
This paper is included in the Proceedings of the
Eighteenth Symposium on Usable Privacy and Security

(SOUPS 2022).
August 8–9, 2022 • Boston, MA, USA

978-1-939133-30-4

Open access to the
Proceedings of the Eighteenth Symposium

on Usable Privacy and Security
 is sponsored by USENIX.

Usability and Security of Trusted Platform
Module (TPM) Library APIs

Siddharth Prakash Rao and Gabriela Limonta, Nokia Bell Labs;
Janne Lindqvist, Aalto University

https://www.usenix.org/conference/soups2022/presentation/rao

Usability and Security of Trusted Platform Module (TPM) Library APIs

Siddharth Prakash Rao
Nokia Bell Labs, Finland

Gabriela Limonta
Nokia Bell Labs, Finland

Janne Lindqvist
Aalto University, Finland

Abstract
Trusted Platform Modules (TPMs) provide a hardware-

based root of trust and secure storage and help verify their
host’s integrity. Software developers can interact with a TPM
and utilize its functionalities using standardized APIs that
various libraries have implemented. We present a qualita-
tive study (n=9) involving task analysis and cognitive inter-
views that uncovered several usability and security issues with
tpm2-tools, one of the widely used TPM library APIs. To-
wards this end, we implemented a study environment that we
will release as open source to support further studies.

Our results support two major conclusions: 1) tpm2-tools
APIs, as designed, are not designed to be developer-friendly,
and 2) One of the major causes for these usability issues is in
the TPM specifications. Since other libraries also mirror the
specifications and provide no significant usability improve-
ments, our results are likely to indicate similar issues with all
current TPM library APIs. We provide recommendations for
improving the TPM library APIs documentation and software,
and we highlight the need for HCI experts to review TPM
specifications to preemptively address usability pitfalls.

1 Introduction

A Trusted Platform Module (TPM) [51] is a tamper-resistant
chip that is used as a hardware-based root of trust in many
modern applications [34, 61]. TPMs can carry out common
cryptographic operations, such as secure key generation, en-
cryption, hashing, and signing. Furthermore, since the TPM
is physically isolated from the processing system of its host,

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2022.
August 7–9, 2022, Boston, MA, United States.

it can be used for securely storing a small amount of sensitive
data (e.g., keys and certificates), which can further be utilized
for verifying the integrity of its host. TPMs also provide vari-
ous non-cryptographic security features for imposing access
control restrictions on the objects created or stored in the TPM.
Such restrictions play a crucial role in hardening the security
of applications built using TPMs. The Trusted Computing
Group (TCG) defines standard specifications that cover TPM
architecture and implementation [56], and several high-level
Application Programming Interfaces (APIs) to interact with
the TPM hardware [52, 54, 55]. The latter is implemented by
various software libraries, and is the scope of our study.

APIs play a crucial role in modern software development
because they provide reusable components for developers
to build applications efficiently and in less time. Neverthe-
less, APIs tend to be complex, and making them usable (or
developer-friendly) has been an ongoing research theme. Pre-
vious works have analyzed various APIs that offer security us-
ing cryptographic features to understand and improve their us-
ability [13,40]. In this work, we extend this research theme for
TPM library APIs, which offer additional non-cryptographic
features (e.g., access control). We believe that the combina-
tion of these security features adds more to the complexity
of TPM concepts and hinders the APIs’ usability and secu-
rity. Our work explores them by systematically analyzing the
implementation of tpm2-tools, a widely used TPM library
API with 85830 downloads (refer to Appendix A).

Our main goals are to understand the usability and secu-
rity pitfalls of TPM developers and review the current API
implementation to provide concrete design guidelines for us-
ably secure API development. In this realm, we conduct a
qualitative study with TPM developers using mixed methods
(task analysis and cognitive interviews). We identify common
use cases of TPM, conduct a thorough review of the available
APIs, literature survey of the prior art, and combine them to
design tasks and questionnaires for our participants. We also
involve the participants in a follow-up interview to understand
their experiences, perceptions, and opinions about the APIs.
We conduct thematic analysis and code analysis to identify

USENIX Association Eighteenth Symposium on Usable Privacy and Security 213

themes and common coding patterns that give an overview of
the usability and security pitfalls of tpm2-tools library APIs.
Based on these results, we provide concrete recommendations
for the library documentation and software.

Contributions: First, we built a study environment that
supports all major TPM libraries and works right out of a
browser [6]. It is the only available platform for studying
TPM-related tasks to our best knowledge.

Second, we show that the tpm2-tools APIs are not user-
friendly based on a systematic study involving an analysis
of developers’ inputs collected through tasks and interviews.
Although various guidelines are available to design usably
secure APIs, we find that the tpm2-tools library have not
seriously considered or implemented them. Consequently, de-
velopers struggle to use the APIs efficiently and are prone
to make trivial mistakes that undermine security. The com-
plexity of the topics and lack of developer-friendly APIs and
supporting materials could pose a major barrier for developers
to fully utilize TPM’s capabilities. Our work identifies and
highlights various usability pitfalls that impact security and
provides concrete recommendations to address them.

Third, we highlight that standard specifications are a po-
tential venue to influence the usability of technologies. We
observed that the TPM API implementation strictly follows
the standards and found many instances where the pitfalls
could be traced back to them. Thus, we believe that there is a
need for HCI experts to be involved in the design and review
of standards to preempt any possible usability pitfalls that oth-
erwise would be propagated to the software implementation.

2 Background

This section covers the background of TPM security features.
We explain the following components: cryptographic opera-
tions, hierarchies, TPM-specific restrictions, platform config-
uration registers, authorizations, and sessions. The TPM uses
these components to provide security-related functions, such
as key generation, the hardware-based root of trust, device
identity, remote attestation, and secure storage.

The TPM supports common cryptographic operations such
as encryption, signing, and hashing. Additionally, it pro-
vides secure key generation functionalities, where the TPM-
generated keys can be used internally for cryptographic oper-
ations, or they can be exported for external applications. The
keys that reside within the TPM are protected by a logical
abstraction (i.e., collection of objects) called a hierarchy. The
TPM provides four hierarchies: owner, endorsement, platform,
and NULL. The first three are meant to be used by the TPM’s
owner, manufacturer, and host platform. The NULL hierarchy
is reserved for short-lived objects that are expected to be lost
on reboot. In addition to keys, a hierarchy can include another
kind of object: a sealed data blob, a structure for protecting
small amounts of user data in the TPM.

Each hierarchy is associated with a random seed, which is
used to generate primary keys that can serve as the root in a
tree of other (child) objects inside the hierarchy. Primary keys
are stored inside the TPM and cannot be exported or read ex-
ternally, whereas child objects (such as sealed data blobs and
non-primary keys) are generated on the TPM but stored in the
disk until loaded back for actual use. Since the child objects
leave the trust boundary of the TPM when exported, they can
be misused. In such cases, the child’s security is guaranteed
by wrapping, a mechanism where the child’s sensitive part is
encrypted by its parent key and can only be decrypted upon
loading into the TPM.

The TPM gives users control over the usage of TPM-
generated keys by allowing them to impose different restric-
tions over the key’s purpose, duplication, and usage. The
purpose restriction implies restricting the key for encryp-
tion/signing or only for decryption by setting the attributes
sign and decrypt, respectively. The term duplication in the
TPM context refers to the possibility of a key having more
than one parent. The duplication restriction includes setting
the fixedParent attribute to allow the key’s parent to change
within the same TPM or fixedTPM attribute to allow the key
duplication for using it on a different TPM. Finally, the us-
age restriction refers to restricting the key, by setting the
restricted attribute, to sign/decrypt only TPM-internal data.
Please note that these attributes can only be set during the key
generation; hence, the restrictions cannot be updated later.

TPM manufacturers utilize and predefine the key restric-
tions to provide two special keys: the endorsement key (EK)
and the attestation key (AK). The EK is a restricted encryp-
tion primary key generated from the endorsement hierarchy’s
seed; it is certified by the TPM manufacturer as proof of its au-
thenticity. The AK is a restricted signing key protected by the
EK as its parent. The TPM can use the AK to prove its unique
identity, e.g., during remote attestation. It guarantees that a
specific, legitimate TPM has produced the signed message.

TPMs provide Platform Configuration Registers (PCRs)
as an option for secure storage. PCRs are a set of 24 registers
used to store hashes of different system components (e.g.,
firmware, kernel, hypervisor, operating system and files in
the filesystem) usually during the boot sequence. PCRs are
considered secure storage because a user cannot directly write
hash values into the PCRs. Instead, they can provide the hash,
and the TPM will extend one of the PCRs by concatenating
it with the preexisting PCR content. The concatenated result
is fed to the hashing algorithm to compute the digest, which
is then stored in the PCR as the new value (referred to as
measurements) to represent the state of a TPM’s host platform
at that given time. The hashing algorithm used determines the
size of the measurement. The TPM supports multiple hashing
algorithms and the group of PCRs associated with the same
algorithm are referred to as a PCR bank.

PCR measurements can be used in remote attestation to
verify that the integrity of a device has not been tampered

214 Eighteenth Symposium on Usable Privacy and Security USENIX Association

with. TPM uses quotes – the measurements and other infor-
mation (e.g., clock and number of reboots and suspends)– and
signs it with a restricted key (e.g., AK). This process of ob-
taining a TPM-equivalent of message authentication code is
called quoting. A verifier uses the quotes to detect tamper-
ing by checking the contents against reference known values.
Furthermore, since an AK signs the quote, it guarantees the
verifier that the measurements are trustworthy and generated
by a legitimate TPM. If tampering (e.g., changes to firmware
or kernel) is detected, the verifier can also identify the exact
component that is tampered with because each PCR contains
a measurement that represents a specific host component.

The TPM provides a limited amount of Non-Volatile Ran-
dom Access Memory (NVRAM) that can be used to store
persistent data. Users may use NVRAM for secure storage
because access to NVRAM can be restricted with TPM se-
curity mechanisms such as sealing. When an NVRAM area
is sealed against a particular state of the host, its content can
only be read if the state is unaltered.

Similar to sealing, TPM provides other types of restrictions
for TPM objects (e.g., keys, sealed data blobs, or NVRAM
areas). For example, a user can create policies to define re-
strictions on how an object can be used. Furthermore, it can
also impose restrictions against TPM-internal and TPM-
external states. The TPM-internal states include the PCR
state, NVRAM contents, and TPM counters, and the TPM-
external states may be passwords, state of external hardware
(e.g., biometrics or GPS information), and signatures from
smart cards. These restrictions are set when an object is cre-
ated, and they will be checked before the object is used.

