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Abstract
Hacking exercises are commonly used for security education,
but evidence of their efficacy as an educational intervention
is limited. In this poster, we develop a set of pedagogical
effectiveness dimensions, derived from the learning sciences
and educational literature, but specific to hacking exercises.
We review 30 popular online hacking exercises, evaluating
whether and how they implement each pedagogical dimension.
Additionally, we interview the organizers of 14 exercises to
identify potential roadblocks for each pedagogical dimension.

We found hacking exercises generally were tailored to stu-
dents’ prior security experience and support learning by lim-
iting extraneous load and establishing helpful online com-
munities. However, few exercises provide necessary context,
structure, or direct support for metacognition to help students
transfer learned knowledge to new contexts. Additionally,
immediate and tailored feedback and secure development
practice were uncommon. Based on our results, we discuss
hacking exercises’ strengths and weaknesses and make sug-
gestions for improvement.

1 Introduction

Developing secure software is challenging. Even as aware-
ness of the problem has grown [52, 63], vulnerabilities are
regularly found in code running in the wild [15, 17, 57]. Ide-
ally, these problems could be avoided completely through
the use of secure languages and libraries or identified and
mitigated through automated analysis. Unfortunately, most
organizations rely on legacy code, which would be difficult to
transition to newer, more secure technologies [45]. Further,
while significant advances have been made toward automati-
cally identifying — and in some cases remediating — vulner-
abilities prior to code release [5–7,24,53,75,82,84,85], these
results are currently limited. Human intelligence remains nec-
essary at least for the foreseeable future, making it important
to teach developers how to find and fix vulnerabilities.

Historically, the security community has used online hack-
ing exercises to provide practical education, exposing partic-
ipants to a variety of vulnerabilities and security concepts.
In these exercises, participants demonstrate their understand-
ing of security concepts by finding, exploiting, and fixing
vulnerabilities in programs. They offer—in contrast to more
traditional project-based learning—discrete practice sets that
can be undertaken in a modular fashion, similarly to the exer-
cises commonly included at the end of each chapter in math-

ematics textbooks. In fact, hacking exercises are commonly
considered a very useful educational tool, with security ex-
perts often reporting that they rely on these exercises for their
education [88], bug bounty platforms directing those inter-
ested in security to start with these exercises [35, 40], and a
significant amount of recent security education work focused
on creating new hacking exercises [8, 9, 25, 26, 55, 65, 91].
Further, prior work has provided some evidence that hack-
ing exercises can provide valuable immediate feedback to
learners in academic settings [13, 29, 65, 71, 73].

However, this evidence is limited for several reasons. First,
these studies only consider a few exercises [8, 9, 18, 25, 26,
55, 56, 65, 73, 91], producing sparse results and providing
limited understanding of the broad set of popular exercises
students participate in. Next, this work only focuses on a few
measures of learning and engagement [25, 55, 65, 71, 87, 91],
making the evidence narrow. They do not consider significant
learning factors which are difficult to control for and mea-
sure. Therefore, exercise organizers have little guidance for
building effective exercises, educators can not know which
exercises provide the most effective learning, and researchers
do not have a broad view of the landscape of current exercises.

In this study, we review of online hacking exercises to
provide perspective on the current landscape of educational
interventions. Specifically, we set out to answer two main
research questions:

• RQ1: Do currently available exercises apply pedagogi-
cal principles suggested by the learning sciences litera-
ture? If so, how are these principles implemented?

• RQ2: What challenges do exercise organizers face when
applying these principles?

To answer these questions we performed a qualitative re-
view of 30 popular online hacking exercises. We evaluated
each exercise against recommended pedagogical principles
grounded in learning theory [3, 11]. We base our approach
on previous curriculum evaluation efforts [47], tailoring the
specific pedagogical principles we examine for applicability
to hacking exercises. Further, we interview the organizers of
14 exercises to understand the challenges they face.

We found that no exercise implemented every pedagogi-
cal principle, but most were implemented by some exercises,
some in thoughtful and creative ways. Notable shortcomings
include that many exercises lack sufficient structure to help
students organize knowledge, and enough feedback to guide



learning progress. Few organizers had considered metacogni-
tion, or helping students understand what and how much they
have learned. From these results, we distill recommendations
for improving exercises’ educational value.

2 Methods

To understand the current landscape of online hacking exer-
cises, we performed a two-phase study: a qualitative review
of exercises and interviews with exercise organizers.

