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Abstract

Secure software development is a difficult task owing to the
various pressures faced by developers (e.g. system perfor-
mance and correctness). This paper investigates why develop-
ers introduce different vulnerabilities, the ways they evaluate
programs for vulnerabilities, and why different vulnerabilities
are (not) found and (not) fixed by developers. To understand
the various processes that developers might employ and the
types of vulnerabilities, they may introduce, find, and fix, we
conducted an in-depth study of 14 teams’ development pro-
cesses during a three week undergraduate course organized
around a secure coding competition. Participants were ex-
pected to build code to a specification while emphasizing
correctness, performance, and security. Additionally, partici-
pants searched for vulnerabilities in other teams’ code while
being responsible for fixing any exploited vulnerabilities in
their own code. We used iterative open coding to manually
analyze data including code, commit messages, team design
documents, and various surveys. We find associations between
design and development processes and resulting code security,
as well as trends in the exploitation, discovery, and patching
of different vulnerabilities. For example, teams which codi-
fied more detailed designs before writing code tended to have
fewer vulnerabilities in their code, but also were unlikely to re-
visit their design despite the discovery of vulnerabilities. Our
results point to possible changes to improve secure program-
ming processes, secure programming tools, and development
team organization.

1 Introduction

Secure software development is a difficult task, exempli-
fied by the fact that vulnerabilities are still discovered in
production code on a regular basis [8,21,28]. Many solu-
tions have been put forward to solve this problem: more se-
curity education [6, 12—14, 27], better secure development
tools [2,4,5,10,11,16,22,34-37], and better integration of
security in to the software development cycle [3,7,15,20,32].
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Given the difficulty of balancing various business pressures
(e.g., costs, customer experience, product delivery) during
the development lifecycle [31], it is important to understand
which solutions aid secure development most effectively and
efficiently. Companies simply will not adopt every secure
development practice; how should they prioritize the various
choices? To answer this question, we must understand why
developers introduce different vulnerabilities, as well as how
and why testers (do not) find and fix them, in order to identify
processes and tools that most effectively reduce real risks.

Prior work has considered secure development in controlled
settings, allowing clear comparisons among different tools
and strategies [1,24-26,29]. While valuable, these studies
are limited in ecological validity, as the program size and
flexibility of approach are restricted by necessity. Conversely,
other work has reviewed open-source repository commits to
identify practices correlated with greater vulnerability inci-
dence, providing results from a real-world setting [17-19,30].
However, it is difficult to make clear comparisons between
these codebases due to significant differences in the goals and
functional requirements of each project. This research also
typically cannot investigate developer motivations or thought
processes, as only submitted code (with often-terse commit
messages) is available. Finally, some recent work has taken
an ethnographic approach, embedding researchers in compa-
nies to observe secure-development practices [31,38]. This
work provides rich insights into the development process,
but to date, has mostly focused on organizational processes
impeding security, not technical issues.

Ruef et al. sought to establish a middle point along this spec-
trum with the Build It, Break It, Fix it (BIBFI) secure-coding
competition, which balances ecological validity with study
control by having participants complete a multi-week, well-
defined programming project with few process constraints [?].
Votipka et al. then reviewed code submitted during four BIB-
IFI competitions to uncover an in-depth taxonomy of the
vulnerabilities introduced by developers while building se-
cure software [39]. They manually analyzed submissions to
discover characteristics of vulnerabilities developers intro-



duced, such as general vulnerability type, severity, and ease of
exploitation. However, as they only reviewed submitted code,
they were not able to determine why and how developers
introduce, find, and address vulnerabilities. Understanding
this would enable better recommendations to improve secure
software development, security education, and secure devel-
opment tools.

To address this limitation, we conducted an in-depth study
of 14 teams’ development processes during a three week
undergraduate course centered on a BIBIFI secure-coding
competition. Student teams built a software-based home IoT
system with role-based access control policies. Teams then
attempted to find vulnerabilities in other teams’ code and
fixed vulnerabilities in their own code found by other teams.
The course scoring emphasized real-world constraints and
priorities, i.e., security, performance, and functionality.

Implementing the BIBIFI competition as a short course
allowed us to collect fine-grained data about participants’
mindsets and approaches, both while developing software
and when finding vulnerabilities. Doing so allowed us to
understand why the participants introduced vulnerabilities, as
well as how and why they found them and (sometimes) fixed
them. Prior exploration of BIBIFI submissions [39] revealed,
in depth, the type and details of introduced vulnerabilities.
Our work confirms their results and adds insight into why
developers introduce these vulnerabilities. We consider three
key research questions:

RQ1 What types of vulnerabilities do developers introduce?
Why?
RQ2 What types of vulnerabilities are found in code review?
Why?
RQ3 Why do developers fix different types of vulnerabilities?
How?