A user may need to use session-based authorizations to
comply with the restrictions imposed on objects in the TPM or
to authorize commands. Sessions are a way to communicate
authorizations to the TPM since they carry the information
needed to prove that the user can perform the intended action.
The authorization contained in a session may be reused to
execute several commands repeatedly, as sessions preserve
the state between commands. For example, HMAC sessions
may be used to communicate a password more securely, as the
password only needs to be specified once during the creation
time of an object (e.g., a key). In such sessions, the password
is used as an input to calculate the HMAC of each command
and response from the TPM, which allows authorizing an
action without actually sending the password.

3 Related work

TPMs have been used in a wide range of security-critical ap-
plications [26,27,37,38,48]. Security flaws in the TPM could
undermine the security of the applications that use it, and find-
ing such flaws is attractive to researchers. Prior research works
have analyzed the TPM architecture and specifications to ver-
ify the security guarantees of TPM [22–24, 49, 62]. These
existing studies mainly on formal methods for analyzing TPM

specifications. To our best knowledge, analysis of TPM soft-
ware libraries and their API implementation has not been
studied. In our study, we explore this topic by involving the
TPM developers to understand how they use the APIs and
investigate how the API implementation could pose security
and usability barriers.

We build upon the prior research that identified various hu-
man factors of secure application development. In particular,
we draw insights from the studies that evaluated cryptographic
libraries [13, 17, 28, 35, 40, 44] due to an overlap of crypto-
graphic features offered by TPM library APIs. These studies
have found that lack of usable APIs and documentation are
major barriers to developers. Our study evaluates whether
these issues are replicated in the TPM ecosystem.

Similarly, previous studies have identified that developer’s
background [19, 43, 63], information sources [14–16], and
workplaces [18, 32] are some of the other factors that affect
secure application development. We are particularly interested
in the information sources referred to by TPM developers as
supporting materials. They may have to refer to a broader set
of sources, e.g., library documentation, TPM specifications,
and other security guidelines, and their effect on the way
developers use TPM library APIs is yet unknown. In our study,
we explore the role of such sources in TPM development.

4 Research Methodology

We first created a pool of potential participants and sent them
a preliminary survey (refer to Appendix B) inviting them to
participate in the study. This survey helped us filter suitable
participants and identify the common use cases for designing
the tasks. In parallel, we conducted an independent analysis
of the TPM ecosystem to scrutinize the intrinsic details of
concepts, software libraries, and supporting resources (e.g.,
standards and documentation) available for the developers.
This helped us define evaluation criteria for the tasks. Sim-
ilarly, we conducted a literature review of previous usable
security research works (e.g., [13, 47]) , that served as a refer-
ence when preparing our questionnaires. Next, we designed
TPM-related tasks and questionnaires to collect practical and
conceptual barriers (mental models) while coding with TPM
libraries. We built our study environment (refer to §4.1) us-
ing open source modules and hosted it on our servers. After
participants completed the tasks, we conducted cognitive in-
terviews to understand their experiences while dealing with
TPMs (refer to §4.3). During the interview, we allowed them
to introspect about their experience with the TPM ecosys-
tem and provide suggestions for improvement. Finally, we
conducted a two-stage analysis (refer to §4.4) of the data we
gathered from the study environment and the interviews.

Participant demography. We targeted experienced develop-
ers with TPM experience such that we could design realistic
tasks leveraging TPM-specific security features. We aimed to

USENIX Association Eighteenth Symposium on Usable Privacy and Security 215

evaluate usability and security pitfalls closer to real-life TPM
usage, as opposed to struggles with its steep learning curve.
We used purposive sampling (refer to Appendix C for more
details). Our results are based on the responses from the 9
participants who matched the criteria for our target population
and went through the entire study protocol. We offered them
a compensation worth 100 C. Participants were male (aged
18–59) with a security background, <1–5 years of TPM, >=2
years of coding experience and a bachelor’s degree.

Ethical and privacy considerations: We followed best prac-
tice guidelines throughout our study [47]. Our institution’s
review team approved our study and confirmed that it meets
the ethics and privacy standards. After a careful review of
our methodology, the review team drafted a GDPR-compliant
privacy policy and participation consent form. We presented
both of them to the participants before the study began. Ac-
cordingly, the collected personally identifiable information
(e.g., email and names) was solely used for contacting the
participants. We excluded such data from the analysis and
discarded it immediately by the end of the study. Further-
more, we used open-source components to build our study
environment, hosted it on our servers, and ensured that the
participants’ data was entirely under our control.

4.1 Task and questionnaire design

Tasks. We identified four common use cases of TPM from
our preliminary survey as follows: encryption (symmetric and
asymmetric), storing measurements of files on PCRs, secur-
ing secrets on the TPM, and remote attestation. We also iden-
tified various cryptographic and non-cryptographic security
features. We designed simple tasks around the use cases and
added conditions with a combination of security features to
evaluate functional correctness and the participant’s security
choices. Such conditions allowed us to understand whether a
knowledgeable developer (from a coding and security point
of view) would be able to choose suitable cryptographic pa-
rameters and impose TPM-based security restrictions while
dealing with common use cases. The tasks required the par-
ticipant to use well-known TPM commands. Each task was
divided into simple steps (refer to Appendix D) to ensure
better understanding and obtain higher completion rates. We
ran a pilot study to evaluate this. We improved the text and
adjusted the tasks’ complexity based on the feedback.

Table 1 summarizes the mapping of use cases and security
features of our tasks. We assigned four tasks to the participants
and did not impose time restrictions for completion. As the
first task, five of them got asymmetric encryption and the
rest got symmetric encryption. The remaining three tasks
were common to all. We assigned a specific library to each
participant based on their preliminary survey responses: one
was assigned IBMTSS and the rest tpm2-tools. However,
switching libraries was allowed, and the participant whom we

assigned IBMTSS switched to tpm2-tools.

Questionnaires. We collected data about the participants’
backgrounds and understand their perceptions and opinions
while using TPMs (refer to Appendix F). After showing the
general instructions, we asked basic questions about the partic-
ipant’s demographics, TPM background and contact details.

After each task, we presented task-specific questions where
the participants had a chance to report their perceptions and
opinions about the task. In particular, we wanted to under-
stand their familiarity and complexity perception about the
task; also their security and correctness perception about their
response. We also asked questions about the type of resources
they used, the reason for not completing the task (if applica-
ble), and their opinion on the usefulness of the error messages
in fixing their mistakes or making secure choices. The ques-
tionnaire used a 5-point Likert scale.

After attempting all the tasks, we presented an exit ques-
tionnaire to ask about their use of supporting materials for
TPM-related activities. This question was asked to compare
with a similar question asked in the task-specific questionnaire
and to understand whether they had to refer to new types of
materials for our study. We also asked them why they referred
to supporting materials outside the library documentation.

4.2 Study environment

We built our study environment as an online Integrated Devel-
opment Environment (IDE) and hosted it on our servers. Refer
to Appendix G for the technical details. We designed the study
environment using our personal experiences to mimic the real-
world TPM development conditions with minimal participant
effort, and our participants confirmed its ecological validity
during the interviews. Each participant got a dedicated server
accessible over a unique URL and only needed a browser
to participate. The IDE allowed interacting with the TPM
emulator using function calls provided by each supported
library (see Appendix A for details of supported libraries).
The participants were free to switch between libraries at any
point during the study by choosing from a dropdown menu in
the IDE. We also added two additional features to the IDE to
reboot and reset the TPM to its initial state.

Figure G.1 shows the interface of our study environment.
The environment started with a Welcome page, which con-
tained the study’s purpose and logistics, an instructional video
that covered basic features and navigation of the environment,
and links to FAQs. This page was followed by the Demo-
graphics page. Then, every task was shown on two pages:
one for the task description and IDE and the other for the
task-specific questionnaire. In the end, the Final questions
page included the exit questionnaire. Participants were free to
move between tasks and attempt them any number of times.
But we stored everything they executed in the IDE.

216 Eighteenth Symposium on Usable Privacy and Security USENIX Association

Task Security features DescriptionCrypto Non-Crypto
Asymmetric encryption C2 NC1, NC2 • Create secure encryption keys using the TPM

• Perform asymmetric encryption
• Impose restrictions on key attributes to allow duplication of the key, which

makes it exportable to other devices
Symmetric encryption C1 NC4, NC5 • Create password-protected symmetric encryption keys using the TPM

• Perform symmetric encryption
• (Optional) Use TPM sessions to authorize the use of a password protected key

Storing measurements C4 NC6 • Perform secure hashing
• Identify suitable PCRs for storing measurements
• Extend measurements to all available PCR banks in the TPM

Securing secrets — NC1, NC3 • Create NVRAM index to securely store information in the TPM
• Use the correct parameters for NVRAM index creation
• Seal the reading operation against a PCR state
• Lock the NVRAM index against future writes

Remote attestation C3 NC1, NC2, NC6 • Create secure keys using the TPM
• Impose restrictions on the key used for signing a quote
• Create a quote with the TPM including the state of the kernel (stored in PCR2)
• Verify if a given quote is valid for remote attestation

Table 1: Mapping of use cases and security features into tasks (also refer to Appendix E and D)

4.3 Interview

We conducted semi-structured interviews with 9 participants
to extract in-depth qualitative insights beyond the task analy-
sis. In particular, we were interested in understanding partic-
ipants’ mental models and experiences while working with
TPMs. We also wanted to know how they would resolve the
usability and secure programming barriers that we identified.
Two of the authors facilitated the interviews, one for leading
the conversation and the other for observing and note-taking.
We prepared the main questions we wanted to cover with our
participants. We analyzed each participant’s responses to pick
the most suitable version of their code snippets and relevant
observations from their questionnaire responses. During the
interviews, we showed these responses and used appropriate
probes to obtain in-depth information about our main question.
We invited the participants for a one-hour online interview,
and asked for consent to record and auto-transcribe the call.
The interviews were loosely structured into three segments.
Refer to Appendix H for more details.

(1) Introduction. We first reminded the participants about the
study details and explained the purpose and structure of the
interview. Next, we probed them with open-ended questions
about the working mechanism of TPMs, their use cases, and
their relevance to participants’ work. We also confirmed that
the participants were comfortable with the study environment
and had a positive overall experience with the logistics.

(2) Task- and questionnaire-specific observations. We were
interested in understanding the participant’s motivation be-
hind specific choices, as well as their mental model and
problem-solving approach when completing the tasks. We
showed them their responses and asked them to outline their
approach. We used necessary probes (e.g., “how did you pick
the cryptographic algorithms for creating the keys?”) to un-

derstand further their thoughts on the security and correctness
of their approach. We also probed to check their awareness
of alternative approaches and discussed their advantages and
disadvantages. In addition, we tried to understand how they
search for relevant information about TPM-related topics.

(3) General discussions. We probed the participants on gen-
eral topics outside the tasks and questionnaires. For example,
we asked the participants for their usual approach to solving
TPM programming tasks. Also, we collected their suggestions
on improving the TPM ecosystem and offered them a chance
to address anything that was not directly part of our questions.