2.1 Exercise Selection
We chose to focus on popular online educational exercises,
based on prior work suggesting this intervention type is pre-
ferred by security experts [88]. Specifically, we consider exer-
cises meeting the following criteria:

• Educational - We only include exercises explicitly stat-
ing education as a goal.

• Hands-on - The exercise included a component requir-
ing students to actively practice security concepts.

• Online and publicly accessible - For practicality, we
focus on online exercises so we could perform a full and
fair analysis of all exercises through participation.

• Popular - Our goal is to understand the exercises stu-
dents are most likely to participate in. To estimate a site’s
popularity, we used it’s Tranco rank1—a secure method
for ranking sites based on user visits [51]. We used Alexa
rankings whenever no Tranco ranking was available.

To identify eligible exercises, we used the recommenda-
tions of eight security education experts, relevant Google
searches, and curated exercise lists [22, 50, 74, 80, 94]. Ad-
ditionally, we included the top three similar sites provided
by Alexa.com2, for each exercise identified. We repeated this
process until no new exercises were identified. We completed
this search in October 2019.

We identified 45 exercises meeting our criteria. Due to the
significant time required for each review ( 2.5 hrs each), we
performed a random weighted sampling of 30 exercises, pri-
oritizing the most popular exercises. The full list of reviewed
exercises is given in Table 1.

2.2 Pedagogical Review (RQ1)
To determine the set of pedagogical principles, we drew on
previous efforts to synthesize major theoretical and empirical
learning sciences and education research findings [11]. This
led us to five core pedagogical principles:

1we use the version from October 15th, 2019
2https://www.alexa.com/siteinfo

Exercise Rank1

gCTF† [32] 1.4

Infosec Institute [43] 14.1

HackTheBox† [10] 97.3

picoCTF† [62] 149.8

HackthisSite [38] 105.1

OverTheWire [64] 151.3

Root-me.org† [54] 172.7

Vulnhub† [30] 175.8

Hacker101 [35] 330.4

Hellbound
Hackers [36]

432.8

Smash the Stack† [86] 966.1

Microcorruption [33] *378.8

Pwnable [83] *515.4

Cyber Talents [23] *528.0

XSS-Game† [31] *626.1

Exercise Rank1

Backdoor [79] *949.1

Crackmes.one† [76] *1011.4

CSAW365 [49] *1228.1

HackerTest [37] *1254.5

CTFlearn [21] *1267.0

HackEDU [34] *2014.2

Pwnadventure† [2] *2364.7

Mr. Code† [46] *4570.2

IO Wargame [58] *7168.8

PACTF [66] *9156.0

Angstrom† [4] *11708.9

HXP CTF [42] −

BIBIFI† [14] −

Pwn College† [81] −

GirlsGo
CyberStart† [44]

−

1 Visit rank for the website, in thousands - Alexa if *, otherwise, using Tranco
ranking which is less prone to tampering [51].
† An organizer from this exercise was interviewed or responded via email to our

review.

Table 1: Exercises reviewed and their popularity.

• Connecting to learners’ prior knowledge. People de-
velop new knowledge based on their pre-existing knowl-
edge and beliefs [19, 69, 70, 89, 90]. This includes facts,
perceptions, beliefs, values, and attitudes [19, 69]. Stu-
dents interpret new information based on their current
view of the world. Therefore, exercises should consider
these to provide effective education.

• Organizing declarative knowledge. Another key to ef-
fective learning comes in students’ ability to transform
facts into robust declarative knowledge [11]. To achieve
mastery, students must go beyond memorizing tricks to
solve challenges, but also organize disconnected facts
based on underlying abstract concepts [3, 70, 89, 90].

• Active practice and feedback. Students must perform a
task to achieve domain mastery [27, 48, 72]. Through
deliberate, active practice, students can translate abstract
concepts into practical knowledge. Students must also
receive tailored feedback to guide their learning to spe-
cific goals [3]. Without feedback, students may become
stuck or misunderstand the challenge [3, 11, 16].

• Encouraging metacognitive learning. Metacognitive
learning has two main components: students’ ability
to predict learning task outcomes, and their ability to
gauge their own grasp of concepts [12, 16]. Guiding stu-
dents to reflect on which solutions worked and why helps
students develop a deeper conceptual understanding, sup-
porting knowledge transfer [28, 67, 77, 78]. It also helps



students target further learning [28].