We identify key trends answering each question, and our re-
sults suggest the importance of including security in detailed
designs, and revisiting and updating those designs while fol-
lowing secure development best practices.

2 Data and Analysis

The course followed a modified BIBIFI competition struc-
ture [33], organized into three phases: build, break, and fix.
Course participants worked in teams for one week to build a
lightweight IoT smart home controller that manages a smart
home by receiving updates from sensors and controlling out-
put devices. After the build phase, the course used a hybrid
break-fix phase. All teams’ code was made available to the
other teams, which could then attempt to break their class-
mates’ submissions by producing test cases demonstrating
vulnerabilities. As breaks were identified, teams could update
their code to fix vulnerabilities; teams lost points for every 24
hours that a known break against their code went unfixed.

In total, we analyzed the data of 14 teams through iterative

initial coding [9,23]. The codebook we developed provides
labels for the different elements in Table 1. Inter-rater reliabil-
ity (IRR) was generally not calculated, as the small number
of responses and submissions for many aspects of the data did
not allow for it. This study was approved by our institution’s
ethics review board.

3 Results

Our analysis of code submissions identified 147 unique vul-
nerabilities introduced throughout the build round and 80
unique vulnerabilities remaining in participants’ code at the
conclusion of the build round. Teams submitted 52 unique
and 104 total breaks and left 19 vulnerabilities unfound and
not exploited. Finally, teams fixed 66 vulnerabilities in their
code during the build round and 31 vulnerabilities in their
code during the fix round. 38 vulnerabilities were left unfixed
(19 exploited) at the study’s conclusion (47%).

Fixed in fix

Not exploited in break

Fixed in build

Figure 1: Number of vulnerabilities through each phase of
different types.

3.1 Classes of Vulnerabilities

No Implementation A vulnerability was labeled as No Im-
plementation when participants failed to attempt to implement
necessary security mechanisms (i.e., access control, authenti-
cation, or timeout mechanisms) at all. We further divide this
type into three sub-types depending on whether the require-
ments were mentioned directly in the specification. Specif-
ically, the All Intuitive and Some Intuitive codes were used
when teams failed to implement all or some, respectively, of
the stated security requirements (e.g., missing all or some
access control commands). Unintuitive requirements were not
as explicit within the specification (e.g. recursive delegation).

Not fixed in fix



Round Data Subcomponent

Description

Frequency N

Build Build submission Code -

Commit message

Description of change

When added single feature 676
or fixed single bug
Each build commit 676

Reason for change

Associated requirement

How did the team come up with this change?

Did teams change their design?

Design documents  —

Team design of system

Before build, after build 27

Detail of potential threats

Detail of potential mitigations

Break Break submission Attack submission

Test to be run on target

Each attack 275

Description of exploit

Commit message

Description of issue in target

Each attack 275

How was the issue found?

Requirement broken by issue

Fixed version of failed break
Difficulty to find break
Difficulty to exploit break

Fix Fix submission Code
Commit message

Addresses vulnerability in their code
Issue with implementation

Each fix submission 48
Each fix submission 48

Cause of the vulnerability

How did the team fix the vulnerability

Confidence in security of their code

Difficulty to identify the vulnerability

Update to design required?

Table 1: Description of data collected throughout the study.

Misunderstanding A vulnerability was labeled as a Misun-
derstanding when teams attempted to implement necessary
security requirements but misunderstood the requirements or
some security concepts during implementation.

Mistake A vulnerability was labeled as a Mistake when par-
ticipants attempted to correctly implement security checks
and functionality, but made a programming mistake that re-
sulted in a vulnerability.

3.2 Development approach’s security impact

Detailed design is common with fewer vulnerabilities
When comparing a team’s design depth to the security of
their submission, we observed teams with detailed designs
tended to introduce fewer No Implementation and Mistake
vulnerabilities. Teams that failed to mention details of how
they would mitigate certain attacks or manage certain aspects
of security tended to fail to account for those security features
in their codebase.

Teams with detailed designs did not revisit their design
even if it had vulnerability, especially for Misunderstand-
ings We observed that teams with a detailed design tended

to stick with those designs, which sometimes encoded initial
Misunderstandings into their projects. Teams that had a funda-
mental Misunderstanding of security requirements designed
in detail for these features within their design documents. This
suggests that teams that misunderstand the system’s security
needs from the beginning (i.e., design-time) are unlikely to
catch these issues later.