4.4 Overview of analysis

Our analysis included two phases. In the first phase, we an-
alyzed the data collected from the study environment, such
as the code snippets executed in the IDE and the responses to
the questionnaires. While we analyzed the code snippets for
correctness and security, our primary goal was to understand
the typical solutions and coding patterns of TPM developers.
Furthermore, we identified interesting code snippets and re-
sponses to use as probes for the interview. We present our
observations about common coding patterns in §5.2.

In the second phase, we conducted independent and itera-
tive analysis of the interview transcripts for thematic coding
(refer to §5.1). First, we identified three broad categories un-
der which we could explore themes. Then, two of the authors
independently coded the transcripts (using an inductive ap-
proach) to generate a list of all potential codes that would suit
these categories. We noticed that no new concepts emerged
from the last two interviews, which indicates saturation. This
process was repeated several times, until all concepts men-
tioned by participants were reflected, to refine the codebook.
We consolidated the codebooks with refined code names and

USENIX Association Eighteenth Symposium on Usable Privacy and Security 217

guidelines. The codes represented concrete roadblocks or in-
fluencing factors for the TPM developers. We do not report
any measure of inter-rater reliability (IRR), because we re-
port no quantitative results and the iterative review of the
codes was the process to yield the themes we identify in
our work [36]. Furthermore, the codes themselves are not
the product of our work. We identified eighteen codes under
seven themes from our thematic analysis (refer to Table 2).

5 Results

In this section, we present our findings of themes from the
thematic analysis and common coding patterns of TPM de-
velopers. The results from thematic analysis (in §5.1) are
presented loosely as a tuple of observations and evidences
along with a brief discussion pertaining to each theme. Each
theme’s main observation is aggregated from analyzing the
developer’s perceptions and opinions of the questionnaire data
and thematic analysis of the interview transcripts. Relevant
snippets from the participant’s code submissions or quotes
from interviews are used for justifying the observations. The
discussion reflects our observation from the literature analy-
sis and conversation with the participants about the potential
treatment to some of the roadblocks they usually face while
working with TPMs. We have followed a similar approach for
presenting the common coding patterns in §5.2.

5.1 Themes emerged
Our thematic analysis yielded three categories: library, sup-
porting materials and user themes, as summarized in Table 2.

5.1.1 Library Themes

This category captures the reasons why something went
wrong when completing the study, which were related to the
library itself. We identified three themes as follows:

Naming conventions and usage. Participants P1–P3, P5, P8,
and P9 expressed difficulties with the naming conventions
used in the libraries and deciding when to use each command.
This theme includes codes around three areas: confusion be-
tween two available options with overlapping functionality,
names do not convey the functionality or cause confusion, and
inconsistency in syntax when specifying similar parameters
but for different commands.

For example, P1 was confused between the commands
tpm2_createprimary and tpm2_create. The former is
used to create primary objects (such as primary keys), and
the latter is used to create child objects (such as child keys
and sealed data blobs) that are protected by a primary key
in the hierarchy. P1 was confused because the difference in
functionality was not clear from the names of the commands.

While the library implementation follows the specifica-
tions [52], they can alleviate the confusion by providing

abstraction functions with more appropriate names. We sug-
gest that the functionalities of the original commands can
be split into two new commands: e.g., tpm2_createkey for
creating parent or child (with -P and -C as flags, respectively)
and tpm2_createblob for creating sealed data blobs. Never-
theless, such abstractions must retain the parameters used in
the original commands and implement secure defaults.

Output formats. P1–P4, P6, P8, and P9 had difficulties in-
terpreting the outputs of different commands they used for
completing the tasks. The problems include insufficient infor-
mation and a lack of clarity on how to interpret the output.

In the remote attestation task, the participants were asked
to verify a quote, which required using tpm2_checkquote to
verify the contents and signature of a quote. The output lacks
a success message, making developers rely on ad hoc methods
to confirm the verification. For instance, P9 said that “I think
I was doing just a minimal verification (...) I was executing
this command twice, one with the correct files and one with
false files to see if the end result was different”. The above
example is also the case where the output lacks information
about what is verified. Altogether, developers may wrongly
interpret the output and assume that the verification succeeded
as the command did not return any errors.

We also noticed a lack of details in the meta-
information shown to developers. For example, when
a key is created, the attributes of the key are printed
as fixedtpm|fixedparent|restricted|decrypt. This
meta-information works as a reminder of the capabilities and
restrictions of the key. Although our participants found this
meta-information helpful, and it seemed important, they ad-
mitted their reluctance to check each meta-information even
if they did not fully understand it. While the brevity of such
meta-information suffices for seasoned developers, the less-
experienced ones still have to refer to the documentation to
understand their meaning.

Clear description, success, and error messages are impor-
tant for the developers [29]. Hence, a possible treatment for
this situation is to return more verbose outputs that clearly
confirm a successful command or indicate what went wrong.

Error handling. All participants except P6 expressed difficul-
ties when interpreting error and warning messages provided
by the library. They found the messages to be unclear and
hence did not fully understand them. Also, the messages did
not provide any valuable feedback (i.e., lack pointers on re-
solving the errors), and the participants did not have enough
domain-specific knowledge to fix it by themselves.

For example, all participants of the symmetric encryption
task failed to specify an initialization vector (IV). Although a
warning message indicated that the IV was weak, everyone
ignored it because there was no feedback on how to specify
the IV. P5 commented that,

I didn’t really find a way how I could specify a better IV and, I
don’t know, I find it’s kind of destructive criticism when the

218 Eighteenth Symposium on Usable Privacy and Security USENIX Association

program just tells me “well, you used the wrong IV”, but
doesn’t make any comments on how to do it better. So, if it
finds out hey, you are using a weak IV, it could suggest the use
of the appropriate flag to specify a better one.

We traced the cause of this problem to the example in
the documentation, which lacks an IV [10]. Therefore, we
believe that participants copied this example and ignored
the importance of an IV. One solution to this problem is to
update the code in the documentation. Also, the command
could return a descriptive error message that suggests how
to specify the IV and the correct flag to use. The library
developers can refer to the RUST compiler [60] as a good
example of suggestions to include in the error messages.

Themes Codes Participants

L
ib

ra
ry

Naming
conventions
and usage

Confusion between two
available options 6/9
Names do not convey func-
tionality or cause confu-
sion
Inconsistency

Output
formats

Insufficient information 7/9Lack of clarity on how to
interpret

Error handling Error message is unclear 8/9Lack of pointers on how to
resolve

Su
pp

or
tin

g
m

at
er

ia
ls Documentation

shortcomings

Lack of examples

7/9
Lack of background infor-
mation
Incorrect or missing expla-
nations
Complicated presentation
Not easily accessible

U
se

r

Mental models
Misunderstanding by user
(documentation is correct) 5/9
Misunderstanding due to
missing or incorrect docu-
mentation
Misunderstanding due to
unknown sources

Trust factors
Past experience or code

7/9Defaults and documenta-
tion examples are secure
TPM’s ability to handle se-
curity

Table 2: Identified Themes

5.1.2 Supporting Materials Themes

We asked participants what supporting materials they used
to complete our study’s tasks and in general when doing
TPM-related coding. Supporting materials refer to the library
documentation, TCG standards, and additional resources (e.g.,
blogs, personal notes, forums). Although all participants re-
ported using the library documentation as the primary re-
source, we found that participants with less TPM experience
reported relying on the TCG standards to get background
information and on third-party forums when they faced issues.

On the other hand, experienced TPM developers said using
only the library documentation to obtain ready-made code
examples that they can tweak. They know what to look for
based on previous experiences.

We now present the common themes around supporting
materials, especially their shortcomings. We limit the results
in this section to library documentation because the partic-
ipants did not provide details about the exact resource they
used, and also, we could not trace them. Nevertheless, we
believe that the shortcomings we report in this category may
also exist in all types of supporting materials.

Documentation shortcomings. Participants P1–P3, P5, P7
and P9 indicated a lack of examples, as well as a lack of back-
ground information about related TPM or security concepts.
They emphasized the need for customizable examples and
descriptive background information, primarily aimed at be-
ginners. In particular, P5 stated that

What I would really love would be example code. (...) I mean,
there is example code for the simple problems, but as soon as
you want to do something that goes away from the simple
problems, it gets a little difficult.

Participants P1, P5, and P7 highlighted that the documenta-
tion had incorrect or missing explanations and that they would
prefer clear explanations for using one approach over another.
An example of this theme arose in the securing secrets task,
where we asked participants to store a secret string “in the
TPM” and to impose restrictions on reading and writing that
secret. We expected them to create an area in the NVRAM
with the appropriate security controls for accessing the mem-
ory area. Instead, most participants (6/9) created a sealed data
blob, which is stored outside of the TPM. During the inter-
views, we learned that the participants were aware of both
approaches and the latter being a less secure one. However,
most participants mentioned that they avoided the NVRAM
approach because the documentation lacked a good explana-
tion. Also, it would be too time-consuming for them to figure
out how to complete our task using NVRAM. Hence, they
settled for the less-secure but better-documented approach.

Finally, P1, P3, P7–P9 indicated that supporting materials
had a complicated presentation or were not easily accessi-
ble. In particular, P9 said it was time-consuming to find the
command they would need from the library documentation:

The first task was taking a lot of time because I couldn’t find the
correct command. It was like, I know what I’m going to do, but
none of these commands seems to be relevant. (...) And then it
was almost by accident, that I found out the correct option.

All the aspects mentioned in this section could be tackled
by improving the documentation quality and adding more
background information about TPMs. Additionally, the doc-
umentation could include use case-based example tutorials.
The tpm2-tools library started adding these kinds of com-
prehensive guides [58] with code examples and background
information, but it has been defunct since February 2021.

USENIX Association Eighteenth Symposium on Usable Privacy and Security 219

5.1.3 User Themes

Mental Models of TPM Concepts. We identified different
mental models formed by the participants that led to mis-
conceptions of TPM concepts. We observed an example of
a misunderstanding by the user in the asymmetric encryp-
tion task, where the participants had to create a key (using
tpm2_create) that is exportable to another TPM. P3 misun-
derstood the documentation and formed an incorrect mental
model about the trust boundaries of the TPM, believing that
any key created with a TPM can be loaded into other TPMs.
They stated that,

When I used the tpm2_create command, you can see that I
have given two files with -u and -r. So the keys are already
outside. So, I know that if I can load this key in another TPM, it
should work because normally any key can be loadable on TPM
as long as it is cryptographically valid.

It is true that the flags -u and -r return the public and
private keys in two separate files. However, the private part re-
mains protected by its parent key in the TPM, and it cannot be
used outside unless its restrictions are relaxed. This can only
be achieved by setting the fixedTPM and fixedParent at-
tributes of the key to False, which P3 missed. The man page
for tpm2_create [9] covers all flags and includes a link to a
separate page [4] that covers the flag -r in detail. The latter
page mentions the private key (i.e., the child key) being pro-
tected by its parent and further links to the TPM standard [51],
which explains these concepts in depth. Although the docu-
mentation is correct, we believe that its nested presentation
could have caused P3 to form a wrong mental model about
the trust boundaries of the TPM. A potential solution would
be to simplify the documentation by covering all necessary
details (e.g., command usage, TPM concepts, and concrete
examples) in a single page.

