, ..., 0.01] 0.0001

Batch size [100, ..., 300] 128
Activation Functions [Tanh, ReLU, ELU] Tanh, ELU, ReLU

Dropout [0, ..., 0.5] [0.1, 0.5]
Regularizer [L1, L2, L1L2] L2

Both the feature generator and the weights learner were
trained using a weight decay of 0.0001, a batch size of 128,
and initial learning rates of 0.002 and 0.003, respectively. We
further identified the use of up to 60 training epochs as a good
trade-off between classification accuracy and training time.
For the convolutional layers in our feature generator we used
32, 64, 128, and 256 filters, respectively, and applied a dropout
rate of 0.1. For our weights learner, we utilized a dropout rate
of 0.5 and the regularizer L2. Finally, we used the Adam
optimizer to minimize the loss function in our experiments.

B Creating Sitemap Graphs and User Sessions

For each website in ALEXA-WSC-HMM, we create a sitemap
graph to collect automatically-generated user sessions.

Generating Sitemap Graphs. We create a sitemap graph
per website containing data about available pages with the
link relationship between them. Although some websites offer
a hierarchical overview documents of their pages, these docu-
ments do not always provide data on page linkability and, thus,
cannot be used to create our sitemap graphs. In response, we
use a different strategy to collect the sitemap graphs. First, for
each website, we gather the URLs of its index page and four
additional, popular pages of it that were found from Google,
i.e., to simulate that users access a website not only through
its index page but also through an already known link, using a
bookmark or by querying a search engine [32]. Starting from
one of these five pages, we then extract all URLs from that
page referring to the same website. We group the collected
URLs based on their position on the page, i.e., whether they
are located in the navigation section or in the footer, and ex-
clude groups of URLs that are typically less visited by users,
e.g., privacy policy and legal notice pages. From the remain-
ing groups, we randomly select ten groups of URLs, fetch
one random URL from each of these groups to simulate a
user click, and repeat the procedure described above to decide
on the next click. The crawling of URLs terminates once we
reach a depth of ten pages for each website and have gathered
at least 2000 unique pages. Finally, we build a directed graph
where each node represents a URL and an edge between two
nodes corresponds to a link between these URLs. For this
graph, we consider all seen URLs regardless whether they
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Figure 9: Accuracy achieved by the webpage classifiers with
and without the use of index pages for training.

were selected by the sampling for further steps or not.
Generating User Sessions. Although a stored browser

history would be a reliable source of real user sessions, it can
reveal confidential data about users and usually is kept private.
Thus, we use the gathered sitemap graphs to synthetically
create a set of user sessions while ensuring that they exhibit
realistic characteristics, as described by Kumar et al. [32]. As
users can access a website in different ways, we use either
the index page or one of the four additional pages of a site to
start a user session. As Miller et al. [36], we execute a random
walk over the sitemap graph of that website to sample the rest
of the user session, whereas we prefer pages that have been
visited neither in the current nor in any previously generated
session. The latter increases the diversity between different
sessions (and, thus, complicates the WFP attack).

C Use of Index Pages for Training

We evaluate whether the use of the index pages is particularly
important to detect websites, as doubted in [39]. To achieve
this, we conducted several experiments using our website-
with-unknown-pages strategy in a closed world where each
website was represented (i) by either 20 traces of its index
page and multiple traces of other non-index pages belonging
to the same website, (ii) or by its non-index pages only. In
the first case, index pages are used solely for training and
never for testing. Figure 9 illustrates the classification results
obtained for a dataset containing 15 traffic traces per non-
index page and a varying number of non-index pages, ranging
from 1 to 90. As we can see, the difference in classification
accuracy achieved when using index pages for training versus
not using them is negligible for a set of 10 or more non-index
pages for all classifiers. Although the difference is higher for
smaller sets (i.e., less than 10) of non-index pages, particularly
for both DL-based classifiers DF and Var-CNN, this is mainly
due to the fact that the classifiers receive more training data
through the use of index pages, which improves their accuracy.
Similar results were obtained for different numbers of traces
per non-index page (i.e., other than 15), which were omitted
due to space constraints. Thus, we conclude that the use of
index pages for training does not affect the accuracy of the
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Figure 10: Accuracy achieved by our best voting strategy per classifier, when the number of traces of the training page increases.

attacks in either evaluation strategy and do not distinguish
between using index and non-index pages in our evaluation.

D Additional Training Tactics

We also assess to what extent our voting strategies enhance
the accuracy of webpage classifiers trained with a single page
per website that is represented by an increasing number of
traces. To accomplish this, we use the same test set as in
Section 6.2.1, but adjusting the number of traces available per
training page that represent a particular website. Figure 10
shows the obtained results. Unlike the results in Figure 5,
where k-FP accuracy can increase by 40%, using a single page
for training reduces this increase by about 30%. However, the
opposite scenario is observed for DF. If the classifier is trained
on a single page per website, probability voting achieves about
30% higher detection rate compared to the approximately 25%
increase when using multiple pages per website. Nevertheless,
the overall accuracy of all classifiers remains significantly
lower than that of multiple training pages.

E Different Datasets & Tor Browser Versions

All evaluation results presented in Section 6 were obtained
using a single set of websites and an old version of the Tor
Browser. To verify that our results are generalizable to dif-
ferent sets of websites and newer Tor Browser versions, we
repeated the experiments from Figure 4 using the TRANCO-
WSC-FG dataset and computing only the best voting-based
strategy for all webpage classifiers. Table 6 summarizes the
results obtained. As we can see, the trend towards improved
accuracy is evident with an increase in the number of sequen-
tially visited pages per website. Overall, we achieve higher de-
tection rates for both our voting-based methods and our MIL-
based attack with all sets of pages when using the TRANCO-
WSC-FG dataset in conjunction with the latest Tor Browser
12.5.3. Thus, we confirm the soundness of our findings.

Table 6: Accuracy (in %) of our fingerprinting methods for
different datasets and Tor Browser versions.

Classifier Set of pages

TRANCO-WSC-FG & Tor Browser 12.5.3
1 2 3 4 5 6 7 8 9

Voting (with CUMUL) 71.76 85.20 91.50 93.70 95.10 96.00 95.80 96.40 96.80
Voting (with k-FP) 66.56 83.60 90.10 93.60 94.80 96.30 97.40 98.50 98.80
Voting (with DF) 87.36 98.00 99.40 99.60 99.80 99.90 99.90 99.90 100.00

Voting (with Var-CNN) 87.42 97.90 99.60 99.80 99.80 100.00 100.00 100.00 100.00
MIL-based – 94.60 96.90 98.20 98.70 98.90 99.10 99.60 99.20

ALEXA-WSC-FG & Tor Browser 7.5.6
Voting (with CUMUL) 56.14 69.70 79.10 82.70 85.50 87.00 89.30 91.00 91.70

Voting (with k-FP) 62.98 81.00 88.20 91.80 95.40 96.60 98.30 98.60 99.10
Voting (with DF) 70.57 88.90 94.60 96.60 98.30 99.20 99.50 99.70 99.90

Voting (with Var-CNN) 76.36 89.40 94.30 96.90 98.60 98.30 98.80 99.50 99.60
MIL-based – 83.00 90.50 96.40 96.90 98.20 97.60 98.80 99.50
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