• Establishing a supportive and collaborative learning en-
vironment. A negative environment can hamper student
progress, while a positive environment can excite and en-
gage students [3, 68]. By participating in a group setting,
students receive mentoring from more senior students,
brainstorm possible solutions with peers, and get sup-
port and encouragement when stuck [61]. Additionally,
the exercise framing can have a significant impact on
whether students feel “good enough” to participate [68].
If the perceived barrier to entry is high, students may
choose not to try. This is especially true for commonly
underrepresented populations [41, 92, 93].

To identify actionable dimensions of each core principle, we
started with the 24 dimensions used by Kim and Ko [47]
in their similar review of online coding exercises. Two of
the authors then updated these dimensions specifically for
hacking exercises through collaborative open coding of five
exercises. This process resulted in 36 total pedagogical di-
mensions, across the 5 core principles.

For each exercise, we performed a qualitative coding where
two researchers evaluated each exercise independently accord-
ing to the pedagogical dimensions. Each researcher completed
at least one logical unit of the exercise (e.g., all questions in
a category or a single specified path through the exercise),
or five challenges if no logical relationship was present. We
completed ten challenges on average per exercise (306 total).

After establishing our initial codebook, two researchers
independently reviewed 20 exercises, comparing dimension
codes after every five exercises for inter-coder reliability. Af-
ter each round, the researchers resolved coding differences,
modified the codebook when necessary, and re-coded previ-
ously reviewed exercises. This process was repeated until an
Krippendorff’s Alpha (α) of at least 0.8—the recommended
threshold for result reliability [39]—was achieved. The re-
maining exercises were divided evenly between the two re-
searchers and coded independently.

2.3 Organizer Interviews (RQ2)
Next, we needed additional context from the organizers about
their decision-making process. We reached out to all 30 orga-
nizers, inviting them to participate in a 45-minute structured
interview. Note, throughout our interviews, we were careful
to ensure organizers understood our goal was to understand
their decision-making, not critique it.

In our interviews, we walked organizers through our re-
view and asked whether they agreed with our assessment. For
dimensions not implemented, we asked organizers whether
they considered the dimension during exercise design and
if so, why they did not implement it. Since this part of our
study constituted human-subjects research, it was reviewed
and approved by our organization’s ethics review board.

2.4 Limitations
Our study has several limitations, some related to our sam-
pling method and some common to exploratory qualitative
research. First, it is likely that we did not identify all all ex-
ercises meeting our stated criteria through our review. Addi-
tionally, because we only perform our review on a sample
of exercises, we may have missed a particularly good imple-
mentation of one of our educational interventions. However,
because of our thorough search process and by weighting our
sample toward more popular exercises, our results are likely
representative of most students’ experience.

In our pedagogical review, we adopt a conservative ap-
proach, checking whether the dimension is implemented, but
not whether it is implemented well. We did this so to broadly
evaluate the pedagogy considered and establish an initial un-
derstanding of the current landscape. However, this broad
view does not allow us to make statements about specific
approaches’ efficacy. We encourage future work to build on
our established roadmap through more focused review.

3 Results

For brevity, we only present highlights of our findings regard-
ing each of our five core principles. Throughout, we use N
to indicate the number of exercises demonstrating the given
theme and O to indicate the number of organizers who men-
tioned a given theme when interviewed.

3.1 Connecting to students’ prior knowledge
Experience-based personalization was common. Most
(N=22) exercises allow some personalization by experience.
These exercises used a mix of difficulty indicators, including
difficulty labels (e.g., Easy, Medium, Hard) (N=10), the num-
ber of students who have solved the challenge (N=14), and
point values (i.e., more points indicate increased difficulty)
(N=18). This lets participants attempt skill-level-appropriate
problems, avoiding burnout on problems beyond their reach
or boredom with too many easily solvable challenges.

Exercise designers build clear challenge concept pro-
gressions. Almost all exercises (N=29) include some chal-
lenges whose concepts build one on top of the others where
appropriate. As an example, Microcorruption offers a pro-
gression across several challenges to teach buffer overflow
concepts in a binary exploitation challenge. It begins with a
program that requires the student to disassemble the program
and read a hardcoded password string. The next challenge,
forces the student to actually read the assembly code and
understand the stack to reconstruct the password from a set
of characters. Then, the student must exploit a simple buffer
overflow with no mitigations in place to force execution down
a successful path. The progression then continues by adding
further mitigations to complicate the exploitation process.