Another example from P3 is an incorrect mental model
about remote attestation, due to a lack of background infor-
mation in the documentation. They had not done any re-
mote attestation tasks before our study and only read the
tpm2_checkquote [8] man page. This man page does not in-
clude a high level of detail about all the requirements that need
to be verified to trust a quote; it only discusses the quote’s
signature and reference PCR values. This, along with the in-
sufficient information in the output of the command, implied
to the participant that verifying a quote meant just checking
the signature. However, this is only a part of the verification,
since the verifier must also check the signing key’s properties,
e.g. that it is restricted and comes from a legitimate TPM.
Such incorrect mental models may lead a developer to imple-
ment remote attestation insecurely. The library can address
this issue by improving the already existing tutorial for remote
attestation, which lives outside the documentation [57]. The
tutorial can be improved by adding concrete code examples
and moving it to the tpm2-tools documentation.

We also found several cases of incorrect mental models
and misconceptions, but we could not trace the exact source
that confused the participants. In such cases, we could only
confirm that the confusion did not originate from the docu-
mentation and speculate or attribute it to unknown sources. An
example of such a case emerged in the discussions about the
asymmetric encryption task. Many participants were unsure
of why they had to create parent keys before creating child
keys, but they blindly followed the documentation examples.
On the other hand, one participant (P8) had selected cryp-
tographic parameters only for the parent key but not for the
child key, as they believed the parameters would be inherited.
We believe that P8’s security background and the use of the
words parent/child appealed to them that the child key inherits
security properties from its parent. However, in reality, the
child key will only be as secure as the defaults defined for
the library, with no impact from its parent’s cryptographic
parameters. A possible treatment would be to simplify the
key creation process, e.g., by offering abstraction functions
to create both the parent and the child key.

Trust factors. We observed that the participants relied on
their trust in different factors when making secure choices.
For example, P1, P3–P5, P7, and P8 trusted and relied on their
past experience of completing similar tasks. As a result, they
preferred to use their old code snippets instead of figuring
out how to approach our study’s tasks from scratch. However,
one pitfall of this method is that outdated code snippets could
lead to trivial errors, e.g., due to software version mismatch.
One participant encountered such a situation and struggled
to complete a task before realizing that they wrote their code
using an outdated API version.

Similarly, we observed that developers tend to trust that
the library defaults and documentation examples are secure.
This was prevalent in situations where the lack of a relevant
security cryptographic background prevented the participants
(e.g., P1–P3) from feeling confident in making an informed
choice. Therefore, the library needs to provide secure default
values and examples to support less experienced developers.

Finally, participants P3 and P8 had implicit trust in the
TPM’s ability to handle security details, so they did not have
to make any explicit choices. This subtheme was prevalent
in the tasks where participants had to create parent and child
keys, where they would trust the TPM to take care of security
aspects of those keys. P3 expected that, when using the en-
dorsement hierarchy, the TPM would prevent the user from
creating signing keys that would allow a third party to cor-
relate a set of signatures and determine that they came from
the same TPM; whereas P8 expected the TPM to assign child
keys the same cryptographic parameters as their parent key.
We suggest that the library should clarify in the documenta-
tion which security aspects are covered by the TPM to inform
users about the security guarantees it can provide.

220 Eighteenth Symposium on Usable Privacy and Security USENIX Association

5.2 Common coding patterns
This section highlights the common coding patterns followed
by participants. We limit our discussion to the features for
which we found interesting patterns.

5.2.1 While using non-cryptographic security features

Here, we cover the common patterns observed when using
the following non-cryptographic features of the TPM: use
of hierarchies (NC1), key restrictions (NC2), session-based
authorizations (NC5) and PCR usage (NC6). We evaluated
feature NC1 when creating TPM objects in the asymmetric
encryption, securing secrets, and remote attestation tasks. We
wanted participants to avoid using the NULL hierarchy since
objects in this hierarchy are lost upon reboot. Most partici-
pants selected the correct hierarchy for the use case but relied
on the defaults. This pattern highlights the importance of
providing relevant and secure defaults, as discussed in the
trust factors theme in §5.1.3. The exception to this pattern
occurred in the remote attestation task, where most partici-
pants explicitly selected the endorsement hierarchy due to its
privacy protections. We noticed that some participants were
reluctant to rely on defaults if the use case demanded a spe-
cific type of protection from the hierarchy and would instead
explicitly specify the hierarchy. We speculate that developers
hesitate to rely on defaults and tend to be extra cautious when
specifying parameters if the use case’s security requirements
are well understood. Hence, the library must create awareness
by highlighting such requirements in the documentation.

Then, feature NC2 was evaluated when participants set re-
strictions on the keys created for the remote attestation task,
where they were asked to create a restricted key for sign-
ing a quote. A signing key without the restricted attribute
could be misused during remote attestation to sign any data,
including a forged quote. Although the library offers a conve-
nience function tpm2_createak, which takes care of setting
the restricted attribute automatically, only two participants
used this function. Moreover, only 3/9 participants created
restricted signing keys, whereas the rest relied on the default
key attributes set at creation time. Again, we found that most
developers rely on key’s default attributes instead of setting
them explicitly and that convenience functions are rarely used.

We evaluated NC5 in the symmetric encryption task, where
participants had to encrypt and decrypt both a file and a string
multiple times using a password-protected key. When pass-
word authorization is used, the password is sent in plaintext
between the user and the TPM every time the participants
perform an operation. A local attacker can eavesdrop on such
communication to capture the password. A secure way to use
password protection is to utilize TPM session utilities, e.g.,
HMAC or policy sessions (refer to §2); however, none of the
participants used them. During the interviews, we found that
many participants had theoretical knowledge of sessions but
lacked the hands-on experience to use them.

Finally, feature NC6 was evaluated in the storing measure-
ments tasks, where participants had to pick suitable PCRs for
storing the measurements of a configuration file. We expected
them to avoid PCRs 16 or 23, which can be reset and repop-
ulated with arbitrary measurements during run-time by an
attacker. We found that 2/9 participants used PCR 23. During
discussions, they blamed the TPM specification [53], which
states that PCR 23 is meant for “Application support” and
deceived them into thinking PCR 23 is reserved for any appli-
cation needing to store measurements. However, the specifica-
tion also mentions that the operating system dictates its usage,
and it may be reset and used at any time. Unfortunately, both
participants had ignored the latter part and formed incorrect
mental models. This highlights the importance of the specifi-
cations in shaping users’ mental models and misconceptions.

5.2.2 While using cryptographic security features

We now report the common patterns observed while perform-
ing symmetric encryption (C1), asymmetric encryption (C2),
signing (C3) and hashing (C4). For cryptographic security
features C1, C2, and C3, we noticed that when participants
were asked to create keys for encryption and signing, they
first created a parent key in one of the hierarchies and then a
child key. Also, most participants specified the cryptographic
attributes (e.g., algorithm, key length, purpose, and duplica-
tion restrictions) only for the child key, whereas they relied
on the library defaults for the parent. We traced back the ori-
gin of such patterns to the documentation examples in the
tpm2-tools library that miss out on specifying the attributes
for the parent. Child keys are stored outside of the TPM (e.g.,
on the disk) until they are loaded onto the TPM for use; there-
fore, it is good that developers are cautious and explicitly
specify their attributes. Nevertheless, attributes of the parent
are equally crucial because child keys may be compromised
if their parent has weak or insecure attributes. We can con-
firm from our analysis that the defaults of the parent keys are
secure. Nevertheless, the library needs to be aware that the
developers have a high degree of trust in defaults, and it has a
responsibility always to keep the defaults secure and updated.

Another common mistake appeared in the symmetric en-
cryption task (feature C1). All four participants asked to com-
plete the task failed to specify an IV, which lowers the security
of the encryption process.

C4 was evaluated in the storing measurements task. We
noticed that 8/9 participants relied on the hashing functions
provided by the TPM to obtain the hash of the file they would
later extend to a PCR, where one participant used an external
library for hashing. TPM library developers should be aware
of such patterns and restrict the use of external libraries that
lie outside their control and may contain vulnerabilities.

On top of the above features, we observed an interesting
pattern in the remote attestation task where the participants
were asked to generate a quote. Including a random nonce

USENIX Association Eighteenth Symposium on Usable Privacy and Security 221

with the quote allows the attestation server to defend against
replay attacks. Unfortunately, only 2/9 participants’ quotes in-
cluded a nonce, where one used a random nonce, and the other
had blindly copied the nonce from the man page example of
the tpm2_checkquote command. During the interviews, we
learned that most participants ignored using nonce because
the documentation is inconsistent and does not emphasize its
importance. Another reason for not using a nonce was the
lack of a threat model explicitly indicating a replay attack.
Some participants also noted that the library uses a relatively
unfamiliar term (-qualification) to refer to a nonce, which
does not immediately evoke the concept of a nonce.

The library can address the concerns presented in this sec-
tion by revising the documentation to be consistent, providing
secure defaults, clear explanations and examples, and using
familiar terminologies that could remind the developers about
common threats they should consider.

6 Recommendations

This section provides explicit recommendations, in the form
of concrete action points, for improving the TPM library API
documentation and software. Some of our recommendations
overlap with Green and Smith’s usable and secure API design
principles [30]. These include abstracted and readable API
design that does not go against developers’ habits and men-
tal models, non-ambiguous and safe defaults, and detailed
and visible errors and outputs. We observed that tpm2-tools
does not follow these existing guidelines; therefore, we reit-
erate and emphasize some of these principles in the form of
actionable recommendations for the library developers. The
emphasis of [30] is on making APIs easy to learn and use such
that the developers have no need to understand the complexi-
ties of cryptography and minimal reliance on the documen-
tation. While this standpoint is valid for mature ecosystems,
it is crucial to understand complex concepts in niche ecosys-
tems like TPM, as the knowledge is not widespread. We argue
that it is still the library’s responsibility to educate and assist
the developers. Thus, our recommendations also focus on im-
proving the documentation with missing details of the TPM
background as the first step towards more usably secure APIs.

6.1 For library documentation
Technical specifications and standards are meant to be detailed
and comprehensive. Despite that, many developers refer to
software documentation or tutorials written by other develop-
ers. Our study confirms this phenomenon. In particular, we
found that the participants’ primary information source was
the tpm2-tools documentation, and it influenced the devel-
opers’ decisions. Although questionnaire responses deemed
the tpm2-tools documentation satisfactory, our participants
expressed frustration during the interviews while referring
to them. Similarly, our analysis of the ecosystem revealed

several shortcomings. We now present them collectively as
concrete pointers to improve the documentation.

