
© 2021 Nokia1

August 7-9, 2022

Boston MA, USA + Virtual

Usability and Security of
Trusted Platform Module (TPM)
Library APIs
Sid Rao1, Gabriela Limonta1 and Janne Lindqvist2

1Aalto University, 2Nokia Bell Labs

© 2021 Nokia2

Trusted Platform Module (TPM)

• Tamper-proof chip

• Unique identity

• Secure storage and operations

• Applications:

• Boot Security (e.g., UEFI and Google Chromebooks)

• Disk encryption (e.g., BitLocker, LUKS)

• Trust and attestation for Cloud, Edge and IoT (e.g., Keylime)

• VPNs, SSH, SSL or any other applications where keys are needed

• Recommended by standards/guidelines for NFV and server security

https://keylime.dev/

© 2021 Nokia3

About

▪ TPM is an old and widely used technology

▪ Motivation: TPM not a go-to choice of software developers. Why?

❑ TPM concepts are complex? And security is even more complex?

❑ Software developers find it hard to realize TPM’s potential?

❑ Lacks supporting ecosystem for developers?

❑ All the above?

▪ Scope: TPM library APIs (i.e., standardized high-level APIs for software applications to talk to the TPM chip)

▪ tpm2-tools, IBMTSS, Microsoft TSS, go-tpm, wolfTPM

▪ Goals:

▪ Understand the usability and security pitfalls of TPM developers

▪ Review TPM library API implementations

▪ Provide concrete design guidelines for usably secure API development

© 2021 Nokia4

TPM in a nutshell
Cryptographic and non-cryptographic security features

• Key creation

• Encryption

• Signing

• Hashing

Cryptographic
capabilities

• NVRAM

• Platform
Configuration
Registers

• Sealed data blobs

Secure
storage

• Key attributes

• TPM-internal states

• TPM-external states

• Authorizations and
sessions

Restrictions
and policies

• Quoting

• Unique identity

Attestation

© 2021 Nokia5

Study overview

© 2021 Nokia6

Study design

Participants

Target: TPM developers with
security background

Participation count:

• Preliminary survey: 48

• Interested in the study: 36

• Completed the study: 13

• Interviewed: 9

Limitations:

• Small number of participants

• Only tpm2-tools library was
used

Task design

• 4 tasks for evaluating functional
correctness and security choices

• Encryption: either asymmetric or
symmetric

• Storing measurements

• Securing secrets

• Remote attestation

• Combination of cryptographic and
non-cryptographic features

Questionnaire design

For evaluating perceptions and opinions

• At the beginning: basic demographics

• After each task:

• Familiarity and complexity

• Security and correctness

• Reasons for not completing

• Usefulness of error messages

• At the end:

• Usual choice of supporting materials

• Reasons for referring to external
materials

© 2021 Nokia7

Analysis outline

Analysis Phase 1:

▪ Data from the study environment

▪ Executed code snippets → prompts

▪ Questionnaire responses → probes

Analysis Phase 2:

▪ Interviews transcripts → Thematic analysis

Results:

▪ Themes of usability pitfalls

▪ Common coding patterns (i.e., developer habits or mistakes)

© 2021 Nokia8

Results
Thematic analysis: 18 themes identified

Library themes

Naming conventions
and usage

(3)

Output formats
(2)

Error handling
(2)

Supporting
materials themes

Documentation
shortcomings

(5)

User themes

Mental models
(3)

Trust factors
(3)

Common coding patterns that affected the security of the participants’ code

• Reliance on default values

• Oversights when specifying cryptographic and TPM-specific attributes

• Failure to consider threat models

© 2021 Nokia9

Example
Library themes → Error handling → Lack of pointers to resolve

$ tpm2_encryptdecrypt -p Gnampf -c task_files/parent.context task_files/file2.txt \
-o task_files/file2.encrypted

WARN: Using a weak IV, try specifying an IV “I find it’s kind of destructive criticism when the
program just tells me “well, you used the wrong

initialization vector”, but doesn’t make any
comments on how to do it better.”

tpm2-tools/tpm2_encryptdecrypt.1.md at 5.0 · tpm2-software/tpm2-tools (github.com)

https://github.com/tpm2-software/tpm2-tools/blob/5.0/man/tpm2_encryptdecrypt.1.md

© 2021 Nokia10

For library documentation:

1. Include background information about TPM
concepts

2. Provide code snippets for common use cases

3. Improve entry-level documentation

4. Include guidelines for picking security
attributes

5. Fix incoherent aspects

For library software:

1. Provide developer-friendly error messages

2. Provide concise output messages

3. Utilize abstractions (e.g., for sequential
command execution)

4. Promote secure crypto primitives

Recommendations

© 2021 Nokia11

Summary of contributions and results
• Open-source study platform for TPM-related tasks

• Nothing to install and configure --> Works right out of a browser

• It can be used for hands-on tutorials, hackathons or future studies involving TPMs

• Qualitative results about the tpm2-tools library

• Identified 18 usability and security pitfalls

• Complex topics + lack of developer-friendly APIs and supporting materials. Developers

• struggle to use the APIs efficiently

• are prone to make trivial mistakes that nevertheless undermine security

• cannot fully utilize TPM’s capabilities, and it also discourages newbies

• Concrete recommendations for the TPM library to immediately address the issues identified

• Need for usability by design

• Usability and security pitfalls in software can be traced back to standard specifications

• HCI experts should be involved already in the design of specifications

© 2021 Nokia12

Thank you!
Resource materials:

• Full paper: https://www.usenix.org/conference/soups2022/presentation/rao

• TPM study environment: https://github.com/nokia/tpm-study-environment

Contact:

• Sid Rao (sid.rao@nokia-bell-labs.com)

• Gabriela Limonta (gabriela.limonta@nokia-bell-labs.com)

https://www.usenix.org/conference/soups2022/presentation/rao
https://github.com/nokia/tpm-study-environment
mailto:sid.rao@nokia-bell-labs.com
mailto:gabriela.limonta@nokia-bell-labs.com

© 2021 Nokia13

Task and security features mapping

Cryptographic security features

C1 Symmetric -> Encryption

C2 Asymmetric -> Encryption

C3 Asymmetric -> Signing

C4 Hashing

Non-cryptographic security features

NC1 Use of the TPM hierarchies

NC2 TPM key restrictions

NC3 Restrictions against TPM-internal states

NC4 Restrictions against TPM-external states

NC5 Session-based command or object
authorization

NC6 PCR usage

Task
Security features

Crypto Non-crypto

E
n

cr
y
p

ti
o

n Asymmetric C2 NC1, NC2

Symmetric C1 NC4, NC5

Storing
measurements

C4 NC6

Securing secrets - NC1, NC3

Remote attestation C3 NC1, NC2, NC6