Building security early, from the start correlates with se-
cure development When we consider teams’ development
timelines in comparison to the number of vulnerabilities intro-
duced during the build phase, we note several trends. Teams
with the fewest vulnerabilities tended to do no security work
on the last days of the build phase and started to build their se-
curity code early and edit it slowly throughout the build phase.
Further, we note that teams that waited to implement access
control until late in the build phase often ran out of time to
implement less intuitive requirements, despite building these
requirements into their designs.

3.3 Analysis of (Un)exploited Vulnerabilities

Missing access control found when checking related issues
In general, teams exploited missing access control checks



while targeting a tangential, but related, access control re-
quirement, rather than via specific targeted attacks where they
reviewed code for a specific vulnerability.

Teams target more glaring issues rather than complex vul-
nerabilities Of the No Implementation vulnerabilities that
were left unexploited, none of them were All Intuitive security
features. The No Implementation vulnerabilities that were left
unexploited were in code that had other, more glaring issues;
teams generally favored attacking these issues rather than the
slightly more complex vulnerabilities. Teams favoring glaring
issues rather than attacking more complex issues may be an
artifact of the study, as teams knew that the developers of
the code were students and the code was likely to contain
bugs. However, we expect that code review and testing in the
software development lifecycle also commonly target more
obvious problems, and we incentivized specific targeting by
giving more points for the discovery of novel bugs.

Misunderstanding vulnerabilities were exploited with tar-
geted testing Breaks exploiting these Misunderstandings
were often crafted to test for a specific Misunderstanding
rather than testing for a broader, related requirement or being
found incidentally. The Misunderstanding vulnerabilities that
were left unexploited required deeper knowledge to exploit,
and these vulnerabilities were likely left unexploited since no
single break submitted targeted these vulnerabilities in any
project.

Mistake vulnerabilities were exploited incidentally
Teams exploited nearly all Mistake vulnerabilities inciden-
tally, while targeting an unrelated vulnerability. That Mistake
vulnerabilities were widely caught incidentally using high-
level, broad testing points to the ability for fuzzers to uncover
these vulnerabilities during the development phase. Teams
only needed to test for basic functionality, akin to the test-
ing performed by fuzzers, to uncover these Mistakes. Several
teams did not comprehensively test in the build phase, likely
due to time constraints, but were able to build a set of com-
prehensive tests during the break phase, uncovering many
vulnerabilities in other teams’ code. This suggests that with
sufficient time and effort, developers could test for and un-
cover most Mistake vulnerabilities even with minimal security
training. This suggests that in principle developers could use
(and generate seeds for) tools like fuzzers, if the tools were
sufficiently available and usable.

3.4 Analysis of Fixed Vulnerabilities

No Implementation fixes require restructuring the pro-
gram While many No Implementation vulnerabilities were
fixed during the build phase, nearly half of them were left
unfixed at the conclusion of the study. The exploited No Imple-
mentation vulnerabilities required teams to redo their entire

security codebase to address the vulnerability. of designing
in depth for access control requirements from the outset, as
designing in detail from the start prevents heavy redesign to
address issues later.

Misunderstanding vulnerabilities are typically only fixed
when pointed out Vulnerabilities caused by a Misunder-
standing of the security requirements were often not found
and fixed until pointed out by either instructor-provided tests
(during the build phase) or submitted exploits against a team’s
codebase (during the break phase). However, instructor-
provided tests only covered testing for more basic function-
ality and failed to test for more complex access control re-
quirements. As a result, more complex Misunderstandings of
access control were often not found until they were exploited
in the break phase. Receiving detailed input about security
misunderstandings in their code allowed teams to address this
issue and understand where they went wrong. Overwhelm-
ingly, Misunderstanding vulnerabilities were fixed once they
were pointed out and explained to teams, pointing to the bene-
fit of including explanation of security Misunderstandings in
the development process. Teams demonstrated the ability to
learn from these explanations by crafting tests for other teams
based on what had been exploited in their own code.

4 Conclusion

Secure software development is a challenging task. To pri-
oritize among security solutions and provide the most help
to developers, we must understand how and why developers
introduce vulnerabilities, as well as how and why they are
(not) found and fixed during software testing. To this end,
we conducted an in-depth study of 14 teams’ development
processes during a three-week undergraduate course as they
built a software-based home-IoT controller, attacked other
teams’ code, and fixed exploited vulnerabilities within their
own code. We collected a wide variety of data throughout
different portions of the course, allowing us insight into par-
ticipants’ thought processes and decision making. Overall,
our results reaffirm the importance of secure development
best practices.
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