Include background information. Developers need to
clearly understand TPM concepts and how they can be lever-
aged for security functionalities. We argue that the current
documentation lacks background information about TPM con-
cepts. As some of the experienced participants in our study
pointed out, their theoretical knowledge and experience can
only give them a sense of familiarity. However, given the com-
plexity of concepts and the abundance of options available,
providing more information would help them confidently
utilize the needed options. Furthermore, we found several
examples of misconceptions and incorrect mental models by
less-experienced developers, which could also be addressed
by providing additional background information.

Provide code snippets for common use cases. Most develop-
ers use code examples from the documentation as their start-
ing point and repurpose them as per their needs. Although the
tpm2-tools documentation contains simple code snippets, it
lacks concrete examples for common use cases that require
the use of multiple commands (e.g., remote attestation). Our
participants also confirmed that they could not benefit much
from the simple snippets. In this realm, we recommend that
the TPM library uses the common use cases that we have
identified (refer to §4.1) as a starting point and include com-
prehensive examples around them in the documentation.

Improve entry-level documentation. Despite their prior cod-
ing and security experience, all our participants shared similar
struggles when they started developing with TPMs. They
found the TPM documentation to not be beginner-friendly.
Many beginners seem to have faced difficulties setting up
their development environment on their local machine and
setting up a communication interface with a TPM. We specu-
late that these difficulties, along with the complexity of TPM
concepts, would discourage the developers and may be one of
the reasons why there are few TPM developers. To this end,
our recommendation would be to improve documentation
with carefully curated content for entry-level developers. Our
study environment provides an online coding experience that
could be leveraged to teach how to code with TPM without
installing anything on a local machine.

Include guidelines for picking security attributes. We
found that developers selected security attributes and crypto-
graphic primitives based on their prior experience rather than
explicitly looking for existing guidelines (e.g., [41]). In the
case of TPMs, developers have additional non-cryptographic
security attributes to choose from, and a strong cryptographic
background would not be enough to help with their deci-
sion. We recommend including brief guidelines within the
documentation about both cryptographic and TPM-specific
security attributes. Having all required information in the
documentation would help developers formulate a security

222 Eighteenth Symposium on Usable Privacy and Security USENIX Association

rationale and encourage secure choices. Any such guidelines
should cover the various attributes available but explicitly
promote the most secure ones (e.g., by using them in the
code examples). At the very least, the documentation should
include external links to any relevant guidelines.

Improve the documentation to address incoherence. We
observed that developers were confused by incoherent aspects
of the documentation on four occasions. The first occasion is
with the confusing naming conventions (refer to §5.1.1) — i.e.
when referring to commands or functions that share a common
prefix (such as tpm2_create vs. tpm2_createprimary).
The documentation could address this by alerting and remind-
ing the developer about the other commands. Secondly, many
commands are to be used in conjunction with suitable flags
and parameters, and the developers doubted of their choices.
Instead of just listing the available options, the documentation
should provide verbose descriptions and concrete examples.

The third occasion is when there are multiple approaches
for a task. For example, when to choose NVRAM over sealed
blobs for storage is trivial for experienced TPM developers,
whereas newcomers struggle to make the distinction. In such
cases, the documentation could compare the approaches and
help developers make the correct choice for their use case.
Finally, several instances of confusion exist due to inconsis-
tencies in the naming conventions across software versions.
For example, a participant complained about discrepancies in
flag usage between different versions of tpm2-tools. This
inconsistency breaks Green and Smith’s “ensure that APIs are
easy to read and update” principle, confuse the participant and
make them gullible to commit trivial mistakes. Along with
clear documentation, these confusions can be prevented by us-
ing common naming conventions that align with developers’
habits and mental models.

All our recommendations above provide essential compo-
nents that should reflect in the documentation. However, the
libraries must pay attention to balancing the depth and presen-
tation of information such that it neither overwhelms the new
developers nor bores the seasoned developers. One potential
solution would be to use documentation tools with rich text
features to improve readability and presentation.

6.2 For library software

Provide developer-friendly error messages. Designing ef-
fective error messages to provide feedback and assist develop-
ers is a longstanding research theme [33, 50]. However, many
libraries, including tpm2-tools, produce incomprehensible
error messages that are least useful and frustrate the develop-
ers. We have highlighted some of the examples in §5.1.3. A
common concern among our participants was that the error
messages lacked clarity and did not help resolve the problem.
Despite that, seasoned developers have adapted their mental
models of associating the ambiguous error messages with

something more concrete based on their experience. Since
new developers do not have this advantage, we suggest the li-
brary review existing error messages carefully. There is a wide
range of design guidelines on developing human-centric error
messages [20, 25, 46, 59], and we recommend the TPM com-
munity to adopt them. Similar to Green and Smith’s principles
“APIs should interact with the end user” and “APIs should be
hard to misuse”, we suggest revising the error messages to
be more specific and provide constructive feedback, e.g., that
suggests resolution or guides towards the right resources.

Provide concise output messages. Similar to error messages,
our participants were unsatisfied with the output messages of
tpm2-tools as they lacked clear feedback. Our recommenda-
tion is to review the output message formats to include the fol-
lowing necessary components. The output should show a suc-
cess message that not only assures the developer that the com-
mands have been executed without errors but also provides
them feedback on whether the command has achieved its goal.
Also, any interpretation and obvious additional steps (e.g.,
executing another command) to be taken must be clearly com-
municated. Additionally, the output should include a concise
description of meta-information (e.g., of the objects created)
if applicable. This recommendation is one way to make the
API self-explanatory and ensure that principle “APIs should
be easy to use” from Green and Smith is followed.

Utilize abstractions for sequential command execution.
There are several occasions where multiple commands have
to be executed sequentially. For example, for storing mea-
surements of a file in a PCR (in task 2), one can take
the hash of a file and then extend it to a PCR using
tpm2_hash and tpm2_pcrextend commands, respectively.
Alternatively, tpm2-tools offers an abstraction function
called tpm2_pcrevent which combines hashing and extend-
ing in one go. We strongly believe that such abstractions pro-
vide convenience to the developers and make their code less
error-prone by triggering a sequential execution of functions
that might be missed otherwise. Unfortunately, while there
are several abstraction functions available in the tpm2-tools
library, they seem to be underutilized. We recommend that
libraries promote and highlight the advantages of abstraction
functions whenever available. Also, they should identify oc-
casions where the order of command execution has to be pre-
served and provide abstractions for them. Even better would
be to provide abstraction functions for common use cases.

Promote secure cryptographic primitives. We recom-
mended in §6.1 that the documentation should include guide-
lines for picking security attributes. While security-conscious
developers may benefit from that, it is common for develop-
ers to rely on the default options, especially while picking
cryptographic primitives provided by the library. This finding
is also reflected in Green and Smith’s “Make defaults safe
and unambiguous” principle. Thus, libraries must avoid sup-
porting algorithms with known security vulnerabilities and

USENIX Association Eighteenth Symposium on Usable Privacy and Security 223

set the defaults to the most secure primitive. If the insecure
algorithms have to be supported for legacy reasons, their use
should be discouraged, e.g., via warnings. When we exam-
ined cryptographic algorithms supported by the tpm2-tools
library, we found that the library does not support insecure
algorithms. However, the default options are set to the primi-
tive with bare minimum security in most cases. We suggest
that the library should consider updating defaults to the most
secure option available. We also remind that support for cryp-
tographic algorithms should be regularly audited, and support
for insecure ones (if found) should be discontinued.

7 Discussion

Our results hint at the importance of threat models in the
API ecosystem. We found that developers do not always feel
forced to make security choices unless a threat model is given
or they understand the threats to defend against. Documenta-
tion could bridge this gap by including common threat models,
extensive background topics and secure coding examples built
around common use cases. We believe that including threat
models in the documentation of security-critical technologies
would help developers cultivate intuitive security thinking
and form correct mental models.

Similarly, naming conventions, along with text and format
of errors and outputs, are crucial in invoking security thinking
among the developers. For example, using familiar terminolo-
gies (such as nonce) as part of the commands could do the
trick. However, in practice, software implementations often
blindly borrow the names and texts defined in the standard
specifications. This leaves minimal scope for improvement
in the later stages. In this realm, we recommend considering
usability and human factors already in the creation of the
specifications. In particular, HCI usability experts should re-
view the function names, text, and error and output formats.
We believe API design principles [30] that are typically rec-
ommended at the implementation stage can also be applied
while designing the specification.

Roadblocks faced by developers could easily make them
gullible to commit mistakes, which could have serious con-
sequences in the context of security-critical technologies. Li-
braries can learn from the common mistakes and address them
in the software development life cycle. Modern code repos-
itories provide an easy way of tracking end-user issues and
creating automated workflows for integrating their solutions
(e.g., as a feature) in software updates.

Our interaction with the developers drew attention to the
importance of communities, as they often seek help from
sources outside the software documentation. In particular,
they rely on peer support and prefer immediate help (e.g.,
ready-made code and error resolution tips). Unfortunately, the
generic venues for such help (e.g., Stack Overflow) lack use-
ful content for niche technologies, such as TPM. In such cases,
community forums of these technologies play a vital role. For

example, we observed that Tpm.dev is one such community
forum for TPM developers to discuss concerns and learn from
each other, irrespective of experience or library preference.
Tpm.dev has also recently started to share beginner-friendly
resources [11], written by seasoned developers. We have dis-
cussed our results with Tpm.dev to encourage their initiative
and hope they benefit from this study.

Limitations. One of the limitations of this work is the small
number of participants. Despite that, we believe our results
are generalizable due to the participants’ expertise. Simi-
lar to Nielsen-like heuristic evaluations [42], we argue that
the usability issue discovered for one participant is likely to
indicate a general usability issue [31, 39, 45]. The other lim-
itation is that our results are drawn only by observing the
tpm2-tools library. Despite being allowed to choose a dif-
ferent TPM library supported by our study environment, all
participants, including those familiar with multiple libraries,
used tpm2-tools. However, we consider our results gener-
alizable because the other libraries, similar to tpm2-tools,
closely mirror the specifications. A comparison is provided
in Appendix A. Our independent analysis confirmed that they
do not provide more user-friendly function abstractions or
naming. While the author of the IBMTSS library claims to
provide a simpler interface , there is no empirical evidence
to support their usability claims. Future studies can utilize
our study environment and insights from this study to vali-
date such claims or, even better, to conduct a quantitative and
comparative analysis between different TPM libraries.

8 Conclusions

We conducted the first qualitative study targeting TPM library
APIs and found that they are not developer-friendly. In par-
ticular, we identified specific areas where the TPM library
APIs contain usability and security pitfalls and provided rec-
ommendations to fix them. Our contributions also include an
open-source environment for TPM usability studies.