3.2 Organizing Declarative Knowledge

Many exercises lacked clear structure. Providing explicit
cues, such as challenge names that indicate a hierarchi-
cal concept structure or suggesting a progression through
conceptually-related problems, can help students associate
individual facts [3, 16]. Unfortunately, a majority (N=17) of
exercises did not clearly group challenges with related con-
cepts. Similarly, several exercises did not provide students a
path to follow through more than two to three challenges as a
conceptual organizing guide (N=11).

Few exercises included realistic challenges. Few ex-
ercises included any real-world-scale challenge programs
(N=8). This potentially prevents students from learning prac-
tical skills necessary for scaling analyses to larger programs.
Many organizers said they chose to avoid realistic challenges
because they believed focusing students on specific concepts
was more important (O=9) and developing challenges with
this complexity is difficult (O=1). Others chose not to include
complexity—and therefore require the student to perform
extraneous tasks—because they wanted to make sure their
exercise was fun and engaging (O=5).

3.3 Practice and Feedback

Secure development practice was uncommon. Very few
exercises (N=4) included any challenges asking students to
write secure code and two of those (Hellbound Hackers and
Pwnable) only included a few. Instead, students are left to
make the logical jump from identifying and exploiting to pre-
venting a vulnerability without educational support. In many
cases, organizers simply felt that including secure develop-
ment practice was difficult to evaluate (O=7).

Some challenges provide “correct path” markers. In
some challenge developers included checks in the target pro-
gram’s execution to update their output if the student’s exploit
was following the correct path, even if the exploit was not yet
fully successful (N=10).

Many organizers said providing this type of tailored feed-
back was difficult because this feedback had to be specifically
tailored for each challenge (O=5). Instead of providing auto-
mated feedback, many organizers opted to provide tailored
information in the exercise’s forum based on student demand
(O=5) or through publicly available walkthroughs (N=28).

3.4 Encouraging Metacognitive Learning

Few exercises guided transfer beyond the challenge.
While the exercises almost all taught how to use concepts
through hands-on exercises (N=29), few explained when
(N=6) or why (N=5) to use the concept in other settings.

Interestingly, this was this was the dimension group or-
ganizers most often reported not considering (O=9). As an
example, when we explained metacognition to the picoCTF

organizer, they said “I don’t know if I ever heard of metacog-
nition before. . . that could really guide us in developing prob-
lems that can guide our learners even better.”

3.5 Establishing an Environment Conducive
to Learning

Exercises help students find community through online
forums. Most exercises provided IRC, Slack, or Discord chan-
nels or online forums, where students could post questions
and share their experiences with other competitors (N=17).
The HackTheBox organizers explained they have “a vocal
community that everyone chats. . . in order to help each other
to understand challenges and learn.”

Many exercises reduced extraneous load. This included
providing browser-based tool support (e.g., wireshark, com-
mand line, disassembler) (N=6) or an ssh server with required
tools (N=4). The best examples were Microcorruption, which
allowed students to perform required tasks with a browser-
based disassembler and debugger, and Pwn College, which
links to binaries in the BinaryNinja cloud service [1] for ad-
vanced reverse engineering support.

Most exercises used supportive terminology, but a few
marginalized beginners. A plurality of exercises included
language throughout offering encouragement (N=17). Un-
fortunately, some exercises chose terminology marginalizing
newer students who might struggle with basic concepts (N=5).
For example, HackthisSite called their first challenge the “id-
iot” challenge and saying “if you can’t solve it, don’t go crying
to anyone because they’ll just make fun of you.”

4 Recommendations

With these findings in mind, we suggest recommendations for
exercise organizers and directions for future work.

Support active student engagement in metacognition.
Because many exercises simply did not consider metacog-
nition, the first step should be to apply best practices from
the learning sciences and education literature. For example,
students could be prompted to predict the outcome of an
exploitation attempt prior to its execution and subsequent suc-
cess or failure. This foregrounds the student’s current mental
model of system they are attempting to exploit and the exploit
itself’s function. This technique has proved effective in other
domains [20].

Use a graphical syllabus to provide concept structure.
A graphical syllabus is a visual representation (e.g., flow chart
or diagram) of concepts covered in a course and their relation-
ships [59, 60]. These visualizations help students process and
organize information.

In addition to these recommendations, future work should
explore the pedagogical dimensions organizers reported as
difficult to implement, namely secure development practice
and tailored feedback.
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