THE **UNIVERSITY** OF RHODE ISLAND

"I...Got my Nose-Print. But it Wasn't Accurate": How People with Upper Extremity Impairment Authenticate on their Personal Computing Devices **Brittany Lewis and Krishna Venkatasubramanian**

*The Department of Computer Science and Statistics, The University of Rhode Island

Introduction

- Authentication to computing devices typically require users to perform complex actions with their arms, hands, and fingers
 - For example: complex passwords, positioning a camera accurately for facial recognition

- This can create barriers for people with upper extremity impairment (UEI)
 - People with UEI experience reduced range of motion, strength, endurance, speed, and/or accuracy associated with movement in the shoulders, upper arms, forearms, hands, and/or fingers

Methods

- Semi-structured interviews with 8 participants with UEI
- Interviews were conducted at a location chosen the participant
- Each interview lasted between 3 50 minutes

	ID	Age	Gender	Disability
3	P1	58	Male	Multiple sclerosis
	P2	21	Female	Cerebral palsy
	Р3	76	Female	Quadriparesis from Guillain-Barré syndrome
by	Ρ4	59	Male	Spinal cord injury
	P5	65	Female	Amputation due to complications from virus
30-	P6	50	Female	Cerebral palsy
	P7	37	Female	Cerebral palsy
	P8	46	Male	Cerebral palsy

Findings: Most biometrics are not well suited to the abilities of people with UEI

Two of our participants wanted to use the fingerprint sensors on their devices, but neither of them type with their fingers. They both attempted, unsuccessfully to use toe-print and nose-print respectively as a workaround.

"I...got my nose print. But it wasn't accurate." (P2)

2. Where (if anywhere) in the authentication process do barriers arise and how do people with UEI work around those barriers (if at all)?

Research Questions

1. How and why do people with UEI use (or not use) authentication with their personal computing devices?

Authentication p challenges to peopl however, research experience of auth for people with UEI been limite

Various work has create better auther people with UEI. Ou help inform future v area

Findings: Most of our participants used authentication

- Only two participants had disabled authentication on all their current devices
- All participants who used authentication used passwords or PINs on at least one device
- Only two participants used biometrics

Opportunities for Future Research

Evaluating AT in a security context for password/PIN entry

Promoting interdependence through shared credentials with caregivers

Designing biometrics which meet the needs of people with UEI

Findings: Long, complex, secure passwords/PINs are difficult for people with UEI to use

Participants reported that they would workaround the difficulty of using complex passwords by choosing passwords which only used letters on one side of the keyboard or were shorter or simpler.

"[Passwords] require...many different digits...You need to press more buttons...[You had to] press Shift at some point because you had to do [capital letters]. You had to do numbers and whatnot. So they're much more complicated [and] it's much more unforgiving." (P6)

- The current authentication process on computing devices is inaccessible to people with UEI • Currently, barriers occur across the entire process and people with UEI prioritize usability over security in order to compensate for it
- Future research is necessary to make authentication accessible to people with UEI.

Related Work

oresents e with UEI, n into the entication has thus far ed	Studies on use or interaction with various forms of authentication for people with disabilities including some with UEI (Blanco-Gonzalo et al. 2018, Helkala 2012, Kane et al. 2020, Renaud 2018, Singh et al. 2007)
begun to ntication for Ir work can work in this	Studies on novel credentials and credential verification for people with UEI (Johnson et al. 2013, Lewis et al. 2020, Shen 2008, Damopoulos and Kambourakis 2019, Fuglerud and Dale 2011, Zhu et al. 2009, Fenner 2018)

Conclusions