Our findings support those of past API usability and secu-
rity studies. Additionally, we found new insights by study-
ing the interesting combination of cryptographic and non-
cryptographic features of TPM that is rarely seen in previ-
ously studied security APIs. Some of the identified pitfalls
can be traced back to the TPM specification that forms the
design basis for software implementation. Based on this obser-
vation, we highlight an important issue: any technology that
follows standard specifications tends to accumulate usabil-
ity pitfalls, well before its implementation, in the standards
design. This is an opportunity for standardization bodies to
prioritize usability by involving HCI experts in the design
process. Previous studies have not highlighted this issue, and
no usability frameworks have been explicitly created for the
standards.We hope that our work inspires and steers future
research in this direction.

224 Eighteenth Symposium on Usable Privacy and Security USENIX Association

Acknowledgments

We thank our anonymous reviewers for their insightful re-
views and feedback that helped us improve the paper. We
also thank our participants, without whom this study would
not have been possible. We are grateful to Yoan Miche from
Nokia Bell Labs for his support and discussions throughout
this research project.

References

[1] Go-TPM. [Online]. https://github.com/google/
go-tpm.

[2] IBM’s TPM 2.0 TSS. [Online]. https://
sourceforge.net/projects/ibmtpm20tss/.

[3] Judge0. [Online]. https://github.com/judge0/
judge0.

[4] Protection details. [Online]. https://github.
com/tpm2-software/tpm2-tools/blob/5.0/man/
common/protection-details.md.

[5] SurveyJS. [Online]. https://github.com/
surveyjs/survey-library.

[6] TPM study environment. [Online]. https://github.
com/nokia/tpm-study-environment.

[7] tpm2-tools. [Online]. https://github.com/
tpm2-software/tpm2-tools.

[8] tpm2_checkquote(1) tpm2-tools | General Com-
mands Manual. [Online]. https://github.com/
tpm2-software/tpm2-tools/blob/5.0/man/
tpm2_checkquote.1.md.

[9] tpm2_create(1) tpm2-tools | General Commands
Manual. [Online]. https://github.com/
tpm2-software/tpm2-tools/blob/5.0/man/
tpm2_create.1.md.

[10] tpm2_encryptdecrypt(1) tpm2-tools | Gen-
eral Commands Manual. [Online]. https:
//github.com/tpm2-software/tpm2-tools/
blob/5.0/man/tpm2_encryptdecrypt.1.md.

[11] TPM.dev tutorials. [Online]. https://github.com/
tpm2dev/tpm.dev.tutorials.

[12] wolfTPM. [Online]. https://github.com/wolfSSL/
wolfTPM.

[13] Yasemin Acar, Michael Backes, Sascha Fahl, Simson
Garfinkel, Doowon Kim, Michelle L Mazurek, and
Christian Stransky. Comparing the usability of cryp-
tographic apis. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 154–171. IEEE, 2017.

[14] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon
Kim, Michelle L Mazurek, and Christian Stransky. You
get where you’re looking for: The impact of information
sources on code security. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 289–305. IEEE, 2016.

[15] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon
Kim, Michelle L Mazurek, and Christian Stransky. How
internet resources might be helping you develop faster
but less securely. IEEE Security & Privacy, 15(2):50–60,
2017.

[16] Yasemin Acar, Christian Stransky, Dominik Wermke,
Charles Weir, Michelle L Mazurek, and Sascha Fahl. De-
velopers need support, too: A survey of security advice
for software developers. In 2017 IEEE Cybersecurity
Development (SecDev), pages 22–26. IEEE, 2017.

[17] Steven Arzt, Sarah Nadi, Karim Ali, Eric Bodden, Se-
bastian Erdweg, and Mira Mezini. Towards secure inte-
gration of cryptographic software. In 2015 ACM Inter-
national Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward!),
pages 1–13, 2015.

[18] Hala Assal and Sonia Chiasson. ’think secure from
the beginning’ a survey with software developers. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, pages 1–13, 2019.

[19] Dejan Baca, Kai Petersen, Bengt Carlsson, and Lars
Lundberg. Static code analysis to detect software se-
curity vulnerabilities-does experience matter? In 2009
International Conference on Availability, Reliability and
Security, pages 804–810. IEEE, 2009.

[20] Brett A Becker, Paul Denny, Raymond Pettit, Durell
Bouchard, Dennis J Bouvier, Brian Harrington, Amir
Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, et al. Compiler error messages considered un-
helpful: The landscape of text-based programming error
message research. In Proceedings of the working group
reports on innovation and technology in computer sci-
ence education, pages 177–210. 2019.

[21] Stefan Berger and David Safford. SWTPM - soft-
ware TPM emulator. [Online]. https://github.com/
stefanberger/swtpm.

[22] Jan Camenisch, Liqun Chen, Manu Drijvers, Anja
Lehmann, David Novick, and Rainer Urian. One tpm
to bind them all: Fixing tpm 2.0 for provably secure
anonymous attestation. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 901–920. IEEE, 2017.

[23] Stéphanie Delaune, Steve Kremer, Mark D Ryan, and
Graham Steel. A formal analysis of authentication in

USENIX Association Eighteenth Symposium on Usable Privacy and Security 225

https://github.com/google/go-tpm
https://github.com/google/go-tpm
https://sourceforge.net/projects/ibmtpm20tss/
https://sourceforge.net/projects/ibmtpm20tss/
https://github.com/judge0/judge0
https://github.com/judge0/judge0
https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/common/protection-details.md
https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/common/protection-details.md
https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/common/protection-details.md
https://github.com/surveyjs/survey-library
https://github.com/surveyjs/survey-library
https://github.com/nokia/tpm-study-environment
https://github.com/nokia/tpm-study-environment
https://github.com/tpm2-software/tpm2-tools
https://github.com/tpm2-software/tpm2-tools
https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/tpm2_checkquote.1.md
https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/tpm2_checkquote.1.md
https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/tpm2_checkquote.1.md
https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/tpm2_create.1.md
https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/tpm2_create.1.md
https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/tpm2_create.1.md
https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/tpm2_encryptdecrypt.1.md
https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/tpm2_encryptdecrypt.1.md
https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/tpm2_encryptdecrypt.1.md
https://github.com/tpm2dev/tpm.dev.tutorials
https://github.com/tpm2dev/tpm.dev.tutorials
https://github.com/wolfSSL/wolfTPM
https://github.com/wolfSSL/wolfTPM
https://github.com/stefanberger/swtpm
https://github.com/stefanberger/swtpm

the tpm. In International Workshop on Formal Aspects
in Security and Trust, pages 111–125. Springer, 2010.

[24] Stéphanie Delaune, Steve Kremer, Mark D Ryan, and
Graham Steel. Formal analysis of protocols based on
tpm state registers. In 2011 IEEE 24th Computer Secu-
rity Foundations Symposium, pages 66–80. IEEE, 2011.

[25] Paul Denny, James Prather, Brett A Becker, Catherine
Mooney, John Homer, Zachary C Albrecht, and Gar-
rett B Powell. On designing programming error mes-
sages for novices: Readability and its constituent factors.
In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, pages 1–15, 2021.

[26] Andreas Fuchs, Christoph Krauß, and Jürgen Repp. Ad-
vanced Remote Firmware Upgrades Using TPM 2.0.
In ICT Systems Security and Privacy Protection, pages
276–289. Springer, Cham, May 2016.

[27] William Futral and James Greene. Intel® Trusted Ex-
ecution Technology for Server Platforms: A Guide to
More Secure Datacenters. Apress, Berkeley, CA, 2013.

[28] Peter Leo Gorski and Luigi Lo Iacono. Towards the
usability evaluation of security apis. In HAISA, pages
252–265, 2016.

[29] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke,
Christian Stransky, Sebastian Moeller, Yasemin Acar,
and Sascha Fahl. Developers Deserve Security Warn-
ings, Too: On the Effect of Integrated Security Advice
on Cryptographic API Misuse. In Proceedings of the
Fourteenth Symposium on Usable Privacy and Security,
page 17, Baltimore, MD, USA, August 2018.

[30] Matthew Green and Matthew Smith. Developers are not
the enemy!: The need for usable security apis. IEEE
Security & Privacy, 14(5):40–46, 2016.

[31] Thomas Grill, Ondrej Polacek, and Manfred Tscheligi.
Methods towards api usability: A structural analysis
of usability problem categories. In International con-
ference on human-centred software engineering, pages
164–180. Springer, 2012.

[32] Julie M Haney, Mary Theofanos, Yasemin Acar, and
Sandra Spickard Prettyman. " we make it a big deal in
the company": Security mindsets in organizations that
develop cryptographic products. In Fourteenth Sympo-
sium on Usable Privacy and Security (SOUPS 2018),
pages 357–373, 2018.

[33] James J Horning. What the compiler should tell the user.
In Compiler Construction, pages 525–548. Springer,
1974.

[34] Shohreh Hosseinzadeh, Bernardo Sequeiros, Pedro RM
Inácio, and Ville Leppänen. Recent trends in applying
tpm to cloud computing. Security and Privacy, 3(1):e93,
2020.

[35] Luigi Lo Iacono and Peter Leo Gorski. I do and i un-
derstand. not yet true for security apis. so sad. In Proc.
of the 2nd European Workshop on Usable Security, ser.
EuroUSEC, volume 17, 2017.

[36] Nora McDonald, Sarita Schoenebeck, and Andrea Forte.
Reliability and inter-rater reliability in qualitative re-
search: Norms and guidelines for CSCW and HCI prac-
tice. Proceedings of ACM Human-Computer Interaction,
3(CSCW), November 2019.

[37] Microsoft. BitLocker (Windows 10) - Windows security.
[Online]. https://docs.microsoft.com/en-us/
windows/security/information-protection/
bitlocker/bitlocker-overview, December 2021.

[38] Microsoft. Secure the Windows boot
process - Windows security. [Online].
https://docs.microsoft.com/en-us/
windows/security/information-protection/
secure-the-windows-10-boot-process, Decem-
ber 2021.

[39] Eduardo Mosqueira-Rey, David Alonso-Ríos, Vicente
Moret-Bonillo, Isaac Fernández-Varela, and Diego
Álvarez-Estévez. A systematic approach to api usability:
Taxonomy-derived criteria and a case study. Information
and Software Technology, 97:46–63, 2018.

[40] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bod-
den. Jumping through hoops: Why do java developers
struggle with cryptography apis? In Proceedings of the
38th International Conference on Software Engineering,
pages 935–946, 2016.

[41] National Institute for Standards and Technology
(NIST). Cryptographic standards and guidelines.
[Online]. https://csrc.nist.gov/Projects/
cryptographic-standards-and-guidelines,
2017. Accessed on: Nov 3, 2021.

[42] Jakob Nielsen. How to conduct a heuristic evaluation.
[Online]. https://www.ingenieriasimple.com/
usabilidad/HeuristicEvaluation.pdf, 1995.

[43] Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-
Chuan Yeh, Justin Cappos, and Yanyan Zhuang. It’s the
psychology stupid: how heuristics explain software vul-
nerabilities and how priming can illuminate developer’s
blind spots. In Proceedings of the 30th Annual Com-
puter Security Applications Conference, pages 296–305,
2014.

226 Eighteenth Symposium on Usable Privacy and Security USENIX Association

https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://csrc.nist.gov/Projects/cryptographic-standards-and-guidelines
https://csrc.nist.gov/Projects/cryptographic-standards-and-guidelines
https://www.ingenieriasimple.com/usabilidad/HeuristicEvaluation.pdf
https://www.ingenieriasimple.com/usabilidad/HeuristicEvaluation.pdf

[44] Nikhil Patnaik, Joseph Hallett, and Awais Rashid. Us-
ability smells: An analysis of developers’ struggle with
crypto libraries. In Fifteenth Symposium on Usable
Privacy and Security (SOUPS 2019), pages 245–257,
2019.

[45] Helen Petrie and Christopher Power. What do users
really care about? a comparison of usability problems
found by users and experts on highly interactive web-
sites. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 2107–2116,
2012.

[46] James Prather, Raymond Pettit, Kayla Holcomb Mc-
Murry, Alani Peters, John Homer, Nevan Simone, and
Maxine Cohen. On novices’ interaction with compiler
error messages: A human factors approach. In Pro-
ceedings of the 2017 ACM Conference on International
Computing Education Research, pages 74–82, 2017.

[47] Elissa M Redmiles, Yasemin Acar, Sascha Fahl, and
Michelle L Mazurek. A summary of survey methodol-
ogy best practices for security and privacy researchers.
Technical report, 2017.

[48] Nabil Schear, Patrick T. Cable, Thomas M. Moyer,
Bryan Richard, and Robert Rudd. Bootstrapping and
maintaining trust in the cloud. In Proceedings of the
32nd Annual Conference on Computer Security Appli-
cations, pages 65–77, Los Angeles California USA, De-
cember 2016. ACM.

[49] Jianxiong Shao, Yu Qin, Dengguo Feng, and Weijin
Wang. Formal analysis of enhanced authorization in
the tpm 2.0. In Proceedings of the 10th ACM Sympo-
sium on Information, Computer and Communications
Security, pages 273–284, 2015.

[50] Ben Shneiderman. Designing computer system mes-
sages. Communications of the ACM, 25(9):610–611,
1982.

[51] TCG. Trusted Platform Module Library Part 1: Archi-
tecture. Trusted Platform Module Library Specification,
Family 2.0 Level 00 Revision 01.59, The Trusted Com-
puting Group, November 2019.

[52] TCG. TCG Feature API (FAPI) Specification. Technical
Report Version 0.94 Revision 09, June 2020.

[53] TCG. TCG PC Client Platform Firmware Profile Spec-
ification. TCG PC Client Platform Firmware Profile
Specification, Family 2.0 Level 00, Version 1.05 Revi-
sion 23, May 2021.

[54] TCG. TCG TSS 2.0 Enhanced System API (ESAPI)
Specification. Technical Report Version 1.00 Revision
14, October 2021.

[55] TCG. TCG TSS 2.0 System Level API (SAPI) Spec-
ification. Technical Report Version 1.1 Revision 36,
October 2021.

[56] The Trusted Computing Group (TCG). Tpm
2.0 library specification. [Online]. https:
//trustedcomputinggroup.org/resource/
tpm-library-specification/, 2019. Accessed on:
Nov 27, 2021.

[57] tpm2-software community. Remote attestation.
[Online]. https://tpm2-software.github.
io/tpm2-tss/getting-started/2019/12/18/
Remote-Attestation.html.

[58] tpm2-software community. Tutorials. [Online]. https:
//tpm2-software.github.io/tutorials/.

[59] V Javier Traver. On compiler error messages: what they
say and what they mean. Advances in Human-Computer
Interaction, 2010, 2010.

[60] Jonathan Turner. Shape of errors to come. [On-
line]. https://blog.rust-lang.org/2016/08/10/
Shape-of-errors-to-come.html.

[61] Juan Wang, Yuan Shi, Guojun Peng, Huanguo Zhang,
Bo Zhao, Fei Yan, Fajiang Yu, and Liqiang Zhang. Sur-
vey on key technology development and application in
trusted computing. China Communications, 13(11):70–
90, 2016.

[62] Stephan Wesemeyer, Christopher JP Newton, Helen Tre-
harne, Liqun Chen, Ralf Sasse, and Jorden Whitefield.
Formal analysis and implementation of a tpm 2.0-based
direct anonymous attestation scheme. In Proceedings
of the 15th ACM Asia Conference on Computer and
Communications Security, pages 784–798, 2020.

[63] Glenn Wurster and Paul C Van Oorschot. The developer
is the enemy. In Proceedings of the 2008 New Security
Paradigms Workshop, pages 89–97, 2008.

USENIX Association Eighteenth Symposium on Usable Privacy and Security 227

https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://tpm2-software.github.io/tutorials/
https://tpm2-software.github.io/tutorials/
https://blog.rust-lang.org/2016/08/10/Shape-of-errors-to-come.html
https://blog.rust-lang.org/2016/08/10/Shape-of-errors-to-come.html

Appendices

A TPM library comparison

Table 3: Comparison between TPM Library APIs

tpm2-tools
[7]

IBMTSS
[2]

go-tpm
[1]

wolfTPM
[12]

Programming
language

Shell C/Shell Go C

Date of
creation

August 2015 May 2015 February
2018

January 2018

Usage statistics + 507 GitHub
stars

11 Source-
forge

reviews

391
GitHub

stars

124 GitHub
Stars

85830
downloads

22136
downloads

dependency
of 58 Go
projects

75
downloads

Version used in
our study *

v5.0 v1.5.0 v0.3.2 v2.0.0

Supports
functions
needed
for study tasks

Yes Yes Yes Yes

Follows
the standards
closely

Yes Yes Yes Yes

Usability
claims

No Yes No No

* This was the latest release of the library at the time of the study design.
+ As of May 19, 2022.

B Preliminary survey

• Have you worked on hardware-based security (trusted
computing)?

• Have you developed using the Trusted Platform Module
(TPM)? Development of any kind that requires hands-on
skills

• What are you using/have you used TPM for? (As part of
work; Hobby projects; School/University projects; Other
(please specify))

• How many years of experience do you have with TPM
development (Less than a year; 1-2 years; More than 2
years)

• Which version of TPM have you used? (TPM v1.x; TPM
v2.0)

• Have you used any of the TPM simulators?
• Which TPM software stack (TSS) have you used or use?

[All that apply] (tpm2-software (tpm2-tss/tpm2-tools);
TPM 2.0 TSS by IBM, TPM TSS by Microsoft; go-tpm
by Google; WolfTPM; Other (please specify))

• What have you used TPM for? Feel free to describe it in
detail. If you have any open source projects, blog posts,
or products, we would love to have a look at them. (free
text)

• Are you interested in taking part in our study about the
usability of TPM libraries? The study will include some

simple tasks that involve using TPM libraries. Your ef-
forts will be fairly compensated.

• Please provide us your email. We will use your email
only for contacting you for the next phases of our study.
If not, your email will be deleted immediately and per-
manently. The email provided by you is not used for any
other purposes. (free text)

• Please tell us your name. We will use it only for address-
ing you when we send further communication about our
study. (free text)

C Participant sampling and recruitment

First, we created a participant pool of the target population
from personal contacts, mailing lists, forums, and code reposi-
tories. Then, we contacted them to take part in our preliminary
survey via emails and social media (Twitter and LinkedIn).
This survey collected participants’ contact and demographic
details, information about prior experience, TPM software
libraries, their use of TPM and willingness to participate in
the next part of the study. 36 out of 48 people expressed their
interest in participating in the second part. We prioritized 34
participants who matched the criteria for our target population.
We then invited them to participate via an email that contained:
a reminder of their preliminary survey, a brief description of
the goals, a link to their study environment, assigned library,
compensation details (worth 100 C), and the approximate
time needed to complete the study. 13 participants completed
all the tasks, and the majority (N=11) used the tpm2-tools
library. Our results are from a qualitative study of 9 of them
whom we interviewed.

D Task descriptions

Task 1 (Track A): Asymmetric Encryption

Step 1a: Create Key. Your task is to create a secure asym-
metric key of your choice for encryption purposes (e.g., for
encrypting a file on your disk) using the TPM.
While creating the key, make sure the following conditions
are met:

• The key should be exportable to other devices
• The key should be available across system reboots

Step 1b: Encrypt. Use the key you created in Step 1a to
encrypt path/to/file

Step 1c: Reboot and decrypt
• First, reboot the environment by clicking the “Reboot

TPM” button in the IDE.
• Then, decrypt the file you encrypted in step 1b.

228 Eighteenth Symposium on Usable Privacy and Security USENIX Association

Task 1 (Track B): Symmetric Encryption
Step 1a: Create Key. Your task is to create a password-
protected symmetric key of your choice using the TPM.

While creating the key, keep in mind the following:
• You may have to repeatedly use this key for encryption

and decryption

Step 1b: Encrypt. Use the key you created in Step 1a to
encrypt the following:

• The string “TPMMakesMeFeelGreat”
• path/to/file

Step 1c: Decrypt
• Now, using the same key, decrypt the string

<enc.string> from step 1b.
• Also, decrypt the file <enc.file>.

Step 1d: Cleaning the environment (Optional step) Other
users may be using this environment in the future. If there is
any code cleanup you would like to add, you can do so now.

Task 2: Storing Measurements
Step 2a: Measure and store in PCRs. Your task is to mea-
sure the file path/to/file and store the measurements using
suitable PCRs.

The measurements stored in the PCRs are used in remote
attestation to validate that the host machine has the correct
configuration (based on config.json).

When storing the measurements, keep in mind the follow-
ing:

• The attestation server may request the measurements
from any PCR bank.

Step 2b: Read measurements. Read the contents of the
PCRs (extended in step 2a). This is done to ensure that the
measurements are recorded correctly.

Please make a note if you encounter any error(s).

Task 3: Securing Secrets
Step 3a: Store secret in the TPM. Your task is to store the
secret string “workingWithTPMisAwesome” securely in the
TPM.

The PCR allocation is as follows.
PCR 0: Core Root of Trust for Measurement,
PCR 1: Firmware, PCR 2: Kernel,
PCR 3: Config, and PCR 4-23: Unused.

While storing in the TPM, make sure that the following
conditions are met:

• The secret should only be readable when the firmware
has not been modified.

• The secret should not be modifiable after it has been
written into the TPM.

Step 3b: Read secret. Read the secret (stored in step 3a)
from the TPM. This is done to ensure the secret is stored
correctly.

Please make a note if you encounter any error(s).

Task 4: Remote Attestation

Step 4a: Get quote. Your task is to get a quote of a machine
for remote attestation.

The PCR allocation is as follows.
PCR 0: Core Root of Trust for Measurement,
PCR 1: Firmware, PCR 2: Kernel,
PCR 3: Config, and PCR 4-23: Unused.

While getting the quote, make sure that the following con-
ditions are met:

• The quote should include the state of the kernel.
• The quote should be signed using an appropriate key

to prove that the quote contents were generated by a
legitimate TPM.

Step 4b: Verify quote. You are provided with the fol-
lowing files in your environment under the directory
path/to/directory.
q1.msg: Quote file (signed by key1),
q1.sig: Signature file for q1.msg,
key1.pub.pem: Public part of key1 in PEM format,
key1.pub.tss: Public part of key1 in TSS format.

Your task is to verify that the quote contents of q1.msg can
be used for remote attestation.

While verifying the quote, make sure that the following
conditions are met:

• The content of the quote was generated by a TPM.
• The content of the quote has not been tampered with.

E TPM security features

Table E.4: List of cryptographic security features

Code Description
C1 Symmetric −→ Encryption
C2 Asymmetric −→ Encryption
C3 Asymmetric −→ Signing
C4 Hashing

USENIX Association Eighteenth Symposium on Usable Privacy and Security 229

Table E.5: List of non-cryptographic security features

Code Description
NC1 Use of the TPM hierarchies
NC2 TPM key restrictions
NC3 Restrictions against TPM-internal states (e.g.

PCRs, NVRAM, counters)
NC4 Restrictions against TPM-external states (e.g.

password, signature, smart cards)
NC5 Session-based command or object authorization
NC6 PCR usage

F Questionnaires

Demographics
• How long have you been programming? (Less than a

year; 1-2 years; 2-5 years; More than 5 years)
• How long have you been programming with TPMs?

(Less than a year; 1-2 years; 2-5 years; More than 5
years)

• In which context do you usually deal with TPM related
topics? (Big company (>250 employees); Small and
medium enterprise (including startups); Academic insti-
tution; On my own free time after work; Other (Please
specify))

• What is your occupation?
• Are you associated with <library> in any of the fol-

lowing capacities? [All that apply] (Creator; Maintainer;
Regular contributor; I might have contributed something
minor; End user; Other (Please specify))

• Do you have a computer security background?
• What is your highest level of education? (No formal

education; Some high school; High school or equivalent;
Technical or occupational certification; Some college
course work completed/Associate degree; Bachelor’s
(or undergraduate) degree; Master’s degree; Doctorate
degree)

• Please tell us your gender. (Female; Male; I prefer not
to say; Other (Please specify))

• Where are you from? (dropdown)
• What is your age (in years)? (<18; 18-29; 30-39; 40-49;

50-59; >60)
• We will contact you again with respect to compensation

once the survey is over. Please leave your email address
below. (free text)

Task-specific questionnaire
• How familiar are you with the task that you have just

attempted? (Not at all familiar; Slightly familiar; Some-
what familiar; Moderately familiar; Extremely familiar)

• How frequently have you done tasks like this one?
(Never; Rarely; Sometimes; Often; Frequently)

• How difficult was this task? (Very difficult; Difficult;
Neutral; Easy; Very easy)

• Did you encounter any error messages? If yes:
Please rate your agreement to the following statements
on a scale from ‘strongly disagree’ to ‘strongly agree.’
(Strongly disagree; Disagree; Neutral; Agree; Strongly
agree)

– The error or warning messages were helpful in
improving my answers.

– The error or warning messages were helpful in
making secure choices, e.g. while selecting param-
eters for specific library functions.

• Did you manage to complete all the steps in this task?
If yes:

– I think my code snippet for this task is correct.
(Strongly disagree; Disagree; Neutral; Agree;
Strongly agree)

– I think my code snippet for this task is secure.
(Strongly disagree; Disagree; Neutral; Agree;
Strongly agree)

– Did you refer to any of the following resources
while completing the task? [All that apply]

* Official resources (Official library documenta-
tion; TCG Technical standards; I did not use
official resources)

* Additional resources (Mailing lists or com-
munity forums of the library that you used;
Third-party/generic TPM forums (e.g., stack
overflow, social media groups); Blogs, walk-
through and hands-on guides; Training and
workshop materials; Personal notes; I did not
use additional resources; Others (please spec-
ify))

– Did you observe anything interesting when com-
pleting the task? If yes, please describe it. (free
text)

If no:
– Why do you think you could not complete all the

steps? [All that apply] (I did not know how to do it;
I could not find suitable resources to help me com-
plete the task; I tried and gave up midway because
the steps were too difficult or time-consuming; The
description was not understandable; The task did
not interest me; Other (please describe))
If "I did not know how to do it" or "I could not find
suitable resources to help me complete the task:

– Did you refer to any of the following resources
while completing the task? [All that apply]

* Official resources (Official library documenta-
tion; TCG Technical standards; I did not use
official resources)

* Additional resources (Mailing lists or com-
munity forums of the library that you used;
Third-party/generic TPM forums (e.g., stack

230 Eighteenth Symposium on Usable Privacy and Security USENIX Association

overflow, social media groups); Blogs, walk-
through and hands-on guides; Training and
workshop materials; Personal notes; I did not
use additional resources; Others (please spec-
ify))

Exit questionnaire
• In general, which of the following do you refer to for

your regular TPM-related activities? (Official resources
only; Additional resources only; Mostly official re-
sources, but sometimes additional resources; Mostly ad-
ditional resources, but sometimes official resources)

• Overall, I would rate the user-friendliness of <library>
as (Worst imaginable; Awful; Poor; Fair; Good; Excel-
lent; Best imaginable)

• How satisfied are you with the <library> documenta-
tion? (Not at all satisfied; Slightly satisfied; Moderately
satisfied; Very satisfied; Extremely satisfied)

• How do you rate the quality of the <library> documen-
tation? (Very poor; Poor; Acceptable; Good; Very good)

• How frequently do you refer to additional resources?
(Never; Rarely; Sometimes; Often; Frequently)

• If you refer to additional resources, what do you think is
the reason? [All that apply] (<library> documentation is
not clear; <library> documentation is incomplete/work-
in-progress; <library> documentation does not add
much beyond what is already there in the standards;
There are no examples (code snippets or pseudo-code)
of common use cases; Background information (e.g.,
TPM or programming concepts) is missing)

• Is there anything else you want to tell us about <li-
brary>? (free text)

G Technical details of the study environment

Figure G.1: Interface of the study environment

Our main goal for the study environment was to present
tasks and questionnaires in a single platform, as an online In-
tegrated Development Environment (IDE), to give a seamless
user experience. Also, we wanted to control both the frontend
and backend to tweak the user interfaces and capture crucial
details, such as partial and intermediate submissions. The
off-the-shelf solutions neither satisfied all our requirements
nor supported TPM functionalities. Hence, we built the study
environment from scratch using open-source components.

We used the SurveyJS library [5] to build a survey app for
the questionnaires. We then integrated the self-hosted version
of the Judge0 online IDE [3] with a TPM emulator [21] in the
backend. Please note that, unlike real TPMs, the emulators do
not include manufacturer-certified keys in the endorsement
hierarchy. However, they are a helpful utility to test TPM
functionality without having the hardware and in remote stud-
ies. We supported coding with widely used TPM libraries:
tpm2-tools [7], IBMTSS [2], go-tpm [1], and wolfTPM [12].

The backend also contained a MongoDB database that col-
lected responses to the tasks and questionnaires. We bundled
the survey app, IDE, TPM emulator, and the database into a
docker image and hosted it on our servers.

H Interview script

We present a skeletal structure of our interviews along with
some of the questions in this section. Please note that, for
each participant, we had created prompts using their code
snippets and questionnaire responses that we found to be
worth discussing in-depth. We used probes based on them,
which differ for each participant and cannot be generalized;
hence, we excluded them from the script presented below.

H.1 Introduction

Mutual introduction and reminder about the study

Ice breaker
• What do you use TPMs for?
• What are the common use cases of TPMs for you?
• How technology like TPM is contributing the field of

security?
• Where is TPM useful and where is TPM not useful?

Confirming ecological validity
• How did you feel about the study environment and logis-

tics?
• What about your prior experience or familiarity with

such studies involving coding tasks, mainly the IDE?
• Are there any troubling components in our study that

you want to highlight?
• Do you have any suggestions for improvement?

USENIX Association Eighteenth Symposium on Usable Privacy and Security 231

H.2 Task- and questionnaire-specific observa-
tions

Task-specific

General approach to TPM programming:
• How did you figure out what commands to use?
• Describe your process when starting a task?
• How did you search for relevant information?
• What resources helped you get started with the tasks?

Task 1: Symmetric/Asymmetric encryption
• How did you pick the cryptographic algorithms for cre-

ating the keys?
• Could you describe any examples that might have helped

you when choosing other parameters? e.g., key length.

Task 2 :Storing measurements
• How did you select which PCR to extend with the mea-

surements of the configuration file?

Task 3: Securing secrets
• Could you describe how and where is this secret stored?
• Could you describe any other ways to complete this task?
• Knowing now that there are other approaches, do you

see any advantages or disadvantages of your approach
over others?

Task 4: Remote attestation
• How do you verify the quotes are good to be used for

remote attestation?

• Can you describe quote verification process?
• How do you verify the quote was generated by a TPM

and it has not been tampered with?
• How do you confirm that the quote is valid?
• How do you think the verification could be simplified?

Questionnaire-specific

Correctness and security
• How did you verify that the task conditions were met?
• Why do you think your answer is secure?
• How did you verify you answer is secure?
• How do you know the defaults (or chosen parameters)

are secure?
• Did you do any extra checks or referred somewhere?

H.3 General discussion

• Why do you think you had to look for help outside the
official documentation?

• Why do you think the non-official resources are more
reliable and useful than official resources?

• How do you think TPM library documentation and TPM
standards could be written to compliment each other?

• How do you think the library can be improved?
• How do you think developers can contribute to improve

the library further?
• Is there anything that you want to tell us regarding your

experience about the library?

232 Eighteenth Symposium on Usable Privacy and Security USENIX Association

	Introduction
	Background
	Related work
	Research Methodology
	Task and questionnaire design
	Study environment
	Interview
	Overview of analysis

	Results
	Themes emerged
	Library Themes
	Supporting Materials Themes
	User Themes

	Common coding patterns
	While using non-cryptographic security features
	While using cryptographic security features

	Recommendations
	For library documentation
	For library software

	Discussion
	Conclusions
	TPM library comparison
	Preliminary survey
	Participant sampling and recruitment
	Task descriptions
	TPM security features
	Questionnaires
	Technical details of the study environment
	Interview script
	Introduction
	Task- and questionnaire-specific observations
	General discussion

